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Abstract

We study the zero surface tension limit of three-dimensional interfacial Darcy flow. We start with a proof 
of well-posedness of three-dimensional interfacial Darcy flow for any positive value of the surface tension 
coefficient. The primary tool for this well-posedness proof is an energy estimate. The time of existence for 
these solutions will, in general, go to zero with the surface tension parameter. However, in the case that a 
stability condition is satisfied by the initial data, we prove an additional energy estimate, establishing that 
the time of existence can be made uniform in the surface tension parameter. Then, an additional estimate 
allows the limit to be taken as surface tension vanishes, demonstrating that three-dimensional interfacial 
Darcy flow without surface tension is the limit of three-dimensional interfacial Darcy flow with surface 
tension as surface tension vanishes. This provides a new proof of existence of solutions for the problem 
without surface tension.
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1. Introduction

We consider a sharp-interface model of two-phase Darcy flow in three spatial dimensions. 
The fluid velocities are given by Darcy’s Law, which models flow in a porous medium [9]. The 
interface is the boundary between the lower fluid region �1(t) and the upper fluid region �2(t), 
where t is the temporal variable. To be precise, in the bulk of each fluid, the fluid velocity is 
given by

vi (x, y, z, t) = − b2

12νi

∇(pi + ρigz), (1.1)

for i ∈ {1, 2} and (x, y, z) ∈ �i(t). The fluids are taken to be incompressible as well, so that

div(vi ) = 0. (1.2)

The constant b is a physical parameter related to the porosity and permeability of the medium, 
and g is the constant acceleration due to gravity. The constants νi and ρi are the viscosity and 
density, respectively, of fluid i. Of course, vi and pi are the velocity and pressure of fluid i. The 
fluids under consideration are driven by gravity and by surface tension; the gravity is clearly 
present in (1.1). The surface tension enters through the Laplace-Young jump condition for the 
pressure across the interface; we will see this below in Section 2.3.

This interfacial problem is well-posed in the case that surface tension is accounted for at the 
interface [15], and also in the case of zero surface tension (this is the Muskat problem) if the 
Saffman-Taylor stability condition is satisfied [23]. In the case in which this stability condition 
is violated, it has been shown in the case of two-dimensional case that analytic solutions exist 
[24], and the zero surface tension limit can then be studied for these solutions. Dai, Tanveer, 
and Siegel, and separately Ceniceros and Hou, have shown that the solutions without surface 
tension are not the limit of solutions with surface tension as surface tension vanishes when the 
Saffman-Taylor condition is violated [25], [26], [12], [13].

The second author previously studied the two-dimensional case in [3]. The lines of the ar-
gument are the same, but many details are more difficult in the three-dimensional case. In the 
two-dimensional case, the interface is one-dimensional, and the interface can be described by 
its tangent angle and arclength element; furthermore, the arclength element was taken to depend 
only on time. In the present setting, we instead study the mean curvature of the interface and 
the first fundamental form of the free surface, and it is not possible to insist that the first funda-
mental form be independent of the spatial variable. As a result, instead of becoming semilinear, 
the problem with surface tension in the present case is only quasilinear. Furthermore, one of the 
primary ideas of the argument is to approximate the Birkhoff-Rott integral with simpler singular 
integrals; the Birkhoff-Rott integral is a singular integral which gives the velocity of the inter-
face. In the case of a one-dimensional interface, the Birkhoff-Rott integral is approximated by 
a Hilbert transform, and the remainder from making this approximation is very smooth. In the 
present case, we approximate the Birkhoff-Rott integral with Riesz transforms, and the remainder 
is smooth, but not nearly as smooth as in the previous case. This does complicate the argument, 
although we are able to deal with the complication. As a result, we will rely on the parabolic 
smoothing that is available in the problem to simplify the energy estimates. In the case of the 
one-dimensional interface in [3], we noted the presence of the parabolic smoothing, but we did 
not make use of it.
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The present work continues the use of a method which has its roots in the numerical works 
of Hou, Lowengrub, and Shelley (HLS) [16], [17]. In these papers, to remove the stiffness from 
numerical computations of interfacial Darcy flow with surface tension and interfacial Euler flow 
with surface tension, HLS used an arclength parameterization and introduced a small-scale de-
composition of the problem, identifying the most singular terms in the evolution equations. These 
ideas were subsequently used analytically, including an extension by the second author and Mas-
moudi for interfacial Euler and Darcy flows in three spatial dimensions [2], [5], [6], and by 
Cordoba, Cordoba, and Gancedo for the three-dimensional interfacial Darcy problem [14]. The 
generalization of the arclength parameterization used by HLS to a two-dimensional free surface 
used in these works is an isothermal parameterization; this is discussed in Section 2.1 below.

Subsequently, the extension of the HLS to analysis for three-dimensional fluids was brought 
back to numerical studies, with Ambrose, Siegel, and Tlupova making an extension of all of these 
works to develop a non-stiff numerical method for 3D interfacial Darcy flow [7], [8]. These ideas 
have also been used in numerical analysis, as Ceniceros and Hou have shown that a version of 
the HLS numerical method is convergent [11], and in [4], Ambrose, Liu, and Siegel have shown 
that a version of the method of [8] is convergent.

The plan of the paper is as follows: in Section 2, we describe the equations of motion for 
the 3D interfacial Darcy flow problem. This includes specifying our isothermal parameterization 
and our small-scale decomposition; the small-scale decomposition requires making decomposi-
tions of singular integral operators. In Section 3, we provide some lemmas giving bounds for 
useful operators, and use these to make some preliminary estimates. In Section 4, we prove 
well-posedness of the problem with surface tension, finding existence on a time interval which 
depends badly on the surface tension parameter. In Section 5, in the case that the Saffman-Taylor 
stability condition is satisfied, we extend the time of existence of solutions for a time interval 
which is independent of surface tension, and pass to the limit as surface tension vanishes.

2. The equations of motion

We study a surface X(�α, t) = (x(�α, t), y(�α, t), z(�α, t)), where �α = (α, β) ∈ R2 is the spatial 
parameter of the surface, and t is time. We use the following frame of unit tangent and normal 
vectors at each point of the surface:

t̂1 = Xα

|Xα| , t̂2 = Xβ

|Xβ | , n̂= t̂1 × t̂2.

We write the velocity of the free surface using its normal and tangential components,

Xt = U n̂+ V1 t̂1 + V2 t̂2. (2.1)

2.1. The tangential velocities and choice of parameterization

While the normal velocity is determined by the fluid dynamics, the tangential velocities are 
not. Instead, the tangential velocities can be chosen arbitrarily, as these only determine the pa-
rameterization of the free surface. That is, the location of the free surface will not be changed, 
no matter our choice of V1 and V2. Our choice of parameterization is to always maintain a global 
isothermal parameterization. To this end, we introduce the first fundamental coefficients of the 
free surface:
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E =Xα ·Xα, F =Xα ·Xβ, G =Xβ ·Xβ. (2.2)

Then, our choice is to have

E = G, F = 0, (2.3)

for all �α and for all t . For any surface, such a parameterization always exists locally, and in some 
cases globally. Fortunately the case we consider has been proved to have a global isothermal 
parameterization. In the sequel, we consider the case in which the interface between the two 
fluids is asymptotic to the flat plane at infinity, and in this case, it is known that the isothermal 
parameterization exists globally [14]. The tangential velocities are then found by using (2.1)
together with the time derivative of (2.3), Et = Gt and Ft = 0. The corresponding calculation is 
given in detail in [5]. As a result, we find that the tangential velocities V1 and V2 should satisfy 
the equations (

V1√
E

)
α

−
(

V2√
E

)
β

= U(L − N)

E
, (2.4)(

V1√
E

)
β

+
(

V2√
E

)
α

= 2UM

E
. (2.5)

Here, L, M , and N are the coefficients of the second fundamental form of the free surface,

L = −Xα · n̂α =Xαα · n̂, N = −Xβ · n̂β =Xββ · n̂, M = −Xα · n̂β = −Xβ · n̂α =Xαβ · n̂.

(2.6)

Then, if V1 and V2 satisfy (2.4) and (2.5), and if the initial surface satisfies (2.3), then the surface 
will satisfy (2.3) at positive times as well.

2.2. Geometric identities

We will differentiate the normal and tangential vectors many times in the sequel, and therefore, 
formulas for these derivatives in the context of the isothermal parameterization will be helpful. 
We have the following:

n̂α = − L

E1/2 t̂
1 − M

E1/2 t̂
2, (2.7)

n̂β = − M

E1/2 t̂
1 − N

E1/2 t̂
2, (2.8)

t̂1α = −Eβ

2E
t̂2 + L

E1/2 n̂, (2.9)

t̂1β = Eα

2E
t̂2 + M

E1/2 n̂, (2.10)

t̂2α = Eβ

2E
t̂1 + M

E1/2 n̂, (2.11)

t̂2β = −Eα

2E
t̂1 + N

E1/2 n̂. (2.12)
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2.3. The normal velocity and the fluid dynamics

We mentioned above that the normal component of the velocity of the free surface, U , is 
determined by the fluid dynamics. There are two equivalent descriptions of the relevant fluid 
dynamics which can lead us to the appropriate formula for U : one directly from potential theory, 
and one which considers the Biot-Savart law for recovering the velocity from the vorticity (and 
thus using potential theory indirectly). We focus on the calculation which uses potential theory 
directly.

From (1.1), we see that the velocity is equal to the gradient of a potential in each phase, with 
the potential, φi , given by

φi = − b2

12νi

(pi + ρigz),

for i ∈ {1, 2}; recall that this means that this equation holds for all (x, y, z) ∈ �i(t). Combining 
equations (1.1) and (1.2) with this definition of φi , we see that �φi = 0, for i ∈ {1, 2}. The 
normal component of the velocity of the free surface must be the same when calculated from 
above and below (this is one of the boundary conditions for the problem); we recall that the 
normal derivative of φi is the normal velocity of the interface. While there is no jump in the 
normal derivative, there is of course a jump between φ1 and φ2 at the free surface, and we give 
the name μ to this jump:

μ = b2

12

(
−p1

ν1
+ p2

ν2

)
− b2

12

(
ρ1gz

ν1
− ρ2gz

ν2

)
. (2.13)

Since there is no jump in the normal derivative across the interface, we may express φi by 
means of a double-layer potential. The source strength for the double-layer potential is μ, the 
jump in potential; we write the double-layer potential suppressing the time dependence:

φi(x, y, z) = ± 1

2π

∫∫
R2

μ(�α)
(x, y, z) − (x(�α), y(�α), z(�α))

|(x, y, z) − (x(�α), y(�α), z(�α))|2 · n̂(�α) d �α; (2.14)

again, this holds for (x, y, z) ∈ �i(t).
If we add the two potentials at the free surface, we get

φ1 + φ2 = b2

12

(
−p1

ν1
− p2

ν2

)
− b2

12

(
ρ1gz

ν1
+ ρ2gz

ν2

)
. (2.15)

The equations (2.13) and (2.15) can be solved for p1 and p2 (we omit the algebra). Then, we can 
subtract p1 and p2, and make use of the Laplace-Young jump condition (the jump in pressure 
across the interface is proportional to the mean curvature of the interface, with the constant of 
proportionality being a material parameter depending on the chemical makeup of the two fluids). 
Then, the resulting equation can be solved for μ:

μ = τκ − Aν(φ1 + φ2) − Rz, (2.16)
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where τ is the non-negative, constant coefficient of surface tension, and Aν and R are given by 
the formulas

Aν = ν1 − ν2

ν1 + ν2
, R = b2g(ρ1 − ρ2)

6(ν1 + ν2)
.

Notice that (2.16) is actually an integral equation for μ, as the expressions for φ1 and φ2 in (2.14)
involve μ under the integral. We could restate this as

μ + AνDμ = τκ − Rz, (2.17)

where D is the resulting integral operator. To be more precise, given the surface X, the operator 
D applied to μ is given by the integral on the right-hand side of (2.14).

We can differentiate (2.16) with respect to each of α and β . When doing so, we must remem-
ber that φ1 and φ2 are functions defined not only on the interface; thus, for instance, we have 
∂αφ1 = ∇φ1 ·Xα . We find the following, upon differentiating (2.16):

μα = τκα − Aν (∇φ1 ·Xα + ∇φ2 ·Xα) − Rzα, (2.18)

μβ = τκβ − Aν

(∇φ1 ·Xβ + ∇φ2 ·Xβ

)− Rzβ. (2.19)

To find the limiting values of ∇φi for i ∈ {1, 2}, the gradient of (2.14) can be taken, and then the 
Plemelj formulas can be used (see [10] or [21] for discussion of the Plemelj formulas). Carrying 
out this calculation, we find the following limiting values for the gradients of the potentials:

∇φ1 =W+ μα

2
√

E
t̂1 + μβ

2
√

E
t̂2, (2.20)

∇φ2 =W− μα

2
√

E
t̂1 − μβ

2
√

E
t̂2. (2.21)

We will give the definition of W, the Birkhoff-Rott integral, shortly. Using (2.20) and (2.21) with 
(2.18) and (2.19), we find the following:

μα = τκα − 2Aν

√
EW · t̂1 − Rzα, (2.22)

μβ = τκβ − 2Aν

√
EW · t̂2 − Rzβ. (2.23)

The Birkhoff-Rott integral is

W(�α) = − 1

4π
PV

∫∫
R2

(μ′
αX

′
β − μ′

βX
′
α) × X−X′

|X−X′|3 d �α′. (2.24)

In the integrand in (2.24), functions followed by a prime are evaluated at �α′, and unprimed 
functions are evaluated at �α. Notice from (2.20) and (2.21) that we can find the normal velocity 
of the free surface by taking the dot product with the normal vector:

U =W · n̂. (2.25)
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The principal value integral in (2.24) makes sense as long as the surface is non-self-
intersecting. As in prior works by the authors and collaborators [1], [5], [6], [18], we follow 
the works of Wu in assuming that a chord-arc condition is satisfied [29], [30]. We assume that 
there exists a constant d̄ > 0 such that the initial surface satisfies

|X(α,β,0) −X(α′, β ′,0)|2
(α − α′)2 + (β − β ′)2 > d̄, ∀(α,β) 	= (α′, β ′). (2.26)

We will then endeavor to solve the initial value problem satisfying the bound

|X(α,β, t) −X(α′, β ′, t)|2
(α − α′)2 + (β − β ′)2 >

d̄

2
, ∀(α,β) 	= (α′, β ′), (2.27)

for t > 0.

