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Abstract—The timely delivery of resource-intensive and
latency-sensitive services (e.g., industrial automation, augmented
reality) over distributed computing networks (e.g., mobile edge
computing) is drawing increasing attention. Motivated by the
insufficiency of average delay performance guarantees provided
by existing studies, we focus on the critical goal of delivering next
generation real-time services ahead of corresponding deadlines
on a per-packet basis, while minimizing overall cloud network
resource cost. We introduce a novel queuing system that is
able to track data packets’ lifetime and formalize the optimal
cloud network control problem with strict deadline constraints.
After illustrating the main challenges in delivering packets to
their destinations before getting dropped due to lifetime expiry,
we construct an equivalent formulation, where relaxed flow
conservation allows leveraging Lyapunov optimization to derive a
provably near-optimal fully distributed algorithm for the original
problem. Numerical results validate the theoretical analysis and
show the superior performance of the proposed control policy
compared with state-of-the-art cloud network control.

I. INTRODUCTION

The past decade has seen a proliferation of resource- and
interaction-intensive applications, such as real-time computer
vision, autonomous transportation, machine control in Industry
4.0, multiuser video conferencing, and augmented/virtual real-
ity [1], which we collectively refer to as augmented informa-
tion (AgI) services. In addition to the communication resources
needed for the delivery of data streams to corresponding
destinations, AgI services also require a significant amount of
computation resources for the real-time processing of source
data streams. In contrast, user equipments (UEs) are evolving
towards increasingly small, portable devices (and inevitably,
with constrained power and computing capabilities), pushing
the need to offload many computing tasks to the cloud, espe-
cially those running advanced architectures such as fog and
mobile edge computing (MEC), which deploy computation
resources closer to the end users in order to strike a better
balance between access delay and resource efficiency.

Delay and cost are thus two essential metrics when eval-
uating the performance of AgI service delivery. From the
consumers’ perspective, excessive end-to-end delays can sig-
nificantly impact quality of experience (QoE), especially for
delay-sensitive AgI applications where packets must be deliv-
ered by a strict deadline in order to be effective. In this context,
timely throughput, which measures the rate of effective packet
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delivery (i.e., within-deadline packet delivery rate), becomes
the appropriate performance metric [2]. In contrast, network
operators care about the overall resource (e.g., computation,
communication) consumption (and associated cost) needed to
support the dynamic service requests raised by end users,
which are dictated by the decision of route selection, function
execution, and the corresponding resource allocation [3].

Previous studies have shown that the cloud network control
problem, involving packet routing and processing decisions
over a distributed computing network, can be connected to
the packet routing problem in traditional communication net-
works via a properly constructed cloud-augmented or layered-
graph formulation [4], [5]. For packet routing, many dynamic
control policies have been developed aimed at maximizing
network throughput, including the celebrated back-pressure
(BP) algorithm [6] and its extension, the Lyapunov drift-plus-
penalty (LDP) control approach [7] that, in addition, optimizes
network resource cost (e.g., energy expenditure). While having
the remarkable advantage of achieving throughput optimal
performance via simple local policies without requiring any
knowledge of network topology and traffic demands, both BP
and LDP approaches can suffer from poor (average) delay
performance, especially in low congestion scenarios, where
packets can take unnecessary long and sometimes even cyclic
paths. In an attempt to address this problem, [8] proposed a
combination BP and shortest-path routing; while [9] designed
a centralized source routing approach, referred to as UMW,
which reduces the average delay by dynamically selecting an
acyclic route for each incoming packet, however requiring
global network information.

Going beyond average delay and analyzing per-packet delay
performance is a much more challenging problem with much
fewer known results. In [10], a variant of the BP algorithm
is developed that provides worst-case delay guarantees by
allowing packet drops, leading to a tradeoff between delay
and achievable throughput; however, the relationship is not
tight enough for practical purposes. In [11], the authors
formulate the problem of timely throughput maximization as
a constrained Markov decision process (CMDP), and address
it by solving the single-packet routing problem separately for
each packet; yet, its computational complexity is prohibitive
for practical implementation. A more comprehensive literature
review is presented in [12].

In this paper, we investigate the problem of multi-hop



distributed cloud network control with the goal of delivering
multiple AgI services with strict deadline constraints on a
per-packet basis, while minimizing overall resource cost. Our
contributions can be summarized as follows:

1) We characterize the delay-constrained network capacity
region leveraging a novel lifetime-driven generalized
flow conservation law.

