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Topological crystalline insulators (TCls) can exhibit unusual, quantized electric
phenomenasuch as fractional electric polarization and boundary-localized fractional
charge' . This quantized fractional charge is the generic observable for identification
of TCIs that lack clear spectral features®”, including ones with higher-order
topology®™. It has been predicted that fractional charges can also manifest where
crystallographic defects disrupt the lattice structure of TCIs, potentially providing a
bulk probe of crystalline topology'®'>*. However, this capability has not yet been
confirmed in experiments, given that measurements of charge distributions in TCIs
have not been accessible until recently™. Here we experimentally demonstrate that
disclination defects can robustly trap fractional charges in TCI metamaterials, and
show that this trapped charge canindicate non-trivial, higher-order crystalline
topology eveninthe absence of any spectral signatures. Furthermore, we uncover a
connection between the trapped charge and the existence of topological bound
states localized at these defects. We test the robustness of these topological features
when the protective crystalline symmetry is broken, and find that a single robust
bound state can be localized at each disclination alongside the fractional charge. Our
results conclusively show that disclination defects in TCIs can strongly trap fractional

charges as well as topological bound states, and demonstrate the primacy of
fractional charge as a probe of crystalline topology.

Topologicalinsulators are materials characterized by quantized topo-
logical invariants that are defined with respect to the symmetries of
their gapped bulk Hamiltonian®". The most well known class of topo-
logicalinsulators are those that have robust in-gap states on boundaries
one dimension lower than the bulk, and which are protected by local
symmetries, such as time reversal'®. The robust boundary states pro-
videacharacteristic spectral signature for experimental identification.
In addition to local symmetries, crystalline symmetries can likewise
protect topological invariants such as a quantized electric polariza-
tion?>?*, However, the topological crystalline insulators (TCls) (we
note thatinthis paper, we refer to any system with non-trivial topologi-
cal crystalline invariants as a TCI, including both phases described as
obstructed atomic limits and phases defined as topological insulators
according to the topological quantum chemistry paradigm?®) protected
by these symmetries may not always manifest spectral featuresin their
bulk bandgap, as crystalline symmetries in many cases protect only
the degeneracy of boundary-localized states, and do not restrict their
en ergylo,n.

Instead, TCls lacking robust spectral features can be identified by,
for example, the quantized fractional charge that manifests at their
boundaries’***?¢, including the higher-order TCIs, which manifest
fractional charge at boundaries with higher co-dimension, such as
corners in two dimensions®'°"¥, Crystallographic defects that break
certain crystalline symmetries, such as disclinations (defects of rota-
tionsymmetry), are expected to also trap fractional charges'®™". This

trapped fractional charge thus serves as a generic bulk probe of crys-
talline topology, enabling crystalline insulators to be characterized
independently from their boundary termination. In rotationally sym-
metric TCls, the fractional charge Q (in units of elementary charge e)
trapped by a disclination generically satisfies'®*2%2°

Q:2£q+ _ _2;2 €;B,P;modulo1, )
ij=1,

where the Frank angle Q and the Burgers vector B characterize the topo-
logical class of the defect, and the electric polarization Pand Wannier
representation index n capture the topology of the TCI’s band struc-
ture (¢;is the Levi-Civita symbol, where i and j index the dimensions;
see Methods for adetailed explanation of these quantities). However,
the experimental confirmation of this relation has remained elusive as
the measurements of the charge distribution within insulators have
notbeen previously accessible.

Recently, anequivalent of boundary-localized fractional charge, the
integrated mode density over a given frequency range (see Methods
for details), has been measured experimentally in TCImetamaterials™.
Using this measurement method, here we report the experimental
observation of quantized fractional mode density in units of 1/4 trapped
by two different disclination defects in a C,-symmetric higher-order
topological (crystalline) insulator (HOTI) metamaterial, one withaneg-
ative Frank angle Q=-90°and one with apositive Frank angle 2=+90°,
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Fig.1|Measurement of trapped fractional mode density. a, Measured DOS
for the C;-symmetricboard. The highlighted in-gap states are localized to the
three corners, with noin-gap state at the disclination core. b, Same asabut for
the C;-symmetric board, which has five in-gap corner states. ¢, Measured mode
density per unitcellin each of the three bands of the C;-symmetricboard. The
colourof each unit cellindicates the fractional portion of mode density in that

asshowninFig.1(see Methods for details on disclination defects and
the HOTI metamaterial). Although fractional mode density is typi-
cally associated with topological bound states", we observe that no
topological states are trapped by the disclinations when the fractional
mode density lies within the defective central/core unit cells. For each
case, we then show that a local deformation around the disclination
corereveals an odd number of in-gap topological states trapped by
each disclination defect.

