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ARTICLE INFO ABSTRACT

Keywords: Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment

fMRI addresses these idiosyncrasies by using neural responses to project individuals’ brain data into a common model

Functional alignment space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The

Hyp eral,igr,lme,m . dimensions of this common model capture functional profiles that are shared across individuals such as cortical

Naturalistic stimuli . . . . . S .

Functional connectivity response'z Proﬁles .collected dur.lng a common tlme?—locked stimulus presentation (e: g: movie v1'ew1ng) or funct101.1al
connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive
transformations that project individuals’ neural data from anatomical space into the common model space. Pre-
viously, only response or connectivity profiles were used in the derivation of these transformations. In this study,
we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on
both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets
to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that
aligns response-based information as well as or better than response hyperalignment while simultaneously align-
ing connectivity-based information better than connectivity hyperalignment. These results suggest that a single
common information space can encode both shared cortical response and functional connectivity profiles across
individuals.

1. Introduction files (Guntupalli et al., 2018). Common spaces based on each of these

data types differentially improve between-subject alignment. Response-

Hyperalignment models shared information that is embedded in id-
iosyncratic cortical patterns across brains. Modeling shared informa-
tion makes it possible to compare functional anatomy across brains
at a fine spatial scale. Hyperalignment projects cortical pattern vec-
tors into a common, high-dimensional information space (Haxby et al.,
2020). Derivation of this common space can be based on either
neural response profiles (e.g. data collected during tasks, such as
movie viewing (Haxby et al., 2011)) or functional connectivity pro-

based common spaces better align held-out response data, whereas
connectivity-based common spaces better align held-out connectivity
data. However, it has remained unclear whether optimizations of both
response hyperalignment and connectivity hyperalignment would con-
verge on the same common information space.

While both response- and connectivity-based hyperalignment signif-
icantly improve intersubject correlations (ISCs) of response profiles rela-
tive to anatomical alignment, response-based hyperalignment (RHA) re-
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sults in slightly higher ISCs for response profiles than does connectivity-
based hyperalignment (CHA) (Guntupalli et al., 2018). Similarly, RHA
yields better alignment of cortical response patterns for two addi-
tional tests of between-subject alignment: between-subject multivariate
pattern classification (bsMVPC) and ISC of representational geometry
(Guntupalli et al., 2016, 2018). At the same time, CHA yields higher
ISCs of dense connectivity profiles than RHA (Guntupalli et al., 2018).
In other words, RHA outperforms CHA on response-based metrics of
alignment, whereas CHA outperforms RHA on connectivity-based met-
rics. The common information spaces derived from RHA and CHA are
correlated yet different, which suggests that the information contained
in population response patterns versus functional connectomes may be
fundamentally distinct. Alternatively, RHA and CHA may both be im-
perfect estimates of a single common information space that can ac-
commodate both shared response information and shared connectivity
information.

If the first hypothesis holds and the common spaces derived by RHA
and CHA each capitalize on distinct aspects of the same data, then
two separate optimal common spaces exist. In this case, adding re-
sponse information to connectivity-based hyperalignment would move
the CHA common space toward the RHA optimum and away from the
optimal CHA space, degrading ISC of connectivity profiles. Likewise,
moving closer to the shared CHA space by adding connectivity informa-
tion to response-based hyperalignment should degrade response-based
benchmarks of between-subject alignment: ISC of response profiles and
bsMVPC of response patterns. If the second hypothesis holds, both RHA
and CHA are imperfect estimates of a single optimal shared-information
space. In this case, deriving a common space based on combined re-
sponse and connectivity data should maintain or improve ISCs of re-
sponse and connectivity profiles as well as bsMVPC of response patterns.