Remark 1. While the normal component of the velocity does not jump at the free surface, the 
tangential velocity does have a jump. Since the velocities are given by the gradient of a potential 
in the bulk of the two fluid regions, the fluids are irrotational in the bulk. However, since there 
is a jump in velocity at the free surface, the vorticity is actually measure-valued; that is, the 
vorticity can be expressed by means of a Dirac mass supported on the free surface, and thus 
the free surface is a vortex sheet. The alternative derivation of the Birkhoff-Rott integral and the 
formula (2.25) which we mentioned above makes use of this structure of the vorticity, and uses 
the Biot-Savart law to find the velocity from the vorticity. The interested reader might consult 
[22] or [10] for details of the derivation of the Birkhoff-Rott integral for a vortex sheet in the case 
of three-dimensional fluids.

Remark 2. We have mentioned above that (2.17) is an integral equation for μ, and thus equations 
(2.22), (2.23) are a system of integral equations. All of these integral equations are solvable. For 
existence and regularity of μ, see Lemmas 3.12 and 3.13 below.

2.4. Evolution of E and κ

With the free surface being parameterized by an isothermal parameterization, the formula for 
the mean curvature can be written as

κ = L + N

2E
. (2.28)

Our primary estimates will be energy estimates for κ . The evolution equation for κ can be in-
ferred from (2.1), using (2.28) with (2.2) and (2.6). For the moment, a convenient way to write 
the evolution equation for the curvature is

(
√

Eκ)t = �U

2
√

E
+ V1√

E
(
√

Eκ)α + V2√
E

(
√

Eκ)β + UM2

√
E

+ L

2
√

E

(
V1√
E

)
α

+ N

2
√

E

(
V2√
E

)
β

.

(2.29)

(Detailed calculations leading to (2.29) and related formulas in this section may be found in [5].) 
Of course, to specify κt , we would need to use (2.29) together with an evolution equation for E. 
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We can infer an evolution equation for E from (2.1), using the definition E = Xα ·Xα , or alter-
natively we could use the isothermal parameterization, E = G = Xβ ·Xβ . These considerations 
yield the following:

Et = 2
√

E

(
V1,α − UL√

E
+ V2Eβ

2E

)
= 2

√
E

(
V2,β − UN√

E
+ V1Eα

2E

)
. (2.30)

If X is parameterized according to (2.3), then we have the following two derivatives which will 
be used for iteration in Section 4.2. On one hand, since E =Xα ·Xα =Xβ ·Xβ and Xα ·Xβ = 0, 
we have

�E = 2(Xαβ ·Xαβ) − 2(Xαα ·Xββ). (2.31)

On the other hand,

�X= (
�X · n̂) n̂= (L + N)n̂ = 2Eκn̂.

2.5. The Birkhoff-Rott integral and its consequences

The most singular term on the right-hand side of (2.29) is the term which includes �U . We 
seek a more useful expression for �U , and in light of (2.25), it will be helpful to find more 
useful expressions for W and its derivatives. To this end, we will be rewriting W and its deriva-
tives in terms of well-understood singular integral operators such as Riesz transforms. The Riesz 
transforms H1 and H2 are singular integral operators defined as

(H1f )(α,β) = 1

4π
PV

∫∫
R2

f (α′, β ′)(α − α′)(
(α − α′)2 + (β − β ′)2

)3/2 dα′dβ ′, (2.32)

(H2f )(α,β) = 1

4π
PV

∫∫
R2

f (α′, β ′)(β − β ′)(
(α − α′)2 + (β − β ′)2

)3/2 dα′dβ ′. (2.33)

These have Fourier symbol Ĥi(ξ) = iξi/|ξ |. If the surface X were flat, that is if X(α, β) =
(α, β, 0), then we see from (2.24) that the Birkhoff-Rott integral W could be expressed exactly 
with Riesz transforms. When X is not flat, we will instead see that Riesz transforms give the 
leading-order part of W. More information about Riesz transforms can be found, for instance, 
in [27] or [20]. We also take this opportunity to define some additional integral operators with 
weakly singular kernels,

(G11f )(α,β) = 1

4π
PV

∫∫
R2

f (α′, β ′)(α − α′)2(
(α − α′)2 + (β − β ′)2

)3/2 dα′dβ ′, (2.34)

(G12f )(α,β) = (G21f )(α,β) = 1

4π
PV

∫∫
2

f (α′, β ′)(α − α′)(β − β ′)(
(α − α′)2 + (β − β ′)2

)3/2 dα′dβ ′, (2.35)
R
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(G22f )(α,β) = 1

4π
PV

∫∫
R2

f (α′, β ′)(β − β ′)2(
(α − α′)2 + (β − β ′)2

)3/2 dα′dβ ′. (2.36)

We begin with the following formula, which can be found simply by applying the Laplacian 
to U and using geometric identities as appropriate:

�U = [
(Wα · n̂)α + (Wβ · n̂)β

]+
(

(W · t̂1)
(

− L

E1/2

)
+ (W · t̂2)

(
− M

E1/2

))
α

+
(

(W · t̂1)
(

− M

E1/2

)
+ (W · t̂2)

(
− N

E1/2

))
β

. (2.37)

Our immediate goal is to rewrite the most singular terms here, which are the terms in the square 
brackets on the right-hand side of (2.37), in terms of Riesz transforms.

We follow the development of the Birkhoff-Rott integral as given in Section 2.2 of [2]. Our 
goal in this section is to extract the most singular terms from the Birkhoff-Rott integral, allowing 
us to find a useful expression for the quantity �U in (2.29).

To begin with, we develop an expression for �μ and μαβ . First, we differentiate μα with 
respect to α, finding simply

μαα = τκαα − 2AνE
1/2W · t̂1α − 2AνE

1/2Wα · t̂1 − AνEα

E1/2 W · t̂1 − Rzαα. (2.38)

As part of our effort to rewrite this, we rewrite zαα . We denote n3 = n̂ · (0, 0, 1), and we have

zαα =
(
E1/2 t̂1 · (0,0,1)

)
α
.

Applying the α-derivative, this becomes

zαα = Eαzα

2E
+ E1/2(t̂1α · n̂)n3 + (t̂1α · t̂2)zβ .

Using the identity (2.9), this becomes

zαα = Eαzα

2E
− Eβzβ

2E
+ Ln3. (2.39)

We have the corresponding formula for zββ

zββ = Eβzβ

2E
− Eαzα

2E
+ Nn3.

Continuing, we combine (2.38) with (2.9) and (2.39):

μαα = τκαα + A1 := τκαα − 2AνLU + AνEβ

E1/2 W · t̂2 − AνEα

E1/2 W · t̂1 − 2AνE
1/2Wα · t̂1

− REαzα + REβzβ − RLn3.

2E 2E
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We make the same calculation of μββ , finding the following:

μββ = τκββ + A2 := τκββ − 2AνNU − AνEβ

E1/2 W · t̂2 + AνEα

E1/2 W · t̂1 − 2AνE
1/2Wβ · t̂2

+ REαzα

2E
− REβzβ

2E
− RNn3.

Adding the above two equations, it follows that

μαα + μββ = τκαα + τκββ − 4AνUEκ − 2REκn3 − 2Aν

√
E
(
Wα · t̂1 +Wβ · t̂2

)
. (2.40)

Using the identity (2.10), we have a formula for zαβ :

zαβ = Eβzα

2E
+ Eαzβ

2E
+ Mn3.

Moreover, we have the following expression for μαβ :

μαβ = τκαβ + A3 := τκαβ − 2AνMU − AνEα

E1/2 W · t̂2 − AνEβ

E1/2 W · t̂1 − 2AνE
1/2Wβ · t̂1

− REβzα

2E
− REαzβ

2E
− RMn3.

We now introduce three integral operators. Given some function F , we define K[X]F , 
J [X]F , and J1[X]F :

K[X]F(�α) = 1

4π
PV

∫∫
R2

F( �α′) × K(�α, �α′) d �α′, (2.41)

J [X]F(�α) = 1

4π
PV

∫∫
R2

F(�α′) × J (�α, �α′) d �α′,

Li[X]F(�α) = 1

4π
PV

∫∫
R2

F(�α′) × Li(�α, �α′) d �α′. (2.42)

In (2.42), we take i ∈ {1, 2}. The kernel K is given by

K(�α, �α′) = X(�α) −X(�α′)
|X(�α) −X(�α′)|3 − Xα(�α′)(α − α′) +Xβ(�α′)(β − β ′)

E3/2(�α′)|�α − �α′|3

−
1
2Xαα(�α′)(α − α′)2 + 1

2Xββ(�α′)(β − β ′)2 +Xαβ(�α′)(α − α′)(β − β ′)
E3/2(�α′)|�α − �α′|3

+ 3

4

(
Eα(�α′)(α − α′) + Eβ(�α′)(β − β ′)

) (
Xα(�α′)(α − α′) +Xβ(�α′)(β − β ′)

)
E5/2(�α′)|�α − �α′|3 . (2.43)

The kernels J , L1, and L2 are somewhat simpler:
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J (�α, �α′) = X(�α) −X(�α′)
|X(�α) −X(�α′)|3 − Xα(�α′)(α − α′) +Xβ(�α′)(β − β ′)

E3/2(�α′)|�α − �α′|3 ,

L1(�α, �α′) = (Dα + Dα′)J (�α, �α′), (2.44)

L2(�α, �α′) = (Dβ + Dβ ′)J (�α, �α′). (2.45)

We mention that the operator K[X] is an error from making a second-order Taylor expansion 
of the kernel X−X′

|X−X′|3 which is present in the Birkhoff-Rott integral. The operator J [X] is similar 
but is simpler, because it is the error from making only the first-order Taylor expansion. These 
kernels are similar to kernels of convolution type; for a kernel of convolution type, applying 
Dα +Dα′ or Dβ +Dβ ′ would annihilate the kernel. For all of these we have smoothing properties, 
and these are expressed in the results of Section 3 below.

We have the following formula for W:

W = H1

( μα

2E1/2 n̂
)

+ H2

( μβ

2E1/2 n̂
)

+J [X]g, (2.46)

where we have introduced the notation

g = μβXα − μαXβ. (2.47)

We now differentiate (2.46) to find formulas for Wα and Wβ . To begin with, we write the fol-
lowing, which makes use of (2.7):

Wα = H1

( μαα

2E1/2 n̂
)

+ H2

( μαβ

2E1/2 n̂
)

− H1

(
μαL

2E
t̂1
)

− H1

(
μαM

2E
t̂2
)

− H2

(
μβL

2E
t̂1
)

− H2

(
μβM

2E
t̂2
)

− H1

(
μαEα

4E3/2 n̂
)

− H2

(
μβEα

4E3/2 n̂
)

+ DαJ [X]g.

We continue to rewrite this; for now, we pull the vectors outside of the Riesz transforms, incurring 
commutators:

Wα = H1

( μαα

2E1/2

)
n̂+ H2

( μαβ

2E1/2

)
n̂− H1

(
μαL

2E

)
t̂1 − H1

(
μαM

2E

)
t̂2 − H2

(
μβL

2E

)
t̂1

− H2

(
μβM

2E

)
t̂2 − H1

(
μαEα

4E3/2

)
n̂− H2

(
μβEα

4E3/2

)
n̂+ �1 + DαJ [X]g.

The collection �1 is defined as

�1 = [H1, n̂]
( μαα

2E1/2

)
+ [H2, n̂]

( μαβ

2E1/2

)
− [H1, t̂1]

(
μαL

2E

)
− [H1, t̂2]

(
μαM

2E

)
− [H2, t̂1]

(
μβM

2E

)
− [H2, t̂2]

(
μβN

2E

)
− [H1, n̂]

(
μαEα

4E3/2

)
− [H2, n̂]

(
μβEα

4E3/2

)
. (2.48)

Notice that �1 includes second derivatives of μ; we decompose it further such that the remainder 
only includes at most first order derivatives of μ. That is,



3610 S. Liu, D.M. Ambrose / J. Differential Equations 268 (2020) 3599–3645
�1 = τ [H1, n̂]
( καα

2E1/2

)
+ τ [H2, n̂]

( καβ

2E1/2

)
+ R1, (2.49)

with

R1 = [H1, n̂]A1 + [H2, n̂]A3 − [H1, t̂1]
(

μαL

2E

)
− [H1, t̂2]

(
μαM

2E

)
− [H2, t̂1]

(
μβM

2E

)
− [H2, t̂2]

(
μβN

2E

)
− [H1, n̂]

(
μαEα

4E3/2

)
− [H2, n̂]

(
μβEα

4E3/2

)
.

Furthermore, notice that we can write DαJ [X]g as follows:

DαJ [X]g = J [X]gα +L1[X]g.

Similarly, we differentiate (2.46) with respect to β , making use of (2.8), finding the following 
formula for Wβ :

Wβ = H1

( μαβ

2E1/2 n̂
)

+ H2

( μββ

2E1/2 n̂
)

− H1

(
μαM

2E
t̂1
)

− H1

(
μαN

2E
t̂2
)

− H2

(
μβM

2E
t̂1
)

− H2

(
μβN

2E
t̂2
)

− H1

(
μαEβ

4E3/2 n̂
)

− H2

(
μβEβ

4E3/2 n̂
)

+ DβJ [X]g.

As before, we rewrite this by pulling the vectors through the Riesz transform, yielding the fol-
lowing:

Wβ = H1

( μαβ

2E1/2

)
n̂+ H2

( μββ

2E1/2

)
n̂− H1

(
μαM

2E

)
t̂1 − H1

(
μαN

2E

)
t̂2 − H2

(
μβM

2E

)
t̂1

− H2

(
μβN

2E

)
t̂2 − H1

(
μαEβ

4E3/2

)
n̂− H2

(
μβEβ

4E3/2

)
n̂+ �2 + DβJ [X]g.