Experimental results

To characterize the fabricated metamaterials, we first measure the
spectral density of states (DOS) of each site (each resonator) individu-
ally using anetwork analyser reflection measurement (Methods). The
total DOS spectrum, calculated by summing over all sites, is shown in
Fig.1a, b for the C;-and Cs-symmetric metamaterials, respectively. As
both are based on the same tight-binding Hamiltonian and differ only
in the Frank angle of their disclination defect, we expect, and indeed
find, thatthe spectral DOS are nearlyidentical. For both insulators, we
measure three large, well-defined bands and a small number of states
withinthe largest bandgap. The in-gap states are strongly localized to
the materials’ corners (Fig. 1a, b) and lie within the same unit cell as a
1/4 fractional mode density (Fig. 1c, d), indicating that these are the
topological corner states of the HOTI™. Later, we will show that the
fractional charge at the disclination core can also be associated with
topological bound states, although these states are missing when the
fractional mode density is within the defective unit cell at the disclina-
tion core, asinFig.1a, b. We note that a small on-site potential isadded
to the corner sites to shift these corner states into the bulk bandgap,
otherwise these states would be obscured by the bulk bands.
Although the DOS spectra of the ideal tight-binding Hamiltonians
that we implement are symmetric, the measured spectra are asym-
metric for two main reasons. First, chiral symmetry is broken in the
fabricated metamaterials because the capacitive coupling elements

Fractional portion of charge density
(per unit cell)

cell,and theareaofeach dotis proportional to the mode density of the
corresponding resonator. Here the central unit cell has approximately 3/4
fractionalmode density inbands 1and 3. d, Same as c but for the Cs-symmetric
board. Here the central unit cell has approximately 1/4 fractional mode density
inbands1and 3. Detailed versions of cand d showing the total mode density
perunit cell areavailable as Extended Data Figs, 7, 8.

effectively increase the electrical length of the resonators, thereby
decreasing their resonance frequencies. As the bulk resonators have
more connections thanthose at the edges and corners, their resonance
frequencies are shifted by a greater amount™. As aresult, the two edge
bands are observed to overlap with the two higher-frequency bulk
bands. Second, the capacitive couplingis intrinsically frequency asym-
metric because the electrical impedance of a capacitor is inversely
proportional to frequency. This causes the coupling rate between
resonators to increase with frequency, meaning that the bands as
well as the bandgaps become wider at higher frequencies. However,
this does not affect the topology of the metamaterials as it does not
break the crystalline symmetry or close the bandgap (as the strong
and weak coupling rates increase in the same proportion), such that
itis a continuous deformation of an ideal system and cannot change
the fractional features.

We now shift focus to the spatial distribution of mode density within
the three large bands, concentrating on the fractional part. The spatially
resolved mode densities for each band of the C;- and Cs-symmetric
metamaterials, which have anidentical C,-symmetric unit cell structure,
are shown in Fig. 1c, d, respectively. As there are no energetic filling
rulesinthese systems, we can consider the mode density distribution
of each band separately. In the lowest and highest frequency bands,
the edge unit cells have a fractional mode density of approximately
1/2,and each corner unit cell carries about 1/4 fractional mode density.
The central band of thisHOTI has identical density features to the other
bands butis doubly degenerate, which doubles the mode density when
compared with the singly degenerate bands™. As such, in the central
band, only the corner unit cells have a fractional mode density (a value
of1/2).Inthe bulk unit cells, the mode density takes aninteger value for
all bands, exceptinthe central unit cell where the disclination occurs.
For the negative disclination (Q2=-90°), this defective central unit cell
hasafractional mode density of 3/4 in the singly degenerate bands, as
predicted by the gluing picture in Fig. 1. In contrast, the positive dis-
clination (2 =+90°) generates a fractional mode density of 1/4 in the
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defective unit cell for these bands, whichis also expected. We note that
thesetrapped chargesare alsodoubledinthe twice-degenerate central
band. To support these experimental results, we have also performed
tight-binding simulations of both disclinationsinlarger finite systems,
available in Methods.