To test these two possibilities, we developed a new algorithm, hybrid
hyperalignment, that derives a common space based on both response
and connectivity data from the same task fMRI dataset. We measured
the performance of hybrid hyperalignment using fMRI data collected
while participants watched one of three movies: The Grand Budapest
Hotel (Visconti di Oleggio Castello et al., 2020A), Raiders of the Lost Ark
(Nastase, 2018), or Whiplash. We found that a single common model
computed using both response and functional connectivity information
aligned neural response and connectivity patterns across participants as
well as or better than RHA or CHA alone, supporting the second hypoth-
esis of a single, optimal shared-information space.

2. Materials and methods
2.1. Participants

We used three separate data sets for our analyses. All participants
gave written, informed consent, and all studies were approved by the
Institutional Review Board of Dartmouth College. In data set one (Bu-
dapest), we scanned 21 participants (11 female, 27.29 years + 2.35 SD)
as they watched the second half of the film The Grand Budapest Hotel
((Visconti di Oleggio Castello et al., 2020A). This dataset had 25 to-
tal participants. We used a subset of 21 participants with customized
headcases for this analysis. In data set two (Raiders), we scanned 23
participants (12 female, 27.26 years + 2.40 SD) as they watched the
second half of the film Raiders of the Lost Ark (Nastase, 2018). In the
third study (Whiplash), 29 participants (15 female, 18.30 years + 0.79
SD) watched part of the film Whiplash. In the Whiplash data set, we
chose 29 participants with the least head motion (measured as average
framewise displacement) from a set of 62 participants who viewed this
video as part of another study.

2.2. Stimuli and design

In each of these studies, participants viewed part of an audio-visual
film in the MRI scanner. In the Budapest data set, participants watched
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the audio-visual film The Grand Budapest Hotel. They viewed the first
portion of the movie outside of the scanner and the second portion (fi-
nal 50.9 min) in the scanner during fMRI data collection. This second
portion of the film was broken into 5 separate runs, each approximately
10 min long, with a short break between each run (Visconti di Oleg-
gio Castello et al., 2020A). In the Raiders data set, fMRI responses were
measured while participants watched the second half of the film Raiders
of the Lost Ark (approximately 57 min) over 4 runs, each roughly 15
min. Again, participants viewed the first half of the movie outside of
the scanner just prior to the scanning session. In the Whiplash data set,
participants watched a 29.5 min edit of the film Whiplash. FMRI data
were collected in a single run, and we divided the data into 4 pseudo-
runs of approximately 8 min to approximately match the length of the
runs in the two other data sets.

For each data set, the videos were projected using an LCD projector,
which the participant could view on a mirror mounted on the head coil
in the scanner. Audio was played using MRI-compatible in-ear head-
phones. Participants were simply instructed to pay attention and enjoy
the movie.

2.3. MRI data acquisition and preprocessing

All fMRI data were collected in the Dartmouth Brain Imaging
Center with a 3T Siemens Magnetom Prisma MRI scanner (Siemens,
Erlangen, Germany) with a 32-channel phased-array head coil with
TR/TE = 1000/33 ms, flip angle = 59°, resolution = 2.5 X 2.5 X 2.5 mm
isotropic voxels, matrix size = 96 x 96, FoV = 240 x 240 mm, with
anterior-posterior phase encoding. For Budapest and Whiplash 52 axial
slices were obtained. For Raiders 48 axial slices were obtained. Both vol-
umes provided roughly full brain coverage with no gap between slices.

Anatomical data were acquired using a high-resolution 3-D
magnetization-prepared rapid gradient echo sequence (MP-RAGE;
160 sagittal slices; TR/TE, 9.9/4.6 ms; flip angle, 8°; voxel size,
1 x 1 x 1 mm). Data acquisition and conversion to BIDS was per-
formed using the Reproln specification and tools (Visconti di Oleggio
Castello et al., 2020B) and organized into BIDS format with DatalLad
(Gorgolewski et al., 2016; Halchenko et al., 2017). Data was prepro-
cessed using fMRIprep 20.0.3 (Esteban et al., 2018). The Budapest,
Raiders, and Whiplash data sets had 3052, 2570, and 1770 total TRs, re-
spectively. Confound regression was used to mitigate the effects of head
motion, physiological fluctuations (e.g. aCompCor), and slow trends.
Detailed information on anatomical and functional preprocessing can
be found in previous publications for the Budapest (Visconti di Oleggio
Castello et al., 2020A) and Raiders (Nastase, 2018) data sets or under
Supplemental Methods for the Whiplash data set.

