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Abstract—Cache-aided wireless device-to-device (D2D) net-
works have demonstrated promising performance improvement
for video distribution compared to conventional distribution
methods. Understanding the fundamental scaling behavior of
such networks is thus importance. Recently, based on real-world
data, it has been observed that the popularity distribution should
be modeled by a Mandelbrot-Zipf (MZipf) distribution, instead
of the common Zipf distribution. We thus in this work investigate
the throughput-outage performance for cache-aided wireless D2D
network adopting multi-hop communications, with the MZipf
popularity distribution for file requests and Poisson point process
for user distribution. Considering the case that Zipf factor is
larger than one, we first propose an achievable content caching
and delivery scheme and analyze its performance. Then, by
showing that the achievable performance is tight to the proposed
outer bound, we show that an optimal scaling law for cache-aided
wireless multi-hop D2D networks is obtained.

I. INTRODUCTION

Over the last years, progress of semiconductor technology
has made memory one of the cheapest hardware resources.
Accordingly, caching at the wireless edge has emerged as a
promising approach for significantly improving the efficiency
and quality of video distribution [2]. The idea of caching is
to trade cheap memory resources for expensive bandwidth
resources by caching video files close to the prospective users.
This principle, combined with the asynchronous content reuse
and concentrated popularity that are general characteristics of
video requests [2], has rendered caching at the wireless edge
a widely explored method for video distribution [3].
Among the commonly discussed scenarios of caching at

the wireless edge, cache-aided wireless D2D networks have
been shown to effectively improve the video distribution [4]–
[7], and have been widely discussed in recent years [3], [8].
While most papers are devoted to improving cache-aided D2D
networks in practical settings, there exist papers that focus
on understanding the fundamental properties and limits of
cache-aided D2D networks [4]–[7], [9]–[12]. These papers
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use scaling law analysis to characterize how the network/user
performance scales as the number of users N tends to infinity.
Their results thus provide us the performance trend as well as
means of comparison between fundamentally different com-
munication frameworks. This paper provides a contribution to
this range of investigation.

A. Related Literature

The throughput scaling law analysis for wireless D2D (or
ad-hoc) networks has been subject to many investigations
since the seminal work of Gupta and Kumar [13]. Since then,
papers have been published for understanding the throughput
scaling law [14], [15]. Their results showed that the throughput
of wireless D2D networks scales with Θ

(
1√
N

)
. Meanwhile,

cache-aided D2D/ad-hoc networks have also been studied by
the computer science community, e.g., [16], [17]. However,
the fundamental scaling laws and optimality considerations
did not draw much attention.

Only recently did the fundamental properties of cache-aided
D2D/ad-hoc networks start to draw more attention. In [18],
the scaling law of the maximum expected throughput was
characterized for single-hop cache-aided D2D networks con-
sidering a Zipf popularity distribution and a protocol model for
transmission between nodes; however, it did not characterize
the outage probability. To resolve this limitation, [4] showed
that in single-hop networks, the throughput per node can scale
with Θ

(
S
M

)
with negligibly small outage probability when a

heavy-tailed Zipf popularity distribution is considered, where
M is the file library size and S is the per-user memory size.
This result was later generalized in [7] by adopting a more
practical and general modeling for popularity distribution,
namely the Mandelbrot-Zipf (MZipf) distribution, where the
distribution is characterized by the Zipf factor γ and the
plateau factor q. In [9], the throughput scaling law of networks
with multi-hop communications was characterized with the
assumption of user locations on a grid, while the tradeoff
between throughput and outage was not explicitly investigated.
Ref. [6] provided an achievable throughput scaling law for
networks with multi-hop D2D under the condition that the
outage is vanishing. In [12], an upper bound for the throughput
was proposed. However, similar to [9], the tradeoff between
throughput and outage performance was not characterized.