Trapped topological bound states

Having established the existence of trapped fractional mode density at
the disclination cores, we now demonstrateits relationship to trapped
topological bound states. As the systems that we study do not have
chiral symmetry, the topological bound states are not pinned to the
zero-energy level, instead their energy directly corresponds to the
energy of the site where they are localized (see discussion in Meth-
ods). Boundary-induced fractional mode density has been shown to
be associated with such topological boundary states", as exempli-
fied by the corner unit cells of both insulators in Fig. 1. However, for
the reason detailed below, we expect that the association between
fractional mode density and topological states only holds when all
unit cells in the system contain the same number of sites/modes. The
fractional mode densityis a collective property of the bulk and cannot
be changed by deformations, even relatively violent ones that locally
add orremovesites, as we show in Methods, but such deformations can
remove topological bound states. This property is clearly evident in
the zero-correlation-length limit, where the weak coupling rate within
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unit cells goes to zero. In this limit, topological bound states will lie
entirely on sites that are decoupled from the rest of the system. As
such, removing these sites will also remove the bound states. As the
zero-correlation-length limit can always be deformed into an arbitrary
finite correlation length without closing the bandgap or changing
the number of bound states, this property is also true in general (see
discussionin Methods).

Inour fabricated metamaterials, the unit cell contains four sites, but
the defective central unit cell has three sites in the C;-symmetricinsula-
tor and five in the C;-symmetric insulator. Hence, we do not expect a
conventional associationbetween the trapped fractional mode density
andtopologicalboundstates. Thisis supported by the measurementsin
Fig.1, which show no evidence of bound states at the disclinations—the
spectrum of eachsitein the bulkisidentically gapped, leaving noroom
foralocalized bound state. However, although neither of these central
unit cells hosts topological bound states, we will now show that such
states can be generated near the disclination core by deformations
thatshift the fractional charge from the defective unit cellinto the sur-
rounding intact unit cells. We note that these newly generated bound
states are not created by adding or removing sites from the system,
but naturally appear due to the topological nature of the disclination
defects when the defective unit cell at the core is transitioned into a
topologically trivial phase.

We first deformthe central unit cellin both metamaterials such that
the sites within it are strongly coupled to each other and are weakly
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Fig.3|Local deformationreveals trapped in-gap state (C;). a-f, Same as Fig. 2 but for the C;-symmetric insulator. Detailed versions of cand fshowing the total

mode density per unit cell are available as Extended Data Fig. 10.

coupledtositesin neighbouring unit cells. Thisis equivalent to putting
onlythe central unit cellinatopologically trivial phase. We also deform
the unit cells immediately adjacent to the disclination such that they
form aninterior boundary, similar to the exterior boundary, around
the central unit cell. These deformations do not break the global rota-
tionsymmetry, asillustrated in the schematics of the deformed C;-and
Cs-symmetric insulators shown in Figs. 2a, 3a, respectively. After the
deformations are complete, we again measure the spectral DOS of each
site to find the spatial mode density, which is shown in Figs. 2c, 3¢ for
the C;- and Cs-symmetric materials, respectively.

As the central unit cell of both metamaterials is now topologically
trivial, the mode density in this unit cell takes an integer value in all
three bands. We find that the fractional mode density that was previ-
ously trapped at the disclination has symmetrically split and moved
totheinterior boundary, with 3/4 charges on eachinterior corner and
1/2 charges along the interior edge in the singly degenerate bands. In
the C;-symmetric insulator, the original 3/4 mode density splits, cre-
ating three unit cells with 3/4 mode density and three with 1/2 mode
density (total 3 and 3/4). Likewise, the Cs-symmetric insulator, which
originally had a1/4 mode density in the centre unit cell, contains five
unit cells with 3/4 mode density and five with 1/2 mode density after
the deformation (total 6 and 1/4). We note that the total fractional part

ofthemode density (thatis, the mode density modulo 1) ineach sector
remains constant for each of the bands, even after these deformations,
aswedonotbreak the global rotation symmetry and the bulk bandgap
does not close away from the core.