2) We develop a fully distributed control algorithm for the
delivery of delay-sensitive services, shown to achieve
timely-throughput optimality while minimizing overall
resource cost.

3) We present numerical results illustrating the delay-
constrained network capacity region and the superior
delay-cost performance tradeoff of the proposed policy.

II. SYSTEM MODEL

Due to space limitations, in this paper we describe the
proposed approach for the packet routing problem and refer
the reader to the longer version in [12] for its cloud network
control generalization.1 Nonetheless, we do use the general
cloud network control model for the numerical results in
Section V.

Consider the packet routing network modeled by a directed
graph G = (V, E), with V and E denoting the node and edge
set, respectively. The nodes can transmit packets via the links
(i, j) ∈ E between them, and we denote by δ−i and δ+i the
incoming and outgoing sets of node i, respectively.

Time is slotted, and we quantify the available communica-
tion resource and the associated cost as [4]
• Cij : the average transmission capacity,2 i.e., the maxi-

mum average transmission rate of link (i, j);
• eij : the transmission cost, i.e., the cost of transmitting

one unit size of data, on link (i, j).
The problem of interest is to deliver the packets to their

destinations ahead of corresponding deadlines, to which data
packets’ lifetime is closely related, defined as the number
of time slots before the information contained in the packet
becomes useless. A packet is called effective if its remaining
lifetime l > 0, and outdated otherwise. We assume that only
the delivery of effective packets counts (i.e., outdatedness is as
bad as packet loss); the associated metric, timely throughput,
i.e., the rate of effective packets delivery, is employed to
characterize the capability of the communications network.

A. Request Model

For ease of exposition, we formulate the problem for a
single destination-based commodity described by a destination
node (or user) d ∈ V that requests of a given application, with
the straightforward extension to multiple commodities given in
[4]. We assume that the input packets of the given commodity
can originate at any node i ∈ V \{d} (restriction of a specific
source node set is straightforward) and that the source of

1The generalization is based on the layered-graph technique [5].
2As an extension to this work, the problem formulated under a more realistic

scenario with peak link capacity constraint is also studied in [12]. The solution
closely follows the principle of the methodology presented in this paper.

each packet is aware of its lifetime l ∈ L , {1, · · · , L}
at birth, where L denotes the maximal lifetime. We denote
by a

(l)
i (t) the number of lifetime-l packets arriving at node

i on time slot t, which is assumed to be i.i.d. over time
(with an upper bound of Amax); besides, the mean arrival
rate is defined as λ

(l)
i , E

{
a
(l)
i (t)

}
, and the collection

λ =
{
λ
(l)
i : ∀ i ∈ V , l ∈ L

}
is called the arrival vector.

B. Queuing System

We construct a queuing system Q(t) that includes distinct
queues for packets of different current lifetimes l ∈ L, and
denote by Q(l)

i (t) the queue backlog (i.e., number of packets
in the queue) of lifetime l packets at node i on time slot t.

Each time slot is divided into two phases. In the decision
phase, the nodes make and accomplish the transmission de-
cisions (which packets are sent out, to which neighboring
node); in the receiving phase, the incoming packets, including
those from neighboring nodes and the exogenous packets, are
collected and loaded into the queuing system. Let x(l)ij (t) be
the number of lifetime l packets that are sent from node i to
j in time slot t; we refer to it as flow variable.

In general, the queuing dynamics are given by3

Q
(l)
i (t+ 1) = Q

(l+1)
i (t)− x(l+1)

i→ (t) + x
(l+1)
→i (t) + a

(l)
i (t) (1)

where x(l)→i(t) =
∑
j∈δ−i

x
(l)
ji (t) and x

(l)
i→(t) =

∑
j∈δ+i

x
(l)
ij (t)

denote the total incoming and outgoing packets of node i.
In addition, we make the following assumptions: 1) outdated

packets (not contribute to timely throughput) are dropped, i.e.,

Q
(0)
i (t) = 0, ∀ i ∈ V , (2)

and 2) for the destination node d, any effective packet is
consumed as soon as it arrives, and therefore

Q
(l)
d (t) = 0, ∀ l ∈ L. (3)

C. Admissible Policy Space

The considered control policies make decisions on packet
routing and scheduling in each time slot,4 which are specified
by the flow variables x(t) =

{
x
(l)
ij (t) : ∀ (i, j) ∈ E , l ∈ L

}
.

