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Abstract

We study the zero surface tension limit of three-dimensional interfacial Darcy flow. We start with a proof
of well-posedness of three-dimensional interfacial Darcy flow for any positive value of the surface tension
coefficient. The primary tool for this well-posedness proof is an energy estimate. The time of existence for
these solutions will, in general, go to zero with the surface tension parameter. However, in the case that a
stability condition is satisfied by the initial data, we prove an additional energy estimate, establishing that
the time of existence can be made uniform in the surface tension parameter. Then, an additional estimate
allows the limit to be taken as surface tension vanishes, demonstrating that three-dimensional interfacial
Darcy flow without surface tension is the limit of three-dimensional interfacial Darcy flow with surface
tension as surface tension vanishes. This provides a new proof of existence of solutions for the problem
without surface tension.
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1. Introduction

We consider a sharp-interface model of two-phase Darcy flow in three spatial dimensions.
The fluid velocities are given by Darcy’s Law, which models flow in a porous medium [9]. The
interface is the boundary between the lower fluid region €2;(¢) and the upper fluid region ,(¢),
where ¢ is the temporal variable. To be precise, in the bulk of each fluid, the fluid velocity is
given by

2

b
Vi(x,y,Z,f)=_mv(Pi + 0ig2), (1.1
1

fori e {1,2} and (x, y, z) € Q;(¢). The fluids are taken to be incompressible as well, so that
div(v;) =0. (1.2)

The constant b is a physical parameter related to the porosity and permeability of the medium,
and g is the constant acceleration due to gravity. The constants v; and p; are the viscosity and
density, respectively, of fluid i. Of course, v; and p; are the velocity and pressure of fluid i. The
fluids under consideration are driven by gravity and by surface tension; the gravity is clearly
present in (1.1). The surface tension enters through the Laplace-Young jump condition for the
pressure across the interface; we will see this below in Section 2.3.

This interfacial problem is well-posed in the case that surface tension is accounted for at the
interface [15], and also in the case of zero surface tension (this is the Muskat problem) if the
Saffman-Taylor stability condition is satisfied [23]. In the case in which this stability condition
is violated, it has been shown in the case of two-dimensional case that analytic solutions exist
[24], and the zero surface tension limit can then be studied for these solutions. Dai, Tanveer,
and Siegel, and separately Ceniceros and Hou, have shown that the solutions without surface
tension are not the limit of solutions with surface tension as surface tension vanishes when the
Saffman-Taylor condition is violated [25], [26], [12], [13].

The second author previously studied the two-dimensional case in [3]. The lines of the ar-
gument are the same, but many details are more difficult in the three-dimensional case. In the
two-dimensional case, the interface is one-dimensional, and the interface can be described by
its tangent angle and arclength element; furthermore, the arclength element was taken to depend
only on time. In the present setting, we instead study the mean curvature of the interface and
the first fundamental form of the free surface, and it is not possible to insist that the first funda-
mental form be independent of the spatial variable. As a result, instead of becoming semilinear,
the problem with surface tension in the present case is only quasilinear. Furthermore, one of the
primary ideas of the argument is to approximate the Birkhoff-Rott integral with simpler singular
integrals; the Birkhoff-Rott integral is a singular integral which gives the velocity of the inter-
face. In the case of a one-dimensional interface, the Birkhoff-Rott integral is approximated by
a Hilbert transform, and the remainder from making this approximation is very smooth. In the
present case, we approximate the Birkhoff-Rott integral with Riesz transforms, and the remainder
is smooth, but not nearly as smooth as in the previous case. This does complicate the argument,
although we are able to deal with the complication. As a result, we will rely on the parabolic
smoothing that is available in the problem to simplify the energy estimates. In the case of the
one-dimensional interface in [3], we noted the presence of the parabolic smoothing, but we did
not make use of it.
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The present work continues the use of a method which has its roots in the numerical works
of Hou, Lowengrub, and Shelley (HLS) [16], [17]. In these papers, to remove the stiffness from
numerical computations of interfacial Darcy flow with surface tension and interfacial Euler flow
with surface tension, HLS used an arclength parameterization and introduced a small-scale de-
composition of the problem, identifying the most singular terms in the evolution equations. These
ideas were subsequently used analytically, including an extension by the second author and Mas-
moudi for interfacial Euler and Darcy flows in three spatial dimensions [2], [5], [6], and by
Cordoba, Cordoba, and Gancedo for the three-dimensional interfacial Darcy problem [14]. The
generalization of the arclength parameterization used by HLS to a two-dimensional free surface
used in these works is an isothermal parameterization; this is discussed in Section 2.1 below.

Subsequently, the extension of the HLS to analysis for three-dimensional fluids was brought
back to numerical studies, with Ambrose, Siegel, and Tlupova making an extension of all of these
works to develop a non-stiff numerical method for 3D interfacial Darcy flow [7], [8]. These ideas
have also been used in numerical analysis, as Ceniceros and Hou have shown that a version of
the HLS numerical method is convergent [11], and in [4], Ambrose, Liu, and Siegel have shown
that a version of the method of [8] is convergent.

The plan of the paper is as follows: in Section 2, we describe the equations of motion for
the 3D interfacial Darcy flow problem. This includes specifying our isothermal parameterization
and our small-scale decomposition; the small-scale decomposition requires making decomposi-
tions of singular integral operators. In Section 3, we provide some lemmas giving bounds for
useful operators, and use these to make some preliminary estimates. In Section 4, we prove
well-posedness of the problem with surface tension, finding existence on a time interval which
depends badly on the surface tension parameter. In Section 5, in the case that the Saffman-Taylor
stability condition is satisfied, we extend the time of existence of solutions for a time interval
which is independent of surface tension, and pass to the limit as surface tension vanishes.

2. The equations of motion

We study a surface X (&, 1) = (x(a, 1), y(@, 1), z(@, 1)), where & = («, B) € R? is the spatial
parameter of the surface, and ¢ is time. We use the following frame of unit tangent and normal
vectors at each point of the surface:

t1=|X—"‘|, tzzﬁ, A=t x 2
« 8

We write the velocity of the free surface using its normal and tangential components,
X, =Un+ Vit' + Wt%. 2.1
2.1. The tangential velocities and choice of parameterization

While the normal velocity is determined by the fluid dynamics, the tangential velocities are
not. Instead, the tangential velocities can be chosen arbitrarily, as these only determine the pa-
rameterization of the free surface. That is, the location of the free surface will not be changed,
no matter our choice of V; and V,. Our choice of parameterization is to always maintain a global
isothermal parameterization. To this end, we introduce the first fundamental coefficients of the
free surface:
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E =X, - Xg, F =X, Xg, G=Xp Xz. 2.2)
Then, our choice is to have
E =G, F=0, 2.3)

for all @ and for all ¢. For any surface, such a parameterization always exists locally, and in some
cases globally. Fortunately the case we consider has been proved to have a global isothermal
parameterization. In the sequel, we consider the case in which the interface between the two
fluids is asymptotic to the flat plane at infinity, and in this case, it is known that the isothermal
parameterization exists globally [14]. The tangential velocities are then found by using (2.1)
together with the time derivative of (2.3), E; = G; and F; = 0. The corresponding calculation is
given in detail in [5]. As a result, we find that the tangential velocities V| and V5 should satisfy
the equations

Vi 1% _U(L—N)

(~/E>a_<~/E>,3_ E .
Vi Vs _2UM

(VE)5+(VE>a_ E 2

Here, L, M, and N are the coefficients of the second fundamental form of the free surface,

L=-X, hy =Xy N, N:—Xﬁ'ﬁﬂlegﬁ-ﬁ, M:—Xa-ﬁﬁZ—Xﬂ-ﬁO(:Xaﬂ-ﬁ.
(2.6)

Then, if V| and V, satisfy (2.4) and (2.5), and if the initial surface satisfies (2.3), then the surface
will satisfy (2.3) at positive times as well.

2.2. Geometric identities
We will differentiate the normal and tangential vectors many times in the sequel, and therefore,

formulas for these derivatives in the context of the isothermal parameterization will be helpful.
We have the following:

. L, M,
“a:_El/zt - ]51/2t J 27
fpm— Mg N p (2.8)
p E12 El2 :
~ Eg. L

1 _ B2 A

=5 0+ i 2.9)

Ey~ M

1 _ Loy ~

fh= oo+ i, (2.10)
~ Eg . M

2 __ EBzi -

o Ey~ N

2 =—2t'+ —h (2.12)
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2.3. The normal velocity and the fluid dynamics

We mentioned above that the normal component of the velocity of the free surface, U, is
determined by the fluid dynamics. There are two equivalent descriptions of the relevant fluid
dynamics which can lead us to the appropriate formula for U: one directly from potential theory,
and one which considers the Biot-Savart law for recovering the velocity from the vorticity (and
thus using potential theory indirectly). We focus on the calculation which uses potential theory
directly.

From (1.1), we see that the velocity is equal to the gradient of a potential in each phase, with
the potential, ¢;, given by

2
o =—m(pi + 0ig2),

for i € {1, 2}; recall that this means that this equation holds for all (x, y, z) € Q;(#). Combining
equations (1.1) and (1.2) with this definition of ¢;, we see that A¢; =0, for i € {1,2}. The
normal component of the velocity of the free surface must be the same when calculated from
above and below (this is one of the boundary conditions for the problem); we recall that the
normal derivative of ¢; is the normal velocity of the interface. While there is no jump in the
normal derivative, there is of course a jump between ¢ and ¢, at the free surface, and we give
the name p to this jump:

b? b?
i (_ﬂ N Q) B (mgz B ngZ>. 2.13)

o E V1 %) E Vi 1%)

Since there is no jump in the normal derivative across the interface, we may express ¢; by
means of a double-layer potential. The source strength for the double-layer potential is u, the
jump in potential; we write the double-layer potential suppressing the time dependence:

. _ i - ()C, y’Z)_(x(&)a y(&)vz(&)) Yo -
¢l(x,y,z)—i2n L/M(a)l(x,y,z)—(x(&),y(&),z(&))lz n(a) da; (2.14)

again, this holds for (x, y, z) € Q; (¢).
If we add the two potentials at the free surface, we get

2 2
¢1+¢z:b—<—ﬂ—2>—b—<mgz+p2gz). (2.15)

Vi V2

The equations (2.13) and (2.15) can be solved for p; and p> (we omit the algebra). Then, we can
subtract p; and p>, and make use of the Laplace-Young jump condition (the jump in pressure
across the interface is proportional to the mean curvature of the interface, with the constant of
proportionality being a material parameter depending on the chemical makeup of the two fluids).
Then, the resulting equation can be solved for u:

pn=1tKk = Ay(d1 +¢2) — Rz, (2.16)
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where 7 is the non-negative, constant coefficient of surface tension, and A, and R are given by
the formulas

_vi—» R— b*g(p1 — p2)

A, = , =
Y e %) 6(v1 +1v2)

Notice that (2.16) is actually an integral equation for u, as the expressions for ¢ and ¢, in (2.14)
involve w under the integral. We could restate this as

w+A,Du =1tk — Rz, (2.17)

where D is the resulting integral operator. To be more precise, given the surface X, the operator
© applied to u is given by the integral on the right-hand side of (2.14).