B. Contributions

In this work, we focus on the the scaling law analysis for the
throughput-outage performance of uncoded cache-aided D2D
with multi-hop communications. As mentioned above, recent



work [7] has shown that the MZpif distribution better fits a
large real-world data set than the Zpif distribution assumed
in [6], [9], [12]. Thus, our paper aims to provide scaling law
analysis under the MZipf distribution assumption. Note that
this paper is the first one to provide scaling law analysis for
cache-aided wireless multi-hop D2D networks considering the
MZipf popularity distribution.
In this work, we use Poisson point process (PPP) to model

the user distribution and use the MZipf distribution to model
the popularity distribution of video requests [7]. We focus
on the case that the Zipf factor of the MZipf distribution is
larger than 1, i.e., γ > 1, indicating the light-tailed popularity
distribution.1 We assume a decentralized random caching
policy [19] and derive the achievable scaling law and its outer
bound for throughput-outage performance in the regimes that
the outage probability is either negligibly small or converging
to zero, corresponding to the practical requirement that the
desirable outage probability of the network should be small.
We show that the derived achievable per-user throughput

scaling law and its outer bound are tight. Thus, our achievable
throughput-outage scaling law is optimum. Specifically, we
show that when the outage probability is negligibly small,
the throughput per user scales according to Θ

(√
S
q

)
.2 Such

result is interesting as it indicates that the performance is
dominated by the plateau factor q, i.e., the total number of
very popular files, instead of the total number of files M .
Note that according to the dataset in [7], q is much smaller
than M in practice.

II. NETWORK SETUP

We consider a random dense network where users are
placed according to a PPP within a unit square-shaped area
[0, 1] × [0, 1]. We assume that the density of the PPP is N .
As a result, the average number of users in the network is
N and the number of users n in the network is a random
variable following the Poisson distribution. Accordingly, the
probability that the network has n users is:

PN (n = n) =
Nn

n!
e−N . (1)

We assume each device in the network can cache S files. We
consider a library consisting of M files and assume that each
file has equal size. We assume that users request the files from
the library independently according to a request distribution
modeled by the MZipf distribution [7], [20]:

Pr(f ; γ, q) =
(f + q)−γ∑M

m=1(m+ q)−γ
, (2)

where γ is the Zipf factor and q is the plateau factor of the
distribution. The major difference between MZipf and Zipf
distributions lies in that q creates a plateau regime in which

1The comprehensive analysis covering other cases can be found in our
extended journal version [1].

2The scaling law order order notations used in this paper follow the
conventional definitions in complexity analysis territory. They are carefully
defined in the journal version [1].

files in such regime have similar probabilities. Such plateau
regime is larger when q is larger, and the MZipf distribution
degenerates to a Zipf distribution when q = 0. To simplify the
notation, we will in this paper use Pr(f) instead of Pr(f ; γ, q)
as the short-handed expression.

We consider the decentralized random caching policy for all
users [19], in which users cache files independently according
to the same caching policy. Denoting Pc(f) as the probability
that a user caches file f , the caching policy is fully described
by Pc(1), Pc(2), ..., Pc(M), where 0 ≤ Pc(f) ≤ 1, ∀f ; thus
users cache files according to the caching policy {Pc(f)}Mf=1.
To satisfy the cache space constraint, we have

∑M
f=1 Pc(f) =

S. In this paper, we assume that S and γ are some constants.
We consider the asymptotic analysis in this paper, in which

we assume that N → ∞ and M → ∞. We consider γ > 1,
q = o(M) → ∞, and M = o(N). The reasons for these
considerations are as follows. First, we consider q → ∞
to ensure that q is impactful for scaling law analysis. This
is because if q is a constant while M → ∞, the MZipf
distribution behaves like a Zipf distribution in terms of the
scaling law performance, as indicated in [7]. Second, when q
goes to infinity, it is sufficient to consider q = O(M). This is
because the MZipf distribution would behave like a uniform
distribution asymptotically as q = ω(M). Furthermore, when
γ > 1, it is more interesting to consider the case that
q = o(M) because it gives a clear distinction over the case
that γ < 1 in terms of the scaling law performance. As a
matter of practice, we see from the measurment results in [7]
that q is much smaller than M when γ > 1, which supports
the consideration of q = o(M). Finally, the assumption that
q = o(M) and M = o(N) when γ > 1 can render the users
of the network the sufficient ability to cache the most popular
q files (orderwise); otherwise the outage probability could go
to 1 [7]. We note that since S is a constant, the probability
that a user can find the desired file from its own cache goes to
zero as q and M go to infinity. This prevents the possible gain
of trivial self-caching; we thus concentrate on the analysis of
D2D collaborative caching gain. Moreover, similar to [4], we
assume that different users making the requests on the same
file would request different segments of the file, which avoids
the gain from the naive multicasting.

