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ABSTRACT: Accessing vertical orientation of two-dimensional (2D)
perovskite films is key to achieving high-performance solar cells with these
materials. Herein, we report on solvent-vapor annealing (SVA) as a
general postdeposition strategy to induce strong vertical orientation across
broad classes of 2D perovskite films. We do not observe any local
compositional drifts that would result in impure phases during SVA.
Instead, our experiments point to solvent vapor plasticizing 2D perovskite
films and facilitating their surface-induced reorientation and concomitant
grain growth, which enhance out-of-plane charge transport. Solar cells
with SVA 2D perovskites exhibit superior efficiency and stability
compared to their untreated analogs. With a certified efficiency of
(18.00 + 0.30) %, our SVA (BDA)(Csy1FAgo),Pbsl;¢ solar cell boasts the
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highest efficiency among all solar cells with 2D perovskites (n < S)

reported so far.
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he power-conversion efficiencies (PCEs) of three-dimen-

sional (3D) organometal halide perovskite solar cells
(PSCs) have sky-rocketed in the past few years with a certified
record value that is now over 25%.' " These solar cells,
however, suffer from inherent instability when exposed to light,
heat, and moisture.*” Recently, layered two-dimensional (2D)
perovskites have been developed as the light-harvesting layer
for PSCs. These 2D perovskites exhibit substantially improved
environmental and structural stability relative to their 3D
counterparts.7_9 PSCs that comprise 2D perovskites, however,
have exhibited disappointingly low PCEs by comparison.””""
Natively, the alternating organic and inorganic layers in 2D
perovskite thin films are preferentially oriented parallel to the
substrate when these films are processed from solution, which
is believed to hinder out-of-plane charge transport, reducing
the performance of PSCs with 2D perovskites compared to
those with their 3D counterparts.'”"”

Accessing 2D perovskite films in which the organic and
inorganic layers are vertically oriented should substantively
reduce charge-transport resistance and dramatically boost the
PCEs of 2D PSCs. Very recently, several deposition
approaches'*™'® have been reported to effectively improve
the vertical alignment of 2D perovskite films, resulting in PSCs
with PCEs as high as 14.1%. A significant drawback to these
approaches, however, is that they are only applicable to a
narrow class of materials with specific organic spacer
chemistries and/or perovskite compositions, and all have
focused on MA-comprising Ruddlesden—Popper perovskites.
This specificity is not unexpected, given the structural variation
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in 2D perovskites with organic spacer chemistry and perovskite
composition. Among the 2D perovskites that could benefit
from vertical orientation, but such preferential orientation has
not yet been demonstrated, are those with small interlayer
spacings, that is, n = 1 2D perovskites, whose layers exhibit a
yet stronger tendency to adopt a face-on orientation with
respect to the substrate compared to 2D perovskites with n >
1;'Y Dion-Jacobson (DJ) type 2D perovskites whose
diammonium organic spacers leave substantially fewer degrees
of freedom for orientation regulation; and those with mixed
cations, such as those partially substituted with FA™ or Cs®,
whose compositional heterogeneity brings added complexity to
solidification and reduces phase stability in formed films.”® A
simple, robust and general method to effectively control the
crystallization of and layer orientation in 2D perovskites across
different chemistries could significantly promote the develop-
ment of high-quality 2D perovskite films for both PSCs and
other thin-film based applications, such as lighting-emitting
diodes,"** photodetect01's,23_25 thermoelectrics,
tronics,””** and so forth.
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Figure 1. Device performance of solvent-vapor annealed (PEA),MAPbI,; PSCs. (a) Scheme of postdeposition processing of 2D perovskite films.
(b) Current—voltage (J—V) characteristics under reverse voltage scan, (c) EQE, (d) stabilized output, and (e) PCE statistics (40 devices per
condition) of solar cells based on (PEA),MA,Pb.I,; perovskite films exposed to IPA for varying times.