Inaddition to the splitting of fractional mode density, this deforma-
tion also results in three (or five) additional topological bound states
withinthe bandgap. These states arelocated at the interior corners of
the systemaround the trivial central unit cell, as shown in Figs. 2b, 3b,
respectively. We note that there are an odd number of bound states that
emerge inboth deformed systems, whichis required by the global C; or
Csrotation symmetry as the bound states must either lie at the rotation
centre or be identically distributed in each of the three (or five) sym-
metric sectors. These states are not protected against deformations
that break these symmetries; however, evenif the rotation symmetry
is broken, the topologically non-trivial nature of these disclination
defects ensures that one bound state always survives (except in the
cases where the unit cell is defective and broken, as discussed above).
We demonstrate this property by breaking the rotation symmetry
through further local deformation of both metamaterial samples, as
illustrated schematically in Figs. 2d, 3d. Note that only the highlighted
unit cells are deformed. This deformation strongly couples allbut one
of the disclination-induced bound states in pairs. The coupled states
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become gapped and no longer lie within the bandgap (Figs. 2e, 3e),
instead splitting such that they enter both the central and upper bulk
bands. Thisisaccompanied by anincrease of 1/2 fractional mode den-
sity in each of these bands within the highlighted interior-corner unit
cells (Figs. 2f, 3f).

We note that thisincrease is only possible because the rotation sym-
metryisbroken by the deformation, and the fractionalmode density in
eachsectoris nolonger symmetry protected. Following these deforma-
tions, asingle topological bound state remains within the bulk of each
deformed insulator, as shown in Figs. 2e, 3e. Although only a single
bound state remains, the association between fractional mode density
andtopological bound states discussed above still holds inthese cases.
Astherotationsymmetryis broken, this association nolonger appliesto
each symmetricsector butto thetotal disclination-induced fractional
mode density. Thus, the singular bound states in the triangular and
pentagonal metamaterials can be associated with the trapped 3/4 and
1/4 fractional mode densities, respectively.

Potential applications

Topological bound states trapped by disclinations could prove use-
ful for a variety of engineering applications as these defects can lie
deep within the bulk away from the material boundaries. For exam-
ple, topological pumps have been shown to be capable of robustly
transferring vibrational energy between topological bound states™.
Similar pumping processes could be used to transfer energy into
bound states trapped at disclinations deep within the bulk of a mate-
rial, where the energy could be safely stored without radiative decay
due to the surrounding insulator. Topological edge states have also
been shown to exhibit desirable properties for laser applications,
including high-power single-mode lasing, robustness against fabri-
cation defects and high slope efficiency® **. Defect-bound topological
states could be used to create similar topological lasers (especially in
three-dimensional HOTIs), which could prove less sensitive to external
noise and radiative loss as they are not fixed to asurface. Furthermore,
experiments on certain types of nonlinear topological insulators have
shown that topological bound states can be used to drive topological
transitions***, including in HOTIs. Our results provide animportant
first step to these applications, demonstrating that topological features
trapped at disclinations can be identified through measurement of
charge density and, if necessary, revealed through local deformations.