We consider the physical model and define that the link rate
between two users i and j follows the well-known physical
model [14]:

R(i, j) =


R(ϑ), log2

(
1 +

Pil(i, j)

N0 +
∑

k ̸=j Pkl(k, j)

)
≥ ϑ

0, log2

(
1 +

Pil(i, j)

N0 +
∑

k ̸=j Pkl(k, j)

)
< ϑ

,

where R(ϑ) = log2(1 + ϑ) and ϑ is some constant according
to the delivery mechanism; N0 is the noise power spectral
density; Pi is the power of user i; and l(i, j) = χ

dα
ij

is the
power attenuation between users i and j, where dij is the
distance between users i and j, χ > 0 is some constant, and



α > 2 is the pathloss factor. We note that this model will not
be directly used in this paper. However, it is necessary when
we want to leverage the results in [14] and [15] later.
We consider multi-hop D2D delivery for the network. Users

can only obtain their desired files through either multi-hop
D2D delivery or self-caching. In other words, users can only
obtain files from caches of the users in the network. Note that
since S is a constant but M goes to infinity, we can assume
without loss of generality that the throughput per user of using
self-caching is identical to that using D2D-caching; thus we
do not distinguish between users retrieving the desired files
from their own caches and from caches of other users. We
define an outage as an occurrence that a user cannot obtain
its desired file through either the multi-hop D2D delivery or
self-caching. Suppose we are given a realization of number of
users n in the network with a realization of the placement of
the user locations P. In addition, we are given a realization of
file requests F and a realization of file placement G of users
according to the popularity distribution Pr(·) and caching
policy Pc(·), respectively. We can define Tu as the throughput
of user u ∈ U under a feasible multi-hop file delivery scheme.
We then define the average throughput of user u with a given
number of users n and location placement of users r as
Tu(n, r) = E[Tu | n = n,P = r], where the expectation
is taken over the file requests F of users, the file placement of
users G, and the file delivery scheme. Subsequently, we define

Tuser(n, r) = min
u∈U

Tu(n, r). (3)

Finally, the expected minimum average throughput of a user
in the network is defined as

T user = En,P[Tuser(n, r)], (4)

where the expectation is taken over n and P.
When the number of users in the network is n, we define

No(n) =
∑
u∈U

1{E[Tu | P,F,G] = 0} (5)

as the number of users that in outage, where 1{E[Tu |
P,F,G] = 0} is the indicator function such that the value is
1 if E[Tu | P,F,G] = 0; otherwise the value is 0. Intuitively,
1{E[Tu | P,F,G] = 0} is equal to zero when the file delivery
scheme cannot deliver the desired file to user u. We note that
the expectation of E[Tu | P,F,G] is taken over the file delivery
scheme and 1{E[Tu | P,F,G] = 0} is a random variable with
the distribution being the function of P, F, and G. The outage
probability in the case of n users is then defined as

po(n) =
1

n
EP,F,G[No(n)] =

1

n

∑
u∈U

P (E[Tu | P,F,G] = 0) .

(6)
Consequently, the network outage probability is defined as

po = En>0[po(n = n)] + PN (n = 0). (7)

Note that since we consider N → ∞, PN (n = 0) is actually
negligible for the asymptotic analysis. In the following, we will
aim to analyze the throughput-outage performance in terms of

T user and po. We will be especially interested in the regime
that the outage probability po is small, i.e., the regime that
po = ϵ, where ϵ is a negligibly small number or converges to
zero.