We can differentiate (2.16) with respect to each of « and 8. When doing so, we must remem-
ber that ¢ and ¢, are functions defined not only on the interface; thus, for instance, we have
dxP1 = Vo1 - X,. We find the following, upon differentiating (2.16):

Mo =Tkg — Ay (Vo1 - Xy + Vo - Xo) — Rzg, (2.18)
g =71tKg — Ay (V¢1 ~Xﬁ+V¢2~Xﬁ) — Rzg. (2.19)
To find the limiting values of V¢; for i € {1, 2}, the gradient of (2.14) can be taken, and then the

Plemelj formulas can be used (see [10] or [21] for discussion of the Plemelj formulas). Carrying
out this calculation, we find the following limiting values for the gradients of the potentials:

Ha 2 I
Ve =W 4 Lol K2 (2.20)
o 2JE | 2VE
Ho 2 Hp 2
Ve, =W— Hepi_ K8 p 221)
& 2JE  2VE (

We will give the definition of W, the Birkhoff-Rott integral, shortly. Using (2.20) and (2.21) with
(2.18) and (2.19), we find the following:

U = Tkq —2A,VEW -t' — Rz, (2.22)
g =tkg —2A,vVEW -1 — Rzp. (2.23)
The Birkhoff-Rott integral is
W@) = —ipvff(// X, — 1, X)) x X=X (2.24)
am o)) R ) &5 G '
R

In the integrand in (2.24), functions followed by a prime are evaluated at @', and unprimed
functions are evaluated at &. Notice from (2.20) and (2.21) that we can find the normal velocity
of the free surface by taking the dot product with the normal vector:

U=W-i. (2.25)
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The principal value integral in (2.24) makes sense as long as the surface is non-self-
intersecting. As in prior works by the authors and collaborators [1], [5], [6], [18], we follow
the works of Wu in assuming that a chord-arc condition is satisfied [29], [30]. We assume that
there exists a constant d > 0 such that the initial surface satisfies

X(@ 8,0) = X@, g, 0)
@)+ (B—p7

>d, Y(a, B) # (@', B). (2.26)

We will then endeavor to solve the initial value problem satisfying the bound

X(@, B, 1) = X', B, § d /ol

for t > 0.

Remark 1. While the normal component of the velocity does not jump at the free surface, the
tangential velocity does have a jump. Since the velocities are given by the gradient of a potential
in the bulk of the two fluid regions, the fluids are irrotational in the bulk. However, since there
is a jump in velocity at the free surface, the vorticity is actually measure-valued; that is, the
vorticity can be expressed by means of a Dirac mass supported on the free surface, and thus
the free surface is a vortex sheet. The alternative derivation of the Birkhoff-Rott integral and the
formula (2.25) which we mentioned above makes use of this structure of the vorticity, and uses
the Biot-Savart law to find the velocity from the vorticity. The interested reader might consult
[22] or [10] for details of the derivation of the Birkhoff-Rott integral for a vortex sheet in the case
of three-dimensional fluids.

Remark 2. We have mentioned above that (2.17) is an integral equation for p, and thus equations
(2.22), (2.23) are a system of integral equations. All of these integral equations are solvable. For
existence and regularity of u, see Lemmas 3.12 and 3.13 below.

2.4. Evolution of E and «

With the free surface being parameterized by an isothermal parameterization, the formula for
the mean curvature can be written as
L+N

= . 2.28
K 2K (2.28)

Our primary estimates will be energy estimates for «. The evolution equation for « can be in-
ferred from (2.1), using (2.28) with (2.2) and (2.6). For the moment, a convenient way to write
the evolution equation for the curvature is

(VEK), = f f(fx)a \/%(x/fk)wr[i/; 25—(\‘//]—))[ 25_<«>/2_>

(2.29)

(Detailed calculations leading to (2.29) and related formulas in this section may be found in [5].)
Of course, to specify «;, we would need to use (2.29) together with an evolution equation for E.
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We can infer an evolution equation for E from (2.1), using the definition £ = X, - X,, or alter-
natively we could use the isothermal parameterization, £ = G = Xpg - Xg. These considerations
yield the following:

UL WV, Eg UN VIE,
E,=2VE(Viqg—— =2VE(V)g——+—). 2.30
t < 1l,a «/E—i— E ) ( 2, \/E—i_ E ) ( )

If X is parameterized according to (2.3), then we have the following two derivatives which will

be used for iteration in Section 4.2. On one hand, since £ =X, - X, = Xg - Xg and X, - Xg =0,
we have

AE =2(Xgp - Xop) — 2(Xoe - Xpg)- (2.31)
On the other hand,
AX = (AX-h)h=(L+ N)i=2Ekh.
2.5. The Birkhoff-Rott integral and its consequences

The most singular term on the right-hand side of (2.29) is the term which includes AU. We
seek a more useful expression for AU, and in light of (2.25), it will be helpful to find more
useful expressions for W and its derivatives. To this end, we will be rewriting W and its deriva-
tives in terms of well-understood singular integral operators such as Riesz transforms. The Riesz
transforms Hj and H; are singular integral operators defined as

1 f pre—a)
AT !f (@—arr@_prr " o
1 f@ BB
e d = | e

These have Fourier symbol I-AIi (&) = i&;/|&|. If the surface X were flat, that is if X(«, 8) =
(e, B, 0), then we see from (2.24) that the Birkhoff-Rott integral W could be expressed exactly
with Riesz transforms. When X is not flat, we will instead see that Riesz transforms give the
leading-order part of W. More information about Riesz transforms can be found, for instance,
in [27] or [20]. We also take this opportunity to define some additional integral operators with
weakly singular kernels,

1 /, / _ \2
(Guf)(a,ﬂ)=4—PV/f Jle, pe—a) 5 do'dp’, (2.34)
) (@2 + B8

1 f@, pe—a)(B—pB)
(G2, B) = (G fH(a, B) = _PV// , n2)3/2
b2 (@—a2+ (B —p7)

da'dg’,  (2.35)
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Y _an2
G p) = bV [[ LELCLL gy 236)
1 (@ —a?+ (8- $)?)

We begin with the following formula, which can be found simply by applying the Laplacian
to U and using geometric identities as appropriate:

N o 21 L ~ M
AU:[(Wa«n)a+(ng.n)ﬁ]+ (W-t) — 5z +(Wt)(_m )

. M . N
+((W.t1)<——)+(w-tz) (——)) . (2.37)
El/2 El/2 5

Our immediate goal is to rewrite the most singular terms here, which are the terms in the square
brackets on the right-hand side of (2.37), in terms of Riesz transforms.

We follow the development of the Birkhoff-Rott integral as given in Section 2.2 of [2]. Our
goal in this section is to extract the most singular terms from the Birkhoff-Rott integral, allowing
us to find a useful expression for the quantity AU in (2.29).

To begin with, we develop an expression for Ap and pqpg. First, we differentiate p, with
respect to «, finding simply

Ay E,
E1/2

Moo = Tkay — 2A,EVPW 8L — 24, EV2W,, . ¢! — W-t! — Rzge. (2.38)

As part of our effort to rewrite this, we rewrite zq,. We denote n3 =1 - (0, 0, 1), and we have
Zea = (E'H-(0,0,1) .
o
Applying the a-derivative, this becomes

Eyz ~oa PO
e = 2"‘E"‘ + EV2@® - fyns + @ - P)zp.

Using the identity (2.9), this becomes

Eoza  Epzp
2E 2E

+ Lns. (2.39)

Zaa =
We have the corresponding formula for zgg

I Egzg _ Eyzy
PP = 2F 2E

+ Nnj.

Continuing, we combine (2.38) with (2.9) and (2.39):

AvEg v AvEay, A
Haw = Thao + A1 = Thao =24, LU + 2P W -8 = S W 31— 24, YW, -
RE.zy  RE
_ DRata | REBYE  Rinmg

2E 2E
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We make the same calculation of g, finding the following:

AvEg 0 AvEy 21 1/2 22
Hpp =Thpp + Az =iy — 2ANU = oW E + W —24,E'PWg - 1

n REyzo REgzg
2FE 2E

Adding the above two equations, it follows that
Haw + g = Tk + Thgp — 44, U EK — 2RExns = 2A,VE (Wo -1 + Wy - £). (240)

Using the identity (2.10), we have a formula for z44:

Epza | Eazp
2E ' 2E

+Mn3.

Zaﬁ -

Moreover, we have the following expression for pqg:

AvEqy n  AvEg 21 1/2 21
Hap = Thap + A3 = Thyp = 24, MU — W8 — —m Wl — 24, V2 Wy - £

RE RE
_D2Btae R pMns.
2E 2E

We now introduce three integral operators. Given some function F, we define K[X]F,

JIX]F, and J1[X].F:
KIX]F (@) = 4LPV f F@) x K@,a') da, (2.41)
TT o
TIXIF@) = ﬁpv / / F@) % J@.8) dd.
RZ

Li[X]F(a) = %PV /f F@) x Li(a,a) do'. (2.42)
R2

In (2.42), we take i € {1, 2}. The kernel K is given by

L X@-X@)  Xe(@)(@—a)+Xp@) B - B)
K(a’a)_ > N3 2(7N\ A =/
X@ —X(@)[ E32@)|a — ')
3 Xaa (@) (@ =)’ + 5 Xpp@) (B = B + Xap @) (@ — ) (B~ B)
E3/2(&/)|& _ &/|3
3 (Ea(@)(@—a) + Eg@)(B — B)) (Xa(@) (@ — ) + Xp@) (8 — B)
4 ES2@)a —a'|? '

(2.43)

The kernels J, L1, and L, are somewhat simpler:
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X@) —X@)  Xg@)(a—ao) +Xp@)(B - B)

J(@,ad)=—= e — — ,
(@) IX(@) — X(@)? E32@)|a —a’|?
Li(@,a@") = (Dy + Do) J (@, @), (2.44)
Ly(@,a') = (Dp + Dg)J (@, a). (2.45)

We mention that the operator [X] is an error from making a second-order Taylor expansion
of the kernel \X X’P which is present in the Birkhoff-Rott integral. The operator J[X] is similar
but is simpler, because it is the error from making only the first-order Taylor expansion. These
kernels are similar to kernels of convolution type; for a kernel of convolution type, applying
Dy + Dy or Dg+ Dg would annihilate the kernel. For all of these we have smoothing properties,
and these are expressed in the results of Section 3 below.

We have the following formula for W:

. Mo 4 Wp )
W= Hi (55570) + Ha (51758) + T[Xlg, (2.46)

where we have introduced the notation
g =upXa — LaXp- (2.47)

We now differentiate (2.46) to find formulas for W, and Wg. To begin with, we write the fol-
lowing, which makes use of (2.7):

Haa Hap MaL sy HaM 2 mpL
W, =H ( ) H ( ) H i) —H 2) - B (E5%
o« = Gpipt) T \Gpn "\ 2E "\ 2E 2\ 2E
i (PEM e _ gy (PeBal) o (HBEa
Hz( . t) H; <4E3/2n Hy (5 ) + DaJ X3

We continue to rewrite this; for now, we pull the vectors outside of the Riesz transforms, incurring
commutators:

Haa \ A Hap \ A Mol A l‘LaM ~ N-ﬁL 21
W:H(—)n H(—)n—H ' — H, 2_H t
o =Hi\Jpn )T 2 \5pn "\ 2E 2FE 2\2E

mpM\ ~ Mo Ea\ upEq
—H2<—)t - H (4E3/2> —H <4E3/2 n+ 21+ D, J[X]g.