Of course, the collection �2 is defined as

�2 = [H1, n̂]
( μαβ

2E1/2

)
+ [H2, n̂]

( μββ

2E1/2

)
− [H1, t̂1]

(
μαM

2E

)
− [H1, t̂2]

(
μαN

2E

)
− [H2, t̂1]

(
μβM

2E

)
− [H2, t̂2]

(
μβN

2E

)
− [H1, n̂]

(
μαEβ

4E3/2

)
− [H2, n̂]

(
μβEβ

4E3/2

)
. (2.50)

We plug in the formulas for μαβ and μββ , and this becomes

�2 = τ [H1, n̂]
( καβ

2E1/2

)
+ τ [H2, n̂]

( κββ

2E1/2

)
+ R2, (2.51)

with
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R2 = [H1, n̂]A3 + [H2, n̂]A2 − [H1, t̂1]
(

μαM

2E

)
− [H1, t̂2]

(
μαN

2E

)
− [H2, t̂1]

(
μβM

2E

)
− [H2, t̂2]

(
μβN

2E

)
− [H1, n̂]

(
μαEβ

4E3/2

)
− [H2, n̂]

(
μβEβ

4E3/2

)
.

Furthermore, as before, we can rewrite DβJ [X]g:

DβJ [X]g = J [X]gβ +L2[X]g. (2.52)

2.6. Our small-scale decomposition

As described in Section 1, we follow the philosophy of the numerical works [16], [17], and 
the extensions of these in analytical works such as [1], [2], [5], [6]. This requires making a 
so-called small-scale decomposition, in which we rewrite the evolution equations to isolate the 
most singular terms. In light of (2.29), in which the evolution of κ is given in terms of �U , we 
will now be making detailed calculations to find the leading-order part of �U . Our goal of this 
section is to arrive at (2.58) below.

First, we take inner product of Wα with t̂1 and Wβ with t̂2, finding

Wα · t̂1 = −H1

(
μαL

2E

)
− H2

(
μβL

2E

)
+ �1 · t̂1 + DαJ [X]g · t̂1,

Wβ · t̂2 = −H1

(
μαN

2E

)
− H2

(
μβN

2E

)
+ �2 · t̂2 + DβJ [X]g · t̂2.

So, it follows that

Wα · t̂1 + Wβ · t̂2 = −H1 (κμα)− H2
(
κμβ

)+ �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2.
(2.53)

We use this expression in (2.40), finding the following:

μαα + μββ = τκαα + τκββ − 4AνUEκ − 2REκn3

− 2Aν

√
E
(
−H1 (κμα) − H2

(
κμβ

)+ �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2
)

.

(2.54)

We also take the inner product with n̂:

Wα · n̂= H1

( μαα

2E1/2

)
+ H2

( μαβ

2E1/2

)
− H1

(
μαEα

4E3/2

)
− H2

(
μβEα

4E3/2

)
+ �1 · n̂+ DαJ [X]g · n̂

= H1

( μαα

2E1/2

)
+ H1

( μββ

2E1/2

)
− H1

(
μαEα

4E3/2

)
− H1

(
μβEβ

4E3/2

)
+ �1 · n̂+DαJ [X]g · n̂,

and
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Wβ · n̂= H1

( μαβ

2E1/2

)
+ H2

( μββ

2E1/2

)
− H1

(
μαEβ

4E3/2

)
− H2

(
μβEβ

4E3/2

)
+ �2 · n̂+ DβJ [X]g · n̂

= H2

( μαα

2E1/2

)
+ H2

( μββ

2E1/2

)
− H2

(
μαEα

4E3/2

)
− H2

(
μβEβ

4E3/2

)
+ �2 · n̂+ DβJ [X]g · n̂.

Using the facts that � = H1∂α + H2∂β and H1∂β = H2∂α , we have

(Wα · n̂)α + (Wβ · n̂)β = �

(
�μ

2E1/2

)
− �

(
μαEα + μβEβ

4E3/2

)
+ (

�1 · n̂)
α

+ (
J [X]gα · n̂)

α
+ (

�2 · n̂)
β

+ (
J [X]gβ · n̂)

β
+ (

L1[X]g · n̂)
α

+ (
L2[X]g · n̂)

β
.

(2.55)

We write the partial derivatives of g as

gα = τκαβXα − τκααXβ + g1, gβ = τκββXα − τκαβXβ + g2,

with

g1 = A3Xα − A1Xβ + μβXαα − μαXαβ, g2 = A2Xα − A3Xβ + μβXαβ − μαXββ.

Using the facts �H1 = −∂α and �H2 = −∂β , the first term on the right-hand side of (2.55) is 
the following:

�

(
�μ

2E1/2

)
= τ�

(
�κ

2E1/2

)
− �

(
2AνU

√
Eκ + R

√
Eκn3

)
− Aνκ�μ − Aν(καμα + κβμβ)

− Aν�
(
�1 · t̂1 +J [X]gα · t̂1 + �2 · t̂2 +J [X]gβ · t̂2 +L1[X]g · t̂1 +L2[X]g · t̂2

)
. (2.56)

We rewrite the second term on the right-hand side of (2.56) as

− �
(

2AνU
√

Eκ + R
√

Eκn3

)
= −

(
2AνU

√
E + R

√
En3

)
�κ − 2Aν

√
Eκ�U

−
(
�
(

2AνU
√

Eκ + R
√

Eκn3

)
−
(

2AνU
√

E + R
√

En3

)
�κ − 2Aν

√
Eκ�U

)
.

Using the fact that (H 2
1 + H 2

2 )f = −f , we have

− 2Aνκ
√

E�U = −2Aνκ
√

E
(
H1

(
Wα · n̂)+ H2

(
Wβ · n̂)+ H1

(
W · n̂α

)+ H2
(
W · n̂β

))
= Aνκ�μ − AνκμαEα

2E
− AνκμβEβ

2E
− 2Aνκ

√
EH1

(
�1 · n̂+ DαJ [X]g · n̂+W · n̂α

)
− 2Aνκ

√
EH2

(
�2 · n̂+ DβJ [X]g · n̂+W · n̂β

)
.

Using this with (2.56) yields the following:
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�

(
�μ

2E1/2

)
= τ�

(
�κ

2E1/2

)
−
(

2AνU
√

E + R
√

En3

)
�κ − Aν(καμα + κβμβ)

− Aν�
(
�1 · t̂1 +J [X]gα · t̂1 + �2 · t̂2 +J [X]gβ · t̂2 +L1[X]g · t̂1 +L2[X]g · t̂2

)
−
(
�
(

2AνU
√

Eκ + R
√

Eκn3

)
−
(

2AνU
√

E + R
√

En3

)
�κ − 2Aν

√
Eκ�U

)
− AνκμαEα

2E
− AνκμβEβ

2E
− 2Aνκ

√
EH1

(
�1 · n̂+ DαJ [X]g · n̂+W · n̂α

)
− 2Aνκ

√
EH2

(
�2 · n̂+ DβJ [X]g · n̂+W · n̂β

)
.

Plugging in (2.49) and (2.51) for the tangential parts of �1 and �2 above yields the following:

�

(
�μ

2E1/2

)
= τ�

(
�κ

2E1/2

)
− τAν�

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν�

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
−
(

2AνU
√

E + R
√

En3

)
�κ

− Aν(καμα + κβμβ) − τAν�
(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

− Aν�
(
R1 · t̂1 +J [X]g1 · t̂1 + R2 · t̂2 +J [X]g2 · t̂2 +L1[X]g · t̂1 +L2[X]g · t̂2

)
−
(
�
(

2AνU
√

Eκ + R
√

Eκn3

)
−
(

2AνU
√

E + R
√

En3

)
�κ − 2Aν

√
Eκ�U

)
− AνκμαEα

2E
− AνκμβEβ

2E
− 2Aνκ

√
EH1

(
�1 · n̂+ DαJ [X]g · n̂+W · n̂α

)
− 2Aνκ

√
EH2

(
�2 · n̂+ DβJ [X]g · n̂+W · n̂β

)
.

Using the fact �∂α = H1� and �∂β = H2�, the second term on the right-hand side of (2.55)
is

−�

(
μαEα + μβEβ

4E3/2

)
= − Eα

4E3/2 H1�μ− Eβ

4E3/2 H2�μ −
[
�,

Eα

4E3/2

]
μα −

[
�,

Eβ

4E3/2

]
μβ.

Using the equation (2.40), we have

− �

(
μαEα + μβEβ

4E3/2

)
= − Eα

4E3/2 τH1�κ − Eβ

4E3/2 τH2�κ −
[
�,

Eα

4E3/2

]
μα −

[
�,

Eβ

4E3/2

]
μβ

−
(

Eα

4E3/2 H1 + Eβ

4E3/2 H2

)(
−4AνUEκ − 2REκn3 − 2Aν

√
E
(
Wα · t̂1 +Wβ · t̂2

))
.

We are ready to conclude that
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(Wα · n̂)α + (Wβ · n̂)β = τ�

(
�κ

2E1/2

)
− τAν�

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν�

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

4E3/2 τH1�κ − Eβ

4E3/2 τH2�κ

−
(

2AνU
√

E + R
√

En3

)
�κ − Aν(καμα + κβμβ)

− τAν�
(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

+ τ
(
J [X] (καβXα − κααXβ

) · t̂1
)

α
+ τ

(
J [X] (κββXα − καβXβ

) · t̂2
)

+ R3,

where R3 is given by

R3 = −Aν�
(
R1 · t̂1 +J [X]g1 · t̂1 + R2 · t̂2 +J [X]g2 · t̂2 +L1[X]g · t̂1 +L2[X]g · t̂2

)
−
(
�
(

2AνU
√

Eκ + R
√

Eκn3

)
−
(

2AνU
√

E + R
√

En3

)
�κ − 2Aν

√
Eκ�U

)
− AνκμαEα

2E
− AνκμβEβ

2E
− 2Aνκ

√
EH1

(
�1 · n̂+ DαJ [X]g · n̂+W · n̂α

)
− 2Aνκ

√
EH2

(
�2 · n̂+ DβJ [X]g · n̂+W · n̂β

)−
[
�,

Eα

4E3/2

]
μα −

[
�,

Eβ

4E3/2

]
μβ

−
(

Eα

4E3/2 H1 + Eβ

4E3/2 H2

)(
−4AνUEκ − 2REκn3 − 2Aν

√
E
(
Wα · t̂1 +Wβ · t̂2

))
+ (

�1 · n̂)
α

+ (
J [X]g1 · n̂)

α
+ (

�2 · n̂)
β

+ (
J [X]g2 · n̂)

β
+ (

L1[X]g · n̂)
α

+ (
L2[X]g · n̂)

β
.

Recalling the expansion of �U in (2.37), we rewrite the final two terms on the right-hand 
side: (

(W · t̂1)
(

− L

E1/2

)
+ (W · t̂2)

(
− M

E1/2

))
α

= −L

(
W · t̂1√

E

)
α

− Lα

(
W · t̂1√

E

)
− M

(
W · t̂2√

E

)
α

− Mα

(
W · t̂2√

E

)
,

(
(W · t̂1)

(
− M

E1/2

)
+ (W · t̂2)

(
− N

E1/2

))
β

= −M

(
W · t̂1√

E

)
β

− Mβ

(
W · t̂1√

E

)
− N

(
W · t̂2√

E

)
β

− Nβ

(
(W · t̂2√

E

)
.

We calculate as follows:(
W · t̂2√

E

)
+
(
W · t̂1√

E

)
= −H1 (κμα)√

E
− H2

(
κμβ

)
√

E
+ 2UM

E

α β
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+ �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2√
E

,

since by the geometric identities (2.10) and (2.11), we have

W ·
(

t̂2√
E

)
α

+W ·
(

t̂1√
E

)
β

= 2UM

E
.

Then using the further identities

Mα = Lβ − Eβκ, Mβ = Nα − Eακ,

Lα + Nα = 2καE + 2Eακ, Lβ + Nβ = 2κβE + 2Eβκ,

we may complete our expansion of �U :

�U = τ�

(
�κ

2E1/2

)
− τAν�

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν�

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

4E3/2 τH1�κ − Eβ

4E3/2 τH2�κ

− τAν�
(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

−
(

2AνU
√

E + R
√

En3

)
�κ − Aν(καμα + κβμβ)

+ τ
(
J [X] (καβXα − κααXβ

) · t̂1
)

α
+ τ

(
J [X] (κββXα − καβXβ

) · t̂2
)

+ R3

−M

(
−H1 (κμα)√

E
− H2

(
κμβ

)
√

E
+ 2UM

E
+ �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2√

E

)

− L

(
W · t̂1√

E

)
α

− N

(
(W · t̂2√

E

)
β

−
(
W · t̂1√

E

)
(2καE + Eακ) −

(
W · t̂2√

E

)(
2κβE + Eβκ

)
.

(2.57)

Recalling that we are working toward an expression for the evolution of the mean curvature, 
κ , we plug all these expressions into (2.29), while also rewriting (

√
Eκ)α = √

Eκα −κEα/2
√

E. 
These considerations yield the following:

(
√

Eκ)t√
E

= τ
�

2E

(
�κ

2E1/2

)
− τAν

�

2E

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν

�

2E

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
τH1�κ − Eβ

8E5/2
τH2�κ

− τAν

� (
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

−
(

2AνU + Rn3√
)

�κ

2E 2 E
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− Aν(καμα + κβμβ)

2E
+ τ

2E

(
J [X] (καβXα − κααXβ

) · t̂1
)

α

+ τ

2E

(
J [X] (κββXα − καβXβ

) · t̂2
)

+ R3

2E
+ V1 −W · t̂1

2E3/2 (κEα) +
(

V1 −W · t̂1√
E

)
κα

+ V2 −W · t̂2
2E3/2 (κEβ) +

(
V2 −W · t̂2√

E

)
κβ + UM2

E
+ MH1 (κμα)

2E
+ MH2

(
κμβ

)
2E

− 2UM2

E2

− �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2
2E3/2 M

+ L

2E

(
V1 −W · t̂1√

E

)
α

+ N

2E

(
V2 −W · t̂2√

E

)
β

.