III. ACHIEVABLE THROUGHPUT-OUTAGE PERFORMANCE

In this section, we derive the achievable throughput-outage
performance of the network, in which we say (T (Po), Po) is
achievable if there exists a caching and multi-hop file delivery
scheme such that T user ≥ T (Po) and po ≤ Po. We will in the
following first provide the achievable file delivery scheme, and
then propose the achievable caching scheme. Accordingly, the
achievable throughput-outage performance will be derived.

A. Achievable Caching and File Delivery Scheme

We consider the following achievable multi-hop file delivery
scheme. We let gc(M) be a function of M which goes to
infinity as M → ∞. Then, a clustering approach is used
to split the cell into equally-sized square clusters, in which

each cluster has the side length
√

gc(M)
N , and gc(M) is thus

denoted as the cluster size. Different clusters could be activated
simultaneously. The inter-cluster interference is avoided by a
Time Division Multiple Access (TDMA) scheme with reuse
factor K [21]. Such a reuse scheme evenly applies K colors to
the clusters, and only the clusters with the same color can be
activated on the same time-frequency resource for file delivery.
We assume that a user in a cluster can only access files cached
by users in the same cluster via either accessing its own
cache or using (multi-hop) D2D communications following the
multi-hop approach proposed in [15]. Specifically, denoting Vf

as the set of users in a cluster that cache file f , we consider the
following transmission policy: for each user u in the cluster,
if the requested file f can be found in the caches of users in
Vf , then a user vf , randomly selected from Vf , is set as the
source to deliver the requested (real) file f to user u; if the
requested file cannot be found from the caches of any users in
the cluster, user u would be matched with a randomly selected
user v from users in the cluster, and then user v is set as the
source for delivering a virtual file to user u. Note that it does
not matter what file is delivered in this case, as the user is
actually in outage.

After the establishment of the matching of the sources and
destinations, to deliver (both real and virtual) files, the multi-
hop approach proposed in [15] directly applies. Note that the
delivery of virtual files cannot generate throughput for the
network because users receiving virtual files are indeed in
outage and the desired files are not actually received. However,
we would still assume them to be included in the multi-hop
D2D communications for the convenience of the mathematical
analysis. Such scheme is suboptimal. Nevertheless, when the
outage probability is either negligibly small or converging
to zero, this scheme will be orderwise optimal because the
performance degradation caused by delivering virtual files is
negligible. Also note that, since the multi-hop approach in [15]
can provide the per-user symmetric throughput for all users,
this delivery scheme can thus provide the per-user symmetric



throughput for users that are not in outage. Furthermore, since
users cache files independently, the matching of the source-
destination pairs here is equivalent to the uniformly random
matching. Finally, we note that the assumption that a user
may get a desired file from only its own cluster seems rather
restrictive. However, the fact that this scheme can achieve (in
the order sense) the outer bound shows that inclusion of inter-
cluster communication cannot change the scaling law.
By adopting the aforementioned scheme, due to the sym-

metry of the network and the thinning property of PPP, the
throughput-outage performance for each cluster is the same
as the throughput-outage performance for the whole network.
We will thus in the following focus on the analysis of a cluster
to derive T user and po. In addition, since a user is in outage
only if this user cannot find the desired file from any users in
the same cluster, the outage probability po is then equivalent
to the probability that a user cannot find the desired file from
users in the same cluster. Accordingly, when we denote the
probability that a user can find the desired file in the cluster,
i.e., the file hit-rate, as Ph, it is then clear that Ph = 1− po.
To obtain the achievable caching scheme, we first provide

Lemma 1 for the closed-form expression of po. Then, serving
as the achievable caching scheme, the caching policy which
minimizes po is proposed in Theorem 1.
Lemma 1: Considering the proposed file delivery scheme,

cluster size gc(M), and the caching distribution Pc(·), the
outage probability of the proposed achievable scheme is

po =
M∑
f=1

Pr(f)e
−gc(M)Pc(f). (8)

Proof. See proof in Appendix A in [1].