We restrict to the space of admissible control policies with the
decided flow variables satisfying the following conditions:

1) non-negativity constraint, i.e.,

x
(l)
ij (t) ≥ 0 for ∀ (i, j) ∈ E , or x(t) � 0; (4)

2) average capacity constraint, i.e.,

{E {xij(t)}} ≤ Cij , ∀(i, j) ∈ E (5)

where xij(t) ,
∑
l∈L x

(l)
ij (t), and {z(t)} denotes

the expected long-term average operation, defined as
{z(t)} = limT→∞

1
T

∑T−1
t=0 z(t);

3The lifetime of the exogenous packets a(l)i (t) are counted starting from
the beginning of next time slot, i.e., the point when they are available for use;
the lifetime l of the transmitted packets x(l)ij is the current lifetime, which are
available at node j in next time slot with a lifetime of l − 1.

4Note that a packet can be discarded in network due to lifetime expiry. In
this sense, the designed policy also deals with admission control aspect.



3) availability constraint, which requires the number of
scheduled outgoing packets not to exceed those in the
current queuing system, i.e.,

x
(l)
i→(t) ≤ Q(l)

i (t), ∀ i ∈ V , l ∈ L; (6)

4) reliability constraint, i.e.,

{E {x→d(t)}} ,
∑

l∈L

{
E
{
x
(l)
→d(t)

}}
≥ γ‖λ‖1 (7)

where γ is named the reliability level, and ‖λ‖1 is the
total arrival rate of the application.

The reliability constraint quantifies the extent to which the
considered application can tolerate packet loss. It implies that
a percentage of up to (1− γ) of the incoming packets can be
dropped without causing a significant performance loss.

The instantaneous cost of the decision x(t) is given by

h(t) = h(x(t)) =
∑

(i,j)∈E
eijxij(t) = 〈e,x(t)〉 (8)

where 〈·, ·〉 denotes the inner product of the two vectors.
Remark 1: In the existing literature of stochastic network

optimization, the assigned flow has gained widespread use
(e.g., [4], [6], [7], [10]), which is different from the actual
flow in that it does not take the availability constraint (6) into
account, and thus the decision space in each time slot does
not depend on the current queuing status. Dummy packets are
created when there are not sufficient packets in the queue
to support the decision. The formulation is not suitable for
the considered problem, because the reliability constraint (7)
is imposed on actual packets received by the destination
node d; while in the previous formulation, the flow variables
x
(l)
jd (t) (j ∈ δ−d ) can include dummy packets.

D. Problem Formulation

The goal of this work is to develop an admissible control
policy that guarantees reliable packet delivery, while minimiz-
ing network resource cost. Formally, we aim to find the policy
that makes decisions {x(t) : t ≥ 0} satisfying

P1 : min
x(t)�0

{E {h(x(t))}} (9a)

s. t. {E {x→d(t)}} ≥ γ‖λ‖1 (9b)

{E {xij(t)}} ≤ Cij , ∀ (i, j) ∈ E (9c)

x
(l)
i→(t) ≤ Q(l)

i (t), ∀ i ∈ V , l ∈ L (9d)
Q(t) evolves by (1) – (3). (9e)

We emphasize that the above problem cannot be addressed
by the LDP approach, because (i) the queuing system (9e)
allows packet drops by (2), and (ii) we employ the actual
flow as the decision variable, i.e., constraint (9d), which are
different from the standard formulation.

In general, (9) can be interpreted as a CMDP problem [11].
However, we emphasize that the related state vector Q(t)
and action vector x(t) are network-wide, which leads to a
dramatically increasing state-action space, and the complex-
ity of the standard solution [13] is prohibitive for practical
implementation.

III. THE EQUIVALENT PROBLEM

In this section, we present a new problem P2, which is
referred to as the virtual network. We prove the equivalence
of the two problems in terms of flow space and capacity region,
and use P2 as a stepping-stone to find the solution to P1.

A. The Equivalent Problem

The new problem is cast as

P2 : min
x(t)�0

{E {h(x(t))}} (10a)

s. t. {E {x→d(t)}} ≥ γ‖λ‖1 (10b)
xij(t) ≤ Cij (10c){

E
{
x
(≥l)
i→ (t)

}}
≤
{
E
{
x
(≥l+1)
→i (t)

}}
+ λ

(≥l)
i (10d)

where the superscript (≥ l) indicates that the term includes all
the lifetimes ` satisfying ` ≥ l, e.g., x(≥l)ij (t) =

∑L
`=l x

(`)
ij (t).