Since κt = (
√

Eκ)t/
√

E + Etκ/2E, using the evolution equation (2.30), we conclude that the 
evolution of κ is given by the following:

κt = τ
�

2E

(
�κ

2E1/2

)
− τAν

�

2E

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν

�

2E

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
τH1�κ − Eβ

8E5/2
τH2�κ

− τAν

�

2E

(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

+ τ

2E

(
J [X] (καβXα − κααXβ

) · t̂1
)

α
+ τ

2E

(
J [X] (κββXα − καβXβ

) · t̂2
)

+ Q1 + Q2,

(2.58)

where Q1 and Q2 are the following:

Q1 = −
(

2AνU + Rn3

2
√

E

)
�κ +

(
V1 −W · t̂1√

E
− Aνμα

2E

)
κα +

(
V2 −W · t̂2√

E
− Aνμβ

2E

)
κβ,

(2.59)

Q2 = R3

2E
+ V1 −W · t̂1

2E3/2 (κEα) + V2 −W · t̂2
2E3/2 (κEβ) + +UM2

E
+ MH1 (κμα)

2E
+ MH2

(
κμβ

)
2E

− 2UM2

E2 − �1 · t̂1 + DαJ [X]g · t̂1 + �2 · t̂2 + DβJ [X]g · t̂2
2E3/2 M

+ L

2E

(
V1 −W · t̂1√

E

)
α

+ N

2E

(
V2 −W · t̂2√

E

)
β

+ κ

(
V1,α√

E
− UL

E
+ V2Eβ

2E3/2

)
. (2.60)

3. Preliminary estimates and useful formulas

In this section we state a number of useful lemmas. Some of these lemmas are given without 
proof if they have appeared clearly in other works or are standard analysis facts. For others of 
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these lemmas, we do provide a proof. To begin with, Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5 all 
appear in Section 6 of [5], and thus we omit the proofs of these. In this section, we will need 
the definitions of the Riesz transforms Hi and the weakly singular integral operators Gij , which 
are given above in (2.32), (2.33), (2.34), (2.35), and (2.36), many times. Before giving our first 
estimates, we make a remark on regularity.

Remark 3. Throughout the sequel we will be estimating the unknowns and quantities related to 
the unknowns in Sobolev spaces Hs and related spaces (such as Hs−1 and so on). In all instances, 
the index s should be understood to be taken sufficiently large. This means that there exists an 
absolute constant s0 ∈ N such that as long as s is taken to satisfy s ≥ s0, all of our estimates go 
through. We do not count the minimum such value of s0.

Lemma 3.1. Let F be in Hs−3/2, X ∈ Hs+1. Let X satisfy (2.27). Recall the definition of the 
operator K[X] given in (2.41) and (2.43); then K[X]F(α, β) is in Hs with

‖K[X]F‖s ≤ C(1 + ‖X‖s+1)
2‖F‖s−3/2.

Lemma 3.2. If f ∈ Hs+1 and g ∈ Hs−1, then [Gij , f ]g is in Hs+1, with the estimate

‖[Gij , f ]g‖s+1 ≤ ‖f ‖s+1‖g‖s−1.

Lemma 3.3. Let F be in Hs−1/2, X ∈ Hs+1. Let X satisfy (2.27). For i ∈ {1, 2}, recall the defini-
tions of the operators Li[X] given in (2.42) and (2.44), (2.45); then for i ∈ {1, 2}, Li[X]F(α, β)

is in Hs with

‖Li[X]F‖s ≤ C(1 + ‖X‖s+1)
2‖F‖s−1/2, i = 1,2.

Lemma 3.4. If f ∈ Hs+1 and g ∈ Hs , then [f, Hi]g is in Hs+1, with the estimate

‖[f,Hi]g‖s+1 ≤ ‖f ‖s+1‖g‖s .

Lemma 3.5. If n̂ ∈ Hs and g ∈ Hs−2, then [n̂, Hi]g · n̂ is in Hs , with the estimate

‖[n̂,Hi]g · n̂‖s ≤ ‖n̂‖s‖g‖s−2.

We next give a related commutator estimate, but the exact form of this did not appear in [5], 
and thus we include a short proof.

Lemma 3.6. Let s > d/2. If f ∈ Hs+1 and g ∈ Hs , then [�, f ]g is in Hs , with the estimate

‖[�,f ]g‖s ≤ ‖f ‖s+1‖g‖s .

Proof. Notice that

[�,f ]g = �(fg) − f �g = −[f,H1]gα − [f,H2]gβ + H1(gfα) + H2(gfβ). (3.1)
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By Lemma 3.4, we have

‖ − [f,H1]gα − [f,H2]gβ‖s ≤ ‖f ‖s+1‖g‖s .

When s > d/2, we know the Sobolev space Hs is algebraic, that is

‖H1(gfα)‖s ≤ ‖fα‖s‖g‖s ≤ ‖f ‖s+1‖g‖s .

This completes the proof of the lemma. �
Next, Lemmas 3.7, 3.8, 3.9, and 3.10 express standard Sobolev estimates and are noted with-

out further proof.

Lemma 3.7. If f ∈ Hs and g ∈ Hs , then �(fg) − f �g − g�f is in Hs , with the estimate

‖�(fg) − f �g − g�f ‖s ≤ ‖f ‖s‖g‖s .

Lemma 3.8. For s > 0, then

‖[�s,f ]g‖0 ≤ C (‖∇f ‖L∞‖g‖s−1 + ‖f ‖s‖g‖L∞) . (3.2)

Lemma 3.9. For s ≥ 0, f, g ∈ Hs then

‖fg‖s ≤ c(‖f ‖1/2
0 ‖f ‖1/2

d ‖g‖s + ‖f ‖s‖g‖1/2
0 ‖g‖1/2

d )

Lemma 3.10. For 0 < m < s, and f ∈ Hs , then

‖�mf ‖0 ≤ ‖�sf ‖m/s‖f ‖1−m/s (3.3)

Next we have a lemma about the isothermal parameterization, which is related to the Gauss 
equation and Gauss’s Theorema egregium.

Lemma 3.11. If X ∈ Hs+1 then E − 1 is also in Hs+1.

Proof. By the equation (2.31), we have

�E = 2(Xαβ ·Xαβ) − 2(Xαα ·Xββ). (3.4)

The right-hand side of (2.31) is in Hs−1 ⋂L1 when X ∈ Hs+1. This completes the proof. �
Next we have a lemma on the solvability of our integral equations. We do not include the 

proof as the solvability is well-established in the related works [14], [30].

Lemma 3.12. If X ∈ Hs+1, κ ∈ Hs , then μ is well-defined and belongs to H 0.

Then, having shown that μ exists and is in L2, it is possible to establish higher regularity.
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Lemma 3.13. If X ∈ Hs+1, E ∈ Hs+1 and κ ∈ Hs , then μ is well-defined and belongs to Hs . 
Furthermore, we have W · t̂i ∈ Hs .

We also do not prove this lemma here, as it is similar to Lemma 7 of [2]; see also the discussion 
in [14] as to why this invertibility is uniform for surfaces X with bounded Sobolev norm.

Next we give a lemma to establish the regularity of the normal velocity, in terms of the regu-
larity of the surface.

Lemma 3.14. If X ∈ Hs+1, E ∈ Hs+1 and κ ∈ Hs , then U =W · n̂ ∈ Hs−1.

Proof. We sketch the proof. Recall the equation (2.46); then we have

U = W · n̂= H1

(
μα

2
√

E

)
+ H2

(
μβ

2
√

E

)
+J [X]g · n̂+ [

H1, n̂
]( μα

2
√

E

)
· n̂

+ [
H2, n̂

]( μβ

2
√

E

)
· n̂,

where

J [X]g =K[X]g + G11

(
g ×Xαα

2E3/2 − 3(g ×Xα)Eα

4E5/2

)
+

G12

(
g ×Xαβ

2E3/2 − 3(g ×Xα)Eβ + 3(g ×Xβ)Eα

4E5/2

)
+ G22

(
g ×Xββ

2E3/2 − 3(g ×Xβ)Eβ

4E5/2

)
.

By Lemma 3.1, we have

‖K[X]g‖s ≤ C(1 + ‖X‖s+1)
2‖g‖s−3/2 ≤ C(‖κ‖s ,‖X‖s+1).

The operators Gij are of order −1; therefore∥∥∥∥G11

(
g ×Xαα

2E3/2 − 3(g ×Xα)Eα

4E5/2

)∥∥∥∥
s

≤ c

∥∥∥∥g ×Xαα

2E3/2 − 3(g ×Xα)Eα

4E5/2

∥∥∥∥
s−1

≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1).

It is similar to estimate terms involving G12 and G22. We have established

‖J [X]g‖s ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1).

Applying Lemma 3.5 and the estimate on μ completes the proof of the lemma. �
Remark 4. If we substitute g to f and assume that f ∈ Hs , and we calculate that DαJ [X]f =
J [X]Dαf +L1[X]f and apply Lemma 3.3, then we see that J [X]f ∈ Hs+1.

Next we have a lemma on the tangential velocities. Notice that L, M, N ∈ Hs−1 if X ∈ Hs+1.

Lemma 3.15. If X ∈ Hs+1, E ∈ Hs+1 and κ ∈ Hs , then Vi ∈ Hs .
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Proof. We apply ∂α to both sides of equation (2.4) and we apply ∂β to both sides of equation 
(2.5), and then add those equations. It follows that

�

(
V1√
E

)
=
(

U(L − N)

E

)
α

+
(

2UM

E

)
β

. (3.5)

By Lemma 3.14 we know that U ∈ Hs−1, and thus the right-hand side of (3.5) is in Hs−2. We 
therefore have V1 ∈ Hs . Similarly, we have V2 ∈ Hs since

�

(
V2√
E

)
= −

(
U(L − N)

E

)
β

+
(

2UM

E

)
α

.

This completes the proof of the lemma. �
We are now in a position to make estimates for a large number of related quantities.

Lemma 3.16. If X ∈ Hs+1, E ∈ Hs+1 and κ ∈ Hs , then we have the following estimates

‖Q1‖s−1 ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1),

‖Ai‖s−1 ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1), i = 1,2,3,

‖gi‖s−1 ≤ C(‖κ‖s ,‖X‖s+1), i = 1,2,

‖Ri‖s ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1), i = 1,2,

‖�i‖s−1 ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1), i = 1,2, (3.6)

‖�i · n̂‖s ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1), i = 1,2, (3.7)

‖R3‖s−3/2 ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1),

‖Q2‖s−3/2 ≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1).

Proof. The estimate for Q1 is based on the regularity of L, N , U , Vi , W · t̂i and μ. The estimate 
for Ai ∈ Hs−1 directly follows from the regularity of L, N , U , E and W · t̂i . The estimate for 
gi is based on the estimates of Ai and μ. The estimate for Ri ∈ Hs for i = 1, 2 follows from 
Lemma 3.4 with f ∈ Hs and g ∈ Hs−1. It also implies �i ∈ Hs by Lemma 3.4. Based on the 
estimates on R1 and R2, to establish �i · n̂ ∈ Hs , we only need to estimate [Hi, n̂]g · n̂ with 
g ∈ Hs−2, and we are able to do so by Lemma 3.5.

Now we estimate R3. There are several terms which need attention. First, since g ∈ Hs−1, by 
Lemma 3.3, we have Li[X]g ∈ Hs−1/2, moreover (Li[X]g · t̂i )α ∈ Hs−3/2 and 

(
Li[X]g · n̂)

β
∈

Hs−3/2. Second, J [X]gi ∈ Hs is the same as J [X]g ∈ Hs . And by Lemma 3.7, we have the 
following estimate:

∥∥∥(�
(

2AνU
√

Eκ + R
√

Eκn3

)
−
(

2AνU
√

E + R
√

En3

)
�κ − 2Aν

√
Eκ�U

)∥∥∥
s−1

≤ C(‖κ‖s ,‖X‖s+1,‖E‖s+1).
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Finally, for other terms which comprise R3, we omit the details but conclude that they are in 
Hs−1.

We also omit the details of proof of the estimate ‖Q2‖s−3/2 ≤ C(‖κ‖s , ‖X‖s+1, ‖E‖s+1)

since they are similar to the details of the estimate of R3. �
Finally, we have one more lemma on regularity of the surface X; the proof of this may be 

found in [5].

Lemma 3.17. If X ∈ Hs+1 and κ ∈ Hs and X is parameterized according to (2.3), then X ∈
Hs+2.

4. Well-posedness with surface tension

In this section, we provide a complete proof that the three-dimensional interfacial Darcy flow 
problem is well-posed, for any fixed, positive value of the surface tension parameter, τ . In Sec-
tion 4.1, we give an a priori estimate for the linearized system. In Section 4.2, we begin the proof 
of well-posedness, setting up an iterated system of evolution equations. We prove that this sys-
tem has solutions, and we also prove estimates for the growth of the solutions. In Section 4.4, we 
use these estimates to allow us to take the limit of the iterates, finding a solution of the physical 
problem. We also discuss uniqueness and continuous dependence on the initial data.

We first study the well-posedness of the linearized Cauchy problem for κ . More precisely, we 
will consider the linear Cauchy problem for η:

ηt = τ
�

2E

(
�η

2E1/2

)
− τAν

�

2E

(
[H1, n̂]

( ηαα

2E1/2

)
· t̂1 + [H2, n̂]

( ηαβ

2E1/2

)
· t̂1

)
− τAν

�

2E

(
[H1, n̂]

( ηαβ

2E1/2

)
· t̂2 + [H2, n̂]

( ηββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
τH1�η − Eβ

8E5/2
τH2�η

− τAν

�

2E

(
J [X] (ηαβXα − ηααXβ

) · t̂1 +J [X] (ηββXα − ηαβXβ

) · t̂2
)

+ τ

2E

(
J [X] (ηαβXα − ηααXβ

) · t̂1
)

α
+ τ

2E

(
J [X] (ηββXα − ηαβXβ

) · t̂2
)

+ Q1 + Q2,

(4.1)

with initial condition η(t, �x)|t=0 = η0, where τ > 0, Q1 and Q2 are nonhomogenous terms. 
Notice that the relationship between t̂i , n̂ and X is the same as before.

4.1. The a priori estimate

We now prove an estimate for solutions of the linearized system, keeping in mind Remark 3.

Theorem 4.1. Suppose that E ∈ C([0, T ], Hs+1 ⋂C1([0, T ], Hs−1) and E ≥ C0 > 0 for some 
constant C0, X ∈ C([0, T ], Hs+1 ⋂C1([0, T ], Hs−1) and κ ∈ C([0, T ], Hs

⋂
C1([0, T ], Hs−3). 