Theorem 1: Let N → ∞, M → ∞, q → ∞, and
gc(M) → ∞. Denote m∗ as the smallest index such that
P ∗
c (m

∗ +1) = 0. Let C2 = qγ
Sgc(M) ; C1 is the solution of the

equation: C1 = 1+C2 log
(
1 + C1

C2

)
. The caching distribution

P ∗
c (·) that minimizes the outage probability po is as follows:

P ∗
c (f) =

[
log
(zf
ν

)]+
, f = 1, ...,M, (9)

where ν = exp

(∑m∗
f=1 log zf−S

m∗

)
, zf = (Pr(f))

1
gc(M) , [x]+ =

max(x, 0), and

m∗ = Θ

(
min

(
C1Sgc(M)

γ
,M

))
. (10)

Proof. See proof in Appendix B in [1].

Remark 1: Similar to the results in [7], Theorem 1 indicates
that the number of files with non-zero probability to be cached
by users is at least on the same order as the plateau factor q
– if q = O(gc(M)), then m∗ = Θ(gc(M)); if q = ω(gc(M)),
then m∗ = Θ(q). This is intuitive when we look at the shape
of the MZipf distribution: the most popular q files (orderwise)
have similar request probabilities, and we need to cache them
to have the minimal outage probability.

Remark 2: Since Theorem 1 gives the optimal caching
policy that minimizes the outage probability for a given cluster
size, this implies that such a caching policy requires the small-
est cluster size for a given outage probability. Consequently,
with a given outage probability, the network throughput for the
clustering network can be maximized by the caching policy
in Theorem 1 because the number of activated clusters is
maximized.

Based on the achievable caching and file delivery scheme
in this subsection, we subsequently characterize the achievable
throughput-outage performance considering γ > 1.

B. Throughput-Outage Performance

In this section, the achievable throughput-outage perfor-
mance is characterized with γ > 1, q = ω(1), and q = o(M).
Proposition 1: LetM → ∞,N → ∞, and q → ∞. Suppose

γ > 1 and gc(M) → ∞. Consider gc(M) = o(M) and q =
o(M). Let C2 = qγ

Sgc(M) . When adopting the caching policy
in Theorem 1, the outage probability po is:

po = 1 + (γ − 1)

· e−γ
(

1
C1

−1
)(

C1

C1 + C2

)γ (
C2

C1 + C2

)γ
C2
C1
(
C2

C1

)γ−1

−

((
C1

C2

)γ−1

−
(

C1

C1 + C2

)γ−1
)

·
(
C2

C1

)γ−1

(11)

Proof. See the proof of Proposition 3 in [1].

Corollary 1: Let M → ∞, N → ∞, and q → ∞.
Suppose γ > 1 and gc(M) → ∞. Consider gc(M) = o(M),
q = o(M), and gc(M) = α1q

S . When adopting the caching
policy in Theorem 1 and considering α1 = Θ(1), we can
obtain po = ϵ2(α1), where ϵ2(α1) > 0 can be arbitrarily
small. Furthermore, when α1 = ω(1), i.e., q = o(gc(M)),
we obtain po = Θ

(
1

(α1)γ−1

)
= o(1).

Proof. This can be obtained by using Proposition 1 and
gc(M) = α1q

S . See detailed proof in Appendix H in [1].

Theorem 2: Let M → ∞, N → ∞, and q → ∞. Suppose
γ > 1 and gc(M) → ∞. Consider gc(M) = o(M), q =
o(M), and gc(M) = α1q

S , where α1 = Ω(1). When adopting
the caching policy in Theorem 1, the following throughput-
outage performance is achievable:

T (Po) = Ω

(
(1− Po)

K

√
S

α1q

)
, Po = (11). (12)

Proof. See proof in Appendix A.

Corollary 2: Let M → ∞, N → ∞, and q → ∞. Suppose
γ > 1 and gc(M) → ∞. Consider gc(M) = o(M), q =
o(M), and gc(M) = α1q

S . When adopting the caching policy
in Theorem 1 and considering α1 = Θ(1) to be large enough,
the following throughput-outage performance is achievable:

T (Po) = Ω

(√
S

α1q

)
, Po = ϵ2(α1), (13)



where ϵ2(α1) > 0 can be arbitrarily small. Furthermore,
when considering α1 = ω(1) → ∞, we obtain the following
throughput-outage performance:

T (Po) = Ω

(√
S

α1q

)
, Po = Θ

(
1

(α1)γ−1

)
= o(1).