2.4. Intersubject alignment

Our analysis consisted of four types of intersubject alignment be-
ginning with traditional anatomical alignment described in the previ-
ous section (and displayed in Fig. 1A). Anatomical alignment (AA) non-
linearly registered each participant’s individual BOLD response data to
FreeSurfer’s high-resolution fsaverage cortical template based on sul-
cal curvature (Fischl, 2012). For computational efficiency, and to more
closely match the native resolution of the functional data, we then dec-
imated this surface grid to fsaverage5 by selecting the first 10,242 ver-
tices per hemisphere. This lower-resolution fsaverage5 mesh is equiva-
lent to downsampling a participant’s volume data to a 5-order icosahe-
dron tessellation (“icoorder5”). The AA data were then used to perform
hyperalignment with three different algorithms. Response-based hyper-
alignment (RHA) mapped data from the anatomical space to a common
information space based on time-point response patterns across cortical
vertices. Connectivity-based hyperalignment (CHA) mapped data from
the anatomical space to a separate common information space based on
functional connectivity patterns derived from the movie response data.
Finally, the novel hybrid hyperalignment (H2A) algorithm began with
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Fig. 1. The Hybrid Hyperalignment Algorithm. Orange arrows indicate a data matrix being passed to searchlight hyperalignment. (A) In Anatomical Alignment
(AA) response profiles are aligned to a common anatomical template with t movie time points as rows and n cortical vertices as columns. (B1) To perform Response
Hyperalignment (RHA), AA data are passed directly to the searchlight hyperalignment algorithm to derive transformation matrices based on local response patterns.
Dimensions in the RHA common space are associated with the cortical vertices in a reference brain (Guntupalli et al. 2016). (B2) After mapping AA data into the
newly derived RHA common space, the time series of each cortical vertex is correlated with the average time series of vertices aggregated into coarse connectivity
targets across the brain (here, 1076 searchlights). The resulting connectome has k connectivity targets as rows and n cortical vertices as columns. (C) In our new
method, Hybrid Hyperalignment, the response-hyperaligned time series from B1 and the corresponding functional connectome from B2 are combined, resulting in
(t movie time points + k connectivity targets) rows and n cortical vertices as columns. This combined data matrix is then passed to the searchlight hyperalignment
algorithm to derive transformations based on both local response and brain-wide connectivity profiles (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.).

RHA followed by hyperalignment that used both response and connec-
tivity patterns as input to calculate a single common information space
(Fig. 1). All hyperalignment was performed with python code utilizing
the PyMVPA toolbox version 2.6.5 (Hanke et al., 2009).

2.4.1. Response-based hyperalignment

To perform response-based hyperalignment we began with the AA
data consisting of responses across cortical vertices (over time) in the
downsampled fsaverage5 surface ("icoorder5", 3 mm resolution). We re-
moved vertices within the medial wall for this analysis, which resulted
in 9372 and 9370 vertices remaining in the left and right hemispheres
respectively. The resulting data matrix for each participant consisted
of a row for each TR (response patterns) and a column for each cor-
tical surface vertex (18,742 total combined across left and right hemi-
spheres; Fig. 1B). Each column of the matrix (time series) was z-scored
to have zero mean and unit variance. These data served as input to
the searchlight response hyperalignment algorithm, which utilizes Pro-
crustes transformations to calculate a transformation matrix for each
participant that maps their AA data into a shared high-dimensional in-
formation space shared across participants (Guntupalli et al., 2016).