=

The collection & is defined as

- A Moo A MHap 21 UaL ~ oM
2, = [H. <—) H, ( )—H,t —[H),1
1 =[Hi,n] SR + [H>, n] SE1/ [Hi, t'] ¥ [H, t7] E

~ M ~ N A ant A EO{
— [, 1] (“j—E) — [H, P (“j—E) ~ [Hy. )] (h) ~ [Hy. ] (%) (2.48)

Notice that E includes second derivatives of i ; we decompose it further such that the remainder
only includes at most first order derivatives of p. That is,
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81 = tlH1. 8] (3557 ) + TlH2. 8 (5005 ) + R, (2.49)
with
~ o 2 Mo L 2 [ HaM
=[Hy,h]A| + [Ha, 8]A5 — [Hy, 8] | 55 ) — [H, 21 ==
[H1,n]A| + [Ha,n]As — [H) ]<2E> [H) ](ZE)

i gl (MY npN ar(Hefa\ _ gy (PHeEe
[Hz,t]( 2E> [Hz’t]<2E> [Hl’n](4E3/2 [H3,n] 4E3/2 ]

Furthermore, notice that we can write Dy J[X]g as follows:

Dy J1X]g = T [Xlga + L1[X]g.

Similarly, we differentiate (2.46) with respect to 8, making use of (2.8), finding the following
formula for Wpg:

Hap 1pp HaM HalN meM 4y
Ws=H ( ) H, ( ) H (Bt ) — By (B2 ) — B [ Bt
p=qpEt) TG "\ 2k "\ 2 2\ 2k
g (PN HaEp AT
H2< 2E t) & <4E3/2n> H2<4E3/2“ +DpJ1Xlg.

As before, we rewrite this by pulling the vectors through the Riesz transform, yielding the fol-
lowing:

N MBB \ HaM\ o HalN \ MﬁM 21

W—H( ) H( )—H—t—H—t—H t

p=M gt \gpa )0 M g "\ 2E 2\ 2k

HEN o MaEp\ o meEp
_H2< 2FE )t — <4E3/2>n_H <4E3/2>H+U2+Dﬂj[X]g

Of course, the collection E, is defined as
- ~ MHap ~ M“gp ~ oM ~ o N
2, = [H], ( ) H, ( )—H,t KaZZ N 1wy, 2 (B2

2 =[H1,n] SR + [H>, n] SR [Hi, t'] °E [H, t7] 2E

A M . N A oE . E
—[Hy, 1] (’;ﬂ_E) — [H>, 1] <M2/S—E) —[H;,n] (ZE3/§> — [H2,n] <ZZ3/Z>. (2.50)

We plug in the formulas for pqg and pgg, and this becomes

=, [Hl,n]<2El/2>+I[H2,n](2El/2)+R2, 2.51)

with
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A~ A 2 oM oo aN
R, = [Hy, 0]As + [Ho, 0]As — [Hy, '] | 2= ) — [H;, ] | 22—
2[1n]3+[2n]2[1]<2E)[1]<2E>

g (MY o (NN o (maEg\ o (upEp
[Hz,t]<—2E> [Hz’t]<_2E) [Hl’n](4E3/2 [H3. 1] 4E3/2 )"

Furthermore, as before, we can rewrite Dg J [X]g:

DpJ1Xlg = J[Xlgp + L2[X]g. (2.52)
2.6. Our small-scale decomposition

As described in Section 1, we follow the philosophy of the numerical works [16], [17], and
the extensions of these in analytical works such as [1], [2], [5], [6]. This requires making a
so-called small-scale decomposition, in which we rewrite the evolution equations to isolate the
most singular terms. In light of (2.29), in which the evolution of « is given in terms of AU, we
will now be making detailed calculations to find the leading-order part of AU. Our goal of this
section is to arrive at (2.58) below.

First, we take inner product of W, with t! and Wg with fz, finding

. L L x .
We -t'=—H (”"‘ >—Hz<%)+51-t1+DaJ[X]g-tl,

2E 2E

o N N ~ o
W=t (5 ) 1 (P57 ) ¢ 2 e DpT Xl

So, it follows that

Wo -1+ Wy - = —Hy (cpa) — Ha (cpg) + B1 -1 + Do T[Xg -1 + 8 -+ DpJ[X]g - 2.
(2.53)

We use this expression in (2.40), finding the following:

Moo + Mg = TKaa + Tkgg —4AUEK — 2REKkn3

—2A,VE (—H1 (k1a) — Ha (kpip) + B1 -t + Do J[X]g - ' + 82 - & + DpJ[Xlg - fz) :
(2.54)

We also take the inner product with n:

E E
Wa-ﬁzHl( Haa )+H2( i )—Hl (“"‘ a)—Hg(“’g‘a)+81-ﬁ+Daj[X]g~ﬁ

ap1) T (5pim) — Gz ) 1 G
oy (M N g () g (P o (P2ERY L g, ae D 71X A
— g2 "\2g12 "\ag32 Ngp3z ) T e IRE

and
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e (gts) o ) - (G50) - (558 22t puie
=t (L2 )+ 1 (L) - (“—E"‘) — Hy <“ﬁ—Eﬁ) + 8- A+ DyJIXIg A,
2E1/2 2E1/2 4E3/2 4E3/2
Using the facts that A = H; 9, + H20dg and H10g = H0,, we have
(Wo - o + (Wp -f)g = A (22—52) —A <MQEZ;ZﬂEﬁ)
+ (81 -0), + (J[Xlgo - 1), + (B2 - 1), + (T[Xlgp - 1) ; + (L1[X]g - B),, + (L2(X]g - B) 5.
(2.55)

We write the partial derivatives of g as
8o = TkapXo — ThaaXp 181, 8 = TKppXa — ThapXp + 82,
with
81 =A3Xy — A1Xp + upXaw — HeXep, &2 =A2Xy — A3Xp + upXap — 1aXpp.

Using the facts AHy = —0, and A H, = —0g, the first term on the right-hand side of (2.55) is
the following:

A Ak
A <—2E52) =TA <—2E1/2> —A (2AuU\/EI( + R\/EKYZ3> —Avk Ap— Ay (Koo +Kﬁﬂﬁ)

— A (811 + T XIgo - + 82 B+ T[XIgp - B+ L1[X1g - + Lo[Xg - #) . 256)
We rewrite the second term on the right-hand side of (2.56) as
—A (2AVU\/E/< + R\/Elcng)
- (ZAUUx/E—i— R«/Erm) Ak — 24,V EKAU
- (A (ZAVU«/EK i R«/Ecng) - <2AVU«/E+ Rﬁn3) Ak — 2AUJEKAU) .

Using the fact that (le + sz)f = —f, we have

—2AkVEAU = —2A,kvE (Hi (Wq - B) + Hy (Wg - ) + Hy (W - fig) + Hp (W - fig))
Ay g Eg B AykpugEg

— Ay A —
vaR 2E 2E

—2AkVEH) (E1 -+ Dy J[X]g - A+ W - hy)

—2Ak~EH, (B> -fi+ DgJ[Xlg - i+ W-fig).

Using this with (2.56) yields the following:
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A A
A( “):rA( K )_(ZAVU\/E+R\/En3>AK—AV(KaMa-‘rKﬂ,lLﬁ)

2E1/2 2El/2
— AyA (El A+ TIXgy -t + Ea - P+ T[Xgp - 8+ L1[X]g - T + Lo[X]g - fz)

— (A (ZAVU\/EK + Rﬁxn3) - <2A,,U«/E+ R«/fn3> Ak — 2AV\/EKAU)

Apk g Eq _ AykpugEg
2FE 2FE

—2AkEH, (E1-fi+ Do J[X]g -+ W-fiy)
—2AVEH, (B2 -hi+ DpJ[X]g -+ W - fig).

Plugging in (2.49) and (2.51) for the tangential parts of &1 and E, above yields the following:

Ap Ak . Koo ~1 . Kap ~1
A (2E1/2> —7A <W> —TAA ([Hl,n] (2E1/2) A 4 [Hy, ] (2E1/2> 4 )

[ K n K R
—TA A ([Hl, Al (2552) 24 [Hy. 0] (2;1’3/2) ~t2> _ (2AUUJE+ R«/Eru) Ak

— Ay (Kapta +Kpup) — TALA (J[X] (kopXo — kaaXp) - T + TIX] (kppXer — kapXp) - iz)
—AA (R1 A+ TXlgr -+ Ry -2 4+ T[Xlgr - € + L1[X]g -t + Lo[X]g - fz)

— (A (2AUU«/EI( n R«/Em) - <2AVU«/E+ R«/En3> Ak — ZAU\/EKAU)

Avk g Eq _ AykpugEg
2E 2E

— 24,k VEH; (E1 -+ Do J[Xlg -+ W - iy)
—2AVEH, (B> -fi+ DgJ[Xlg - hi+W-fig).

Using the fact Ady, = H1 A and Adg = H; A, the second term on the right-hand side of (2.55)
is

MoEy +1pgEg _ E, Eg E, Eg
(M) = g gl |8 g lna = [ gl
Using the equation (2.40), we have

_ A Mo Eo +1pgEg
4E3/2

B mae— B i |a Ee A Eb
= Tt AR T gpp TR AR = | A gy [ e = | A s | 1

E Eg N .
_ <4E§l/2 Hy + 1532 Hz) (—4AUUEK —2REkn3 — 2AV\/E(WQ Wt )) )

We are ready to conclude that
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(Wa - )+ (Wp - i) = T A (22—{‘/2>—rAUA([H1,n]( o) U+ L. (520 ) - 1)

).EZ+[H2 n]( ﬂﬁ)iz) Ea tmac—EP mac
2EL2 M\SE2 1E32 1E2

— <2AUU\/E+ Rﬁng) Ak — Ay (Kalla + Kp1Lp)

2E1/2

—TAA ([Hl,n](

—TAA (j[X] (kupXo — kaaXp) -t + T1X] (kppXe — kapXp) -Ez)

(71X (kupXer — ke Xp) i) +7 (71X (X — apX) - &) + R,

where R3 is given by

Ry=—A,A (R -8+ T[Xlg1 -8 + R - 8+ T[XIga - & + £1[X]g - # + La[X]g - )

_ (A (2AVU\/E/< i R\/E/mg) _ (ZAVUx/E—i— R\/Eng) Ak — 2AU\/EKAU)

_ Apk g Ey _ AykcugEg
2F 2F

—24,cVEH, (82 -2+ D J[Xlg-fi+W-iig) — [A, 4E—g/2} e — |:A, 415—38/2} 1p

—2AkVEH, (E| - A+ DaJ[XIg - A+ W - fg)

E Ep o 2
- <4E‘;‘/2 Hi+ 57 H2> (—44.U Ek = 2RExcny = 2A4,VE (W - + Wy - £))

+(81-8), + (J[X1g1 - ), + (B2 -h) , + (T[Xlg2 - ) , + (L1[X]g - ), + (L2[X]g - B) 5.