Assume that X satisfies (2.27). We assume that the initial data η0 ∈ Hs and the nonhomogenous 
terms Q1 ∈ L2([0, T ], Hs−1) and Q2 ∈ L2([0, T ], Hs−3/2). Then there exists a unique solution 
η ∈ C([0, T ′], Hs) of (4.1) with initial data η|t=0 = η0, and there exists a constant m > 0 such 
that the following estimate holds:
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‖η‖s + eCτt

t∫
0

τm‖�s+3/2η‖2
0

5
ds ≤ eCτt

⎛⎝‖η0‖s +
t∫

0

5‖Q1 + Q2‖2
s−3/2

mτ
ds

⎞⎠ . (4.2)

Proof. The well-posedness for the linear Cauchy problem for (4.1) will be achieved by classical 
steps, such as approximation, demonstration of existence of approximate solutions, passing to 
the limit, and demonstrating uniqueness. The main step, which is what we will now demonstrate, 
is to perform energy estimates; restated, other than the energy estimates, the details are routine. 
We define the energy

E = E0 + E1, (4.3)

with E0 = 1
2‖η‖2

0 and E1 = 1
2‖�sη‖2

0. To begin with, we take the time derivative of E0:

dE0

dt
=
∫∫

ηηtdαdβ.

Since s is sufficiently large, using the evolution of η and preliminary estimates in Section 3, we 
immediately find

dE0

dt
≤ C

(
E + ‖Q1 + Q2‖2

s−3/2

)
.

We next take the time derivative of E1.

dE1

dt
= τ

∫∫ (
�sη

)
�s

(
�

2E

(
�η

2E1/2

))
dαdβ + τ

∫∫ (
�s+3/2η

)
�s−3/2Q3dαdβ

+
∫∫ (

�s+3/2η
)

�s−3/2(Q1 + Q2)dαdβ, (4.4)

where Q3 is given by

Q3 = −Aν

�

2E

(
[H1, n̂]

( ηαα

2E1/2

)
· t̂1 + [H2, n̂]

( ηαβ

2E1/2

)
· t̂1

)
− Aν

�

2E

(
[H1, n̂]

( ηαβ

2E1/2

)
· t̂2 + [H2, n̂]

( ηββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
H1�η − Eβ

8E5/2
H2�η

− Aν

�

2E

(
J [X] (ηαβXα − ηααXβ

) · t̂1 +J [X] (ηββXα − ηαβXβ

) · t̂2
)

+ 1

2E

(
J [X] (ηαβXα − ηααXβ

) · t̂1
)

α
+ 1

2E

(
J [X] (ηββXα − ηαβXβ

) · t̂2
)

β
. (4.5)

We first deal with the first term on the right-hand side of (4.4). Noting that � = −�2, we find 
the following:
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∫∫ (
�sη

)
�s

(
�

2E

(
�η

2E1/2

))
dαdβ = −

∫∫ (
�sη

)
�s

(
�

2E

(
�2η

2E1/2

))
dαdβ

= −
∫∫ (

�s+3/2η
)

�s−3/2
(

�3η

4E3/2

)
dαdβ

−
∫∫ (

�s+3/2η
)

�s−3/2
(

1

4E

[
�,

1

E1/2

]
�2η

)
dαdβ

= −
∫∫

1

4E3/2

(
�s+3/2η

)
�s+3/2ηdαdβ −

∫∫ (
�s+3/2η

)[
�s−3/2,

1

4E3/2

]
�3ηdαdβ

−
∫∫ (

�s+3/2η
)

�s−3/2
(

1

4E

[
�,

1

E1/2

]
�2η

)
dαdβ.

By Lemma 3.8, for sufficiently large s, we have

∥∥∥∥[�s−3/2,
1

4E3/2

]
�3η

∥∥∥∥
0
≤ c

(∥∥∥∥∇ (
1

4E3/2

)∥∥∥∥
L∞

‖�3η‖s−5/2 +
∥∥∥∥ 1

4E3/2

∥∥∥∥
s−3/2

‖�3η‖L∞

)
≤ c‖η‖s+1/2 ≤ c(‖η‖0 + ‖�s+1/2η‖0). (4.6)

By Lemma 3.10, ‖�s+1/2η‖0 ≤ c‖�s+3/2η‖
s+1/2
s+3/2
0 ‖η‖

1
s+3/2
0 . Using this bound, Young’s inequality, 

and (4.6), we have

∣∣∣∣−∫∫ (
�s+3/2η

)[
�s−3/2,

1

4E3/2

]
�3ηdαdβ

∣∣∣∣
≤ c‖η‖

1
s+3/2
0 ‖�s+3/2η‖

2s+2
s+3/2
0 + c‖η‖0‖�s+3/2η‖0 ≤ ‖�s+3/2η‖2

0

�
+ CE,

where � is a constant and will be chosen later.
By Lemma 3.6, we have∥∥∥∥�s−3/2

(
1

4E

[
�,

1√
E

]
�2η

)∥∥∥∥
0
≤ c‖�2η‖s−3/2 ≤ c(‖η‖0 + ‖�s+1/2η‖0).

So by Young’s inequality,∣∣∣∣−∫∫ (
�s+3/2η

)
�s−3/2

(
1

4E

[
�,

1√
E

]
�2η

)
dαdβ

∣∣∣∣≤ ‖�s+3/2η‖2
0

�
+ CE . (4.7)

We make our first conclusion that

∫∫ (
�sη

)
�s

(
�

2E

(
�2η

2E1/2

))
dαdβ ≤ −

∫∫
1

4E3/2

(
�s+3/2η

)2
dαdβ+ 2‖�s+3/2η‖2

0

�
+CE .

(4.8)
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Now we consider the second term on the right-hand side of (4.4). That is, we consider 
‖Q3‖s−3/2. First, it is easy to say that ‖ − Eα

8E5/2 H1�η − Eβ

8E5/2 H2�η‖s−3/2 ≤ c(‖η‖0 +
‖�s+1/2η‖0). Otherwise, there are many similar terms comprising Q3, and we only give de-
tails of bounding a couple representative examples of these, in particular ‖[Hi, n̂]f ‖s−1/2 and 
‖J [X]f ‖s−1/2. By Lemma 3.4, ‖[Hi, n̂]f ‖s−1/2 ≤ ‖n̂‖s−1/2‖f ‖s−3/2 and by previous discus-
sion, ‖J [X]f ‖s−1/2 ≤ c(1 + ‖X‖s+1/2)

2‖f ‖s−3/2. Here, f is in terms of second derivatives of 
η in Q3, so ‖f ‖s−3/2 ≤ ‖η‖s+1/2. We conclude that

‖Q3‖s−3/2 ≤ c(‖η‖0 + ‖�s+1/2η‖0). (4.9)

So by Young’s inequality again,

∣∣∣∣∫∫ (
�s+3/2η

)
�s−3/2Q3dαdβ

∣∣∣∣≤ ‖�s+3/2η‖2
0

�
+ CE .

Finally, by the Hölder inequality,

∣∣∣∣∫∫ (
�s+3/2η

)
�s−3/2(Q1 + Q2)dαdβ

∣∣∣∣≤ τ‖�s+3/2η‖2
0

�
+ �‖Q1 + Q2‖2

s−3/2

τ
.

Now we make the conclusion that

dE
dt

≤ −τ

∫∫
1

4E3/2

(
�s+3/2η

)2
dαdβ + 4τ‖�s+3/2η‖2

0

�
+ CτE + �‖Q1 + Q2‖2

s−3/2

τ
.

(4.10)

We know E > 0, and E ∈ L∞ when s > 1. Then there exists m > 0 such that − 1
4E3/2 ≤ −m. 

Now we take � = 5/m. Then

dE
dt

+ τm‖�s+3/2η‖2
0

5
≤ CτE + 5‖Q1 + Q2‖2

s−3/2

mτ
. (4.11)

By Gronwall’s inequality, it follows that

E(t) + eCτt

t∫
0

τm‖�s+3/2η‖2
0

5
ds ≤ eCτt

⎛⎝E(0) +
t∫

0

5‖Q1 + Q2‖2
s−3/2

mτ
ds

⎞⎠ . � (4.12)

Remark 5. This above estimate is not uniform in τ , since 1/τ → ∞ as τ → 0. Thus the time of 
existence is going to 0 as τ goes to 0.
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4.2. The iterated system

Now we devote ourselves to deal with the nonlinear system for X and κ . We take the initial 
data X0 ∈ Hs+2. We may take this surface to have a global isothermal parametrization [14]. 
Assume that there exists c0 > 0 such that E0 > c0.

We will construct (Xl , El, κl) by an iteration method, given an initial X0, E0, and κ0. We take 
these to be given by, and calculated from, the initial data X0. Then E0 = E0 =X0

α ·X0
α =X0

β ·X0
β , 

and X0
α ·X0

β = 0. The second fundamental coefficients L0, N0, and M0 are given by the equation 
(2.6) and κ0 is given by the equation (2.28); then, κ0 ∈ Hs . Solving the equation (2.16), we 
get the solution μ0, and W0 is then defined by the Birkhoff-Rott Integral (2.24). Moreover, 
U0 =W0 · n̂0. Then (V 0

1 , V 0
2 ) is determined by solving the following system:(

V 0
1√
E0

)
α

−
(

V 0
2√
E0

)
β

= U0(L0 − N0)

E0 ,

(
V 0

1√
E0

)
β

+
(

V 0
2√
E0

)
α

= 2U0M0

E0 .

Assume that we have already constructed (Xl, κl, El). We next determine μl by solving 
(2.16). Then we use the Birkhoff-Rott integral (2.24) to get Wl . We denote the iterated quan-
tities related to Xl as follows:

t̂1,l = Xl
α

|Xl
α| , t̂2,l = Xl

β

|Xl
β | , n̂l = Xl

α ×Xl
β

|Xl
α ×Xl

β |
Ll =Xl

αα · n̂l , Nl =Xl
ββ · n̂l , Ml =Xl

αβ · n̂l .

We also let Ul =Wl · n̂l .
Now we describe how we find the next iterates. To begin with, we construct κl+1 to solve the 

linear Cauchy problem:

κl+1
t = τ

�

2El

(
�κl+1

2
√

El

)
− τAν

�

2El

(
[H1, n̂l]

(
κl+1
αα

2
√

El

)
· t̂1,l + [H2, n̂l]

(
κl+1
αβ

2
√

El

)
· t̂1,l

)

− τAν

�

2El

(
[H1, n̂l]

(
κl+1
αβ

2
√

El

)
· t̂2,l + [H2, n̂l]

(
κl+1
ββ

2
√

El

)
· t̂2,l

)

− Eα

8(El)5/2
τH1�κl+1 − El

β

8(El)5/2
τH2�κl+1

− τAν

�

2El

(
J [Xl]

(
κl+1
αβ Xl

α − κl+1
αα Xl

β

)
· t̂1,l +J [Xl]

(
κl+1
ββ Xl

α − κl+1
αβ Xl

β

)
· t̂2,l

)
+ τ

2El

(
J [Xl]

(
κl+1
αβ Xl

α − κl+1
αα Xl

β

)
· t̂1,l

)
α

+ τ

2El

(
J [Xl]

(
κl+1
ββ Xl

α − κl+1
αβ Xl

β

)
· t̂2,l

)
+ Ql

1 + Ql
2 (4.13)
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with initial condition κl+1(t, �x)|t=0 = κ0, with τ > 0, and where Ql
1 and Ql

2 are functions of 
Xl , κl, El, μl, V l

1 , V l
2, Ul , Ll, Nl, Ml , t̂1,l , ̂t2,l , and n̂l , given by (2.59) and (2.60) respectively.

Secondly, we determine (V l+1
1 , V l+1

2 ) by solving the elliptic system(
V l+1

1√
El

)
α

−
(

V l+1
2√
El

)
β

= Ul(Ll − Nl)

El
, (4.14)

(
V l+1

1√
El

)
β

+
(

V l+1
2√
El

)
α

= 2UlMl

El
, (4.15)

which enforces the isothermal parameterization.
Let X̃l+1 be given by the solution of the initial value problem

X̃l+1
t = Ul n̂l + V l+1

1 t̂1,l + V l+1
2 t̂2,l , X̃l+1|t=0 =X0. (4.16)

We have one more intermediate variable X̂l+1, which is given by solving the elliptic equation

�X̂l+1 − X̂l+1 = 2κlX̃l+1
α × X̃l+1

β − X̃l+1. (4.17)

Now we are ready to construct Xl+1 by solving the following elliptic equation

�Xl+1 −Xl+1 = 2κlX̂l+1
α × X̂l+1

β − X̃l+1. (4.18)

Finally, we define El+1 also by solving the following elliptic equation:

�El+1 − El+1 = 2(Xl+1
αβ ·Xl+1

αβ −Xl+1
αα ·Xl+1

ββ ) − 1

2
(Xl+1

α ·Xl+1
α +Xl+1

β ·Xl+1
β ). (4.19)

4.3. Estimates for the iteration

As we now know that the iterated solutions exist, we provide estimates for the solutions and 
related quantities at each step, keeping in mind Remark 3 on regularity.

Lemma 4.2. The iterates (Xl , El, κl) are defined for all l and there exists T > 0 and positive 
constants C0, C1, C2, C3 and C4, such that for all l, for all t ∈ [0, T ], (2.27) is satisfied and we 
have the following bounds:

El ≥ C0 > 0, |Xl
α ×Xl

β | ≥ C0 > 0, (4.20)

‖κl‖C0([0,T ];Hs) ≤ C1, (4.21)

‖Xl‖C0([0,T ];Hs+1) + ‖El‖C0([0,T ];Hs+1) ≤ C2, (4.22)

‖∂tκ
l‖C0([0,T ];Hs−3) ≤ C3, (4.23)

‖∂tXl‖C0([0,T ];Hs−1) + ‖∂tE
l‖C0([0,T ];Hs−1) ≤ C4. (4.24)
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Proof. We proceed by induction. We will determine C0, C1, C2, C3, and C4 as we go. Given 
the above initial data, the conclusions are immediately true for l = 0 for any C0 ≤ c0. As-
sume that (Xl , El, κl) exists, satisfying (4.20), (4.21) (4.22), (4.23) and (4.24). By Lemma 3.16, 
we have ‖Ql

1‖L2([0,T ],H s−1) ≤ C(C1, C2) and ‖Ql
2‖L2([0,T ],H s−3/2) ≤ C(C1, C2). Furthermore 

Theorem 4.1 shows that the solution of (4.13), κl+1, is in C0([0, T ]; Hs) and then ∂tκ
l+1 in 

C0([0, T ]; Hs−3) for some T > 0. Moreover, by the energy estimate (4.2), the estimate of κl+1

satisfies

‖κl+1(t)‖s ≤ eC(C1,C2)τ t‖κ0‖s + 5teC(C1,C2)τ tC(C1,C2)/mτ.