(14)

Proof. Obtained directly from Theorem 1 and Corollary 1.

Remark 3: Theorem 2 and Corollary 2 characterize the
achievable throughput-outage performance.3 Especially, Corol-
lary 2 indicates that we can achieve the throughput Ω

(√
S
q

)
with a negligibly small outage probability. It also shows that
when the outage probability converges to zero with the rate
(α1)

γ−1, the achievable throughput is Ω
(√

S
α1q

)
. Besides,

by using Corollary 2, we understand that when the popularity
distribution has a light tail, i.e., γ > 1 and q = o(M), the
performance is restricted by the order of q, instead of M

IV. OUTER BOUND OF THE THROUGHPUT-OUTAGE
PERFORMANCE

In this section, we derive the outer bound of the throughput-
outage performance. In the following, we say a point
(T (Po), Po) is dominant (thus serving as an outer bound point)
if, for any caching and delivery scheme, either T (Po) ≥ T user
or Po ≤ po is satisfied. Note that although there are different
dominant points, we will specifically characterize the dominant
points where Po is either negligibly small or converging to
zero.
Theorem 3: Let M → ∞, N → ∞, and q → ∞. Suppose

γ > 1 and q = o(M). When considering α′
1 = Θ(1), the

throughput-outage performance of the network is dominated
by:

T (Po) = Θ

(√
S

α′
1q

)
, Po = ϵ′2(α

′
1), (15)

where ϵ′2(α
′
1) > 0 can be arbitrarily small. Furthermore, when

considering α′
1 = O

(
q

1
γ−1

)
→ ∞ but α′

1q = o(M), the
throughput-outage performance of the network is dominated
by:

T (Po) = Θ

(√
S

α′
1q

)
, Po = Θ

(
1

(α′
1)

γ−1

)
= o(1),

(16)

Proof. See proof in Appendix B.

Remark 4: By comparing between Corollary 2 and Theo-
rem 3, we see that there is no gap between the achievable
throughput-outage performance and the outer bound when
γ > 1. This shows that the provided achievable scheme
is orderwise optimal when the outage probability is either
negligibly small or converging to zero.

3Some simulations that show the results of Theorem 2 and Corollary 2
numerically can be found in Sec. III.D in [1].

V. CONCLUSIONS

In this work, we conducted a scaling law analysis for
the throughput-outage performance of the cache-aided multi-
hop D2D networks under the PPP and MZipf distribution
for user distribution and popularity distribution, respectively.
By demonstrating that there is no gap between the proposed
achievable performance and outer bound, optimality is ob-
tained. Specifically, when q = ω(1) and γ > 1, we show that
the optimal throughput per user scaling is Θ

(√
S
q

)
when the

outage probability is negligible.

APPENDIX A
PROOF OF THEOREM 2

We here only outline the proof due to page limitation.
The complete proof can be found in Appendix I in [1]. We
consider gc(M) = α1q

S , where α1 = Ω(1). Consequently by
Proposition 1, we can obtain the outage probability po. To
compute the throughput of a cluster, we leverage the results
in [15]. Recall that when using the achievable scheme in Sec.
III.A, the multi-hop approach proposed in [15] is used for
delivering both real and virtual files. We denote the throughput
generated via transmitting real file as effective throughput; the
throughput generated via transmitting virtual file as virtual
throughput; and the sum of the real and virtual throughput
as mixing throughput. Since only the effective throughput can
be taken into account for T user, we want to compute its value.
Our approach is to first compute the mixing throughput,

and then exclude the virtual throughput from it. From the
definition, we know:

T user = En,P

[
min
u∈U

E [Cu · 1Hu | n,P]
]
, (17)

where Cu is the mixing throughput of user u; 1Hu
is the

indicating function of the event Hu defined as Hu = {the
user u can find the desired file in the cluster}. Thus, 1Hu

= 1
if user u can find the desired file in the cluster; otherwise
1Hu = 0. Then according to the result in [15] and due to the
frequency reuse scheme among different clusters, we have the
following Theorem:

