Optimal Multicast Service Chain Control: Packet
Processing, Routing, and Duplication

Yang Cai*, Jaime Llorca®, Antonia M. Tulino'¥, Andreas F. Molisch*
*University of Southern California, CA 90089, USA. Email: {yangcai, molisch}@usc.edu
TNew York University, NY 10012, USA. Email: {jllorca, atulino} @nyu.edu
j5University21 degli Studi di Napoli Federico II, Naples 80138, Italy. Email: antoniamaria.tulino@unina.it

Abstract—Distributed computing (cloud) networks, e.g., mo-
bile edge computing (MEC), are playing an increasingly im-
portant role in the efficient hosting, running, and delivery
of real-time stream-processing applications such as industrial
automation, immersive video, and augmented reality. While
such applications require timely processing of real-time streams
that are simultaneously useful for multiple users/devices, ex-
isting technologies lack efficient mechanisms to handle their
increasingly multicast nature, leading to unnecessary traffic
redundancy and associated network congestion. In this paper,
we address the design of distributed packet processing, routing,
and duplication policies for optimal control of multicast stream-
processing services. We present a characterization of the enlarged
capacity region that results from efficient packet duplication,
and design the first fully distributed multicast traffic management
policy that stabilizes any input rate in the interior of the capacity
region while minimizing overall operational cost. Numerical
results demonstrate the effectiveness of the proposed policy
to achieve throughput- and cost-optimal delivery of stream-
processing services over distributed computing networks.

I. INTRODUCTION

The proliferation of real-time stream-processing applica-
tions such as augmented reality, telepresence, and indus-
trial automation [1], is pushing the evolution of networking
and cloud technologies in order to meet their stringent low
latency and compute-intensive requirements [2]. Traditional
approaches treat network and cloud resources separately,
with fairly centralized core clouds handling the processing
of compute-intensive tasks, while the network takes care of
routing data streams from sources to the cloud, and back to
their destinations. However, next-generation services can be
decomposed into chains of individual functions that allows
a more flexible and granular processing of data streams at
distributed cloud locations. Service function chaining pre-
cisely refers to the routing of traffic flows through an ordered
sequence of service functions deployed at multiple cloud
locations [2].

In recent years, multicast data-streams (contents with multi-
ple destinations) have become an increasingly dominant com-
ponent of network traffic,! especially in the coming Internet
of things (IoT) era. For example, multi-user conferencing
(Fig. 1a) requires to encode and deliver source information to
several audiences; applications of another type, which can be

'To clarify, the term multicast in this paper refers to content delivery to
multiple destinations, not related to the wireless communication technique of
transmitting data to multiple nodes simultaneously, as considered in [3].

9 Lecturer

|
| |

Audience Audience

Access point af crossroad
(sensing, distributing, etc)
~

B

Audience

(a) Multi-user conferencing. (b) Smart vehicle system.

Fig. 1. Two widely-used applications involving multicast network traffic: a)
multiuser conferencing and b) vehicle coordination, which require the source
information to be processed and delivered to multiple destination nodes.

summarized as joint decision making of multi-agent systems,
including robot (or car) coordination in smart factory (or
intelligent vehicle system, as shown in Fig. 1b), also require
the access point to distribute the sensing information/decided
actions to multiple end nodes.

In order to maximize the benefit of distributed computing
networks to support multicast services, two fundamental prob-
lems need to be addressed:

« how to instantiate processing functions on edge/cloud
servers and route the data-stream through them;

o how to schedule and allocate network (computing and
transmission) resources for different requests.

The first problem, usually referred to as service function
chain (SFC) optimization, involves jointly allocating tightly
coupled cloud and network resources in order to decide where
to run each service function and how to route service flows
through the appropriate sequence of functions in order to
maximize throughput and minimize overall operational cost. A
number of recent works have addressed the SFC optimization
problem with the goal of either maximizing accepted service
requests or minimizing overall resource cost [4]-[6]. However,
the problem is usually formulated under a static configuration,
without taking into account increasingly prominent uncertain
network conditions and time-varying service demands.