Hence taking C1 = 2‖κ0‖s , we may take T small enough (independent of l) such that

‖κl+1(t)‖L∞([0,T ];Hs) ≤ C1.

Using Lemma 3.15, we have

‖V1‖L∞([0,T ];Hs) + ‖V2‖L∞([0,T ];Hs) ≤ C(C1,C2).

By the evolution equation (4.16), X̃l+1 ∈ C0([0, T ]; Hs−1) and

‖X̃l+1‖L∞([0,T ];Hs−1) ≤ ‖X0‖s−1 + C(C1,C2)T . (4.25)

Hence we may take T small enough such that ‖X̃l+1‖L∞([0,T ];Hs−1) ≤ 2‖X0‖s−1. By elliptic 
equations (4.17) and (4.18), we then have Xl+1 ∈ C0([0, T ]; Hs+1) and

‖X̂l+1‖L∞([0,T ];Hs) ≤ C(‖X0‖s−1,‖κ0‖s), (4.26)

‖Xl+1‖L∞([0,T ];Hs+1) ≤ C(‖X0‖s−1,‖κ0‖s). (4.27)

Moreover by elliptic equation (4.19), we have El+1 ∈ C0([0, T ]; Hs+1) and the estimate

‖El+1‖L∞([0,T ];Hs+1) ≤ C(‖X0‖s−1,‖κ0‖s).

So we now take C2 = max{2C(‖X0‖s−1, ‖κ0‖s), ‖X0‖s+1}, the estimate (4.22) holds. This 
choice of C2 implies that T can be chosen in (4.25) to be independent of l.

We know that by the evolution equations (4.16) and (4.13),

‖∂t X̃l+1‖L∞([0,T ];Hs−3) ≤ C(C1,C2)

and

‖∂tκ
l+1(t)‖s−3 ≤ C(C1,C2)(1 + ‖κl+1(t)‖s) ≤ C(C1,C2)(1 + C1).

Taking C3, such that C3 ≥ C(C1, C2)(1 + C1), we hold the estimate (4.23). Taking the time 
derivative of (4.17) and (4.18), it follows that

‖∂tXl+1‖L∞([0,T ];Hs−1) ≤ C(C1,C2,C3). (4.28)
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And, taking the time derivative of (4.19), it follows that

‖∂tE
l+1‖L∞([0,T ];Hs−1) ≤ C(C1,C2,C3).

So we take C4, such that C4 ≥ C(C1, C2, C3), then getting the estimate (4.24).
Notice that if s is sufficiently large enough such that Hs−1 ⊂ L∞, then

|El+1(t)| ≥ E0 −
t∫

0

∂sE
l+1ds ≥ c0 − tC4,

and

|Xl+1
α (t) ×Xl+1

β (t)| ≥ |Xl+1
α (0) ×Xl+1

β (0)| −
t∫

0

∂sXl+1
α (s) ×Xl+1

β (s)ds ≥ c0 − tC4C2.

So we can take T small enough such that c0 −T C4 ≥ C0 and c0 −T C4C2 ≥ C0. Similarly, since 
s is sufficiently large and since we may take T sufficiently small, the estimate (4.28) and the 
initial condition (2.26) combine to imply (2.27). This completes the lemma. �
4.4. The limit of the iterated system

In this section, we prove that we have a Cauchy sequence, which implies the convergence of 
the iterative procedure. We will prove existence of a limit in a low norm; regularity of the limit 
follows primarily using the uniform bound in the high norm. The main result of this section is 
the following lemma.

Lemma 4.3. The sequence (Xl , κl, El) is Cauchy sequence in the space

C0([0, T ];H 3), C0([0, T ];H 2) and C0([0, T ];H 3). (4.29)

Proof. In the proof, we use some of the same variable names over again but with different 
meaning. We denote (δX, δκ, δE) = (Xl+1 −Xl , κl+1 − κl, El+1 − El), δμ = μl+1 − μl , δU =
Ul+1 − Ul , and so on. We define an energy functional

Dl = 1

2
‖δX‖2

3 + 1

2
‖δκ‖2

0 + 1

2
‖�2δκ‖2

0 + 1

2
‖δE‖2

3. (4.30)

As in Lemma 3.14, we have

‖δU‖2
1 ≤ CDl. (4.31)

Furthermore, by the definition of (4.14) and (4.15), we have

‖δVi‖2
2 ≤ CDl−1. (4.32)
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We now get the equations for the difference of the l-th and (l + 1)-st iterates:

δκt = τ
�

2El

(
�δκ

2
√

El

)
− τAν

�

2El

(
[H1, n̂l]

(
δκαα

2
√

El

)
· t̂1,l + [H2, n̂l]

(
δκαβ

2
√

El

)
· t̂1,l

)
− τAν

�

2El

(
[H1, n̂l]

(
δκαβ

2
√

El

)
· t̂2,l + [H2, n̂l]

(
δκββ

2
√

El

)
· t̂2,l

)

− El
α

8(El)5/2
τH1�δκ − El

β

8(El)5/2
τH2�δκ

− τAν

�

2El

(
J [Xl]

(
δκαβXl

α − δκααXl
β

)
· t̂1,l +J [Xl]

(
δκββXl

α − δκαβXl
β

)
· t̂2,l

)
+ τ

2El

(
J [Xl]

(
δκαβXl

α − δκααXl
β

)
· t̂1,l

)
α

+ τ

2El

(
J [Xl]

(
δκββXl

α − δκαβXl
β

)
· t̂2,l

)
+ F l(κl,Xl ,El) − F l−1(κl,Xl−1,El−1) + Ql

1 − Ql−1
1 + Ql

2 − Ql−1
2 .

Notice that we are using both F l(κl, Xl , El) and F l−1(κl, Xl−1, El−1) above; we only write out 
the formula for F l(κl, Xl , El), as the other formula is the same except that all quantities except 
the curvature term just make use of the (l − 1)-st iterates. The formula for F l is

F l(κl,Xl ,El) = τ
�

2El

(
�κl

2
√

El

)
−τAν

�

2El

(
[H1, n̂l]

(
κl
αα

2
√

El

)
· t̂1,l+[H2, n̂l]

(
κl
αβ

2
√

El

)
· t̂1,l

)

− τAν

�

2El

(
[H1, n̂l]

(
κl
αβ

2
√

El

)
· t̂2,l + [H2, n̂l]

(
κl
ββ

2
√

El

)
· t̂2,l

)

− Eα

8(El)5/2
τH1�κl − El

β

8(El)5/2
τH2�κl

− τAν

�

2El

(
J [Xl]

(
κl
αβX

l
α − κl

ααX
l
β

)
· t̂1,l +J [Xl]

(
κl
ββX

l
α − κl

αβX
l
β

)
· t̂2,l

)
+ τ

2El

(
J [Xl]

(
κl
αβX

l
α − κl

ααX
l
β

)
· t̂1,l

)
α

+ τ

2El

(
J [Xl]

(
κl
ββX

l
α − κl

αβX
l
β

)
· t̂2,l

)
. (4.33)

First, similarly to (4.11), we have

d

dt

1

2

∫
δκ2 + (�2δκ)2dαdβ + τm‖�7/2δκ‖2

0

5
≤ Cτ

∫
δκ2 + (�2δκ)2dαdβ

+ 5(‖F l(κl,Xl ,El) − F l−1(κl,Xl−1,El−1)‖2
1/2 + ‖Ql

1 + Ql
2 − Ql−1

1 − Ql−1
2 ‖2

1/2)

mτ
. (4.34)

With s large enough, as in prior estimates of Q1, Q2, we can conclude that

‖F l(κl,Xl ,El) − F l−1(κl,Xl−1,El−1)‖2
1/2 + ‖Ql

1 + Ql
2 − Ql−1

1 − Ql−1
2 ‖2

1/2 ≤ CDl−1.

(4.35)
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By Gronwall’s inequality, it follows that

1

2
‖δκ(t)‖2 + 1

2
‖�2δκ(t)‖2 ≤ 5CeCτt

mτ

t∫
0

Dl−1(s)ds. (4.36)

Now we discuss Xl+1 −Xl and El+1 − El . First, by the equation (4.19), we have

‖δE‖2
3 ≤ C‖δX‖2

3. (4.37)

Then by equation (4.17) and (4.18), we have

‖δX‖3 ≤ ‖2κlX̂l+1
α × X̂l+1

β − 2κl−1X̂l
α × X̂l

β‖2
1 + ‖X̃l+1 − X̃l‖2

1

≤ C‖κl − κl−1‖2
1 + C‖X̂l+1 − X̂l‖2

2 + C‖X̃l+1 − X̃l‖2
1

≤ C‖κl − κl−1‖2
1 + C‖X̃l+1 − X̃l‖2

1,

and by equation (4.16), have

‖X̃l+1 − X̃l‖2
1 ≤ CeCt

t∫
0

Dl−1(s)ds. (4.38)

Thus, we conclude that

Dl ≤ CeCt

t∫
0

Dl−1(s)ds. (4.39)

Moreover Dl(0) = 0. Hence, we deduce for l ≥ 2 that Dl ≤ eCt (Ct)l−1

(n − 1)! . This implies that 

(Xl , κl, El) is a Cauchy sequence. �
4.5. Well-posedness with surface tension

In this subsection we state and prove the main theorem of Section 4. We take s large enough. 
Let c0, c1, d be positive constants. We define an open subset O ⊂ Hs+2, such that for every 
X ∈ O, the following conditions hold:

‖X‖s+2 < d, (4.40)

E(α,β) > c0, (4.41)∣∣X(α,β) −X(α′, β ′)
∣∣2

(α − α′)2 + (β − β ′)2 > c1, for all α 	= β. (4.42)
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Theorem 4.4. Let the surface X0 ∈ O be globally parameterized by harmonic coordinates 
(namely (2.3) holds). Then, there exists a time T > 0 (T may depend on τ ) and a unique so-
lution X ∈ C0([0, T ), O) for the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

Xt = U n̂+ V1 t̂1 + V2 t̂2,
μα = τκα − 2Aν

√
EW · t̂1 − Rzα,

μβ = τκβ − 2Aν

√
EW · t̂2 − Rzβ,

X(t = 0) =X0.

(4.43)

Remark 6. When we say X ∈ Hs , this means that X(α, β) − (α, β, 0) is actually in Hs , since 
the surface X is asymptotic to the plane at infinity.

Proof. First, it remains to show that the limit of the iterates is a solution of the original system. 
We have proved that (Xl , κl, El) is a Cauchy sequence. Moreover X̃l and X̂l are also Cauchy 
sequences. We denote the limit of (Xl, κl, El, ̃Xl , ̂Xl ) as (X, κ, E, ̃X, ̂X). Then the limit satisfies 
the system (4.14)-(4.19) without index l and l + 1. In particular, we need to verify the system

X̃t = U n̂+ V1 t̂1 + V2 t̂2,

�X̂− X̂= 2κX̃α × X̃β − X̃, (4.44)

�X−X= 2κX̂α × X̂β − X̃, (4.45)

�E − E = 2(Xαβ ·Xαβ −Xαα ·Xββ) − 1

2
(Xα ·Xα +Xβ ·Xβ). (4.46)

For the existence of a solution it is essential to prove the following relations:

X̃= X̂=X, E =Xα ·Xα = Xβ ·Xβ, Xα ·Xβ = 0, κ = L + N

2E
. (4.47)

These relations imply then that �X = 2Eκn̂. The above relations all hold but we omit proof here 
and refer to [28] which gives all the details.

Now we demonstrate the highest regularity of X. The solutions (Xl, El) of the iterated equa-
tions are in Hs+1 × Hs , uniformly bounded with respect to l, and thus the limit (X, E) is in this 
space with such a bound. Then X can be bounded in Hs+2 since X satisfies (2.3). Considering 
(Xl , κl), at each time there is a subsequence which converges weakly in Hs+2 ×Hs and the limit 
must be (X, κ). Therefore at each time t , (X(·, t), κ(·, t)) ∈ Hs+2 × Hs . It remains to show that 
X ∈ C0([0, T ]; Hs+2). We do not include all the details, but this can be done by adapting the 
corresponding argument for regularity of solutions for the Navier-Stokes equations in Chapter 3 
of [19]. We sketch this argument now.

First, we prove that the solution is strongly right-continuous in time at t = 0. We will need 
to prove that (X, κ) ∈ Hs+1 × Hs is strongly right-continuous in time at t = 0. The steps are 
to first show that (X, κ) is weakly continuous in time with values in (H s+1 × Hs); this follows 
easily from the uniform bound and the strong continuity in (Hs′+1 × Hs′

), for 0 < s′ < s. (This 
continuity follows from the continuity in a low norm established when we proved the iterates 
form a Cauchy sequence, the uniform bound in the high norm, and interpolation.) Then, it is 
shown that the solution is strongly right-continuous in time at t = 0 in the highest norm; this 
follows from the energy estimate and Fatou’s Lemma.



3632 S. Liu, D.M. Ambrose / J. Differential Equations 268 (2020) 3599–3645
The next step is to use parabolic smoothing; From the estimate (4.11), we see that κl is uni-
formly bounded in the space L2([0, T ]; Hs+3/2). Since this is a Hilbert space, we see that our 
sequence κl has a subsequence with a weak limit in this space, and this weak limit must be κ . 
The existence theory can then be repeated in higher regularity spaces starting from almost any 
positive time, t , with initial data X(·, t). Using the uniqueness of solutions, the solution starting 
from time t and the solution starting from time zero must be the same. It can then be concluded 
that the solution starting from time t is continuous in Hs+2 (since Hs+2 would no longer be the 
highest regularity), and we are able to do this for any arbitrarily small value of t . Together with 
the right-continuity at time zero, this argument implies X ∈ C0([0, T ]; Hs+2).

Finally, to obtain uniqueness of solutions, we argue as in the proof that (Xl, κl, El) is a Cauchy 
sequence, making an estimate for the difference of two solutions. �
5. The zero surface tension limit

We now consider the behavior of solutions of the system (4.43) as τ → 0. We will demon-
strate that as τ vanishes, the sequence of solutions forms a Cauchy sequence. First, we will find 
solutions exist on a uniform time interval, and then we are able to take the limit as τ → 0. To 
get the uniform time of existence, we will revisit the energy estimate in the case that a stability 
condition is satisfied. For the new energy estimate, our first step is to make some decompositions, 
in order to make clear the effect of surface tension.