Table 1. Summary of Champion and Average Photovoltaic Parameters of Solar Cells under Reverse Voltage Scan Based on

(PEA),MA,Pb,],; Treated by SVA with Time*”

device Jsc (mA cm™) Jsc from EQE (mA cm™2)
SVA 0 min 142 (13.3 + 0.5) 13.3
SVA § min 15.9 (14.8 + 0.7) 15.0
SVA 10 min 17.0 (16.3 + 0.5) 16.1
SVA 15 min 17.5 (17.2 + 0.4) 17.0
SVA 20 min 17.5 (17.1 + 04) 16.9

Voc (V)
1.06 (0.98 + 0.03)
1.11 (1.03 + 0.05)
1.15 (1.05 + 0.05)
1.15 (1.14 + 0.02)
1.15 (1.14 + 0.02)

FF

0.67 (0.64 + 0.02)
0.72 (0.69 + 0.03)
0.72 (0.70 + 0.02)
0.76 (0.75 + 0.01)
0.76 (0.75 + 0.01)

PCE (%)
10.1 (9.3 £ 0.5)
12.7 (11.7 + 0.6)
14.1 (13.3 + 0.4)
153 (14.9 + 0.3)
15.3 (14.8 + 0.3)

“Average and standard deviation are presented in brackets; these were calculated based on 40 devices at each condition.

Herein, we report isopropanol (IPA) solvent-vapor anneal-
ing (SVA) as a general postdeposition strategy to induce
preferential vertical orientation and enhanced grain growth
across broad classes of 2D perovskites. We first demonstrate
this structural rearrangement with a model system of
(PEA),(MA),Pbil,s and find this preferential vertical
orientation to reduce both bulk and surface defects and
improve charge transport in and charge transfer at the
perovskite and electron transport layer interface. We do not
observe compositional drifts that could result in the
introduction of low-n and/or 3D phases with SVA. Instead,
our experiments point to solvent vapor plasticizing 2D
perovskite films and facilitating their surface-induce reorienta-
tion and grain growth. PSCs made with IPA-annealed
(PEA),(MA),Pbsl,; exhibit an average PCE of 15.3% up
from 10.1%. This postdeposition strategy also induces strong
preferential vertical orientation and grain growth in other 2D
perovskite systems, including those with smaller interlayer
distances, those of DJ-type, and those comprising mixed
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cations, demonstrating the general effectiveness of this strategy.
We report an NREL-certified PCE of (18.00 + 0.30)% of a
PSC comprising SVA-treated (BDA)(Csy FAgo)4Pbsl;s the
highest PCE among PSCs with 2D perovskites (n < S)
reported so far. In addition, PSCs having SVA-treated 2D
perovskites as active layers exhibit superior humidity, thermal,
and operational stability.

Figure la illustrates the SVA process. Postdeposition SVA
decouples structural development from film formation and
allows structural rearrangement to take place on plasticiza-
tion.”” % Here, IPA was selected as the solvent of choice
because it allows plasticization of perovskite films and enables
structural reorganization without inducing dewetting of the
films from their substrates. Zheng et al. reported solvent-
annealing of (BA),(MA);Pb,I,; with y-butyrolactone (GBL)
to obtain a solar cell with a PCE that is <5%.”° Using a solvent
in which the perovskite precursors have relatively high
solubility (e.g., GBL) can cause complete dewetting of the
perovskite films from their substrates. With annealed films
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Figure 2. Structural evolution of SVA-perovskite thin films. GIWAXS patterns of (PEA),(MA),Pb;l, perovskite films (a) before and (b) after SVA
treatment. (c) Azimuthal plots tracking the intensity evolution of the (101) reflection of (PEA),(MA),Pbl4 as a function of SVA time. (d)
Hermans orientation factor tracking the evolution of preferential orientation with SVA and TA. (e) Device PCEs as a function of Hermans
orientation factor. (f) Scheme showing the structural evolution from randomly orientated crystallites to vertically orientated grains, induced by SVA

treatment.

being rougher and less uniform than pristine films, we are not
surprised that solar cells comprising GBL-annealed 2D
perovskite films exhibit such moderate PCEs.* Figure 1b—e,
Figures S1—S2, and Table 1 display the photovoltaic
characteristics of PSCs based on (PEA),(MA),Pbl,s films
that had been exposed to IPA vapor for varying times. With 15
min SVA, all device parameters, including short-circuit current
density (Jsc), open-circuit voltage (Vo) and fill factor (FF),
improve, contributing to a PCE of 15.3%, up from 10.1% for
reference PSCs with untreated (PEA),(MA),Pb.I,.