For the second problem, a closely related research field is
dynamic packet routing, which has been extensively studied in
the past, with two main celebrated mechanisms for decision
making. On one hand, source routing schemes determine the
entire route of the packet to the destination at the source
node. In [7], a universal throughput-optimal source routing
policy is designed for both unicast and multicast traffic. On
the other hand, distributed routing schemes based on the
fluid model determine packet routes based on local decisions

on a hop-by-hop basis. The backpressure algorithm [8] is
an example of such policy that achieves throughput-optimal
routing for unicast traffic. While, in general, source routing
can achieve better delay performance, its centralized nature
incurs additional overhead in collecting network-wide state
information, making it more suitable for regimes with low
congestion levels and relatively stable arrival rates. On con-
trary, distributed fluid-based algorithms only require local
information exchange and decision making, and while they
can suffer from inefficient loopy routes in low congestion
scenarios, they are especially suitable for high congestion
regimes. Besides, a recent study [9] proposes a distributed,
backpressure-fashioned network control policy, which is de-
signed to support services with stringent latency constraints.

Extensions of the above policies for SFCs have also been
studied in recent works, either by introducing the computa-
tion flow [10] or constructing the layered graph [11]. More
concretely, [11] investigates throughput-optimal service chain
source routing for both unicast and multicast traffic; [10], [12]
study throughput and cost optimal service chain distributed
routing and resource allocation for unicast traffic (in particular,
[12] addresses the related problems under a MEC network
scenario). However, no throughput-optimal fully distributed
policies have been designed for the multicast service chain
control problem.

Motivated by the increasing multicast nature of next-
generation real-time stream-processing services and scalating
network congestion levels, in this paper, we focus on the
design of throughput and cost optimal multicast service chain
control policies. Multicast routing policies are of paramount
importance to avoid excessive network congestion from un-
necessary traffic redundancies. However, the main challenge
in the design of distributed multicast routing policies is the dif-
ficulty to capture in-network packet duplication mechanisms
that break flow conservation laws.

In this work, we provide the first formal analysis of fully
distributed multicast routing policies (for arbitrary commu-
nication and computation services) that include joint packet
processing, routing, and duplication. Our contributions can be
summarized as follows:

e We characterize the enlarged multicast computing net-
work capacity region that results when allowing in-
network packet duplication.

o We develop the first throughput- and cost-optimal fully
distributed packet processing, routing, and duplication
policy for multicast service chain control.

e We present numerical results demonstrating the en-
larged multicast capacity region, and the tunable
[O(V),0(1/V)] cost-delay tradeoff associated with the
proposed control policy.

II. SYSTEM MODEL
A. Cloud network

We consider a wide-area distributed computing network,
simply referred to as cloud network, modeled by graph

G = (V,&). Each node i € V represents a network node with
computing capabilities (e.g., core cloud, edge cloud, compute-
enabled base station). Data can be transmitted from node 7 to
J via network link (¢,7) € £. We denote by J; and 5i+ the
incoming and outgoing neighbors of node ¢, respectively.
Assuming a time-slotted system, the available processing/
transmission resources, and associated costs, are defined as
« C;: the processing capacity, e.g., the number of comput-
ing cycles per time slot, at node ;
e ¢;: the processing cost, i.e., the cost of running one unit
of processing resource, at node ;
o Cj;: the transmission capacity, i.e., the data-stream size
that can be transmitted in one time slot, on link (¢, j);
e ¢;;: the transmission cost, i.e., the cost of transmitting
one unit of data, on link (4, 7).

B. Service Chain

The cloud network offers a set of services ®. Each service
¢ € @ is modeled as an ordered chain of (M4 — 1) functions,
through which incoming packets must be processed. Functions
can be executed at different network locations. While, for
ease of exposition, we assume every cloud node can host any
service function, it is straightforward to extend our model to
limit the set of functions available at each cloud node. There
are two parameters associated with each function: for the m-th
function of service ¢, we define

. fém): the scaling factor, i.e., the output data-stream size
per unit of input data-stream;
o 7™ the workload, i.e., the amount of computing re-

source required to process one unit of input data-stream;

We refer to the input and output data-streams of service
¢ as the stage m and stage m + 1 data-streams of service ¢,
respectively. Data-streams are divided into packets of uniform
length, and we assume that each packet can be processed
separately.