Recalling the expansion of AU in (2.37), we rewrite the final two terms on the right-hand
side:

__MVV_'El M W_'EI_N w. & _N W&
- \vE), "\ VE VE ), "\ VE)

We calculate as follows:

W) (WA HiGpa)  Ha(kug) | 2UM
ve ), "\VE),”
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N 8-t + Du J[X]g - ' + Ba - + D J[X]g - 12
VE ’

since by the geometric identities (2.10) and (2.11), we have

Wf_2 +W.E_l_2U_M
VE). VE),” E

Then using the further identities

My = Lg — Egk, Mg =Ny — Eyk,
Ly + Ny =2k4E +2Ey4k, Lg+ Ng=2kgE +2Egk,

we may complete our expansion of AU:

AK Kaa 21 N Kap t

—TALA ([Hl,n](

') AZ)—& Hide— 2 tHyA
SEL2 2E2) Y oy > 3/2T 28K

—TALA (J[X] (kapXee — KaaXp) - B + TIX] (5 Xee — KapXp) -fz)

) t2+[H2,n]<

— <2AVU«/E+ R\/En3) Ak — Ay(Kg g +Kpiig)

T (j[X] (kep X — KeaXp) - i‘)a tr (J[X] (pp X — KepXp) .E2) + Rs

oy Hikpe)  Ha(kpp) 2UM S+ DaJIXlg 4 B B 4 D JIXIg -

vE vE E vE
(W) (i) (wei (ko E + Eqk) — W (264 E + Egk)
VE | VE ), \VE )T VE )P

(2.57)

Recalling that we are working toward an expression for the evolution of the mean curvature,
«, we plug all these expressions into (2.29), while also rewriting (v Ek)q = v/ Ekq —k Eq /2v/E.
These considerations yield the following:

LB (135) o 2 o () (350 0

VE 2E \2E1/2 2E1/2 2E12

A R Kop ~ R KBp ~ E, Eg
—TAvﬁ([Hl,n](zElﬂ)'t +[H2,H](2E1/2>'t)—8E5/21'H1AK SE 5/2TH2AK
A ~ ~ 2A,U 4 Rnj
- TAUE (j[X] (Kaﬁxa - Kouxxﬁ) : tl + JIX] (Kﬁﬂxa - Kaﬁxﬁ) 'tz) ( 2f >A
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Av(kalta tKppp) | T t
- == ;E dad +E<j[x](KaﬂXa_KaaXﬂ)'tl)

o

T o\ Ry V=Wt Vi—W-t!
+ﬁ(u7[x](KﬂﬁXa_KaﬂXﬁ)'t)+ﬁ+w(l€EQ)+ T Ko

Vo — W -2 Vo — W 2 UM? MH (k MH, (x 20 M?
2 (kEg) (—2 )K;;-i— + 1 (Kiha) + 2 (<14p) —

+ 2E3/2 JVE E 2FE 2E E?
B -t + D J[X]g - t' + B - + D J[X]g - 2
- M
2E3/2

N L (Vi—W-t! +N Vo — W 2
2E VE 2E VE ﬁ'
o

Since «; = (VEx); /VE + EixJ2E, using the evolution equation (2.30), we conclude that the
evolution of « is given by the following:

_ A Ak A Hi h .t H -
K’_Tﬁ 2E12) T ”2E<[ 1’“](2El/2> 1 2’n]<2E1/2) )

— Ay ([H (50 ) B (il (50 ) - ) - R L I
vog LM SE 22\ E12 gEs2 gES2 2

A
Ay (j[X] (ko X = KaaXp) - ¥+ TIXI (kX — apXp) - 2

(j[X] (KaﬂXot - KO(O(Xﬂ) : tl)a + ﬁ (j[X] (Kﬂﬂxa - KO(ﬂXﬂ) -t ) + 01+ 0o,
(2.58)

n T
2F
where Q1 and Q> are the following:

2A, U+Rn3) Vi—-W-t' Ayue Vi-W-2  Ayug
1= Ak + - Ko + — KB,
¢ ( 2WE ( vE 26 )t\TUE T )

(2.59)
Ry Vi—-W-t! V,—W-t? UM?  MH (kpe) MH, (cpp)
= (kEy) + ————(KE
Q=rpt apn Wt mp WE et e e
2uM? Byt 4 D JXIg 4+ By 4 DT XIg
- Er 2E3/2

L Vi—W-t! LN Vo —W- ¢ wo (Ve UL VEp 2.60)
2E\" JVE 2\ VE ), “\VE E T2 '
o

3. Preliminary estimates and useful formulas

In this section we state a number of useful lemmas. Some of these lemmas are given without
proof if they have appeared clearly in other works or are standard analysis facts. For others of
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these lemmas, we do provide a proof. To begin with, Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5 all
appear in Section 6 of [5], and thus we omit the proofs of these. In this section, we will need
the definitions of the Riesz transforms H; and the weakly singular integral operators G;;, which
are given above in (2.32), (2.33), (2.34), (2.35), and (2.36), many times. Before giving our first
estimates, we make a remark on regularity.

Remark 3. Throughout the sequel we will be estimating the unknowns and quantities related to
the unknowns in Sobolev spaces H® and related spaces (such as H 5=l and so on). In all instances,
the index s should be understood to be taken sufficiently large. This means that there exists an
absolute constant so € N such that as long as s is taken to satisfy s > sg, all of our estimates go

through. We do not count the minimum such value of sg.

Lemma 3.1. Let F be in H3/2, X € H**!. Let X satisfy (2.27). Recall the definition of the
operator K[X] given in (2.41) and (2.43); then K[X]F («, B) is in H® with

IKIXIF s < CA + X411 F ls-3/2.
Lemma 3.2.If f € H*T! and g € H*™!, then [Gij, flgisin HS*TL with the estimate

IGij, flgls+1 = M flls+1llglls—1-
Lemma 3.3. Let F be in H*V/2, X € HS*. Let X satisfy (2.27). For i € {1, 2}, recall the defini-
tions of the operators L;[X] given in (2.42) and (2.44), (2.45); then for i € {1,2}, L;[X]F(«, B)
is in HS with
ILiIXIF s < CA+ XN+ ) N Flls—1/2,  i=1,2.

Lemma 3.4.If f € Ht! and g € H®, then [ f, H;1g is in H"!, with the estimate

LS, Hilglls+1 < 1S ls+1llglls-
Lemma 3.5. Iffi € H® and g € H* 2, then [, H;1g - 0t is in H®, with the estimate

(A, Hilg - fily < [n[ls]lglls—2-

We next give a related commutator estimate, but the exact form of this did not appear in [5],
and thus we include a short proof.

Lemma 3.6. Let s > d/2. If f € H"! and g € H®, then [A, fg is in HS, with the estimate

1A, flglls < I flls+1llglls-

Proof. Notice that

[A, fle=A(fg) — fAg=—1f Hilge — |f, H2lgp + Hi(gfs) + Ha(gfp). (3.1)
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By Lemma 3.4, we have

I —Lfs Hilga — Lfs H21gplls < I flls+11I&lls-

When s > d/2, we know the Sobolev space H*® is algebraic, that is

[H1(gfe)ls = N fallsllglls < 11 flls+1llglls-

This completes the proof of the lemma. 0O

Next, Lemmas 3.7, 3.8, 3.9, and 3.10 express standard Sobolev estimates and are noted with-

out further proof.

Lemma 3.7.If f € H® and g € H®, then A(fg) — fAg — g\ f isin H®, with the estimate

IACfg) — fAg—gASflls =M fIslIglls-
Lemma 3.8. For s > 0, then

ITA*, flgllo <= C IV fllzoeligls—1 + £ lsllglize) .

Lemma 3.9. For s >0, f, g € H® then

172, ,11/2 172, ,1/2

I fglls <cClfllo 1A Ngls + 1A s gl ™ gl ™)

Lemma 3.10. For 0 <m < s, and f € H®, then

IA™ fllo < IIAS FI™/S | £

(3.2)

(3.3)

Next we have a lemma about the isothermal parameterization, which is related to the Gauss

equation and Gauss’s Theorema egregium.
Lemma 3.11. If X € H*"! then E — 1 is also in H'*.
Proof. By the equation (2.31), we have

AE =2(Xyp - Xop) — 2(Xpa - Xpg)-

The right-hand side of (2.31) is in H*~' () L! when X € H**!. This completes the proof.

3.4)

d

Next we have a lemma on the solvability of our integral equations. We do not include the

proof as the solvability is well-established in the related works [14], [30].

Lemma 3.12. If X € H'*!, «c € H, then 1 is well-defined and belongs to H°.

Then, having shown that u exists and is in L, it is possible to establish higher regularity.
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Lemma 3.13. If X € H‘Y'H,‘E € H**! and k € H®, then p is well-defined and belongs to H*.
Furthermore, we have W -t' € H*.

We also do not prove this lemma here, as it is similar to Lemma 7 of [2]; see also the discussion
in [14] as to why this invertibility is uniform for surfaces X with bounded Sobolev norm.

Next we give a lemma to establish the regularity of the normal velocity, in terms of the regu-
larity of the surface.

Lemma3.14. [f X € H't!, Ec H**' andx € H, then U =W -fie H*~\.

Proof. We sketch the proof. Recall the equation (2.46); then we have

N Mo ug N N Mo N
U=W-i= (22 ) v m( L)+ 71X1g -+ [H, :
n 1<2\/_E> 2(2\/—E> JIl ]g n [ 1 Il] <2\/_E> n

where

Xoo 3 X)) Eqy
JIXlg = K[X]g + Gy (g x (8 X %) )

2B T 4B
G gx Xy 3(gxXyEg+3(g xXp)E, G gxXpgg 3(gxXp)Eg
2\ %z ~ 4ES2 T2\ DEn T T e '

By Lemma 3.1, we have

IKIXglls < C(1+ X3 llglls-3/2 < Cllliclly, IXlls41)-

The operators G;; are of order —1; therefore

23 4B

263 4B
< Clklls X411 Ells41)-

HG (g x Xoe 3(g x Xot)Eoc)H Hg X Xoa 3(g x Xo)Eq
11 <c

s—1

It is similar to estimate terms involving G2 and G;2. We have established
I 71X1glls < Cixlls, 1Xlls+1, 1Es+1)-
Applying Lemma 3.5 and the estimate on o completes the proof of the lemma. O

Remark 4. If we substitute g to f and assume that f € H®, and we calculate that Dy, J[X]f =
JIX]1Dy f + L£1[X]f and apply Lemma 3.3, then we see that J[X]f € HsHL

Next we have a lemma on the tangential velocities. Notice that L, M, N € H s=lif X e g9,

Lemma 3.15. If X € H*t!, E € H*! and k € H®, then V; € H".
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Proof. We apply 9, to both sides of equation (2.4) and we apply dg to both sides of equation
(2.5), and then add those equations. It follows that

Vi U(L—-N) 2UM
Al =)= "7 _ ) . 3.5
(78)-(%57),+ (5%), =

By Lemma 3.14 we know that U € H*~!, and thus the right-hand side of (3.5) is in H*~2. We
therefore have V| € H*. Similarly, we have V, € H® since

(7)), (7).

This completes the proof of the lemma. O

We are now in a position to make estimates for a large number of related quantities.

Lemma 3.16. If X € H*t!, E € H*! and k € H*, then we have the following estimates

1Q1lls—1 = CIKllss X541, 1 ENs+1),

[Aills—1 = Clclls, IXlls+1, 1 ENs+1),  i=1,2,3,

lgills—1 = Clklls, IXlls+1), i=1,2,

IRills < Ciklls: IXls+1: 1 Ells+1),  i=1,2,
IEills—1 = Ciklls: IXls+1, 1 Ells+1),  i=1,2, (3.6)
18 -ally < Clells, IXlls41s 1 ENs4),  i=1,2, (3.7

R3]ls—3/2 < Cllclls: XNs+1. I Ells+1),

1Q2lls—3/2 = C(llkcllss IXls+1, | Ells+1)-

Proof. The estimate for Q; is based on the regularity of L, N, U, V;, W - t' and . The estimate
for A; € H*~! directly follows from the regularity of L, N, U, E and W - t. The estimate for
gi is based on the estimates of A; and . The estimate for R; € H® for i = 1, 2 follows from
Lemma 3.4 with f € H® and g € H*~!. It also implies E; € H* by Lemma 3.4. Based on the
estimates on R; and R, to establish E; - i € H*, we only need to estimate [H;, g - i with
g € H*2, and we are able to do so by Lemma 3.5.