The searchlight hyperalignment algorithm centers a searchlight on
each cortical surface vertex and computes a common information space
across participants for each searchlight. Because searchlights are highly
overlapping, each cortical-vertex-to-model space-dimension pair will be
assigned transformation weights from multiple searchlight transforma-
tion matrices (Haxby et al., 2020). These transformation weights are
summed and z-scored for each vertex-to-dimension pair to produce a sin-
gle, whole-brain transformation matrix for each participant, which maps
data into a single common space for the whole cortex. The use of search-
lights serves to constrain the Procrustes transformations of response pro-
files to a neuroanatomically meaningful radius. In other words, func-

tional data from a vertex in the occipital lobe cannot be aligned to a
vertex in the prefrontal cortex. Our analyses used a 20 mm searchlight
radius (Guntupalli et al., 2016; Nastase, 2018; Feilong et al., 2018).

2.4.2. Connectivity-based hyperalignment

The implementation of connectivity-based hyperalignment is iden-
tical to that of RHA, except that CHA takes a connectivity data matrix
as input, rather than a response data matrix. In a functional connectiv-
ity matrix, each row is a pattern of connectivity strengths across vertices
(columns) for a “connectivity target” elsewhere in the brain. In this way,
CHA distinguishes itself from RHA by functionally aligning brain data
based on the co-activation of cortical vertices with the rest of the brain
in contrast to using purely local response profiles.

To compute each participant’s connectome, we began with the same
data matrix as used as input to the RHA algorithm described above (fsav-
erage5 or "icoorder5" surface, 3 mm resolution) and then defined our
connectivity seeds and targets. In this analysis, our connectivity seeds
were of the same resolution (3 mm) as our data: each seed was an ico-
order5 surface vertex. Our connectivity targets were defined on a sparser
surface for two main reasons. By downsampling to a lower resolution,
we reduced the number of data points and increased computational effi-
ciency. More notably, defining dense connectivity targets (for example,
vertex-to-vertex) on anatomically-aligned data yields poor functional
correspondence across participants (as shown in the results presented
for anatomical alignment in Fig. 4). By aggregating these targets into
searchlights instead of individual vertices, we ensure more reliable seed-
target correspondence, which the hyperalignment algorithm assumes.
We define the vertices at the center of each connectivity target as each
vertex on a lower resolution surface mesh (icoorder3, yielding 588 and
587 vertices in the left and right hemispheres, respectively after mask-
ing the medial wall). We then centered a 13 mm searchlight on each of
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these vertices and computed an average time series for each searchlight,
which served as a connectivity target. We calculated the participant’s
connectome as the correlation between the average time series of 1175
connectivity target searchlights and the time series of 18472 connectiv-
ity seeds (icoorder5 vertices). Each column of a subject’s connectome
was then z-scored to have zero-mean and unit variance, and the con-
nectomes were passed to the searchlight hyperalignment algorithm in
exactly the same process described above for response patterns in RHA.
We used 13 mm searchlights with local averaging to define connectivity
targets to reduce the similarity of connectivity patterns for neighboring
targets. However, the searchlight hyperalignment step of CHA was per-
formed with 20 mm searchlights in order to match those used in RHA
and H2A. This produced a transformation matrix for each participant,
which, like RHA, mapped each brain’s cortical vertices into common
information space dimensions, but these were based on alignment of
each participant’s connectome (derived in AA space) into a connectivity-
based common information space.

2.4.3. Hybrid hyperalignment

The hybrid hyperalignment method starts with response hyperalign-
ment (Fig. 1B1). The response-hyperaligned time series data is then used
to compute a functional connectome (Fig. 1B2) using the same proce-
dure as preparing anatomical data for CHA (Section 2.4.2). The time se-
ries data and the RHA connectome are then combined and used as input
for searchlight hyperalignment to define a common model space based
on both patterns of response and patterns of connectivity (Fig. 1C).
These two data matrices do not necessarily have the same number of
samples, as the samples of the response data represent the number of
TRs collected and the samples of the connectome represent the number
of connectivity targets we defined. Though each column in both of these
matrices already had zero mean and unit variance, we wanted to ensure
that the overall magnitudes of the variance of both response and connec-
tivity input data were the same, such that both information types would
be equally weighted by the Procrustes transformation. We therefore ap-
plied a multiplier to every element of whichever input matrix contained
fewer rows. To determine the multiplier, we calculated the Frobenius
norm of both the response profile matrix and the connectome matrix
for each participant. A ratio of the two Frobenius norms was then com-
puted: the numerator of the ratio was the Frobenius norm of whichever
input matrix contained more samples, and the denominator of the ra-
tio was the Frobenius norm of whichever input matrix contained fewer
samples.