1) Virtual Queues: The crucial difference in deriving P2

is to eliminate (i) the unconventional queuing system (9e) and
(ii) (9d) that makes x(t) dependent on Q(t), i.e., the two
factors prohibiting direct application of the LDP approach.
Instead, we introduce the relaxed causality constraint (10d)
(see Proposition 1) to state the fact that the lifetime of the
packets must decrease as they traverse any node i.

Although there is no explicit queuing system involved in
P2, it consists of long-term average objective and constraints,
which can be addressed by the LDP approach via the use
of virtual queues [7] (we denote the solution by ν(t)). More
concretely, ensuring constraints (10b) and (10d) is equivalent
to stabilize the following virtual queues:

Ud(t+ 1) = max
{

0, Ud(t) + γA(t)− ν→d(t)
}

(11a)

U
(l)
i (t+ 1) = max

{
0, U

(l)
i (t) + ν

(≥l)
i→ (t)− ν(≥l+1)

→i (t)

− a(≥l)i (t)
}

(i ∈ V \ {d}, l ∈ L) (11b)

where A(t) =
∑
i∈V

∑
l∈L a

(l)
i (t) is the total amount of

packets arriving at the network in time slot t.5 We refer to (11a)
and (11b) as the virtual queues at node d and i, respectively.

2) Physical Interpretations: P2 describes a virtual network
modeling each node as a data-reservoir, which has access
to abundant (virtual) packets of any lifetime. As neighboring
nodes request packets from node i, it supplies the needs by
using the virtual packets from the reservoir in advance, which
are compensated when the node receives incoming packets
of the same lifetime. The virtual queues can be roughly
explained as the accumulated data deficits (outgoing flow
minus incoming flow) of the corresponding data-reservoirs;
specially, in (11a), the destination reservoir sends out γA(t)
packets to the end user (as is required by the reliability
constraint), while receiving ν→d(t) in return. When (10d) is
satisfied, node i no longer embezzles the virtual packets from

5Here we use A(t) instead of ‖λ‖1 as the latter information is usually not
available in practice; furthermore, if the arrival information cannot be obtained
immediately, delayed information, i.e., A(t− τ) with τ > 0, can be used as
an alternative, which does not impact the result of time average.



its reservoir; and if it is true for all nodes, the data streams
in the network include only actual packets. The resulting
flow assignment (defined in next subsection) can instruct the
packets to find their paths in the actual network.

B. Relationships Between P1 and P2

Similar to Section II-C, for a given pair of (λ, γ), we define
a policy p to be admissible for P2 if it satisfies (10b) – (10d).
In addition, suppose an admissible policy p ∈ An (n = 1, 2)

makes decisions xp(t) =
{
x
(l)
ij (t) : (i, j) ∈ E , l ∈ L, t ≥

0
}

, then the associated flow assignment is defined as xp =

{E {xp(t)}}, which collects the transmission rates of all links.
Definition 1: For given (λ, γ), the admissible policy space
An is defined as the collection of all admissible control
policies for problem Pn (n = 1, 2).

Definition 2: The network capacity region Λn is defined
as the set of (λ, γ) pairs, under which the admissible policy
space An is non-empty (n = 1, 2).

Definition 3: For given (λ, γ) ∈ Λn, the flow space is de-
fined as the set of all flow assignments that can be achieved by
the admissible policies, i.e., Γn =

{
xp : p ∈ An

}
(n = 1, 2).

Next, we present the relationships between the two prob-
lems, in terms of the above quantities.

Proposition 1: (9d) implies (10d), and (10c) implies (9c).
Proposition 2: For a given network, the capacity regions

of the two problems are identical, i.e., Λ1 = Λ2.
A pair (λ, γ) is within the capacity region Λn (n = 1, 2) if

and only if there exist flow variables x = {x(l)ij ≥ 0 : ∀ (i, j) ∈
E , l ∈ L}, such that ∀ i ∈ V , (i, j) ∈ E , l ∈ L,

x→d ≥ γ‖λ‖1 (12a)
xij ≤ Cij , ∀ (i, j) ∈ E (12b)

x
(≥l+1)
→i + λ

(≥l)
i ≥ x(≥l)i→ , ∀ i ∈ V , l ∈ L (12c)

x
(0)
ij = x

(l)
dk = 0, ∀ k ∈ δ+d , (i, j) ∈ E , l ∈ L. (12d)

Furthermore, for any point within the capacity region, there
exists a randomized policy ∗ to support it while attaining
optimal cost performance.