In order to characterize the multicast nature of offered
services, we assume each service ¢ € ® is consumed by a set
of destinations denoted by D = {dy,--- ,dp} with D C V
and |D| = D.

C. Data Management

In the unicast service control problem [10], there are two
relevant packet operations, i.e., processing and transmission.
For multicast service control, we add the packet duplication
operation to allow any network node to make two copies of
any incoming packet.

Originally, prior to any duplication operation, each packet
of a given service is associated with the entire destination
set D. After a duplication operation, each resulting copy is
associated with a new destination set. The key requirement
for any duplication operation is the coverage of the original
destination set, i.e., each destination node of the original
packet must be present in the destination set of least one of the
resulting copies. If the destination sets of the resulting copies
do not overlap, the duplication operation is termed efficient
(and inefficient otherwise).

To keep track of the changes in the destination sets after
packet duplication operations, we introduce the concept of
packet duplication status.

Definition 1 (Duplication Status): The duplication status of
a packet, denoted by ¢ = [q1,- - ,qp] € 2P, is a binary
vector with ¢ =1 (k=1,---, D) indicating that dy, € D is
one of its current destinations.

In the above definition, 27 is the set of indicator vectors
corresponding to the power set of D. In addition, we define a
subset of it as 29 £ {s : s, = quuy with u € 2P}, which
collects s whose entry must be 0 if the entry is 0 in q.
Specially, ¢ = by, (the binary vector with only the k-th entry
equal to 1) indicates a packet with only one destination dj
(behaves as a unicast packet); and ¢ = O indicates a packet
with no destination, which is not of interest and all the related
quantities should be ignored.

We define a commodity as the collection of packets with
the same 4-tuple (¢, m, D, q) description, i.e., service ¢, stage
m, destination set D, and duplication status g. To simplify the
notation, we define ¢ £ (¢, m, D), and label a commodity as
(c;q)

Finally, we define the process of exogenous arrival of
packets of commodity (c,q) at node ¢ as {a(c Q)(:t>0}.
All the arriving processes are assumed to be i.i.d. over
time slots and independent with each other, with mean rate
E{aEC’Q) t)} =)\gc,q)’ and finite second moment.

III. POLICY SPACE

In this section, we first present a general policy space for
multicast service control, as well as the conditions for a policy
to be admissible. We then describe an efficient policy space,
by restricting the duplication process to be efficient, which
does not reduce the performance (capacity region and the
achievable optimal cost).

A. General Policy Space

We consider a general policy space for multicast service
control, encompassing all packet processing, routing, and
duplication policies. The decisions made by a policy in this
space can be described by the following variables

F6) = {£5 0. £57® Y i€ Vi) €€} ()

which are the amount of packets of each commodity that are
operated (processed or transmitted) on each interface.

A control policy is called admissible, if it makes decisions
satisfying the following constraints: 1) non-negativity

f®)=0

2) capacity constraints (recall that ¢ = (¢, D, m))
F () — ,(m) p(6a))
fl(t)*z(cq) 13 fzpr (t) SC“

LW =32 ISP <Cy V(@) EE (3b)

(element-wise))

vieV (3a)

3) the generalized flow conservation and duplication law, for
any commodity ¢ and Vk € {1,---,D}:

(e, q) (c,q) (c.q)
Z{q qr=1} [A } Z{q qr=1} fis @

where {q : gz = 1} is the set of all the duplication status
which indicates that d;, € D is one of the current destinations;
the incoming and outgoing flows are

(f‘ Q) {fp(:z(I)()+ Z]eﬁ_ f(f‘ Q)()}
f,;(i;q) _ { l(;rq +Z ea* (cq }

with the processed flow fpC D(t) = fér‘b - P-9) (1) defined as

(52)