We briefly entertained the possibility that local composi-
tional drifts in (PEA),(MA),Pb.l;¢ could be responsible for
the enhanced solar-cell performance we see with SVA. Indeed,
numerous reports'**~* have highlighted the presence of
lower n-, as well as 3D-phases, in 2D perovskites and the
extents of which depend on deposition conditions. To
maximize phase purity in our as-cast films, we spin coated
from concentrated precursor solutions of 1.25 M in pure
DMEF.”** Figure S3 contains the photoluminescence (PL)
spectra of (PEA),(MA),Pbl;; processed at these conditions,
and those of (PEA),(MA),Pbsl;s processed under typical
literature conditions, that is, from a mixture of DMF and
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DMSO, with relevant discussion detailed in Supporting
Information. Comparison between these spectra confirms
there is no compositional drifts that could result in the
introduction of low-n and/or 3D phases with SVA.”~*
Further, the (PEA),(MA),Pbsl;s PSCs, independent of
whether the active layers were SVA, show the same external
quantum efficiency (EQE) band edge that is blue-shifted by 20
nm relative to that of MAPbI; PSC (Figure S4). These results
indicate that 3D impurities, if present, are only present in
fractional quantities, and their presence does not contribute to
the performance enhancement of our PSCs on SVA.

Figure 2a,b and Figure SS show the GIWAXS patterns of the
corresponding films as a function of SVA time. As reference,
the GIWAXS patterns of (PEA),(MA),Pbl,4 thin films after a
second thermal annealing step (TA; an initial mild thermal
annealing was applied to all films to drive off residual solvent)
are displayed in Figure S6. The GIWAXS patterns in Figure 2a
and Figure S6 are comparable, implying that there is no
structural change when (PEA),(MA),Pbsl;4 films are further
thermally annealed. In particular, the GIWAXS pattern of
thermally annealed (PEA),(MA),Pbl,s exhibits diffraction
rings that correspond to its (101), (002), (012), (202), and

https://dx.doi.org/10.1021/acs.nanolett.0c03914
Nano Lett. 2020, 20, 8880—8889


http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig2&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c03914?ref=pdf

Nano Letters

pubs.acs.org/NanoLett

(a)z,s w/o SVA

(e)

(b)z.s w/o SVA

1(008°) =6 min _£,(0.109 = 10 min
| _mﬂgg-‘sﬁtst&9‘?0%3ﬂ""“'"'"“@"--"
?’”.w”g"a' ®£(0.15%) = £(0.12°) = 15 min

S
©

S
o

® 0=0.15°Exp.

@  6=0.12° Exp.

@ 6=0.10° Exp.

@ 0=0.08° Exp.