Proposition 3: For any point (λ, γ) ∈ Λ1 = Λ2, the
associated flow space Γ1 = Γ2.

Proof: All proofs can be found in [12]. In Proposition
2, given x satisfying (12), the feasible randomized policy ∗
(for P1) operates as follows: in each time slot, any packet of
lifetime l ∈ L at node i ∈ V has a probability

α
(l)
i (j) = x

(l)
ij

/(
x
(≥l+1)
→i + λ

(≥l)
i − x(≥l+1)

i→

)
(13)

to be sent to node j, and stay in node i otherwise; and the
policy ∗ achieves the flow assignment x.

The previous propositions can be explained as follows:
by Proposition 1, in general, the admissible policy spaces
A1 * A2 and A2 * A1; Proposition 2 suggests that they
lead to the same capacity regions by presenting an explicit
identical characterization (12), where (12c) is interpreted as
the generalized flow conservation law when considering the
packets’ lifetime; Proposition 3 further shows that P1 and P2

share the same flow space for any (λ, γ), which is a crucial
property for the considered problem, where the two metrics of
interest, i.e., timely throughput (7) and resource cost (8), are
both linear functions of the flow assignment.

Corollary 1: P1 and P2 have the same optimal value.
Proof: Because they have the same flow space.

IV. PROPOSED CONTROL POLICY

In this section, we provide a solution for P2 leveraging
Lyapunov optimization theory, and take advantage of Propo-
sitions 2 and 3 to develop an algorithm for P1 based on it.

A. Solution to the Virtual Network Problem

We define the Lyapunov function as L(t) = ‖U(t)‖22/2,
and Lyapunov drift ∆(U(t)) = L(t + 1) − L(t). The LDP
approach advocates to minimize a linear combination of the
Lyapunov drift (see [12]) and the cost function weighted by
a tunable parameter V (which controls the tradeoff between
network congestion and operational cost), i.e.,

∆(U(t)) + V h(ν(t)) ≤ B − 〈ã,U(t)〉 − 〈w(t),ν(t)〉 (14)

where ã =
{
ad(t)−γA(t)

}
∪
{
a
(≥l)
i (t) : ∀ i ∈ V\{d}, l ∈ L

}
,

B is a constant, and the weights w(t) are given by

w
(l)
ij (t) = −V eij − U (≤l)

i (t) +

{
Ud(t) j = d

U
(≤l−1)
j (t) j 6= d

(15)

where the superscript (≤l) refers to the operation of
∑l
`=1.

To sum up, the developed algorithm aims to solve the
following problem in each time slot

max
ν(t)�0

〈w(t),ν(t)〉, s. t. νij(t) ≤ Cij , ∀ (i, j) ∈ E . (16a)

The solution is in the max-weight fashion. More concretely, for
each link (i, j), we first find the lifetime l? with the largest
weight, and spend all the transmission resource to transmit
packets of this lifetime if the associated weight is positive. To
sum up, the optimal flow assignment is

ν
(l)
ij (t) = Cij I

{
l = l?, w

(l?)
ij (t) > 0

}
(17)

where the optimal lifetime choice is l? = arg maxl∈L w
(l)
ij (t),

and I{·} denotes the indicator function, which equals 1 when
the two events in the bracket are both true.

Due to the additive form of the objective function, which
is composed of sub-problems that can be completed in each
individual node, the algorithm can be implemented in a fully
distributed manner.

B. Performance Analysis

In this part, we present a proposition analyzing the perfor-
mance of the proposed control policy related to the timely
throughput (for reliability constraint (7)) and resource cost.

Definition 4 (ε-Convergence Time): The ε-convergence time
tε is the first time index, such that the achieved reliability level
is within a gap of ε from the desired value ever after, i.e.,

tε , min
τ

{
sup
s≥τ

[
γ‖λ‖1 −

s−1∑
t=0

E {ν→d(t)}
s

]
≤ ε
}
. (18)



Proposition 4: For any point in the interior of the capacity
region, under the proposed algorithm, the virtual queues are
mean rate stable with a convergence time tε ∼ O(V ) for any
ε > 0, and the achieved cost performance satisfies

{E {h2(ν(t))}} ≤ h?2(λ, γ) +B/V (19)

where h?2(λ, γ) denotes the optimal cost performance that can
be achieved under (λ, γ) in P2.