(5b)

f(¢>,m7D,q) 0 m=1
i t - m— 6
pr,. () {g((z)m 1 fl((é)r 1, 'D,q)() m> 1 ()

and ﬁ denotes the long-term average operator

P!
{z®)} 2 lim szz(t). (7)

The generalized flow conservation and packet duplication law
(4) holds because of the coverage requirement (see previous
section). For any destination dj, of an incoming packet, there
is at least one outgoing packet (one of its copies if duplicated,
or itself otherwise) with dj in its destination set.

The instantaneous overall resource cost incurred by the
above policy is defined as

h(t) = Zl » eifi(t) + Z(M)eg eij fij(t) (8)

and its long-term average {h(t)} is employed to characterize
the cost performance of the policy. Furthermore, we denote
by h*(A) the optimal cost that can be achieved by the general
policy space, under the arrival rate A.

Finally, we define the capacity region A of the cloud
network as the set of all arrival vectors A = {)\Ec’q)}, such
that there exists a control policy satisfying (2) — (6).

B. Efficient Policy Space

We now define an efficient policy space as a subset of the
general space, by requiring all the duplication operations to
be efficient. More concretely, if two copies are created from
a packet by a duplication operation, then

g=s+r ©)

with ¢,s,r € 2P denoting the duplication status of the
original packet and the two copies, respectively.

When a duplication is performed in an efficient way, for
any destination node of a particular incoming packet, there
will be exactly one outgoing packet steering to it. In this case,
the flow conservation and duplication law can be cast as

(c,q) ()] _ (c.q)
Z{q:qkzl} [f_”v A] N Z{qq =1} i

By restricting to the efficient space, we eliminate repeated
delivery of identical content to the same destination node,

(10)

one copy s = (1,0) operated
=

packet selected for operation with

operation interface

one copy = (0, 1) reloaded
(to corresponding queue) duplication status ¢ = (1,1)

00 @O O

0 08 0

Queueing system at node i

(including queues of different

duplication statuses)

Fig. 2. Structure of the established queueing system at any network node ¢
(for an application with D = 2 destination nodes). In order to distinguish
packets with different current destination set, we create 2° = 4 queues
corresponding to the 4 duplication statuses, i.e., {0, 1}2. In each time slot,
in addition to the scheduling decision, i.e., which packets will be operated at
which interface (the blue link), we also need to make a duplication decision,
i.e., whether to split the network flow or not, and how (mathematically, to
determine the duplication status of the operated copy s and the reloaded
copy 7). When r = (0,0) (and thus s = q), the packet is operated without
changing the assigned destination set, and no copy is created in this case (in
fact, node ¢ does not need to manage packets in the (0,0) queue; we present
it in the figure just for completeness).

which is beneficial for 1) alleviating the network traffic, as
well as 2) reducing the resource cost. Specially, this is true
when comparing with the optimal policy of the general space.
As a consequence, the efficient policy space can achieve the
same capacity region as the general space, and the achievable
optimal cost by the efficient policy space equals to h* ().

IV. QUEUEING SYSTEM

We construct the queueing system by creating a queue
Q!“?(t) for each commodity (c, q) at each node i.

The efficient policy space is considered, and we describe
a typical operation procedure for a packet in one time slot
in the following. Suppose a packet of duplication status g is
selected for operation (processing or transmission) on a certain
interface, we need to decide whether it will be duplicated or
not.> If a packet is duplicated, only one copy is operated on
the interface, while the other copy is reloaded to the queueing
system at the end of the time slot (i.e., it is not involved in
any other decisions in the current time slot).

The above description motivates us to involve the posterior
duplication status s € 29 in the formulation, which is the
status of the operated copy (and by (9), the status of the
reloaded copy is ¢ — s). Specially, the case ¢ = s indicates
that the packet is not duplicated. To sum up, the (g, s)-pair
specifies a duplication decision.