5.1. Decompositions

As we continue to rewrite the equations of motion, we will begin to isolate the contribution 
from surface tension. That is, for quantities which are related to the velocity, such as μ and W, 
we want to decompose them into two parts, one of which is proportional to τ , and one of which 
is not. We decompose the equation (2.16) as

μ̃ + AνDμ̃ = Rz, (5.1)

μs.t. + AνDμs.t. = κ. (5.2)

(Recall that the operator D was introduced in (2.17).) Equation (5.1) and (5.2) can be solved for 
μ̃ and μs.t. respectively since I +AνD is an invertible operator for all |Aν| ≤ 1 [14]. Continuing, 
we write μα = τμs.t.

α + μ̃α and μβ = τμs.t.
β + μ̃β , where

μs.t.
α = κα − 2Aν

√
EWs.t. · t̂1, μs.t.

β = κβ − 2Aν

√
EWs.t. · t̂2, (5.3)

μ̃α = −2Aν

√
EW̃ · t̂1 − Rzα, μ̃β = −2Aν

√
EW̃ · t̂2 − Rzβ. (5.4)

Similarly, we define Ws.t. and W̃, so that W = τWs.t. + W̃:

Ws.t.(�α) = − 1

4π
PV

∫∫
R2

(μs.t.
α

′X′
β − μs.t.

β
′X′

α) × X−X′

|X−X′|3 d �α′, (5.5)

W̃(�α) = − 1

4π
PV

∫∫
2

(μ̃′
αX

′
β − μ̃′

βX
′
α) × X−X′

|X−X′|3 d �α′. (5.6)
R
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As before, in (5.5) and (5.6), quantities followed by a prime are evaluated at �α′, while quantities 
without a prime are evaluated at �α.

Given these decompositions, we then decompose the normal velocity as U = τU s.t. + Ũ :

U s.t. =Ws.t. · n̂, Ũ = W̃ · n̂.

We can also decompose Vi as Vi = τV s.t.
i + Ṽi , for i ∈ {1, 2}, where the pieces should satisfy the 

following equations: (
V s.t.

1√
E

)
α

−
(

V s.t.
2√
E

)
β

= U s.t.(L − N)

E
, (5.7)

(
V s.t.

1√
E

)
β

+
(

V s.t.
2√
E

)
α

= 2U s.t.M

E
, (5.8)

(
Ṽ1√
E

)
α

−
(

Ṽ2√
E

)
β

= Ũ (L − N)

E
, (5.9)

(
Ṽ1√
E

)
β

+
(

Ṽ2√
E

)
α

= 2ŨM

E
. (5.10)

We also make the decompositions g = τgs.t. + g̃, �1 = τ�s.t.
1 + �̃1 and �2 = τ�s.t.

2 + �̃2. 
We only give the definition of �s.t.

1 , but omit the details of �̃1, �s.t.
2 and �̃2 since they are almost 

the same:

gs.t. = μs.t.
β Xα − μs.t.

α Xβ, g̃ = μ̃βXα − μ̃αXβ. (5.11)

�s.t.
1 = [H1, n̂]

(
μs.t.

αα

2E1/2

)
+ [H2, n̂]

(
μs.t.

αβ

2E1/2

)
− [H1, t̂1]

(
μs.t.

α L

2E

)
− [H1, t̂2]

(
μs.t.

α M

2E

)

− [H2, t̂1]
(

μs.t.
β M

2E

)
− [H2, t̂2]

(
μs.t.

β N

2E

)
− [H1, n̂]

(
μs.t.

α Eα

4E3/2

)
− [H2, n̂]

(
μs.t.

β Eα

4E3/2

)
.

Now, we are ready to give the decomposition of Xt :

Xt = τU s.tn̂+ τV s.t
1 t̂1 + τV s.t

2 t̂2 + Ũ n̂+ Ṽ1 t̂1 + Ṽ2 t̂2. (5.12)

We need to decompose the evolution equation for κ , (2.58), more carefully. Firstly, we de-
compose Qi as Qi = τQs.t.

i + Q̃i . We give some of the formulas but omit others as they are 
similar:

Qs.t.
1 = −

(
2AνU

s.t.

2
√

E

)
�κ+

(
V s.t.

1 −Ws.t. · t̂1√
E

− Aνμ
s.t.
α

2E

)
κα+

(
V s.t.

2 −Ws.t. · t̂2√
E

− Aνμ
s.t.
β

2E

)
κβ,

Q̃1 = −
(

2AνŨ + Rn3

2
√

E

)
�κ +

(
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
κα +

(
Ṽ2 − W̃ · t̂2√

E
− Aνμ̃β

2E

)
κβ,
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Qs.t.
2 = Rs.t.

3

2E
+ V s.t.

1 −Ws.t. · t̂1
2E3/2 (κEα) + V s.t.

2 −Ws.t. · t̂2
2E3/2 (κEβ) + +U s.t.M2

E
+ MH1

(
κμs.t.

α

)
2E

+
MH2

(
κμs.t.

β

)
2E

− 2U s.t.M2

E2 − �s.t.
1 · t̂1 + DαJ [X]gs.t. · t̂1 + �s.t.

2 · t̂2 + DβJ [X]gs.t. · t̂2
2E3/2 M

+ L

2E

(
V s.t.

1 −Ws.t. · t̂1√
E

)
α

+ N

2E

(
V s.t.

2 −Ws.t. · t̂2√
E

)
β

+ κ

(
V s.t.

1,α√
E

− U s.t.L

E
+ V s.t.

2 Eβ

2E3/2

)
.

We now conclude that the evolution of κ satisfies

κt = τ
�

2E

(
�κ

2E1/2

)
− τAν

�

2E

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− τAν

�

2E

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
τH1�κ − Eβ

8E5/2
τH2�κ

− τAν

�

2E

(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

+ τ

2E

(
J [X] (καβXα − κααXβ

) · t̂1
)

α
+ τ

2E

(
J [X] (κββXα − καβXβ

) · t̂2
)

+ τQs.t.
1 + τQs.t.

2 + Q̃1 + Q̃2. (5.13)

We note that the evolution equation without surface tension, i.e. in the case τ = 0, is the follow-
ing:

κt = Q̃1 + Q̃2 = −2AνŨ + Rn3

2
√

E
�κ +

(
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
κα

+
(

Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E

)
κβ + Q̃2. (5.14)

As shown in [2], the Cauchy problem for (5.14) is well-posed under the assumption

2AνŨ + Rn3

2
√

E
(�α,0) > k̄ > 0, (5.15)

for some constant k̄. In this section, we also make the above assumption. Note that this is an 
assumption only on the data.

5.2. Estimates for the decomposed quantities

First, we establish the higher regularity of μ̃ and μs.t..

Lemma 5.1. If X ∈ Hs+2 and κ ∈ Hs , then there exists a nondecreasing function C(·) such that

‖μ̃‖s+j ≤ C(‖X‖s+j ), for j = 1,2, (5.16)

‖μs.t.‖s ≤ C(‖κ‖s ,‖X‖s+1). (5.17)
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Remark 7. We do not prove this lemma here. It is similar to the proof of Lemma 7 of [2].

We immediately conclude the estimates for gs.t and ̃g from (5.11):

‖gs.t.‖s−1 ≤ C(‖κ‖s ,‖X‖s+1), ‖g̃‖s+1 ≤ C(‖X‖s+2). (5.18)

Now we consider W̃, Ws.t.. In this subsection, we assume that X ∈ Hs+2 and κ ∈ Hs .

Lemma 5.2. We have the following estimates for the velocities:

‖Ũ‖s ≤ C(‖X‖s+1), (5.19)

‖Ũ‖s+1 ≤ C(‖X‖s+2), (5.20)

‖U s.t.‖s−1 ≤ C(‖κ‖s ,‖X‖s+1), (5.21)

‖Ws.t. · t̂i‖s ≤ C(‖κ‖s ,‖X‖s+1), i = 1,2, (5.22)

‖W̃ · t̂i‖s ≤ C(‖κ‖s ,‖X‖s+1), i = 1,2. (5.23)

Proof. We will give the proof of the estimate of U s.t and Ws.t · t̂1 and omit the remaining details.
First recall the equation (5.5),

Ws.t. = H1

(
μs.t.

α

2E1/2 n̂
)

+ H2

(
μs.t.

β

2E1/2 n̂

)
+J [X]gs.t, (5.24)

where

J [X]gs.t =K[X]gs.t. + G11

(
gs.t ×Xαα

2E3/2 − 3(gs.t. ×Xα)Eα

4E5/2

)
+ G12

(
gs.t. ×Xαβ

2E3/2 − 3(gs.t. ×Xα)Eβ + 3(gs.t. ×Xβ)Eα

4E5/2

)
+ G22

(
gs.t. ×Xββ

2E3/2 − 3(gs.t. ×Xβ)Eβ

4E5/2

)
.

By Lemma 3.1 and the estimate (5.18) we have

‖K[X]gs.t.‖s ≤ C(1 + ‖X‖s+1)
2‖gs.t.‖s−1 ≤ C(‖κ‖s ,‖X‖s+1).

Using the fact that the operator Gij is of order −1, we estimate the last three terms on the 
right-hand side of J [X]gs.t. Now we are ready to conclude that

‖J [X]gs.t.‖s ≤ C(‖κ‖s ,‖X‖s+1).

It is obvious that ‖H1(
μs.t

α

2E1/2 n̂)‖s−1≤C(‖κ‖s , ‖X‖s+1) and ‖H2(
μs.t

β

2E1/2 n̂)‖s−1≤C(‖κ‖s , ‖X‖s+1). 
This completes
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‖U s.t.‖s−1 ≤ C(‖κ‖s ,‖X‖s+1).

Rewriting Ws.t, and then taking the inner product with t̂i , we have

Ws.t. · t̂i = J [X]gs.t. · t̂i + [
H1, n̂

]( μs.t.
α

2E1/2

)
· t̂i + [

H2, n̂
]( μs.t.

β

2E1/2

)
· t̂i . (5.25)

So, applying Lemma 3.4 and the estimate for μs.t will complete the estimate ‖Ws.t. · t̂i‖s ≤
C(‖κ‖s , ‖X‖s+1). �

Now we are ready to estimate Ṽi , V s.t
i , i = 1, 2, using the equations (5.7), (5.8), (5.9), and 

(5.10).

Lemma 5.3. We have the following estimates:

‖Ṽi‖s+1 ≤ C(‖X‖s+1), (5.26)

‖Ṽi‖s+2 ≤ C(‖X‖s+2), (5.27)

‖V s.t
i ‖s ≤ C(‖κ‖s ,‖X‖s+1). (5.28)

We omit the details of the proof. Moving on, to estimate the terms Rs.t
i , we need estimates for 

�s.t
i for i = 1, 2 first.

Lemma 5.4. We have the following estimates:

‖�s.t
i ‖s−1 ≤ C(‖κ‖s ,‖X‖s+1), (5.29)

‖�s.t
i · n̂‖s ≤ C(‖κ‖s ,‖X‖s+1), (5.30)

for i = 1, 2.

The estimates (5.29) and (5.30) follow from the estimates (3.6) and (3.7).

Lemma 5.5. We have the following estimates:

‖Qs.t
1 ‖s−1 ≤ C(‖κ‖s ,‖X‖s+1), (5.31)

‖Qs.t
2 ‖s−3/2 ≤ C(‖κ‖s ,‖X‖s+1). (5.32)

Proof. First, we have the expression

Qs.t.
1 = −2AνU

s.t.

2
√

E
�(κ)+

(
V s.t.

1 −Ws.t. · t̂1√
E

− Aνμ
s.t.
α

2E

)
κα+

(
V s.t.

2 −Ws.t. · t̂2√
E

− Aνμ
s.t.
β

2E

)
κβ.
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To estimate the first term on the right-hand side, by Lemma 3.9 we have∥∥∥∥−2AνU
s.t.

2
√

E
�(κ)

∥∥∥∥
s−1

≤ c

∥∥∥∥ 1√
E

∥∥∥∥
s

‖U s.t.�(κ)‖s−1

≤ c‖E‖s−1(‖U s.t.‖d‖�(κ)‖s−1 + ‖U s.t.‖s−1‖�(κ)‖d).

So by Lemma 5.2, we have ‖ − 2AνU s.t.

2
√

E
�(κ)‖s−1 ≤ C(‖κ‖s , ‖X‖s+1). The remaining terms are 

similar and we omit further details. �
When considering the estimate of Q̃2, it is similar to the case of τ = 0 (see [2]). We will state 

a conclusion here without further proof.

Lemma 5.6. We have the following estimate:

‖Q̃2‖s ≤ C(‖X‖s+2) ≤ C(‖κ‖s ,‖X‖s+1).

5.3. Uniform time of existence

Recalling Remark 5, we know that, thus far, the time of existence of a solution is dependent 
of τ . Therefore before we may take a limit as τ vanishes we must revisit the energy estimate to 
get a uniform time of existence. We will introduce an open subset of O. Letting k̄ > 0, Ok ⊂ O
is defined as

Ok =
{
X ∈O : ∀�α,

2AνŨ + Rn3

2
√

E
(�α) > k̄ > 0

}
. (5.33)

We have the following theorem:

Theorem 5.7. Let the surface X0 ∈ Ok be globally parameterized by harmonic coordinates 
(namely (2.3) holds). There exists T > 0 such that for all τ ∈ (0, 1), the solution of Cauchy 
problem (4.43) with initial Xτ (·, 0) = X0 exists on [0,T], and Xτ ∈ C([0, T ]; Ok).

Proof. We do energy estimates in the same way but use the new expressions for the evolution 
with respect to the decompositions. We define the following:

E0 = 1

2

∫∫
κ2dαdβ, (5.34)

E1 = 1

2

∫∫ (
J s+1X

)2
dαdβ, (5.35)

E2 = 1

2

∫∫ (
�sκ

)2
dαdβ, (5.36)

E = E0 + E1 + E2. (5.37)

To begin with, we take the time derivative of E0:
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dE0

dt
=
∫∫

κκtdαdβ.

Since s is sufficiently large, using the equation for κt and the preliminary estimates, it immedi-
ately follows that

dE0

dt
≤ C1 exp{C2E}.