Proof: See [12].
From the above proposition, we find that by pushing the

parameter V →∞, the achieved cost performance approaches
the optimal cost (since the gap B/V vanishes), while compro-
mising the convergence time.

C. Flow Matching

In this section, we develop a near-optimal control policy
for P1. According to Proposition 3 and Corollary 1, there
exists a randomized policy (specified by probability values
α) to be optimal, and we aim to find the solution to P1 in
this categoty. Instead of find α directly (not straightforward),
the proposed approach will leverage (13) and calculate the
parameters therein using empirical virtual flow decisions. In
the following, we denote the decided flow for P1 on time slot
t by µ(t) = {µ(l)

ij (t)} (to distinguish it from ν(t)).
The goal of the designed policy is to conform with the

constraints in P1 (i.e., satisfying (9b) – (9d)), while pursuing
the goal of flow matching, i.e., {µ(t)} = {ν(t)}. The reason
to set the above goal is two-fold. (i) It ensures that the two
algorithms attain the same throughput and cost performance
(as mentioned earlier, both metrics are linear functions of
the flow assignment); therefore, {µ(t)} satisfies the reliability
constraint and achieves the same (and thus near-optimal by
Corollary 1) cost performance as {ν(t)}. (ii) The existence of
the policy is guaranteed (as a result of identical flow spaces).
Actually, given a feasible flow assignment x satisfying (12)
(specifically, {ν(t)}), we are already aware of the construction
procedure of the randomized policy ∗ to achieve it (see Proof
to Proposition 2 in Section III-B).

While we do not wait until the exact value of {ν(t)} is
obtained (actually it takes forever) to construct the randomized
policy ∗ ; as an alternative, its empirical values are employed.
In each time slot, we first calculate the probability values α(t)
according to (13), using the finite-horizon average ν̄(t) =
1
t

∑t−1
τ=0 ν(τ) as the flow assignment x, and estimating λ from

the empirical arrivals by λ̂(≥l)i = 1
t

∑t−1
τ=0 a

(≥l)
i (τ); then node

i transmits packets of lifetime l to node j according to the
obtained distribution. It leads to a time-varying randomized
policy, but we stress that ν̄(t) converges to {ν(t)} asymptot-
ically, which no longer changes over time.6

In addition to deciding the virtual flow by the algorithm
in Section IV-A, the developed randomized policy requires

6It is possible that the finite-horizon average ν̄(t) can violate (12c) at some
time slot, and thus does not make a qualified candidate for x. However, as
is mentioned, limt→∞ ν̄(t) = {ν(t)}, which satisfies the constraints. With
this asymptotic guarantee, when such violation occurs, we can choose not the
update the control policy in that time slot.

each node to record its own incoming and outgoing flows
to calculate the probability values by (13), which can be
completed locally. Therefore, the proposed design can operate
in a fully distributed manner.

Proposition 5: For any point in the interior of the capac-
ity region, the proposed control policy is admissible, while
achieving the near-optimal cost performance of h({ν(t)}).

Proof: See [12].

V. NUMERICAL EXPERIMENTS

In this section, we carry out several numerical experiments
to evaluate the performance of the proposed design, based on
the Abilene US continental network in Fig. 1.

We take a simple AgI service for example,7 which requires
the source data-stream to be processed by one function, and
we assume that each node (representing a data center) in
the network can host the given service function. To describe
the function’s computation resource requirement, we assume
that a CPU (a measure of computing resource) is capable of
processing the incoming data-stream at a rate of 50 Mbps, and
the output data-stream has the same size as the input.

The available network resource and the associated cost is
described in the following: each node in the network has a
an average resource consumption budget of 2 CPUs and the
associated cost is 1 /CPU at i ∈ {5, 6}, and 2 /CPU at other
data centers; each link exhibits the same average transmission
rate of 1 Gbps, with a cost of 1 /Gb.

There are two clients, i.e., (source, destination) pairs, re-
questing the service, i.e., (1, 9) and (3, 11), both at the relia-
bility level of γ = 90%. The packets arrive at the source nodes
according to independent Poisson processes of parameter λ.
The lifetime of all packets at birth equals to the maximum
lifetime L (≥ 5, including 4 time slots for transmission via
the shortest path, and 1 time slot for processing).