2We consider the scheme where each packet is duplicated at most once in
a time slot. Compared to a more general scheme without this restriction, the
considered scheme just splits duplications into multiple steps, and that does
not increase traffic, while only increasing delay by a finite amount of slots,
which does not affect the capacity region or the cost performance.

A. Queueing Dynamics

Let 2! o (t) and z!¢ ’q’s)(t) (j € &) be the amount of
packets of commodity (c q) desired by the output interfaces,
on which the duplication decision (g, s) will be performed. In

general, the queueing dynamics is given by

Qe [0 -3, uw]

(1D
+ S (1) + a7 (1)
where the outgoing flow is
(c,q,5) &) (c,q,5)
Hi— (t) T ,pr t) + Zj€5:r xij (t) (12)

and the (controllable) incoming flow is

(c,q) (c, q+é¢1) (c,q+s,9)
ORI C i URD DI nal U
0 eI (13)

with § = 1 —¢; and [2]T £ max{z,0}. The two lines in (13)
represent the operated and the reloaded packets, respectively.
The reloaded part is explained as follows: a packet of status
q + s is duplicated, with the copy of status s operated; thus
the other copy of status (¢ + s) — s = ¢ will be reloaded.
Specially, (11) does not apply to queues of destination state,
ie. QU (t) with i = dj, € D and ¢y = (¢, My, D). If
packet of commodity (co, ¢) (with g, = 1) arrives at g, it will
be consumed. But due to the multicast nature of the packet
(in general), it will be duplicated into two copies of status
by and ¢’ = ¢ — by (and thus g, = 0), with the copy of
by, departing the network, and the other copy reloaded to the
queue ¢'. Therefore, the queue ¢ is always empty, while queue
q' receives an extra packet compared to the general case. To
sum up, in this case, the queueing dynamics is given by

g =1

QU I(t+1) < (14)

{R—!— (an+bk)(t) _,'_a(_cyﬁbk)(t)
where R is the right-hand-side of (11).

B. Problem Formulation

Based on the queueing system introduced in the previous
section, mathematically, the multicast service chain control
problem is formulated as

min {E{AO]] (153)
x(t

s.t. stabilizing the queueing system (11) = (14) (15b)
xé?%mﬂ D) () = 5 f;rm Da9) () (15¢)
)2 3 Mty <o viev (15d)

(:q,9)
xzj é Z x(CqS) < C’” V(i7j) cé (156)

(¢::5)

x(t) = 0 (element-wise). (15f)

Remark 1: In the above formulation, note that decisions
x(t) are made regardless of the available packets in the queue,
it can happen that the requests raised by the interfaces cannot

be satisfied. In that case, dummy packets will be created and
sent to the interface to compensate for the lack of actual
packets, as is considered in [10] for the unicast case.

V. CAPACITY REGION

In this section, we present a characterization for the capacity
region of cloud network with multicast flows, which is based
on the celebrated fact [13] that there exists a stationary
randomized policy * to stabilize any point within the capacity
region, while achieving the optimal objective (cost) value.

Theorem 1: An arrival vector A is within A if and only

if there exists flow variables f = {f z(;rq s (“1 g)} -
0 together with probability values {Bl(cqs)}(c,w) and

{BE "} (c.q.s) for Vi € V, (i,) € € such that
Z [fp(rclq+s q) Z f(c ,a+5,q) + fl(«;rtﬁ-s) Z ffjéyq+s,5)]

s€29 jes; jes;

(c,q) (C q,5) (c q,s)
+>\ <Z€2q|:lpr +Z 5+‘f j| (163)

fpfr¢1m+1 ,D,q,8) __ é(m)fz(ﬁrm D,q,s) (16b)
Fow) < (Cifrim) pLere) (16¢)
fload < gleadgy, (16d)

and the stationary randomized policy #* specified by the
probability values [makes decisions x*(¢) such that

{E {h(@*(t))}} = h"(N) 17

with h*(A) denoting the optimal cost that can be achieved
when the arrival vector is A.

Proof: The result is derived by applying the fact to the
queueing system in Section IV-A [13]. Details can be found
in [14].