6-0.15° Fitting

6=10.12° Fitting

6=0.10° Fitting

~~~~~~~~~ 0=0.08° Fitting
L L

5 10 15 20 25
SVA time (min)

o
FS

e
N

Hermans orientation factor

o
=)

I

Whole film develops towards thermodynamically-preferred orientation (vertical orientation)

Thermodynamically-preferred
orientation at liquid-air interface

Substrate

Zone 1 reaches saturated Zone 2 reaches saturated
vertical orientation

Substrate

Solvent vapor plasticizes the film. Vertical orientation at film surface templates structural re-arrangement'\

4

Zone 3 reaches saturated

vertical orientation vertical orientation

1 (1
| 10-min 15-min
SVA SVA

Substrate Substrate

Figure 3. Reorientation mechanism. GIWAXS patterns obtained at X-ray incident angle of (a) 0.08°, (b) 0.10° and (c) 0.12° for a
(PEA),(MA),Pbl,4 perovskite film before SVA treatment. (d) Hermans orientation factor tracking the evolution of preferential orientation at
incident angles of 0.08°, 0.10° 0.12°, and 0.15° with SVA. (e) Illustration of the reorientation process during SVA.

(103) reflections, confirming the preservation of its structure
and polycrystallinity. The (101) reflection exhibits a slight
enhancement in intensity at the meridian (g,), indicating that,
when thermally annealed, (PEA),(MA),Pbl;; has a weak
preference for its alternating organic and inorganic layers to be
vertically oriented (Figure 2a). With SVA, the near-isotropic
diffraction rings in the GIWAXS patterns of these films are
replaced with discrete Bragg spots (Figure 2b), indicating the
development of a distinct preferential orientation. The partial
pole figure of the (101) reflection of the IPA-annealed
(PEA),(MA),Pbl;s films plotted in Figure 2c tracks its
intensity as a function of azimuthal angle with increasing SVA
time. That this intensity distribution narrows and intensifies
confirms that SVA enhances the out-of-plane orientation. To
quantify the extent of preferential orientation, we calculated
the Hermans orientation factor (H(101)) of the (101)
reflection according to eq 1 and 2*'

/()”I(qo)cos2 @ sin @ do
/OﬂI((p)sin @ do

(cosz(p) =
(1)
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3{cos’p)—1

H(10T) = 2

@)
where ¢ is the azimuthal angle from 0° to 90° and I(¢) is the
angle-dependent scattering intensity. In this context, H(101) =
0 corresponds to randomly oriented crystallites; H(101) = 1
corresponds to a film whose alternating layers adopt a perfectly
vertical orientation, and H(101) = —0.5 indicates a perfectly
horizontal orientation. Tracking H(101) as a function of
solvent-vapor annealing time (Figure 2d) reveals an increase
from 0.17 to 0.83, with a reorientation saturation time (f5) of
1S min, when (PEA),(MA),Pbl,s is annealed in a saturated
IPA atmosphere at 100 °C. The PCEs of PSCs comprising
these films show strong positive correlation with the evolution
of the Hermans orientation factor, as displayed in Figure 2e.
This correlation strongly suggests that the enhanced
preferential orientation induced by SVA treatment to first
order accounts for the dramatically enhanced PCE of PSCs
comprising these films. As shown in Figure 2f, vertically
orienting the alternating organic and inorganic layers in
(PEA),(MA),Pb.],; minimizes the resistance to out-of-plane
charge transport presented by the insulating organic spacers in

https://dx.doi.org/10.1021/acs.nanolett.0c03914
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Figure 4. Charge extraction and transport properties of SVA-treated perovskite thin films. Time-resolved PL spectra of (PEA),MA,Pbl, thin films
deposited (a) on quartz glass and (b) on TiO,-coated quartz glass treated by SVA with time. (c) Dark current density—voltage (J—V)
characteristics extracted from the PV-SCLC measurement of representative hole-only devices based on a (PEA),MA,PbI,, thin film treated by