Now we estimate R3. There are several terms which need attention. First, since g € H*~!, by
Lemma 3.3, we have £;[X]g € H*~/2, moreover (£;[X]g - t)y € H*3/2 and (Li [X]g - ﬁ)/3 €
H*73/2. Second, JI[X]gi € H® is the same as J[X]g € H®. And by Lemma 3.7, we have the
following estimate:

H (A <2A,,U\/EK + R\/Elcm) - (2A,,U\/f+ Rﬁn3) Ak — 2Avx/f/<AU)

= Clills, IXIs41 1 E ls+1)-

s—1
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Finally, for other terms which comprise R3, we omit the details but conclude that they are in
H L

We also omit the details of proof of the estimate || Q2lls—3/2 < Cllkls, X1, 1 Ells+1)
since they are similar to the details of the estimate of R3. O

Finally, we have one more lemma on regularity of the surface X; the proof of this may be
found in [5].

Lemma 3.17. If X € H*t! and « € H® and X is parameterized according to (2.3), then X €
HS+2.

4. Well-posedness with surface tension

In this section, we provide a complete proof that the three-dimensional interfacial Darcy flow
problem is well-posed, for any fixed, positive value of the surface tension parameter, . In Sec-
tion 4.1, we give an a priori estimate for the linearized system. In Section 4.2, we begin the proof
of well-posedness, setting up an iterated system of evolution equations. We prove that this sys-
tem has solutions, and we also prove estimates for the growth of the solutions. In Section 4.4, we
use these estimates to allow us to take the limit of the iterates, finding a solution of the physical
problem. We also discuss uniqueness and continuous dependence on the initial data.

We first study the well-posedness of the linearized Cauchy problem for . More precisely, we
will consider the linear Cauchy problem for 7:

B A An A A Naw 11 A Nap !
n=ri (W) — Ty ([Hl,n] <2E1/2) '+ [Hy, 8] (2E1/2) 1 )

A o Nep \ 22 (BB \ 22
— 1A, ﬁ([ﬂl,n](zEl/z)-t +[H2,n](2E1/2)-t)—

TtHyAn

Eg
HiAn— 8E5/2

Eo

QES2C
A A n

— tAus (X1 (10 Xe = 10aX) - 1 + TIX] (95X — nupXs) - )

T
+ —

A~ T A
7= (T1X0 (r0pXa = naaXp) 1)+ 2= (T1X) (945X = nupXp) - ) + 01 + 02,

“.1)

with initial condition n(t, X)|;—¢ = 10, where t > 0, Q1 and Q, are nonhomogenous terms.
Notice that the relationship between t', fi and X is the same as before.

4.1. The a priori estimate
We now prove an estimate for solutions of the linearized system, keeping in mind Remark 3.

Theorem 4.1. Suppose that E € C([0, T], H**! N cl(10,T1, H~YY and E = Co > 0 for some
constant Co, X € C([0, T], H**' N C'([0, T1, H*~') and k € C([0, T1, H'(\C' ([0, T],H*~3).
Assume that X satisfies (2.27). We assume that the initial data ng € H® and the nonhomogenous
terms Q1 € L2([0, T1, H*~) and Q> € L*([0, T, H~3/%). Then there exists a unique solution
n € C(0,T'], H®) of (4.1) with initial data n|;,—y = no, and there exists a constant m > 0 such
that the following estimate holds:
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t X t 2
tm | AS3/ 2|2 51014 Q211 5,
||n||s+ec”/fods5ec” |I770||s+/ — SRas). @2

0 0
Proof. The well-posedness for the linear Cauchy problem for (4.1) will be achieved by classical
steps, such as approximation, demonstration of existence of approximate solutions, passing to
the limit, and demonstrating uniqueness. The main step, which is what we will now demonstrate,

is to perform energy estimates; restated, other than the energy estimates, the details are routine.
We define the energy

E=E+E&, “4.3)

with &y = %Iln ||% and & = %HAsn ||%. To begin with, we take the time derivative of &y:

o / / S———r

Since s is sufficiently large, using the evolution of 1 and preliminary estimates in Section 3, we
immediately find

d&

TE=C(E4101+ Qallisp).

We next take the time derivative of &;.

d& An s s
—1—zf/ < (2E1/2>)do¢dﬂ+t// (a5+320) A2 0sdadp

+// (AS+3/2'7) AT2(Q) + Qr)dadB,  (4.4)

where Q3 is given by

A ~ Naw 11 N Nap !
Q3 == —Av— ([H],ﬂ] <2E1/2) U+ [HZ’n] (2E1/2) -t )

) a1 (100 2) -
L1, n ](2151/2 CAl T )t

Eg
1An — === H2An

Eq
"2F < 8ES/2 8ES/2

A p A
—A, Y (j[X] (napXe — NaaXp) -t + TIX1 (X — 10pXp) _tz>

~ 1 A
57 (T1X0 (X = naaXp) 1)+ 5 (X1 (X = napXp) - #) . @5)

We first deal with the first term on the right-hand side of (4.4). Noting that A = —A?2, we find
the following:
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N S A—zn
// ( <2E1/2>>dad,3— // A'n ( <2E1/2))dadﬂ
A
__ / / ( As+3/z,7) ASTI2 (4E3’/’2)dadﬂ
1 1
B // (As+3/2n) AS—32 <E [A, W} A2n> dadp
_ _// 4;3/2 (As+3/2n) AS+3/2nd(¥dﬂ _ // (AS+3/2n) [AS—:’)/Z’ 4E13/2:| A3ndadﬂ
_ // (As+3/2n) AS—32 <é [A, #} Azn) dadp.

By Lemma 3.8, for sufficiently large s, we have

1 1
s=3/2 3
[l =< [+ ()

s+1/2
By Lemma 3.10, | AST1/2p|o < c||AS+3/217|| A7 7l 7 . Using this bound, Young’s inequality,
and (4.6), we have

1
’_// (As+3/2n> |:As—3/2’ W] A3ndozdﬂ'
”As+3/2n”2

clinlly 7 1A 205 S 4 ol Al < ——— " +CE,

||A3n||L»o>

<clnllsti2 < cUinllo + 1A 2nllo).  (4.6)

1
4B

A3 n]ls— 52+ H

L® 5=3/2

where @ is a constant and will be chosen later.
By Lemma 3.6, we have

[ G 7))

So by Young’s inequality,

<clA?nlis=32 < clinllo + 1A 2]0).
0

) ) l 1 AS+3/2 2
‘We make our first conclusion that
A [ A% 2/ AST3/ 23
+3/2 0
/f (Ap) A’ <ﬁ <2E1/2>> dadf < f/ E3/2 A ,7) dadf+ FCE.

(4.8)
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Now we consider the second term on the right-hand side of (4.4). That is, we consider

E
cEes Hy A — o HoAnlls—32 < c(linllo +
IAST1/29]10). Otherwise, there are many similar terms comprising Q3, and we only give de-
tails of bounding a couple representative examples of these, in particular ||[H;, ] f|ls—1,2 and
| X1 f lls—1/2. By Lemma 3.4, ||[[H;, ] f ls—1/2 < [IAlls—1/2]l fls—3/2 and by previous discus-
sion, |J[X]flls—1/2 <c(1+ ||X||s+1/2)2||f||s_3/2. Here, f is in terms of second derivatives of

nin Q3,0 || flls=3/2 < lInlls+1/2. We conclude that

| Q3lls—3/2. First, it is easy to say that || —

10315372 < c(llnllo + IA*Tn]lo). (4.9)

So by Young’s inequality again,

’// (As+3/2n) A2 0sdadp

Finally, by the Holder inequality,

ASH3/2p112
l nlig ey

=

T|| AST3/2n3 Madldhs 027 3
T

<

W (A5+3720) A0, + 02)dadp

Now we make the conclusion that

) 2
€ L (a2, id LSRR @01+ 0217 3
ar = —r// 152 (A n) dadp + +Ct&€+ .

T
(4.10)

We know E > 0, and E € L when s > 1. Then there exists m > 0 such that —45%/2 < -—m.
Now we take @ =5/m. Then

dE  tm||AS32p)2 5101+ 0217
ae Il g < CiE+ =32
dt 5 mt

@.11)

By Gronwall’s inequality, it follows that

5101+ Q213 3,

mt

t t
ASHI/2, 12
E(t)+eC”[Mds§eC” 5(0)+f

0 0

ds|. o @12

Remark 5. This above estimate is not uniform in 7, since 1/t — oo as T — 0. Thus the time of
existence is going to 0 as t goes to 0.
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4.2. The iterated system

Now we devote ourselves to deal with the nonlinear system for X and . We take the initial
data Xo € H**t2. We may take this surface to have a global isothermal parametrization [14].
Assume that there exists ¢y > 0 such that Ey > c¢o.

We will construct (X!, E!, k') by an iteration method, given an initial X0, EO, and «©. We take
these to be given by, and calculated from, the initial data X¢. Then E 0= Ey= Xg Xg = X% -X%,
and Xg . X% = 0. The second fundamental coefficients L%, N°, and M? are given by the equation
(2.6) and «? is given by the equation (2.28); then, * € H*. Solving the equation (2.16), we
get the solution u°, and WY is then defined by the Birkhoff-Rott Integral (2.24). Moreover,
U%=WO. il Then (V?, V20 ) is determined by solving the following system:

VP vy \ U0 -NO
VEO ) \VED . EC
VP vy 2u°Mm°
Vo), \ve ) T

Assume that we have already constructed (Xl, P El). We next determine Ml by solving
(2.16). Then we use the Birkhoff-Rott integral (2.24) to get W!. We denote the iterated quan-
tities related to X! as follows:

1 1 [ )

a0 Xy 01 Xp Al Xo x Xp

XL, | XL XY, x X
L'=X,, -,  N=X, i, M =x, 4

We also let U = W' - i,
Now we describe how we find the next iterates. To begin with, we construct k!t to solve the
linear Cauchy problem:

A [ Akt A ilt] " KLt N
I+1 N/ oo 1,1 N of 1,1

=71—|—)—-71tA,— | [H], ——— |-t 4+ [H>, — -t
“ TZEZ(Z\/_ El) i "2E! L n]<2\/_ El> [, ] 2«/_ E!

A Kl—/ls-l K/ZS_EI
—tAy— ([H, A | =22 ) & 4+ [Ho, Bl | 22 ) - 8%
"2E! ( 2WE! 2WE!

l

E
H, At — B ‘L'HzAKl+l

Eq
T R(EH2T 8(E!)5/2

A 1 I+1~71 I+1y! 1, 1 I+11 I+1 22,1
_tAvﬁ(j[X](Kaﬁ XU—KQZ Xﬁ>~t' +j[X](Kﬁﬂ Xa_Kaﬁ Xﬂ).t’)

T 11 1+~ I+ \ LI T 11 1+~ I+ \ 2.1
+ 52 (j[X](Kaﬂ X, — il Xﬁ> 1 )f“ﬁ (j[X](Kﬂﬁ X, — il Xﬂ) i )

+ 0\ 4+ 05 “.13)
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with initial condition «!*1(z, X)|;=0 = Ko, with T > 0, and where Ql1 and le are functions of
Xl k!, E! ul Vl, V2l, Ul Ll Nl Ml th: l, fz,l, and 1/, given by (2.59) and (2.60) respectively.
Secondly, we determine (VH’1 VH'I) by solving the elliptic system

VH—I VH—I Ul Ll _ Nl
1] — (2 A ), (4.14)
,/El ,/El p El

o
VH—I Vl-‘rl 2UIMI
) 4[] = : (4.15)
VE' ), \VE! E!

o

which enforces the isothermal parameterization.
Let X!*! be given by the solution of the initial value problem

§i+1 — Ulﬁl + Vll+lil’l + V2l+]E2,l, §l+1|t=0:X0' (416)
We have one more intermediate variable X', which is given by solving the elliptic equation
AR R 0, I 5‘(?—1 _ i+ (4.17)
o . .
Now we are ready to construct X/*! by solving the following elliptic equation

Finally, we define E/*! also by solving the following elliptic equation:

AE — P =t XD - XOE - X — (X’+1 XEH X XET. 4.19)

4.3. Estimates for the iteration

As we now know that the iterated solutions exist, we provide estimates for the solutions and
related quantities at each step, keeping in mind Remark 3 on regularity.