The policy = is defined as follows. For each interface,
select the commodity (¢, ¢) and the duplication action (g, s)
independently in every time slot according to the probability
value (3; duplicate the packets according to (g, s), and use all
the available resource to operate the copies of status s. O

VI. CONTROL PoOLICY DESIGN

Problem (15) can be solved by Lyapunov drift-plus-penalty
(LDP) approach [13], as is shown in the following section.

A. The LDP Approach

We first define the Lyapunov function as L(t) = ||Q(t)]|3/2
with Q(t) = {Qgc’q’s)(t)}, quantifying the current network
congestion, and define the drift as A(t) = L(¢t + 1) — L(¢).

The LDP approach advocates to minimize (the upper bound
of) a linear combination of the Lyapunov drift A(¢) and the
objective function h(t) = h(x(t)) weighted by a tunable
parameter V, given by [13]

A + V() < B =Y 3w a{oe) (1)
i€V (c,q,s)
. s (18)
Z Z (,q, ,q)(t)
(1,5)€E (c,q,5)

where B is a constant, and the weights are given by

) (e:a=s) (m) ('9) (4
wl(c,q,s) — Q () Q (() é-,j) Qz () —Ve; (193)
T ™)
5 = QI (1) — QT (1) = QY (1) — Ve, (19b)

where ¢ = (¢, m + 1,D).

The constraints on the decision variables x(¢) are given by
(15d), (15e) and (15f), which leads to a solution in the form
of max-weight, presented in the following section.

B. Control Policy

Note that minimizing (18) can be completed separately on
each interface (due to the additive form). The processing (or
transmission) decisions are made by the following steps: for
each node ¢ € V (or each link (i, j) € &),

1) calculate the weight for each tuple (¢, g, s) according to
(19a) (or (19b)), based on the observed queue status;

2) find the tuple (g, s, c) with the largest weight, i.e.,

(g,s,¢)* = argmax w(q :©) (

or w¥); (20)
(@:5:0)

3) the optimal flow assignment is given by

Ci
o 1{(@5.0) ==
7”¢*

xE;LS,C) (t) = Cy;]I{(q,s,c) __ (q,S,C)*,’ng’S’C) (t) >

i (1) =

(¢,8,0)%, wﬁ?’s’c)* () > O}

0} 1)

where I{-} denotes the indicator function, which equals to 1
only when the two conditions are both satisfied.

The developed algorithm only requires local information
exchange and decision making, which can be implemented in
a fully distributed manner.

C. Performance Analysis

We evaluate the performance of the proposed algorithm in
the following theorem, using the achievable optimal cost as
the benchmark.

Theorem 2: For any arrival vector A that is in the interior of
the capacity region, the queue backlog and the cost achieved
by the proposed algorithm satisfy

WS§+ h*(XA+€l) —
B

{E{R)}} < h* M) + 57

for any € > 0 such that A + €1 € A.
Proof: The proof closely follows the philosophy of the
proof of Theorem 2 in [10]. O
The above theorem reveals the [O(V),O(1/V)] tradeoff
between the delay (which is proportional to queue backlog
by Little’s theorem) and cost performance achieved by the
proposed algorithm. In addition, for any fixed V, the queue
backlog is mean rate state (i.e., {E{||Q(#)|1}} < o0),
implying that the proposed algorithm is throughput-optimal.

h*(N)

Vo 22

(23)

Fig. 3. The continental US Abilene network.

D. Complexity Issue

Finally, we analyze the complexity of the proposed algo-
rithm, from both the communication and computation aspects.

1) Communication Overhead: the proposed algorithm re-
quires local exchange of queue backlog information in every
time slot. In contrast to transmitting the entire queueing status
~ O(2P) in every time slot, we take advantage of the
underlying max-weight structure of the proposed algorithm.
More concretely, in every time slot, the proposed algorithm
selects one commodity to operate on each interface; as a result,
only one element of the queueing vector of node j changes.
Therefore, the number of queues with varying backlogs is
~ O(6..), where & is the largest incoming degree. By
transmitting information related to only these queues, the
communication overhead can be greatly reduced.