Theorem A.1 [15]: When using the proposed achievable
scheme, with high probability (w.h.p.), users in a cluster with

side length
√

gc(M)
N can achieve Cu = Ω

(
1
K

√
1

gc(M)

)
of the

mixing throughput simultaneously.
From Theorem A.1, we know that, w.h.p, there exists a

ϵ = Θ(1) > 0 such that Cu ≥ ϵ
K

√
1

gc(M) for all users. We
note that both Theorem A.1 and event 1Hu

have the symmetry
property for all users. It is then sufficient that we consider an
arbitrary user in the network. We then let Cuser =

ϵ
K

√
1

gc(M)

and recall that Ph = 1− po is the file hit-rate. By using (17),
we obtain:

T user = Ω

(
1− po
K

√
S

α1q

)
. (18)

This complete the proof.



APPENDIX B
PROOF OF THEOREM 3

We again only outline the proof. The complete proof
can be found in Appendix K in [1]. We first consider the
network having n = n = ω(q) uniformly distributed users
and derive the outer bound of Tuser(n) and po(n), where
Tuser(n) = EP|n [Tuser(n, r)]. Then, we obtain T user and po
via accommodating different n with high probability.
Suppose the network has n = n = ω(q) users, where the

location placement P of users follows the BPP. We denote
λ(n,P) =

∑
u∈U Tu

n as the average throughput per user in
the network and L(n,P) as the average distance between the
source and destination in the network. Using Theorem 4.2 in
[14], which describes the upper bound of the transport capacity
of the network for any arbitrary placement of users and choice
of transmission powers, we obtain

λ(n,P) ≤ Θ

(
1

L(n,P)
√
n

)
. (19)

To compute the upper bound of λ(n,P), we need to find
L(n,P). To do this, we first provide Lemmas 2 and 3 that
will be used later (see Lemmas 7 and 8 in [1].):
Lemma 2: When n = ω(q) users are uniformly distributed

within a network with unit size, the minimum size of an area
to have Θ

(
q
S

)
users with high probability is Θ

(
q
Sn

)
.

Lemma 3: Suppose γ > 1 and n = ω(q). Considering
q = o(M), we have the following results: (i) when a user
searches through ns = o

(
q
S

)
different users in the network,

we obtain pmiss(n) ≥ 1 − o(1); (ii) when a user searches
through ns =

α′
1q
S different users, where α′

1 = Θ(1) > 0,
we obtain pmiss(n) ≥ ϵmiss(α

′
1), where ϵmiss(α

′
1) = Θ(1) > 0

can be arbitrarily small; (iii) when a user searches through
ns =

α′
1q
S < M

S different users, where α′
1 = O

(
q

1
γ−1

)
→ ∞,

we obtain: pmiss(n) = Ω
(

1
(α′

1)
γ−1

)
.

From Lemmas 2 and 3, we conclude that to have a non-
vanishing probability for a user to obtain the desired file,
w.h.p., the the distance between the source and destination
is at least Θ

(√
q
Sn

)
. Furthermore, if we consider L(n,P) =

Θ

(√
α′

1q
Sn

)
, we know that (w.h.p.) the distance between a

source-destination pair is O
(√

α′
1q

Sn

)
; otherwise we should

have L(n,P) = ω

(√
α′

1q
Sn

)
. As a result, w.h.p., the number

of users searched by a user is ns = O
(

α′
1q
S

)
. Note that above

arguments are valid for any n = ω(q) and P. Consequently,
by combining this with Lemma 3 and using (19) and the fact
that Tuser(n,P) ≤ λ(n,P), we conclude that for all n = ω(q),
we must have

Tuser(n) = O

(√
S

α′
1q

)
(20)

with po(n) ≥ ϵmiss(α
′
1) when α′

1 = Θ(1); and po(n) =

Ω
(

1
(α′

1)
γ−1

)
when α′

1 = ω(1) and α′
1 = o

(
q

1
γ−1

)
. Finally,

recall that we consider q = o(N) when γ > 1. Consequently,
according to (20) and that n = ω(q) w.h.p. (see Lemma 6 in
[1]), we obtain the theorem.
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