Here, the constants C1 and C2 may be taken to be uniform with respect to τ ∈ (0, 1).
Recalling equation (5.12), we next take the time derivative of E1:

dE1

dt
=
∫∫

J s+2X · J sXt dαdβ ≤ ‖X‖s+2‖Xt‖s

≤ ‖X‖s+2‖τU s.tn̂+ τV s.t
1 t̂1 + τV s.t

2 t̂2 + Ũ n̂+ Ṽ1 t̂1 + Ṽ2 t̂2‖s

≤ τ‖X‖s+2‖U s.t‖s‖n̂‖s + ‖X‖s+2‖τV s.t
1 t̂1 + τV s.t

2 t̂2 + Ũ n̂+ Ṽ1 t̂1 + Ṽ2 t̂2‖s

≤ τ‖κ‖s+1C(E) + C(E).

By Young’s inequality, τ‖κ‖s+1C(E) ≤ τ
n
‖κ‖2

s+1 +nτC(E)2, with parameter n to be chosen. So 
we conclude that

dE1

dt
≤ τ

n
‖κ‖2

s+1 + C(E). (5.38)

Finally we take the time derivative of E2. Recalling the estimate (4.10), we have

dE2

dt
=
∫∫ (

�sκ
)
�sκtdαdβ

≤ −τ

∫∫
1

4E3/2

(
�s+3/2κ

)
�s+3/2κdαdβ + 3τ‖�s+3/2κ‖2

0

n
+ CτE2

+ τ

∫∫ (
�s+3/2κ

)
�s−3/2 (Qs.t.

1 + Qs.t.
2

)
dαdβ +

∫∫ (
�sκ

)
�s

(
Q̃1 + Q̃2

)
dαdβ. (5.39)

Using the Hölder inequality and the estimate of Qs.t.
1 , Qs.t.

2 from Lemma 5.5, it is immediate 
that

τ

∫∫ (
�s+3/2κ

)
�s−3/2 (Qs.t.

1 + Qs.t.
2

)
dαdβ ≤ τ‖�s+3/2κ‖2

0

n
+ C(E).

Thus by Lemma 5.6 and the Hölder inequality, we conclude that∫∫ (
�sκ

)
�sQ̃2dαdβ ≤ C(E).

Next we consider
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∫∫ (
�sκ

)
�sQ̃1dαdβ =∫∫ [(

�sκ
)
�s

(
−2AνŨ + Rn3

2
√

E
�κ

)
+ (

�sκ
)
�s

((
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
κα

+
(

Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E

)
κβ

)]
dαdβ. (5.40)

Notice that we have the following estimate:

∫∫ (
�sκ

)
�s

((
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
κα +

(
Ṽ2 − W̃ · t̂2√

E
− Aνμ̃β

2E

)
κβ

)
dαdβ ≤ C(E),

since ∥∥∥∥∥ Ṽ1 − W̃ · t̂1√
E

− Aνμ̃α

2E

∥∥∥∥∥
s

≤ C(E)

and ∥∥∥∥∥ Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E

∥∥∥∥∥
s

≤ C(E).

It remains to deal with one term,

∫∫ (
�sκ

)
�s

(
−2AνŨ + Rn3

2
√

E
�κ

)
dαdβ = −

∫∫
2AνŨ + Rn3

2
√

E
(�s+1/2κ)2dαdβ

−
∫∫ (

�s+1/2κ
)[

�s−1/2,
2AνŨ + Rn3

2
√

E

]
�κdαdβ.

By Lemma 3.8, we have∥∥∥∥[�s−1/2,
2AνŨ + Rn3

2
√

E

]
�κ

∥∥∥∥≤ C(E)‖κ‖s+1/2 ≤ C(E) + k̄

2
‖�s+1/2κ‖2.

As long as the solution remains in the set Ok, we have∫∫ (
�sκ

)
�sQ̃1dαdβ ≤ − k̄

2
‖�s+1/2κ‖2 + C(E).

We now conclude that

dE
dt

≤ −mτ‖�s+3/2κ‖2/5 − k̄

2
‖�s+1/2κ‖2 + C(E), (5.41)

where m and n are as given previously. �
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Remark 8. From the above energy estimate, it is also proved that the solutions are uniformly 
bounded, that is, there exists d > 0, for all τ ∈ (0, 1), ‖X‖s+2 ≤ d . This implies that solutions 
cannot leave the set Ok arbitrarily fast and thus that solutions exist in the set Ok for an interval 
of time which is uniform for τ ∈ (0, 1).

5.4. Cauchy sequence as τ → 0+

We denote for any fixed τ > 0, τ ′ > 0, the corresponding solutions X ∈ C0([0, T ], Ok), X′ ∈
C0([0, T ], Ok), respectively. Both surfaces X and X′ are globally isothermally parameterized 
and uniformly bounded in Hs+2. So for the curvatures κ , κ ′ are uniformly bounded in Hs . Now 
we will prove that they are Cauchy sequences; the main result is the following theorem (recall 
again throughout that we take s to be large enough).

Theorem 5.8. For any η > 0, there exists δ > 0 such that if |τ − τ ′| < δ, then

sup
t∈[0,T ]

‖X−X′‖3 + ‖κ − κ ′‖2 < η. (5.42)

Proof. We denote δX =X −X′ and δκ =X −X′. We define

D = 1

2
‖δX‖2

3 + 1

2
‖δκ‖2

0 + 1

2
‖�2δκ‖2

0. (5.43)

First, we notice that

�δX= 2Eκn̂− 2E′κ ′n̂′.

Therefore we have

‖δX‖4 ≤ C‖δκ‖2 + C‖δX‖3 ≤ CD1/2.

Furthermore, we see also that

‖δE‖4 ≤ C‖δX‖4 ≤ C‖δκ‖2 + C‖δX‖3 ≤ CD1/2,

because of the following:

�δE = 2(Xαβ ·Xαβ −X′
αβ ·X′

αβ) − 2(Xαα ·Xββ −X′
αα ·X′

ββ).

The estimates for decompositions of differences are similar to the results of Section 5.2, when 
we take s = 2. For example:

‖δμs.t.‖2 ≤ CD1/2,

‖δμ̃‖2+j ≤ c‖δX‖2+j , j = 1,2,

‖δU s.t‖1 ≤ CD1/2,

‖δQs.t
1 ‖1 ≤ CD1/2,

‖δQs.t
2 ‖1/2 ≤ CD1/2.
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We begin estimating time derivatives:

d‖δX‖2
3

2dt
≤ ‖δX‖2

4 + ‖δX‖2
1

≤ ‖δX‖2
4 + ‖τU s.tn̂− τ ′U ′s.tn̂′‖1 + ‖τV s.t

1 t̂1 + τV s.t
2 t̂2 − τ ′V ′s.t

1 t̂′1 − τV ′s.t
2 t̂′2‖1

+ ‖Ũ n̂+ Ṽ1 t̂1 + Ṽ2 t̂2 − Ũ ′n̂′ − Ṽ ′
1 t̂

′1 + Ṽ ′
2 t̂

′2‖1

≤ CD + c|τ − τ ′|.

We next consider the time derivative of δκ :

δκt = τ
�

2E

(
�δκ

2
√

E

)
− τAν

�

2E

(
[H1, n̂]

(
δκαα

2
√

E

)
· t̂1,l + [H2, n̂]

(
δκαβ

2
√

E

)
· t̂1

)
− τAν

�

2E

(
[H1, n̂]

(
δκαβ

2
√

E

)
· t̂2 + [H2, n̂]

(
δκββ

2
√

El

)
· t̂2

)
− Eα

8(E)5/2
τH1�δκ − Eβ

8(E)5/2
τH2�δκ

− τAν

�

2E

(
J [X] (δκαβXα − δκααXβ

) · t̂1 +J [X] (δκββXα − δκαβXβ

) · t̂2
)

+ τ

2E

(
J [X] (δκαβXα − δκααXβ

) · t̂1
)

α
+ τ

2E

(
J [X] (δκββXα − δκαβXβ

) · t̂2
)

+ (τ − τ ′)F (κ ′,X′,E′) + τ(F (κ ′,X,E) − F(κ ′,X′,E′)) + τ(Qs.t.
1 + Qs.t.

2 − Q′s.t.
1 − Q′s.t.

2 )

+ (τ − τ ′)(Q′s.t.
1 + Q′s.t.

2 ) + Q̃1 + Q̃2 − Q̃′
1 − Q̃′

2,

where F(κ, X, E) is a function depending on κ, X, E:

F(κ,X,E) = �

2E

(
�κ

2E1/2

)
− Aν

�

2E

(
[H1, n̂]

( καα

2E1/2

)
· t̂1 + [H2, n̂]

( καβ

2E1/2

)
· t̂1

)
− Aν

�

2E

(
[H1, n̂]

( καβ

2E1/2

)
· t̂2 + [H2, n̂]

( κββ

2E1/2

)
· t̂2

)
− Eα

8E5/2
H1�κ − Eβ

8E5/2
H2�κ

− Aν

�

2E

(
J [X] (καβXα − κααXβ

) · t̂1 +J [X] (κββXα − καβXβ

) · t̂2
)

+ 1

2E

(
J [X] (καβXα − κααXβ

) · t̂1
)

α
+ 1

2E

(
J [X] (κββXα − καβXβ

) · t̂2
)

. (5.44)

It is easy to conclude that

‖F(κ ′,X,E) − F(κ ′,X′,E′)‖1/2 ≤ C‖δX‖3 (5.45)

and

‖δQ̃2‖2 ≤ C‖δX‖4 ≤ CD1/2. (5.46)
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For δQ̃1, we need to take more care:

δQ̃1 = −
(

2AνŨ + Rn3

2
√

E

)
�δκ +

(
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
δκα

+
(

Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E

)
δκβ +Y, (5.47)

where Y is given by

Y = −
(

2AνŨ + Rn3

2
√

E
− 2AνŨ

′ + Rn′
3

2
√

E
′

)
�κ ′

+
(

Ṽ1 − W̃ · t̂1√
E

− Aνμ̃α

2E
− Ṽ ′

1 − W̃′ · t̂′1√
E′ + Aνμ̃

′
α

2E′

)
κ ′
α

+
(

Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E
− Ṽ ′

2 − W̃′ · t̂′2√
E′ + Aνμ̃

′
β

2E′

)
κ ′
β.

We estimate Y as follows:

‖Y‖2 ≤ c‖δŨ‖2 + c‖δW̃‖2 + c‖δE‖2 + c‖δṼ1‖2 + c‖δṼ2‖2 + c‖δμ̃‖3 ≤ C‖δX‖3.

We use the above calculations and estimates to estimate the time derivative of part of the 
energy:

d(�2δκ)2

2dt
=
∫∫ (

�2δκ
)

�2δκtdαdβ

≤ −τ

∫∫
1

4E3/2

(
�2+3/2δκ

)
�2+3/2δκdαdβ + 3τ‖�2+3/2δκ‖2

0

n
+ CτD

+ τ

∫∫ (
�2+3/2δκ

)
�1/2

(
F(κ ′,X,E) − F(κ ′,X′,E′) + Qs.t.

1 + Qs.t.
2 − Q′s.t.

1 − Q′s.t.
2

)
dαdβ

+
∫∫ (

�2δκ
)

�2

(
(τ − τ ′)F (κ ′,X′,E′) + (τ − τ ′)(Q′s.t.

1 + Q′s.t.
2 )

)
dαdβ

+
∫∫ (

�2δκ
)

�2(Q̃1 + Q̃2 − Q̃′
1 − Q̃′

2)dαdβ

≤ −τ

∫∫
1

4E3/2

(
�2+3/2δκ

)
�2+3/2δκdαdβ + 4τ‖�2+3/2δκ‖2

0

n
+ CD + c|τ − τ ′|D1/2

+
∫∫ (

�2δκ
)

�2

(
−
(

2AνŨ + Rn3

2
√

E

)
�δκ +

(
Ṽ1 − W̃ · t̂1√

E
− Aνμ̃α

2E

)
δκα
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+
(

Ṽ2 − W̃ · t̂2√
E

− Aνμ̃β

2E

)
δκβ

)
dαdβ.

Using the fact there exists n such that − 1
4E3/2 + 4

n
≤ −k0 < 0 and − 2AνŨ+Rn3

2
√

E
≤ −k̄ < 0, we 

conclude that

dD
dt

≤ d1D + d2|τ − τ ′|D1/2. (5.48)

Solving the differential inequality, we conclude

D ≤ D(0)ed1t + d2|τ − τ ′|(ed1t − 1)/d1.

We know that the two surfaces start with the same initial condition, i.e. D(0) = 0, and the proof 
is thus complete. �

From the paper [2] (see also [14]), we know that 3D Darcy flow without surface tension is 
well-posed in the presence of the stability condition. That is, for the system (4.43) when τ = 0, 
there exists a bounded solution X ∈ C0([0, T ′]; Ok). Now we will prove that the limit as surface 
tension vanishes for Darcy flow with surface tension is the Darcy flow without surface tension, 
when the stability condition holds. This is the content of our final theorem.

Theorem 5.9. Let X0 ∈ Ok be globally parameterized by harmonic coordinates. Let T be the 
minimum of T in the Theorem 5.7 and T ′. For all τ ∈ (0, 1), let Xτ be the solution for the 
Cauchy problem (4.43). Letting s′ be given such that 0 ≤ s′ < s + 2, we have

lim
τ→0

sup
t∈[0,T ]

‖Xτ −X‖s′ = 0.

Proof. From Theorem 5.8, we see that Xτ is a Cauchy sequence in H 3. Since the solutions Xτ

are uniformly bounded in Hs+2 with respect to τ , by Sobolev interpolation, we have that the 
sequence Xτ is a Cauchy sequence in Hs′

. Therefore, there exists a limit X ∈ C0([0, T ]; Ok), 
such that Xτ → X as τ → 0.

Now we will prove that the limit X is exactly the solution of Cauchy problem without surface 
tension, i.e. when τ = 0. We call the right-hand side of (5.12) by name Bτ . Since s is suffi-
ciently large and Xτ → X ∈ C0([0, T ], Hs′

), we see that μτ converges uniformly to μτ=0, and 
furthermore Bτ converges uniformly to Bτ=0. We integrate (5.12) in time,

Xτ (·, t) =X0 +
t∫

0

Bτ (·, s)ds.

We pass to the limit as τ → 0+ since Bτ uniformly bounded, finding

X(·, t) =X0 +
t∫

0

Bτ=0(·, s)ds.

This implies that X solves the Cauchy problem without surface tension. �
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