2) Computational Complexity: In every time slot, each
node needs to calculate the weights of all (¢, ¢, s) tuples in or-
der to decide the best commodity to operate on, and make the
duplication decision. It can be shown that for a fixed content
¢, the number of possible (g, s) pairs is 37 — 2P ~ O(3P).
Although to calculate the weight for each (c,q,s) (at each
interface) by (19) requires only simple algebraic operations,
the number of the tuples grows exponentially with the size of
the destination set, and there is no quick way to reduce the
computation complexity of the algorithm to polynomial-time.?

To sum up, with more destination nodes, we can envision
larger performance improvement compared to the simple
approach that treats them as individual unicast flows (since
the proposed method has the potential to reuse more inter-
mediate results). However, the algorithm also becomes more
computationally demanding, making it not suitable to apply
to large scale networks. Developing an efficient, approximate
algorithm is the topic of our ongoing research work, and a
polynomial-time heuristic algorithm will be reported in [14].

VII. NUMERICAL RESULTS

We perform the numerical experiments based on the con-
tinental US Abilene network, as is shown in Fig. 3. The

3This is determined by the combinatorial nature of the multicast problem.
Another solution to the multicast problem provided by [11] requires to solve
the minimum Steiner tree problem to determine the route for each packet,
which is a NP-complete problem.

%107

2.5 T ‘
Unicast |
Multicast V=0
2tk Multicast V=3e6 100% increment

—
T

(=]
w
T

Queue Backlog
O

Arrival rate A [Mbps]

Fig. 4. The capacity region achieved by the multicast algorithms (with V' = 0
and V =3 X 106), as well as the unicast-based solution.

processing capability of each node is C; = 20 CPUs, and
the processing cost is e; = 0.5 /CPU per second. The cloud
network links exhibit homogeneous transmission capabilities
and costs, given by C;; = 10 Gbps, and e;; = 1 /Gb. We set
the length of each time slot as 7 = 1 ms, and unify the size
of each packet as F' =1 kb.

Two services are provided by the cloud network, each
consisting of 2 functions, with the following parameters

¢r: &P =1, ¢ =2 11 =300, 1/r?) = 400

1 1
2: :—7 = — T. = 5 T =
¢yt SV 3 ¢ 1/r§Y =200, 1/7{? =100

2)
where 1/r,"’ [Mbps/CPU]| denotes the supportable input size
given 1 CPU resource.

We consider any destination set D consisting of two nodes
selected from {7,8,9,10,11} (e.g., {7,10}), and hence there
are 10 possible destination sets in total. Each destination set
can request both services ¢; and ¢o, which originate from
any source node in {1,2,3,4}. The packets of commodity
(¢,q) = (¢,1,D,1) (i = 1,2) arrive at each source node,
and it is modeled by i.i.d. Poisson process, independent of
each other, with parameter .

We employ the simple approach (see Section VI-D2) as
the baseline for comparison, i.e., treating data-streams for
different destination nodes as separated unicast flows. A more
comprehensive comparison of the proposed approach with
existing multicast techniques will be reported in [14].

(m)
¢

A. Capacity Region

We first study the capacity region of the cloud network
with multicast flow (using the proposed algorithm), compared
with the achieved capacity region by treating the problem as
separate unicast problems. The initial queue backlog is set as
Q(0) = 0, and we observe the system for 10° time slots. The
stable queue backlogs are recorded under various A values. If
the queue keeps growing at the end of the period, the stable
queue length is set as oo.

7
5 21 40
4+

30

20 \ Unicast (dashed lines)

—_— AY

2\ L/ ,

m -a 1 o)

S\ Tl P 20 8

g2f [

s i

|) 110
1t
- \ / 50% reduction
Multicast (solid lines)
0 0
0 2 4 6 8 10
\4 x10°

Fig. 5. The queue backlog and cost performance of the proposed algorithm
under various values of V.