Once this multiplier was applied, we vertically concatenated the
connectome to the response data matrices (Fig. 1C). The resulting ma-
trix was of dimensions t time points plus 1176 connectivity targets
(rows/samples) by 18,742 vertices (columns/features). This matrix was
then passed to the searchlight hyperalignment algorithm as described
above with a 20 mm searchlight radius. Again, searchlight hyperalign-
ment produced a transformation matrix for each participant that maps
their AA cortical data into a common information space based on both
response and connectivity information.

It is important to note that all three hyperalignment methods made
use of the same original neural data but used different sets of patterns
derived from those data to compute individual transformation matrices
and a common model space.

2.5. Alignment benchmarking

2.5.1. Intersubject correlation of response and connectivity profiles

To investigate the relative efficacy of the hyperalignment procedures
in aligning shared information processing across brains, we computed
the vertex-by-vertex intersubject correlation (Nastase et al., 2019) of
both movie-viewing response profiles (time series responses) (Figs. 2
and 3) and functional connectivity profiles (dense functional connec-
tomes; Guntupalli et al., 2018; Fig. 4). First, the transformation matrices
for each participant were calculated by RHA, CHA, and H2A separately
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using a leave-one-run-out data folding scheme described below. Next,
participants’ held-out movie-viewing response profiles (test data) were
mapped from anatomical space (fsaverage5) into each common space
(derived from training data). Within anatomical space and each common
space a dense, vertex-by-vertex functional connectome was computed by
correlating each cortical vertex’s response time series with all 18,741
other vertices’ time series for every participant. The Pearson correlation
was then calculated across participants for every vertex on both (1) the
held-out response profile data and (2) the held-out dense functional con-
nectomes in each of the 3 common information spaces. Differences in
the distributions of ISCs across alignment algorithms were tested using
a one-sided permutation test for each hyperalignment method vs. AA,
or a two-sided permutation test for comparing hyperalignment methods
to each other (null distributions were created by shuffling alignment
method labels 10,000 times in all tests). Mean ISCs across vertices, par-
ticipants, and data folds were projected onto the fsaverage template with
nearest neighbor interpolation for visualization.

2.5.2. Movie segment classification

We computed the classification accuracies, searchlight-by-
searchlight, of 5 s movie segments from a held-out run of movie
data. To do this, we compared each searchlight’s activity pattern
(averaged across all vertices within a searchlight) in one participant
with the average activity pattern over all other participants in the same
searchlight for every 5 s movie segment (5 TRs) using a sliding window.
Ten-second buffer periods were added to both ends of every target
segment such that no target segment was compared to a time segment
within 10 s of itself. Thus, each analysis was a 1/3023, 1/2541, or
1/1741 classification for the Budapest, Raiders, or Whiplash datasets,
respectively.

The searchlights used for movie segment classification were cen-
tered on each cortical vertex and included all other vertices within a
13 mm radius of the center vertex. If a participant’s searchlight pat-
tern of activation for a given segment was most similar to the group av-
erage response for the corresponding segment (relative to average group
patterns for all other movie segments) it was considered correctly clas-
sified. We quantified “most similar” as the segment with the highest
Pearson’s correlation coefficient. Differences in the distributions of ac-
curacies for each subject across alignment algorithms were tested using
a one-tailed permutation test for AA vs. each hyperalignment method
or a two-tailed permutation test for comparing hyperalignment meth-
ods to each other. Null distributions were simulated by shuffling align-
ment method labels 10,000 times in all tests. Mean classification accu-
racies across searchlights, participants, and data folds were projected
onto the fsaverage template with nearest neighbor interpolation for
visualization.