Lemma 4.2. The iterates (X!, E!, k') are defined for all | and there exists T > 0 and positive
constants Cy, C1, Cy, C3 and Cy, such that for all I, for all t € [0, T1, (2.27) is satisfied and we
have the following bounds:

E'>Cy>0, |X, xX}|>Co>0, (4.20)
e I cogo. 7y 19y < C1. (4.21)
X" Nl coqgo. 7 s+1y + NE N coqo. 71: ms+1) < Ca, (4.22)
19l cogo, 7 1e—3) < 3 (4.23)

||8[Xl ”CO([O’T];HA'—I) + ||8, El ”CO([O,T];HS’I) < C4. (424)
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Proof. We proceed by induction. We will determine Cyp, Cy, Cy, C3, and C4 as we go. Given
the above initial data, the conclusions are immediately true for / = 0 for any Co < cp. As-
sume that (X!, E!, k) exists, satisfying (4.20), (4.21) (4.22), (4.23) and (4.24). By Lemma 3.16,
we have [|Q! 1l 120,71 55-1) < C(C1, C2) and || @}l 20,71, zrs-3/2) < C(C1, C). Furthermore
Theorem 4.1 shows that the solution of (4.13), k!t is in CO([O, T]; H®) and then 9!l in
CO([O, T, H 3’3) for some T > 0. Moreover, by the energy estimate (4.2), the estimate of !t
satisfies

I L @O)lly < eCCr D kgl + 51 CDTC(Cy, Ca) /.
Hence taking C1 =2||kpl|s, we may take 7" small enough (independent of /) such that
<" (@)l oo 0,71 9y < C1.
Using Lemma 3.15, we have
IVillLeeo,11: %) + 1 VallLee o, 71, m5) < C(Cy, C2).
By the evolution equation (4.16), X+ ¢ CY(0,T1; H~ 1) and
IX T oo qo.7y: 151y < 1Xolls—1 + C(C1, C)T. (4.25)

Hence we may take 7 small enough such that |Iil+l oo, 77: 51y < 2[1Xolls—1. By elliptic
equations (4.17) and (4.18), we then have X/*! € ([0, T]; H**') and

X Looqo.77: 159 < CUXolls—1. ko lls)s (4.26)
X oo o,y 541y < CUXolls—1. lIxolls)- 4.27)

Moreover by elliptic equation (4.19), we have E*1 e ¢0([0, T1; H**!) and the estimate
HE™ M oo o, 7 1y < CUXolls—1, o)
So we now take Cr = max{2C (|| Xolls—1, lIkolls), IXolls+1}, the estimate (4.22) holds. This

choice of C, implies that T can be chosen in (4.25) to be independent of /.
We know that by the evolution equations (4.16) and (4.13),

18:X* M oo 0,73, 1-3) < C(C1, C2)
and
8: L (1) 153 < C(Cr, C)(1 + ! TH (D) l5) < C(Cy, C2)(1 + Cy).

Taking C3, such that C3 > C(C1, Cy)(1 + C1), we hold the estimate (4.23). Taking the time
derivative of (4.17) and (4.18), it follows that

19X L 0. 7 151 < C(C1, C2, C3). (4.28)
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And, taking the time derivative of (4.19), it follows that

18 " oo o, 1r5-1) < C(C1, Ca, C3).

So we take Cy4, such that C4 > C(Cy, C3, C3), then getting the estimate (4.24).
Notice that if s is sufficiently large enough such that H*~! ¢ L, then

t
E ()] = Eo — / 8, E'*ds > co — 1Ci.
0

and

t
X5 (1) x X (O] = X 0) x X (0)] — / 8,XL (s) x X (9)ds = co — 1C4Ca.
0

So we can take T small enough such that c) — TC4 > Cp and cp — T C4C, > Cyp. Similarly, since
s is sufficiently large and since we may take 7' sufficiently small, the estimate (4.28) and the
initial condition (2.26) combine to imply (2.27). This completes the lemma. O
4.4. The limit of the iterated system

In this section, we prove that we have a Cauchy sequence, which implies the convergence of
the iterative procedure. We will prove existence of a limit in a low norm; regularity of the limit
follows primarily using the uniform bound in the high norm. The main result of this section is
the following lemma.
Lemma 4.3. The sequence (X!, k!, E') is Cauchy sequence in the space

(0. 71 H), €°(0,T); H?) and C°([0, T1; H). (4.29)

Proof. In the proof, we use some of the same variable names over again but with different

meaning. We denote (8X, 8k, E) = (X!T! — X! !+ — ! BV ED sp=p!t — pf, 8U =
Ut — U!, and so on. We define an energy functional

D _! X2 1 2, 1 A2k ||? 1 E|? 4.30
z—2||5 |I3+2I|5KII0+2II 3/<||o+2||5 lI5- (4.30)

As in Lemma 3.14, we have
18U |13 < CDy. (4.31)

Furthermore, by the definition of (4.14) and (4.15), we have

I8V 13 < CDy—1. (4.32)
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We now get the equations for the difference of the /-th and (I + 1)-st iterates:

A Adk A 8k, A Sk N
Sk =7T— | —— | — 1A H”‘l aw ). ¢! H7Al ap i
" ’2El<zm> ' 2151([1 ]<2JE B P/

() e (52) )
2E! 2WE! 2W/E!

! El

o B
— WTH]ASK — WTHQASK

A . .

- tAV—l (T0X') (Brcap Xl — SrcaaXly ) - £ + TIX] (85X, — O Xy ) - £1)

o (T1X7) (BrapXl, - o Xy ) ) + ﬁ (71X'1 (81X, — k0 Xly ) - )
+Fl! X ED = FIP G XL D 4 0 - 0+ 05 - 05

2El

Notice that we are using both F! (/cl, X!, El) and F!-1 (Kl, x-1 El_l) above; we only write out
the formula for F!(«!, X!, E'), as the other formula is the same except that all quantities except
the curvature term just make use of the (I — 1)-st iterates. The formula for F' l'is

A [ Ak A Kl k! .
Flid, X!, E! _7A iy A [ H, «f ) g1l
(r )= By i TAvs [Hi,n'] \/ﬁ +[Ha, /'] VB

A I Klﬁ o I K/lﬂﬂ o
— 1Ay — | [Hi, 21| %= | - + [Hp, 0| /= | - t*
Vo E! 2V E! 2WE!

Eq . Ej
_WTHIAK S(EI)S/ZtHzAK
—tAvs (j[Xl]( Kl = kb Xl ) - B+ TIX (b XL — X ) - 1)
T A A
+ 5 (71X (il = kb X} ) -t”) + ﬁ (71X (ihs XL, — lXy ) - B1). (433)
First, similarly to (4.11), we have
d1 tm|| A7/28kc||2
wr 2/5 2 4 (A%Sk) dadB + rmlA okl §th8/<2+(A28/<)2doedﬂ
SUF !, X! ED — FIPH !, XL EFDIR , + 100 + 05— 07 = 0571 )
n . (434)

mt

With s large enough, as in prior estimates of Q1, O, we can conclude that

IF ! X ED — FIH el XL EPDIR 100 + 05— 0 = 05 IR, = CDy.
(4.35)
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By Gronwall’s inequality, it follows that

1 1 5CeCT!
5||8x(r>||2+EnAzax(t)uzs — / Dy—1(s)ds. (4.36)
0

Now we discuss X!*! — X! and E/*! — E!. First, by the equation (4.19), we have
ISE|3 < Cl18X 13- (4.37)
Then by equation (4.17) and (4.18), we have

18X 13 < 126 XE! x X — 261X x X )17 + 1XH - X1
<Clt =712 X = XN3 4 X = XU)2
<Cle! =712 o)X XT3,

and by equation (4.16), have

t
X - X2 < ce / Dy_1(s)ds. (4.38)
0
Thus, we conclude that
t
Dy < Ce! / Dy_1(s)ds. (4.39)
0
(Ccni=! -
Moreover D;(0) = 0. Hence, we deduce for [ > 2 that D; < eCtW. This implies that
n—1)!

(X!, k!, E') is a Cauchy sequence. O
4.5. Well-posedness with surface tension

In this subsection we state and prove the main theorem of Section 4. We take s large enough.
Let ¢, c1,d be positive constants. We define an open subset @ C H**2, such that for every
X € O, the following conditions hold:

X542 <d, (4.40)
E(a, B) > co, 4.41)

X(a, B) — X (', B)|
(@ —a)?+(B—p)?

>y, forall a#pB. 4.42)
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Theorem 4.4. Let the surface Xo € O be globally parameterized by harmonic coordinates
(namely (2.3) holds). Zhen, there exists a time T > 0 (T may depend on t) and a unique so-
lution X € C%([0, T), O) for the Cauchy problem

X, = Ui+ Vit! + W, t?,

Mo = TKg — 2Av\/EW'E1 — Rzq,
pp=tip —2A,vEW -t — Rzg,
X(t = 0) = X,.

(4.43)

Remark 6. When we say X € H*, this means that X(«, 8) — («, 8, 0) is actually in H*, since
the surface X is asymptotic to the plane at infinity.

Proof. First, it remains to show that the limit of the iterates is a solution of the original system.
We have proved that (X!, !, E') is a Cauchy _sequence. Moreover X' and X! are also Cauchy
sequences. We denote the limit of (Xl, ' EL X il) as X, k, E, X, i). Then the limit satisfies
the system (4.14)-(4.19) without index / and / + 1. In particular, we need to verify the system

)N(t =Un+ V]El + VQEZ,

AX - X =2X, x X5 - X, (4.44)

AX — X =2X, x X — X, (4.45)
1

AE — E =2(Xes - Xop = Xaw Xpp) = 5 X - X + X - Xp). (4.46)

For the existence of a solution it is essential to prove the following relations:

o - L+N
X=X=X, E=XoXue=Xs-X5 XoXp=0, x="7—.

(4.47)

These relations imply then that AX = 2 Exi. The above relations all hold but we omit proof here
and refer to [28] which gives all the details.

Now we demonstrate the highest regularity of X. The solutions (X!, E') of the iterated equa-
tions are in HS+! x H, uniformly bounded with respect to /, and thus the limit (X, E) is in this
space with such a bound. Then X can be bounded in H**? since X satisfies (2.3). Considering
(X!, k'), at each time there is a subsequence which converges weakly in H+% x H* and the limit
must be (X, ). Therefore at each time 7, (X(-,1),«(-,1)) € H*%2 x HS. It remains to show that
X € C%([0, T1; H*12). We do not include all the details, but this can be done by adapting the
corresponding argument for regularity of solutions for the Navier-Stokes equations in Chapter 3
of [19]. We sketch this argument now.