SVA for 0 and 1§ min, and (d) calculated trap density and hole mobility extracted from such devices with their active layers treated by SVA for
varying times (average values were obtained based on five devices at each condition).

2D perovskite thin films and leads to higher quality electrically
active thin films with lower defect density and higher charge
carrier mobility.

GIWAXS measurements on (PEA),(MA),Pb.l,¢ with SVA
exposure as a function of X-ray incident angle yielded insight
on the mechanism of reorientation. As we increase the incident
angle during these measurements, we can probe deeper into
the films. As an example, we show the GIWAXS patterns that
were obtained at three different X-ray incident angles of 0.08°,
0.10° and 0.12° of an as-cast (PEA),(MA),Pbil;s film in
Figure 3a—c. For reference, the critical angle of the film is
0.11°. The H(101) extracted from these GIWAXS patterns are
0.55, 0.42, and 0.18, respectively. This analysis reveals a strong
surface effect; the surface of the (PEA),(MA),Pbls is
substantially more vertically oriented than the bulk. Integrating
across the depth of the film yields an orientation factor that is
substantially less than that of the surface alone. This
observation is consistent with several reports that preferential
vertical orientation in 2D perovskites originates from the
liquid—air interface."***~* We plotted the H(101) tracking
the structural evolution of (PEA),(MA),Pbl,¢ with SVA at
these different incident angles in Figure 3d. That the evolution
of H(101) with SVA obtained at 0.12° and 0.15° are almost
identical confirms that we are probing the structural evolution
of the bulk of (PEA),(MA),Pb;] ¢ at these two incident angles.
Tracking the H(101) with SVA at shallower incident angles
reveals that reorientation is fastest at the surface of film; the
reorientation time constant increases progressively with
increasing incident angle. Collectively, we surmise that IPA
vapor plasticizes (PEA),(MA),Pb.]l, and provides sufficient
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mobility for the surface to reorient and adopt its
thermodynamically more favored orientation given surface
energetics. We have schematized this process in Figure 3e in
which the surface portion of the film (Zone 1) reorients first;
this reorientation presumably templates subsequent reorienta-
tion in Zones 2 then 3. The PL spectra acquired at different
time points of SVA of (PEA),(MA),Pbl;s from the glass side
and from the surface side are shown in Figure S7. That the
emission evolution when excitation from the film side (probing
near surface) saturates before the emission evolution when
excitation is from the glass side (probing the bulk) is further
evidence of surface-induce reorientation of
(PEA),(MA),Pb.I,¢ when it is exposed to SVA. The peak
luminescence of (PEA),(MA),Pb.l¢ after a 20 min SVA
shows a 20 nm red shift compared to that of untreated
(PEA),(MA),Pb.I,¢. Because we have ruled out compositional
drifts that can result in the incorporation of 3D phases, we
believe this red shift in PL emission stems from an increase in
the grain size of (PEA),(MA),Pb.l, with SVA.*oY Figure S8
shows AFM micrographs acquired on one such perovskite film
before and after SVA. Consistent with the quantitative red
shifts in PL emission that have been reported in the
literature,%’47 we observe the grain size to increase from
about 100 nm to about 2 pm after SVA.

To understand the impact of SVA-induced reorientation on
charge-carrier dynamics, we carried out time-resolved photo-
luminescence (TRPL) spectroscopy on (PEA),(MA),Pb.I;,
deposited on bare glass and on TiO,-coated glass (Figure
4a,b). We fitted the TRPL curves with a biexponential decay
function (eq 3)**

https://dx.doi.org/10.1021/acs.nanolett.0c03914
Nano Lett. 2020, 20, 8880—8889