We consider movie segment classification to be a strong test of
the quality of alignment of shared information across participants.
Movies combine complex visual and auditory information with higher-
order information about social interactions and narrative arc. Each per-
son encodes this information in idiosyncratic cortical topographies. If
hyperalignment successfully aligns these idiosyncratic representations
in a common information space, the response pattern at each time
point in model space dimensions will be more similar across brains,
leading to higher time segment classification accuracies. Previous hy-
peralignment studies have used 15 s segments (Haxby et al. 2011;
Guntupalli et al. 2016, 2018), which contain more neural information
and are therefore more easily classified. We opted here for a more ex-
acting classification task with 5 s segments.

2.5.3. Data folding

We used a leave-one-run-out data folding scheme to validate hyper-
alignment training on an unseen portion of data. For each movie, hy-
peralignment parameters for each subject were trained on all but one
run, and the held-out run was mapped into the trained space using
the derived transformation matrix. Once this unseen data was mapped
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Fig. 2. The intersubject correlation of response profiles using the Budapest data for each type of alignment algorithm. Correlations are presented for each vertex on
the cortical surface averaged over data folds and participants. Subsequent figures show only left lateral hemisphere views of results. Brain image figures of results
for all three datasets with lateral, medial, and ventral views are shown in Supplemental Figs. S1,S2.

into the common model, alignment performance was benchmarked us-
ing our three chosen tests of intersubject alignment: response profile
ISC, dense connectome ISC, and movie segment classification. ISC and
classification analyses were therefore iteratively performed on every
run of every movie after deriving a common space from all other runs
from the same movie. Correlations and classification accuracies are
reported as the average of these measures across data folds for each
movie.

3. Results
3.1. Intersubject correlation

3.1.1. Response profiles

All three hyperalignment algorithms in all three data sets yielded
significant improvements in intersubject correlation of vertex time se-
ries response profiles across participants relative to AA alone (p < 0.001
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Fig. 4. The average intersubject correlation of connectivity profiles. (A) Correlations are presented for each vertex on the left lateral cortical surface averaged
over data folds and participants. Brain image figures of results with lateral, medial, and ventral views of both hemispheres are shown in Supplemental Figs. S4-S6.
(B) Correlations are shown for each alignment algorithm for each data set. Bars represent the average intersubject correlation over all vertices, data folds, and
participants. Circles represent the average intersubject correlation for an individual participant over all vertices and data folds.
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for all). Further, H2A aligned response profiles significantly better than
RHA in all three data sets. In the Budapest data set, AA produced
an average ISC of 0.179, while RHA, CHA, and H2A produced ISCs
of 0.411, 0.349, and 0.495, respectively (Figs. 2, 3). RHA and H2A
aligned response profiles significantly better than CHA (p < 0.001 for
both), and H2A aligned response profiles significantly better than RHA
(p < 0.001). In the Raiders data set, AA produced an average ISC of
0.160, while RHA, CHA, and H2A yielded ISCs of 0.378, 0.314, and
0.462, respectively (Fig. 3). Again, RHA and H2A significantly outper-
formed CHA (p < 0.001 for both), and H2A significantly outperformed
RHA (p < 0.001). Finally, in the Whiplash data set, AA produced an av-
erage ISC of 0.175, while RHA, CHA, and H2A produced ISCs of 0.324,
0.282, and 0.408, respectively (Fig. 3). In this dataset RHA and H2A per-
formed significantly better than CHA (p < 0.001 for both), and H2A per-
formed significantly better than RHA (p < 0.001). Of note, the Whiplash
data set was only about half the duration of the other two data sets,
which may partially account for why the ISCs across alignment method-
ologies are lower for these participants.