First, we prove that the solution is strongly right-continuous in time at r = 0. We will need
to prove that (X, k) € H*! x H* is strongly right-continuous in time at r = 0. The steps are
to first show that (X, «) is weakly continuous in time with values in (H s+l 5 H9)Y: this follows
easily from the uniform bound and the strong continuity in (H SHUx H “/), for 0 < s’ <s. (This
continuity follows from the continuity in a low norm established when we proved the iterates
form a Cauchy sequence, the uniform bound in the high norm, and interpolation.) Then, it is
shown that the solution is strongly right-continuous in time at + = 0 in the highest norm; this
follows from the energy estimate and Fatou’s Lemma.
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The next step is to use parabolic smoothing; From the estimate (4.11), we see that «! is uni-
formly bounded in the space Lz([O, T; H s+3/ 2). Since this is a Hilbert space, we see that our
sequence k! has a subsequence with a weak limit in this space, and this weak limit must be «.
The existence theory can then be repeated in higher regularity spaces starting from almost any
positive time, ¢, with initial data X(-, ). Using the uniqueness of solutions, the solution starting
from time ¢ and the solution starting from time zero must be the same. It can then be concluded
that the solution starting from time ¢ is continuous in H**+? (since H**? would no longer be the
highest regularity), and we are able to do this for any arbitrarily small value of ¢. Together with
the right-continuity at time zero, this argument implies X € C°([0, T']; H*1?).

Finally, to obtain uniqueness of solutions, we argue as in the proof that (X!, !, E') is a Cauchy
sequence, making an estimate for the difference of two solutions. O

5. The zero surface tension limit

We now consider the behavior of solutions of the system (4.43) as T — 0. We will demon-
strate that as T vanishes, the sequence of solutions forms a Cauchy sequence. First, we will find
solutions exist on a uniform time interval, and then we are able to take the limit as T — 0. To
get the uniform time of existence, we will revisit the energy estimate in the case that a stability
condition is satisfied. For the new energy estimate, our first step is to make some decompositions,
in order to make clear the effect of surface tension.

5.1. Decompositions

As we continue to rewrite the equations of motion, we will begin to isolate the contribution
from surface tension. That is, for quantities which are related to the velocity, such as u and W,
we want to decompose them into two parts, one of which is proportional to 7, and one of which
is not. We decompose the equation (2.16) as

i+ ADji= Rz, (5.1)
wt+ AUt =« (5.2)

(Recall that the operator © was introduced in (2.17).) Equation (5.1) and (5.2) can be solved for
it and ust respectively since I + A, is an invertible operator for all |A, | < 1 [14]. Continuing,
we write g = Tl + [y and pg = ru%’t' + 118, where
Uyt =ka =28, VEWS -t it =kp — 24, VEW 2, (5.3)
flo = —2A,VEW -t —Rzy,  fig=—-2AVEW. - — Rz. (5.4)
Similarly, we define W%" and W. so that W = t W5t + W:

X-X

5 1 / / -

Stz KR KR,

WS (@) = —47TPV //(,u; X —,u/sg X,) X X X[ dao’, (5.5)
R2

W(&):—LPV (X — X)) x X=X da’ (5.6)
4 R & '
RZ
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As before, in (5.5) and (5.6), quantities followed by a prime are evaluated at @', while quantities
without a prime are evaluated at a.
Given these decompositions, we then decompose the normal velocity as U = tUS" + U:

UM =Wh, U=W-h

We can also decompose V; as V; = rViS“‘ + ‘71', for i € {1, 2}, where the pieces should satisfy the

following equations:
VS.t. Vs.t. Us.t. L—N
(). (),
VE). \VE), E

_2U'M

£ (5.8)

Vi v, U(L — N)

) o (2) =22 5.9
(ﬁ>a (JE),S E o2
‘71 ~2 2[7M

—L Z2) == 5.10
<ﬁ>ﬁ+<ﬁ>a E 410

We also make the decompositions g = g% + 2, | = rEﬁ't‘ + B and Ep = ‘L'E;'t' + Eo.
We only give the definition of E}*, but omit the details of E;, E5" and &5 since they are almost
the same:

gS't' = /L,Sét'xa - IMS)[LX/S» g= ﬁﬂxa - l’zaxﬁ (5.11)
s.t. s.t. s.t. s.t.
=St o Haa o M“ﬁ _ 21 Mo L _ 2+ [ Mo M
O} —[Hl,n](2E1/2>+[H2,n]<2E1/2> [Hl,t]( ¥ ) [Hl,t]<—2E )

R Ms.t.M R Ms.t.N s't'E Hs.t. EO{
_ Wz ) (28 ) Ol R Ol i

Now, we are ready to give the decomposition of X;:
X; = tUSH + VIR + oVt 4 Un4 Vit + Wt (5.12)
We need to decompose the evolution equation for «, (2.58), more carefully. Firstly, we de-

compose Q; as Q; = rQ?'t‘ + éi. We give some of the formulas but omit others as they are
similar:

o 2A,USt V]s.t. —Wst . ¢l ~ Av,u;‘t' st.t. —Wst .12 B Avllvig't'
Ql = 72@ AK+ \/E 2E KO[+ ﬁ 2E Kﬂ’

~ 24,0 + R Vi-W-i' AR V-W- 2 AJ
Q1=_< wU + n3>AK+(1 _ vﬂa)lca+< 2 _ UMﬂ)Kﬁ,

2VE VE 2E JVE 2E
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R;‘t' Vls.t. —Wst . ¢l st.t. —Wst .82 Ust m2 N MH, (K/'LE[A)

s.t. __
03 (kEq) + SE2 (kEg)++ I °E

T 2E 2E3/2

M H» (KM/SéI-) 25 M2 E}t Ay Do J[X]g%t - 4 Eat 24 Dﬂj[X]gs't‘ 2 y
2E E? 2E3/2

L VSAt. _ Ws.t. . El N VSI _ WS.t. . 22 Vls~t‘ Us.t.L VSI. Eﬂ
b)) [ ) 42— + 2 .
2E VE 2E VE 5 JVE E 2E3?

o

We now conclude that the evolution of « satisfies

+

e A (2 ) eal (im o) E A i!

en B ) () ) S o
"2F ’ 2E1/2 ’ 2E1/2 SES/2 8 5/2
A N ,
g ( [X] (kapXo — kaaXp) -t + TIX] (kppXa — kapXp) - t )
T R T )
+ ﬁ (j[X] (KozﬂXa - KaaX/g) . t1>a + ﬁ (j[X] (Kﬁﬂxa _ KaﬂXﬁ) ~t2)

+TO +T0 + 01+ 02 (5.13)

We note that the evolution equation without surface tension, i.e. in the case t = 0, is the follow-
ing:

-~ 24,U + Rns Vi—-W- il A
K = 1—|— 2 =— AK+ - K,
=0 0 2WE ( ﬁ 2F o
VQ—W'EZ Avlig ~
_ . 5.14

As shown in [2], the Cauchy problem for (5.14) is well-posed under the assumption

24,0 + Rns ..
AU R )= >0, (5.15)
2VE

for some constant k. In this section, we also make the above assumption. Note that this is an
assumption only on the data.

5.2. Estimates for the decomposed quantities
First, we establish the higher regularity of & and u5*

Lemma 5.1. If X € H°2 and k € H®, then there exists a nondecreasing function C(-) such that

IElls+j = CUXlls+7),  for j=1,2, (5.16)
It ls < Clklls, 1Xls+1)- (5.17)
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Remark 7. We do not prove this lemma here. It is similar to the proof of Lemma 7 of [2].
We immediately conclude the estimates for g3! and g from (5.11):
g™ lls—1 < Clliellss 1Xls+1), Iglls+1 < CUXls42)- (5.18)
Now we consider W, W5 In this subsection, we assume that X € H512 and k € HS.

Lemma 5.2. We have the following estimates for the velocities:

1Ty < CUIXlls+1). (5.19)
10541 < CUIXl542), (5.20)
1US fls=1 < CAUIK s X5+ (5.21)
WS-t < Clliclls. IXls41). i=1.2, (5.22)
IW -l < Cliklls IXIls41).  i=1,2. (5.23)

Proof. We will give the proof of the estimate of US* and W*!.t' and omit the remaining details.
First recall the equation (5.5),

. Ms.t. .
Wit = H, ( ’2“1 /2n> + H, (Tﬂ]/zn) + JIX]g*, (5.24)

where

s.t Xcmt 3 s.t. on Eot
JIXlg* = KIXIg*" + G (g . (87 X Xa) )

2E32 4ES?
+G gs.t. X Xaﬂ _ 3(gs‘t. X on)Eﬁ + 3(gs‘t. X Xﬂ)E(x
2\ T2E? 4ES/2
4G gs‘t' X Xﬁ/g _ 3(gs't' X Xﬁ)Eﬁ
2\ 2E2 4ES/2 '

By Lemma 3.1 and the estimate (5.18) we have

IKIX1g™ s < €+ X418 =1 < Cllic s, 1XIl41)-

Using the fact that the operator G;; is of order —1, we estimate the last three terms on the
right-hand side of J[X]g®t. Now we are ready to conclude that

IT1X18%" s < Cllillss 1Xlls+1)-

. . st Ty AN
Itis obvious that || Hi (757 1) lls—1 < C(llklls, IXls+1) and | Ha (G ) lls—1 < C(llic s [ Xl541)-
This completes
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||[]S.t.||s_1 S C(”/{”s, ||X||S+1)

Rewriting W™, and then taking the inner product with t', we have

s.t. S.t.
R At i A M i A Mg i
Wt = J[X]g™ -t + [Hi, A)] <F“1/2)~t’+[Hz,n] <W>t (5.25)

t

So, applying Lemma 3.4 and the estimate for ;*! will complete the estimate WSt . ¢, <

Clliells: Xlls+1)- O

Now we are ready to estimate ‘7,-, Vf", i = 1,2, using the equations (5.7), (5.8), (5.9), and
(5.10).

Lemma 5.3. We have the following estimates:

1Vills+1 < CUXls51), (5.26)
1Vills+2 < CUIXls12), (5.27)
IVEUs < Cliclls, 1Xls41)- (5.28)

We omit the details of the proof. Moving on, to estimate the terms R;“, we need estimates for
gt fori =1, 2 first.

Lemma 5.4. We have the following estimates:

1EF ls—1 < C(likclls, IXlls41)s (5.29)
18- hills < Clicllss IXlls41), (5.30)

fori=1,2.
The estimates (5.29) and (5.30) follow from the estimates (3.6) and (3.7).

Lemma 5.5. We have the following estimates:

105 1s—1 < ClIklss 1Xls+1), (5.31)
105 15372 < Cllkc sy 1Xlls41)- (5.32)

Proof. First, we have the expression

Qs.t. _ _2Ast.t. A+ Vls.t. — WSt ! B Avﬂgjt' - st.t. — WSt . 2 ~ Avﬂlsg't' .
W VE 2E VE 2E
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To estimate the first term on the right-hand side, by Lemma 3.9 we have

H S U A
— K <c|l—= TUAK) |ls—1
2\/E s—1 \/F N ’
<clElls—1(NU* Nall AGH lls—1 + 1T N1l AG) la)-
So by Lemma 5.2, we have || — 2A”—US'LA(K)HS,l < C(llxls> IX]ls+1). The remaining terms are

. . L 2VE
similar and we omit further details. O

When considering the estimate of éz, it is similar to the case of T = 0 (see [2]). We will state
a conclusion here without further proof.

Lemma 5.6. We have the following estimate:

102115 < C(IXlls52) < C(llie s, 1XIl+1)-
5.3. Uniform time of existence

Recalling Remark 5, we know that, thus far, the time of existence of a solution is dependent
of 7. Therefore before we may take a limit as v vanishes we must revisit the energy estimate to
get a uniform time of existence. We will introduce an open subset of O. Letting k > 0, Oy C O
is defined as

2A,U + Rn3

(’)kz{Xe(’):V&, TE (a)>/€>0}. (5.33)

We have the following theorem:

Theorem 5.7. Let the surface Xo € O be globally parameterized by harmonic coordinates
(namely (2.3) holds). There exists T > 0 such that for all T € (0, 1), the silution of Cauchy
problem (4.43) with initial X" (-, 0) = Xq exists on [0,T], and X* € C([0, T]; Oy).