http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c03914/suppl_file/nl0c03914_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03914?fig=fig4&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c03914?ref=pdf

Nano Letters

pubs.acs.org/NanoLett

—~
O
~

& —~
g 4 p'lE W/ SVA: 16.6%
> 5 20t
£3 W/ SVA: 1.8% <
= £ 15f
2 >
2 2F "ﬁ 10t WIO SVA: 11.8%
[} [=
e 1}t WIO SVA: 1.0% 8 51
c -
[ (BDA)PbI, c (BDA)(MA),Pb,],
£ el 8 gl
=3 %.0 02 04 06 08 1.0 1.2 5 .0 02 04 06 08 1.0 1.2
o Voltage (V) o Voltage (V)
« (0 (d)
g W/ SVA: 18.2% 12 [80% R.H. air, room temperature, dark
Unencapsulated cells
20f w
E o
= ]
7] WIO SVA: 13.9% N 0.6
5 0] 3
(a)] 5 g 0.4 —o—wio SVA
- o —o—w/ SVA
S (BDA)(Cs, FA, ,),Pbyl, § 0.2
= % L ) A ) L 0.0 X ) X X
8 .0 02 04 06 08 1.0 1.2 0 200 400 600 800 1000
Voltage (V) Time (hr)
(e) (f)
1.2 R e o 1,2 [Encapsulated solar cell
w [Unencapsulated cells w =4 IMPP tracking under constant illumination
3) 1.0 W [3)
o 0.8 o
-2 °
[0
N 06 - N
T g4 = g 04
£ 7 |e—wosva \\ E : w/ SVA
16 02 —a—w/ SVA o 02 [ e w/o SVA
2z ~ z
00— . 0.0% : : -
0 200 400 600 800 1000 0 200 400 600 300
Time (hr) Time (hr)

Figure S. Generality of SVA strategy and solar cell stability. Current density—voltage (J—V) characteristics of PSCs under reverse voltage scan
based on (a) (BDA)PbI,, (b) (BDA)(MA),Pbl,, and (c) (BDA)(Csy FAye),Pbsl;s perovskite thin films with and without SVA treatment. (d)
Normalized PCE as a function of storage time of unencapsulated solar cells based on (BDA)(Cs, ,FAo)4Pbsl;s thin films with and without SVA.
The aging condition is ~80% R.H. air and ~20 °C in the dark. (e) Normalized PCE as a function of storage time of unencapsulated solar cells
based on (BDA)(Cs,;FAgo)4Pbsl;s thin films with and without SVA. The aging condition is 40—50% R.H. air and ~8S °C in the dark. (f)
Normalized PCE as a function of aging time of encapsulated solar cells under continuous illumination based on (BDA)(Cs, FAgo),Pbsl;4 thin
films with and without SVA. The cell configuration is FTO/c-TiO,/m-TiO,/(BDA)(Cs,;FAy,),Pbl,s with or without SVA treatment/dopant-free

ST1/Cr/Au.

1 T

ft) =4 exp[—LJ + A exp(—i] + B
7 ()

where 7, and 7, are the fast and slow decay time constants,
respectively, A, and A, are their corresponding decay
amplitudes, and B is a constant. The extracted decay times
are summarized in Tables S1 and S2 with 7, representing the
time for quenching via trap states or interfacial charge transfer,
and 7, representing the carrier lifetime, which in turn provides
an inverse quantification for the extent of carrier recombina-
tion in the bulk.*”*° We found 7, to increase from 20 to 395 ns
after 15 min SVA; this substantively increased carrier lifetime
implies successful suppression of nonradiative recombination
in vertically oriented (PEA),(MA),Pb.l,4 with increased grain
size."” Furthermore, we tracked the TRPL decay of
(PEA),(MA),Pb.], films on substrates coated with TiO,,
the electron transport layer (ETL) of choice in our PSCs. Both
7, and 7, of untreated (PEA),(MA),Pbl;¢ on TiO,-coated
substrates are comparable to those on films deposited on bare
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glass; the introduction of ETL does not appear to improve
charge transfer from as-deposited (PEA),(MA),Pb;l;s. Com-
pared to the decay time of such an untreated film (3 ns), 7; of
SVA-treated (PEA),(MA),Pb.l,¢ decreases to 0.3 ns after a 15
min SVA treatment. In the presence of the ETL, we take a
shorter 7; to mean more efficient electron transfer and carrier
extraction at the interface between (PEA),(MA),Pbl;s and
TiO,, which we surmise to stem from reduced defects at the
electron-selective interface in PSCs having SVA-treated
(PEA),(MA),Pb.l,,>"°* We further studied the impact of
SVA-induced reorientation on charge-carrier mobility and trap
density of 2D perovskite thin films. Because 2D perovskites are
reported to be intrinsic semiconductors (u;, ~ ., where y;, and