3.1.2. Dense connectivity profiles

All three hyperalignment procedures significantly improved the in-
tersubject alignment of dense connectivity profiles relative to AA alone
across data sets (p < 0.001 for all), with H2A consistently producing
the highest ISCs of any method. In the Budapest data set, AA produced
an average ISC of 0.437, while RHA, CHA, and H2A produced ISCs of
0.800, 0.807, and 0.902, respectively (Fig. 4A, B). The ISCs of CHA and
RHA were not significantly different (p = 0.848), but the ISC of H2A
was significantly higher than both CHA and RHA (p < 0.001 for both).
In the Raiders data, AA produced an average ISC of 0.417, and RHA,
CHA, and H2A yielded ISCs of 0.762, 0.790, and 0.884, respectively
(Fig. 4B). Again, the ISCs of CHA and RHA were not significantly differ-
ent (p = 0.985), but the ISC of H2A was significantly higher than both
CHA and RHA (p < 0.001 for both). Finally, in the shorter Whiplash data
set, AA had an average ISC of 0.135, and RHA, CHA, and H2A resulted
in ISCs of 0.450, 0.568, and 0.679, respectively (Fig. 4B). In this data
set, the ISCs of both CHA and H2A were significantly greater than RHA
(p < 0.001 for both). Further, the ISCs of H2A were significantly greater
than those of CHA (p < 0.001). The shorter duration of the Whiplash
movie-viewing session may partially account for the lower ISCs across
alignment algorithms.

3.2. Movie segment classification

Hyperalignment, regardless of the specific algorithm, showed signif-
icant improvements relative to AA in classifying 5 s movie segments
(p < 0.001 for all). In nearly every common space across data sets, the
individual with the lowest hyperaligned classification accuracy had bet-
ter accuracy than the individual with the highest AA accuracy (Fig. 5B).
We present results here as the average classification accuracy across
searchlights, participants, and data folds. In the Budapest data set, AA
produced an average accuracy of 0.023, while RHA, CHA, and H2A
had accuracies of 0.166, 0.115, and 0.162, respectively (Fig. 5A, B).
In this data set, RHA and H2A both classified time segments better than
CHA (p < 0.001 for both), and RHA significantly outperformed H2A
(p = 0.049). In the Raiders data set, AA produced an average classifi-
cation accuracy of 0.015, and RHA, CHA, and H2A yielded accuracies
of 0.117, 0.076, and 0.108, respectively (Fig. 5B). Again, RHA and H2A
were both significantly better than CHA at classifying time segments
(p< 0.001 for both), but RHA and H2A were not significantly different
from each other in accuracy (p = 0.083). Finally, in the Whiplash data
set, AA had an average accuracy of 0.022, while RHA, CHA, and H2A
produced accuracies of 0.129, 0.086, and 0.137 (Fig. 5B). In this data set
RHA and H2A significantly outperformed CHA (p < 0.001 for both), and
again, RHA and H2A were not significantly different from each other in
accuracy (p= 0.808).
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4. Discussion

A major objective of the hyperalignment algorithm is to map the
shared information originally found in idiosyncratic cortical topogra-
phies into a common space in which this information is better aligned
across participants. Previously, RHA was shown to align response-
based data better than CHA, whereas CHA was shown to better align
connectivity-based data than RHA. In this study we used three separate
data sets to show that a hybrid hyperalignment algorithm, H2A, which
uses both response and connectivity information from the same dataset,
is capable of aligning both types of data in a single common information
space. Adding response information in the derivation of the common
information space clearly improves the alignment of connectivity infor-
mation. Adding connectivity information clearly improved alignment
of response information on one measure - ISC of response profiles - and
maintained performance on another - bsMVPC of movie time segments.