The results is shown in Fig. 4. It is obvious that the queue
backlog grows monotonously with the arrival rate for all the
three cases. Then we focus on the queue backlog performance
of the proposed algorithm under various values of V. We find
that a larger value of V results in a heavier queue backlog;
however, the two values V = 0 and V = 3 x 10° lead
to an identical critical point A\, ~ 42 Mbps, which can be
interpreted as the boundary of the capacity region. The result
validates the conclusion that the proposed algorithm, using
any fixed value of V, always achieves finite queue back-
log within the capacity region, and therefore is throughput-
optimal. Finally, we compare the capacity regions achieved by
the proposed algorithm with the unicast-based solution, which
is Ay & 21 Mbps. An increment of 100% is gained, by making
smart duplication decision, which reuses some intermediate
results to fully exploit the available resource.

B. Delay-Cost Tradeoff

Next, we study the queue backlog, as well as the cost
performance of the proposed algorithm under various V. The
arrival rate is selected as A = 20 Mbps. The results are
compared with the unicast-based solution.

The results are depicted in Fig. 5. Visually, it exhibits a
[O(V),O(1/V)] tradeoff between the queue backlog and the
resource cost, as is established in (22) and (23). Considering
the decreasing rate, we anticipate the optimal cost of the
proposed algorithm to be 8, which reduces by 50% when
comparing with the optimal cost 17 achieved by the unicast-
based solution. Again, the reduction is thanks to the reuse gain
as is explained in the previous experiment. A larger gain can
be expected for a destination set with more nodes, but this
comes at the price of increasing the algorithm complexity.

VIII. CONCLUSIONS

In this paper, we investigated the problem of cloud network
control in the presence of multicast flows. We proposed a
queueing system that allows flow-level (rather than packet-
wise) decision making, and presented an efficient policy space

that is cost-optimal. The characterization of the new capacity
region was presented, and we developed a fully distributed
control algorithm guided by Lyapunov optimization theory.
Numerical results showed the performance gain of the pro-
posed algorithm over the unicast-based solution, in terms of
the capacity region and the achieved resource cost.

IX. ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion (NSF) under CNS-1816699.

REFERENCES

[1]1 A. B. Craig, Understanding augmented reality: concepts and applica-
tions. Newnes, 2013.

[2] M. Weldon, The future X network: a Bell Labs perspective. CRC Press,
2016.

[3] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal control of
wireless computing networks,” IEEE Trans. Wireless Commun., vol. 17,
no. 12, pp. 8283-8298, Dec. 2018.

[4] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The cloud service
distribution problem in distributed cloud networks,” in Proc. IEEE Int.
Conf. Commun., London, UK, May 2015, pp. 344-350.

[5] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions in NFV,” in 11th Int. Conf.
on Network and Service Management (CNSM), Barcelona, Spain, Nov.
2015, pp. 50-56.

[6] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, no. 1, pp. 138-155, Nov. 2016.

[7] A. Sinha and E. Modiano, “Optimal control for generalized networkflow
problems,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 506-519, Feb.
2018.

[8] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936—-1948, Dec. 1992.

[9] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal cloud
network control with per-packet deadline constraint,” in Proc. IEEE
Int. Conf. Commun., Montreal, Canada, Jun. 2021, pp. 1-6.

[10] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal dynamic
cloud network control,” IEEE/ACM Trans. Netw., vol. 26, no. 5, pp.
2118-2131, Oct. 2018.

[11] J. Zhang, A. Sinha, J. Llorca, A. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic flows,”
in Proc. IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 1880-1888.

[12] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile edge
computing network control: Tradeoff between delay and cost,” in Proc.
IEEE Global. Telecomm. Conf., Taipei, Taiwan, Dec. 2020, pp. 1-6.

[13] M. J. Neely, Stochastic network optimization with application to com-
munication and queueing systems. San Rafael, CA, USA: Morgan &
Claypool, 2010.

[14] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal dynamic
cloud network control with generalized network flows,” to be submitted.