He are hole and electron mobilities, respectively),”>*

fabricated hole-only devices, performed I—V measurements
and calculated the hole mobility and trap density according to
a recently reported pulsed-voltage space-charge limited current
procedure (PV-SCLC).>® We found the out-of-plane mobility
to increase by almost 2 orders of magnitude from (0.0022 +
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Table 2. Summary of Champion and Average Photovoltaic Parameters of Solar Cells under Reverse Voltage Scan Based on
(BDA)PbL,, (BDA)(MA),Pb,l,; and (BDA)(Cs,,FAy,),Pbl;c with and without SVA®

device Jsc (mA ecm™) Jsc from EQE (mA cm™2) Voc (V) FF PCE (%)
(BDA)PbI, w/o SVA 2.1 (1.7 £03) 2.0 1.01 (0.95 + 0.06) 0.49 (0.43 + 0.10) 1.0 (0.6 + 0.4)
(BDA)PbI, w/SVA 29 (2.8 £03) 2.7 1.04 (1.00 + 0.05) 0.61 (0.55 + 0.10) 1.8 (1.5 + 0.4)
(BDA)(MA),Pb.l;s w/o SVA 15.9 (14.7 + 0.4) 15.1 1.04 (0.99 + 0.04) 0.71 (0.68 + 0.03) 11.8 (10.6 + 0.4)
(BDA)(MA),Pbl, ¢ w/SVA 19.5 (18.4 + 0.2) 18.7 1.13 (1.11 + 0.03) 0.75 (0.74 + 0.02) 16.5 (154 + 0.3)
(BDA)(Cs, FAg)4Pbsl;s w/o SVA 18.5 (17.9 + 0.5) 18.1 1.04 (0.99 + 0.06) 0.72 (0.71 + 0.02) 13.9 (12.3 + 0.4)
(BDA)(Cs,FAgo)Pbsl; w/SVA 212 (209 + 0.3) 20.9 1.13 (1.10 + 0.02) 0.76 (0.7S + 0.02) 182 (17.9 + 0.4)

“Average and standard deviation are presented in brackets; these parameters were calculated based on 40 devices at each condition.

0.0005) to (0.10 + 0.02) cm® V™' 57!, and the trap density to
decrease from (14.1 + 1.6) X 10'® cm™ to (1.8 + 0.3) X 10'¢
cm™ after a simple 1S min SVA treatment (Figure 4c,d).
Consistent with the structural evolution of the perovskite films
and the performance enhancements of PSCs comprising them,
the evolution of these charge-transport parameters also
saturate after 15 min of SVA, implying that we can trace
these improvements to SVA-induced reorientation and grain
growth of (PEA),(MA),Pbl,4 active layers.

To explore its generality, we extended our SVA strategy to
other 2D perovskite systems including an n = 1 2D perovskite,
namely (BDA)PbI,, which comprises a thinner quantum well
compared to our model system of (PEA),(MA),Pb.I, a
Dion-Jacobson 2D perovskite (BDA)(MA),Pbsl;,, and 2D
perovskites with triple cations (BDA)(Cs;FAgs)4Pbsl;s. Not
unlike the vertical orientation induced in (PEA),(MA),Pbsl,,
we found this SVA treatment to effectively tune the orientation
of and increase the grain size in these perovskite thin films
(Figures S9—S11) which dramatically improves the perform-
ance of PSCs comprising other types of 2D perovskites (Figure
Sab, Figures S12—S1S and Table 2). In particular, the PSC
with SVA-treated (BDA)(Csg;FAgo)4Pbsl;¢ exhibits an NREL-
certified PCE of (18.00 + 0.30)% (Figure S16), which is
among the highest PCEs reported for PSCs comprising n < S
2D perovskites.

We compared the phase purity of our (BDA)(MA),Pbsl;4
and (BDA)(Csy;FAy,)4Pbsl;s films before and after SVA by
comparing their UV—vis absorption, PL, and EQE spectra with
their associated 3D counterparts of MAPbI; and Cs, ;FA, ,Pbl,
(relevant discussion detailed in Figures S12—S18). Consis-
tently, we do not observe compositional drifts that could result
in the introduction of low-n and/or 3D phases with SVA. As a
final and most unambiguous control experiment, we subjected
(BDA)PbI,, an n = 1 2D perovskite, to the same scrutiny. On
SVA of (BDA)PbI, film, we observe a similar enhancement in
its solar-cell performance. In the absence of the possibility to
adopt a different phase, we are left to believe the critical role
SVA plays in inducing preferential vertical orientation and
increasing grain size, thereby enhancing solar-cell performance
of 2D perovskites.

Two-dimensional PSCs with active layers adopting a face-on
orientation have generally been reported to exhibit superior
stability compared to their 3D counterparts, likely because the