H2A showed significantly greater ISCs of response profiles than both
RHA and CHA across all 3 data sets. H2A also showed significantly larger
ISCs of dense connectivity profiles than both RHA and CHA across all 3
data sets. Finally, in the most stringent test of the alignment of cortex-
wide response patterns, we classified 5 s movie time segments by com-
paring each individual’s response pattern to the average group response
pattern (See Movie Segment Classification above). In the Budapest data,
RHA outperformed H2A in classification accuracy by a difference of
0.004 (p = 0.049). In both the Raiders and Whiplash data sets, RHA
and H2A classification accuracies were not significantly different. To-
gether, these results show that H2A produces a single common infor-
mation space that aligns both response and connectivity information as
well as or better than RHA or CHA can alone.

Our findings indicate that functional alignment based upon either
response or functional connectivity information alone provides an im-
perfect estimate of an optimal common space that would maximize the
shared information we can account for between brains. By combining
both types of information, H2A provides a significantly better estimate
of this single optimal common space. However, the sequential nature
of the H2A method is crucial in aligning both types of information.
Anatomical alignment provides poor correspondence of connectivity in-
formation (Fig. 4, AA bars; S3, S7, S11). Thus, using anatomically de-
fined data to compute the functional connectome for H2A provides a
more noisy estimate of the common space. To address this, we first hy-
peraligned participants’ response information and then computed the
functional connectome within the RHA common space. Because this in-
formation passed to H2A is better aligned across participants, the con-
nectivity targets are better aligned for calculating the connectivity pat-
terns that serve as input for H2A (Figs. S3, S7, S11).

We applied a multiplier to the H2A input data such that the Frobe-
nius norms of both the response and connectivity data matrices were
equal. One consideration for future exploration is whether equal Frobe-
nius norms for both information types are optimal. It is possible that
unequal weighting of the two types of data may in fact be optimal for
deriving H2A transformation matrices. For example, it may be prefer-
able to weight RHA more heavily in visual areas and CHA more heavily
in prefrontal areas. We plan to investigate this idea further in future
studies.

Despite H2A’s evident improvement in aligning functional connec-
tomes compared with CHA, there are some intrinsic limitations that
apply to H2A but not CHA. H2A and RHA both require that partici-
pants share the same time-locked stimulus with the same number of
time points, so they cannot be applied to resting-state data or data sets
that implement different stimuli. Because CHA aligns functional con-
nectivity profiles rather than time series data, it alone can be used with
datasets that don’t have time-locked stimuli (Guntupalli et al. 2018;
Nastase et al., 2020). Although we derive the RHA and CHA estimates
from the same movie stimulus in the current application of H2A, the
CHA component of the algorithm could also be applied to subjects with
both movie and resting-state scans.
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In comparison to other methods of functional alignment, our novel
H2A method aligns both response and connectivity information using
a single algorithm. Many researchers are interested in discerning both
specific vertex-wise patterns of activation and patterns of functional net-
work connectivity that correspond to different cognitive states. Previ-
ously, fully leveraging hyperalignment to conduct both of these types of
analyses would require implementing RHA to derive a response-based
common information space and implementing CHA separately to derive
a connectivity-based common information space. With H2A researchers
can investigate both types of neural information with an estimate of the
single optimal information space.

5. Conclusions

Our results show that a single common information space can model
both response and connectivity information that is shared across brains.
If optimization of shared response and connectivity information resulted
in two separate common spaces, the derivation of a single common space
using both types of information should vitiate its alignment capabilities.
Instead, we found that a hybrid common space aligns response data bet-
ter than RHA and connectivity data better than CHA. This suggests that
the two methods individually produce imperfect estimates of a single op-
timal information space. The H2A algorithm capitalizes on the strengths
of different types of information to provide a more robust estimate of this
optimal information space. This makes the H2A algorithm a preferable
method for aligning stimulus response data when one wants to evaluate
both connectivity and response data. However, H2A does require data
collected while participants are shown a time-locked stimulus such as
a movie. In cases where this type of data is unavailable, CHA can still
be used to align shared information. Our new algorithm is a powerful
tool for elucidating the underlying space that encodes various forms of
information represented in the brain.
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