A. Network Capacity Region
We first study the network capacity regions achieved by the

proposed algorithm, assuming different maximum lifetimes L.
We run the proposed algorithm (with V = 0) on the network
for 1 × 106 time slots, recording the queue backlog of the
virtual network, and the 0.005-convergence time for the actual
network (i.e., when achieved reliability level ≥ 89.5%).

The results are shown in Fig. 2, and we make the following
observations. First, for fixed L, both the virtual queue (solid
lines) and the convergence time (dashed lines) blow up after
the arrival rate exceeds a critical point, which is interpreted as
the boundary of the capacity region. The result verifies that the
virtual and the actual network have the same capacity regions
(as stated in Proposition 2). Second, by increasing the value of
L, the capacity region enlarges, since the packets can detour to
farther network locations for extra computing resources, while
still arriving at the destinations within the deadline. When
L = 5, the packets must follow the shortest paths to the
destinations, and the two clients must share the constrained

7In the setup of the experiments, we adopt a simple example for illustrative
purposes, and we refer the readers to [12] for more realistic AgI services.



Fig. 1. The studied network.
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Fig. 2. Capacity regions.
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Fig. 4. Effects of packets’ lifetime.

computing resource at the common nodes on the paths (data
centers 3, 6, 8, 9); when L = 6, client (3, 11) can detour along
3 → 6 → 5 → 7 → 10 → 11 for extra computing resource,
boosting the capacity region; when L ≥ 7, the computing
resources of the entire network are fully exploited.

B. Effects of Parameter V
Next, we study the convergence time and the resource cost

achieved by the proposed algorithm under various V (using
L = 7 and λ = 100 Mbps). In addition, we compare the results
with the state-of-the-art min-cost max-throughput algorithm,
referred to as DCNC [4].

The result is depicted in Fig. 3. First, we focus on the perfor-
mance of the proposed algorithm (solid lines), which exhibits
the [O(V ),O(1/V )] tradeoff between the convergence time
and the resource cost, as is presented in Proposition 4. Second,
for the DCNC algorithm, we observe from the experiment
that the achieved timely throughput is around 10 Mbps (i.e., a
reliability level of 10%, see next section for more results),
failing the reliability constraint (resulting in a convergence
time of ∞). For the cost performance, when V ≤ 1 × 106,
it leads to a much higher resource cost (≥ 15) than the
proposed algorithm, since the packets can take cyclic paths
to the destination, incurring extra cost; as V grows, the cost
reduces, while it is still higher than the proposed algorithm
because it delivers all the packets (even the outdated ones).

C. Effects of Lifetime L
Finally, we present the timely throughput and the resource

cost achieved by the proposed and the DCNC algorithms,
under various maximum lifetimes (λ = 100 Mbps, and a large
V = 5×107 is selected to ensure near-optimal resource cost).

As we can observe from Fig. 4, the proposed algorithm
attains a (sum) timely throughput of 180 Mbps, i.e., a re-
liability level of 90% for each client, where the reliability
constraint holds with equality (the existence of the .01-
convergence time in the previous experiment also supports
the result). In contrast, the DCNC algorithm achieves much
lower timely throughput, e.g., 20 Mbps when L = 15, where
the packets are provided 10 extra time slots for transmis-
sion. Finally, we point out that the resource cost of the
proposed algorithm significantly improves when L turns 6,
where the two clients can follow the network paths (i) client
1: 1 → 3 → 6 (processing) → 8 → 9, (ii) client 2:
3 → 6 → 5 (processing) → 7 → 10 → 11 to benefit from
cheap computation resources at node 5 and 6.

VI. CONCLUSION

In this paper, we investigated the problem of optimal
cloud network control with strict deadline constraints. We
established a new queuing system to keep track of the data
packets’ lifetimes, on which basis we formalized the problem
P1. An equivalent problem P2 was derived, for which we
provided a solution leveraging Lyapunov optimization theory.
We then took advantage of their close relationship (identical
capacity region, flow space, and optimal cost value), to develop
a provably near-optimal, fully distributed algorithm for P1,
from the empirical decisions made for P2. Numerical results
validated the theoretical analysis and the performance gain of
the proposed design over the state-of-the-art algorithm.
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