perovskite layers are surface-terminated with hydrophobic
organics.56 It is unclear, however, whether this stability is
preserved when the 2D perovskite active layers adopt a vertical
orientation. To investigate, we performed long-term stability
tests of PSCs based on untreated and SVA-treated (BDA)-
(Csp1FAgg)4Pbel s For these measurements, we replaced the
Li-doped Spiro-OMeTAD and Au contact with a dopant-free
hole-transport material, ST1,"” and used Cr (10 nm)/Au (80
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nm) as the electrode.’® The latter contact combination is more
stable and allowed us to assess the stability of our PSCs at
more aggressive conditions of 80% relative humidity, at 85 °C,
and under constant illumination. For completeness, we have
included the J—V characteristics, PV parameters, and stabilities
of PSCs with the two different types of contacts in Figure
§19-21 and Table S3. As shown in Figure 5d, the reference
PSC with untreated (BDA)(Csy;FAgo),Pbsl;s under 80%
humidity lost over 20% of its original PCE after 800 h, while
our champion unencapsulated PSC based on SVA-treated
(BDA)(Csg FAgo)4Pbsl;s exhibited negligible degradation,
retaining almost 100% of the original PCE after 800 h. We
believe the increase in grain size, and thus decrease in grain
boundary density, to be responsible for the enhancement in
stability of PSCs comprising SVA-perovskite films.”” As shown
in Figure Se, the reference PSC with untreated (BDA)-
(Csg.1FAgo)4Pbsly4 stored at 85 °C lost 20% of its original PCE
after 100 h and degraded 90% after 800 h. In comparison, our
champion unencapsulated PSC based on SVA-treated (BDA)-
(Csg.1FAgo)4Pbsl 4 exhibited much slower degradation, retain-
ing more than 80% PCE after 800 h. We then tracked the
maximum power point (MPP) to quantify the operational
stability of encapsulated devices based on untreated and SVA-
treated (BDA)(Csy,FAyo)sPbsl;s films under continuous
illumination (powder density ~ 1.1 sun, Figure S22) at
ambient conditions (about 30 °C, 35% R.H.). As shown in
Figure S5f, our champion SVA-treated (BDA)-
(Csp1FAgg),Pbel ¢ PSC retained over 90% of its initial PCE
after 800 h and exhibited negligible “burn-in” degradation,
while the PSC with untreated (BDA)(Cs,FAgg)sPbsl;s lost
50% of its initial PCE after the same exposure and showed
“burn-in” degradation in the first 20 h of the experiment. Since
this burn-in has been attributed to illumination-induced ion
migration in the literature,"”®" we believe the improved
operational stability of encapsulated SVA devices to stem from
suppressed ion migration in highly oriented and large-grain
(BDA)(Csy FAgo),Pbsl.> " While this hypothesis is still
being tested, our results indicate this SVA treatment not only
dramatically improves solar-cell performance but also signifi-
cantly enhances their environmental and operational stability.

In conclusion, we have demonstrated a simple and generally
effective postdeposition strategy, being solvent vapor anneal-
ing, to access strong vertical orientation and large grain size
with a wide range of 2D perovskites. The resulting perovskite
films exhibit lower defect densities and higher mobilities than
their untreated counterparts, which contribute to high power-
conversion efficiencies and stability in PSCs that comprise
them. This strategy can be extended to any 2D perovskite-
related applications that require low-defect and high-mobility
polycrystalline films as it provides exquisite control over the
structural development of perovskite active layers; combining
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this approach with custom-designed functional organic spacers,
for example, those that readily transport charge, should further
boost solar cell efficiencies.
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