Proof. We do energy estimates in the same way but use the new expressions for the evolution
with respect to the decompositions. We define the following:

&= % / f «’dadp, (5.34)
— l s+1 2

£1=3 /f (J X) dadp, (5.35)

&= % / / (M)’ dadp, (5.36)

E=E+E +&. (5.37)

To begin with, we take the time derivative of E:
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d&) // kirdadp.

Since s is sufficiently large, using the equation for ; and the preliminary estimates, it immedi-
ately follows that

d
% < Crexp{C2&}.

Here, the constants C and C> may be taken to be uniform with respect to t € (0, 1).
Recalling equation (5.12), we next take the time derivative of &:

d51
// JSP2X 15X dadB < | Xls201Xells

< ||X||S+2||rUS'tn + VI eVt 4+ Un4 Vit + i
< X520 U s Iills + X552z VEE + Vs + Un 4 Wit + Va2
< 1llklls+1C(E) + C(E).

By Young’s inequality, ||k ||s+1C(E) < % I« ||§Jrl +ntC(E)2, with parameter n to be chosen. So
we conclude that

1 T 2
o = ;||K||S+1 + C(&). (5.38)

Finally we take the time derivative of &. Recalling the estimate (4.10), we have

dé’
&2 //AKAK,dad,B

1 3T AST 2[5
—7 / / YYRIE (AS+3/2K) AT idadB + ”T”O +Ct&

+ / / (AS+3/2K) N5 + 05Y) ddB + / / (M%) A* (Q1 + 02) dadB.  (5.39)

Using the Holder inequality and the estimate of Q;t from Lemma 5.5, it is immediate
that

s+3/2 ”(2)

r// (As+3/2K> AS—3/2 (Q%.t. n Q%.t.)dadﬂ < ﬂ“\% +C©).

Thus by Lemma 5.6 and the Holder inequality, we conclude that

// (A*K) A* QadadB < C(E).

Next we consider
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// (AXK) A QrdadB =

//|:(ASK) A <—M‘);7#AK> +(AS/<)AS<( 1‘2'“ - A;Z“)Ka

Notice that we have the following estimate:

S WL ~ U _W.2 AT
//(ASK)AS<<V1 Jg t —AZVZ“>KQ+<V2 Jg v_ ;Zﬂ)Kﬁ)dadﬁSC(E),

since
—W-tl AR
_ Mo <C©)
JVE 2F
and
V—W-  AQ
2 _ viLB < C((‘:)
JVE 2F
s

It remains to deal with one term,

S) AS 2A,U + Rn3 // 2A,U + Rn3 s+1/2,\2
A ———— Ak |dadB = ——(A dad
// ( 2« E K) wdp = 2WVE ( erdedp

_/:/ (AS+1/2K) |:AS—1/2’ 214”;]7\/%;’13} AKdOldﬂ

By Lemma 3.8, we have

H[A s 24, U+Rn3i|
2VE

As long as the solution remains in the set Oy, we have

SCElkls+12=CE) + 5 ||Av+1/2K||

~ k
ff (A*k) A* Qrdadp < —EHA‘Y—H/ZKHZ +C(&).
‘We now conclude that
d& k
= = —mt|| AT k|25 — EIIA””ZKIIZ +C(©&), (5.41)

where m and n are as given previously. 0O
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Remark 8. From the above energy estimate, it is also proved that the solutions are uniformly
bounded, that is, there exists d > 0, for all T € (0, 1), ||X|/s4+2 < d. This implies that solutions
cannot leave the set Oy, arbitrarily fast and thus that solutions exist in the set Oy for an interval
of time which is uniform for t € (0, 1).

5.4. Cauchy sequence as T — 0%

We denote for any fixed T > 0, 7’ > 0, the corresponding solutions X € CO([O, T], @k), X e
C°([0, T1, Oy), respectively. Both surfaces X and X' are globally isothermally parameterized
and uniformly bounded in H**2. So for the curvatures «, k' are uniformly bounded in H*. Now
we will prove that they are Cauchy sequences; the main result is the following theorem (recall
again throughout that we take s to be large enough).

Theorem 5.8. For any n > 0, there exists § > 0 such that if |t — t’| < 8, then

sup [1X —X'[l3 + [k — &'l < 7. (5.42)
tel0,T]

Proof. We denote §X =X — X’ and §x =X — X’. We define

1
D=

1 1
= SI8X5 + S 13¢5 + 5 A6k 5. (543)

First, we notice that
ASX =2Exh — 2E'k'1.
Therefore we have
18X Il4 < Clld«cll> + Cl18X ]l < CD'/2.
Furthermore, we see also that
I8Ell4 < ClI8Xll4 < Cllékll> + ClI8X]l3 < CDY/2,
because of the following:
ASE =2(Xqp - Xop — X(’w3 -X;ﬁ) —2(Xoe - Xpg — Xl ~X;3ﬂ).

The estimates for decompositions of differences are similar to the results of Section 5.2, when
we take s = 2. For example:

I8*4 )2 < CD'/2,

I87Zl124j < cll8Xlla4j. j =1,2,
IsUs), < D2,

180541 < €D,

1805 1112 < CDV2.
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We begin estimating time derivatives:

d|18X]3 2 2
—— < |16X 56X
Sar = 19Xl + 16Xl

< ||8X||i + ”,L,Us.tﬁ _ _L_/U/s.tﬁ/ul + ||‘L’Vls'til + .L_V2s.tiz _ 'L'/Vl/s'tf/l _ TVZ/S'tEQ”]
+ 11U+ Vit' + e — Ui — V[E! + V12|
<CD+c|t —1/|.

We next consider the time derivative of d«:

A <A3K> A ([H ﬁ]<5xaa> AN ﬁ]<8kaﬂ) f1>
—_— — pp— 1, — : ' 2, '
2E \2JE "2E 2WE 2VE
A [ Skap\ . Skpp \ o
—TA,— [Hl,n]<—>-t +[H>,n] <— -t
"2F ( 2VE 2VE!

Ey
8(E)5/2 ———TtH| Ak — 8(E)5/2 ———1tH)Adk

A . .
- tAvﬁ (TIX1 (SapXe — 800 Xp) - + TIX] (SrcppXe — S0 Xp) - )
T A
+ 5= = (T1X1 (30X — 0 Xp) - l)a +35 (71X1 (3kppXa = e Xg) - )
+ (@ —tF&' X, EY+t(F('.X,E) = F(«'. X, E)) + T(Q}" + 05" — 0" — 05")
+ (@ —T)QF + 05 + 01+ 02 — 0 — 05,
where F(x, X, E) is a function depending on «, X, E:

Fae X Ey= 2 (2 ) 4 A (1ay g (Ko H «f ).t
A ”ﬁ([ l’"]<2E1/2) +1 2’“]( E1/2> )

_ ([H n]( ) 24 [H, n]( )-iz)—iHAK
Avyp U0 (5517 2E1/2 gEs/2 ! 8E5/2

Auﬁ (J[X] (kapXa — KaaXp) -t + TIX] (kpsXe — kapXp) _;z)

HyAx

) 1 )
5 (j[X] (kapXe — KoeXp) -tl)a +35 (j[X] (ppXa — KapXp) ~t2) . (5.44)

It is easy to conclude that

IF (", X, E) = F(', X', E)llij2 < Cl16XlI3 (5.45)

and

180212 < ClI8X |4 < CD'2. (5.46)
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For & é 1, we need to take more care

- 24,U + R Vi—-W-t Az
(SQI = < + n3>A(SIC+ ! vl/Lot (SICa
2WE

JE  2E
Va—-W-2  AJ
+< : Y Z“Z”>ax,g+y, (5.47)
where ) is given by
Yoo 2AUU+Rn3_2A,,U/+/Rn/3 Al
2VE 2WE

(VW Ag T-WeE AR,
VE  2E

JE' 2F’ “a
I ‘72_‘7‘7,{2 Avﬁﬂ_vz/—w/'i/z_l_Avﬁ% !
VE 2E JE' 2E" 7P
We estimate ) as follows:

1Vll2 < cllsTll2 + cllsWll2 + cllSEll2 + cll8 Vi ll2 + clls Valla + cll87E 1 < C18X 3

We use the above calculations and estimates to estimate the time derivative of part of the
energy:

d(A25K)? 5 )
S / / (A 5/()1\ Sk, dadp

1 243/2 243/2 3T AT 255
—r//4E—3/2 (A 5K>A Sdodf + ——————0

+CtD
n
+'L'// (A2+3/25K> A1/2<F(K/,X, E) _ F(K/,X/, E/) + Qit + Q Q/St Q/§t>dadﬂ

/f A28/< A2<(r YF', X, E) + (t — ) (QF" + 05" )dadﬂ
+ [[ (8266) 22(@1+ 82 - By - G
243/25,.112
<-1 // 4}%/2 (A2+3/28/<> A2 gaqp 4 TIATTOKN

+CD +c|t — '|D'/?
n
2A,U + R Vi—-W-t' A
// AaK ( + n3)A5K+ ! _ Dola) s
2VE VE 2E
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Vz—\F’VV-EZ Avﬁlg
— 1) dadp.
+< 5 E kg |dadp

Using the fact there exists n such that _4E+/2 + ;il < —ko < 0 and —% < —k <0, we
conclude that

dD
g;gmp+@n—ﬂpm. (5.48)

Solving the differential inequality, we conclude
D <DO0)e!M +do|t — 7'|(eM — 1) /d.

We know that the two surfaces start with the same initial condition, i.e. D(0) = 0, and the proof
is thus complete. O

From the paper [2] (see also [14]), we know that 3D Darcy flow without surface tension is
well-posed in the presence of the stability condition. That is, for the system (4.43) when 7 =0,
there exists a bounded solution X € C O([O, T'1; O). Now we will prove that the limit as surface
tension vanishes for Darcy flow with surface tension is the Darcy flow without surface tension,
when the stability condition holds. This is the content of our final theorem.

Theorem 5.9. Let Xg € Oy be globally parameterized by harmonic coordinates. Let T be the
minimum of T in the Theorem 5.7 and T'. For all t € (0, 1), let X" be the solution for the
Cauchy problem (4.43). Letting s’ be given such that 0 < s’ < s + 2, we have

lim sup [ X' —X]|y=0.
T=>04¢[0,7]

Proof. From Theorem 5.8, we see that X" is a Cauchy sequence in H?>. Since the solutions X"
are uniformly bounded in H**2 with respect to 7, by Sobolev interpolation, we have that the
sequence X' is a Cauchy sequence in HY . Therefore, there exists a limit X € C%([0, T1; O%),
such that X* — X as 7 — 0.

Now we will prove that the limit X is exactly the solution of Cauchy problem without surface
tension, i.e. when t = 0. We call the right-hand side of (5.12) by name B®. Since s is suffi-
ciently large and X* — X e C 010, T1, H S,), we see that u” converges uniformly to ;fzo, and
furthermore B converges uniformly to B*=?. We integrate (5.12) in time,

t
X' (-, 1) =Xo+ / B (-, s)ds.
0
We pass to the limit as T — 07 since B* uniformly bounded, finding
t
X(.0=Xo+ [ B0 5)ds.
0

This implies that X solves the Cauchy problem without surface tension. O
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