Fractional charge trapped at lattice defects could potentially also be
used toidentify crystalline topology in solid-state materials, where the
local DOS canbe measured through, for example, scanning tunnelling
spectroscopy>"*® or using a scanning single electron transistor®, but
boundary-localized fractional charges may be more challenging to
observe.Inaddition, if one can tune a transition between the topologi-
cally non-trivial and trivial phases in situ, it may be possible to meas-
ure a precise current associated with the accumulation of fractional
charge by tracking the change in Coulomb blockade peaks using a
single-electron transistor device*.
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Methods

Disclination defects

The C,-symmetric HOTI metamaterials in this study are based on a
simple tight-binding model where each unit cell contains four atoms.
Each atom is strongly bonded to its nearest neighbours in adjacent
unitcells, asshownin Extended DataFig. 1a, and is weakly bonded toits
nearest neighbours within the same unit cell. This HOTI has four bulk
bands separated by two bandgaps (the central two bands are degen-
erate), gapped edge bands and topological corner states™**2, Most
importantly for our study, at1/4 filling (that is, only the lowest-energy
bulk bandis filled) the HOTI exhibits a fractional charge of 1/2 at edges
and 1/4 at the corners'®”,

The creation of disclination defects through a ‘cutting and gluing’
procedureisillustrated in Extended DataFig.1for the HOTI described
above, for disclinations with both negative and positive Frank angles.
First, the lattice is cut into four identical sectors, which is always pos-
sible duetothe C,symmetry. As the bulk of these sectorsisidentical to
theoriginal insulator, each sector also has a1l/2 edge fractional charge
and1/4 corner fractional charge. A disclination defect with anegative
Frank angle can be formed by removing one sector and then gluing the
three remaining pieces back together, forming anominally triangular
shape (Extended Data Fig. 1b). The Frank angle Q can be calculated
by drawing a closed loop around the disclination, asillustrated in the
schematic of Extended Data Fig. 1b (red arrows). Here a closed loop
around the defect needs only three 90° turns, one less than a closed
loop in a defect-free lattice, giving a negative Frank angle 2 =-90°. A
disclination with a positive Frank angle can be formed by adding one
sector, forming a pentagonal shape (Extended Data Fig. 1c). In this
case, a closed loop around the defect requires five 90° turns, giving
apositive Frank angle Q = +90°. We note that although the HOTI has
non-zero electric polarization at 1/4 filling, the contribution to frac-
tional charge from the second term in equation (1) is zero for both
disclinations; both are characterized by the same Burgers vector. We
therefore expect the trapped charge at the disclinations to be directly
proportional to their Frank angle.

When all four sectors are combined, the fractional boundary charges
sum to an integer everywhere within the bulk, leaving a uniforminte-
ger charge density. However, at disclination defects, an odd number
of sectors are combined, leading to leftover fractional charge at the
disclination core. The necessity for this leftover charge can alsobe seen
fromthe exterior of the system, which has only three (or five) exterior
corners due to the defect. In general, the total charge of any insulator
must take an integer value as the number of filled states is always an
integer. Here, because each corner carries a1/4 fractional charge, the
odd number of corners contributes an overall fractional charge of +1/4
to the insulator, which can only be compensated by a1/4 fractional
charge in the bulk. We note this 1/4 fractional charge trapped by the
disclinations is a feature unique to higher-order topologicalinsulators",
asthefirst-order featuresin C,symmetric TCIs, namely the polarization
andrelated edge fractional charge, are always quantized in units of 1/2.

Design of microwave-frequency metamaterials

We physically realize the HOTIs with disclination defects in metamateri-
als consisting of coupled microstrip resonators, each withafundamen-
talresonance frequency f, = 2.6 GHz and a quality factor of about 160.
Eachresonator corresponds toanatom, or asingle degree of freedom,
and the resonators are coupled by discrete capacitors that correspond
to the bonds between atoms. The fabricated microwave-frequency
metamaterials with negative and positive disclination angles are shown
inExtended DataFig. 1d, e, respectively. Note that the physical coupling
within the bulk forms a symmetric square in both metamaterials, as
shown in the insets of Extended Data Fig. 1d, e and schematically in
Extended DataFig. 1b, ¢, except at the centre of eachboard. To preserve
this square coupling region, which helps to ensure equal coupling rates

between resonators, the shapes of the individual resonators become
distorted towards the edges of the board. Nevertheless, all resonators
are designed to have the same electric length and as such have the
same fundamental resonance frequency of 2.6 GHz. The metamaterials
are also designed to have an overall C; or Cs;symmetry, as this global
rotation symmetry fixes the total fractional mode density in each sym-
metric sector.

The metamaterials are fabricated on 0.787-mm-thick Rogers RT/
duroid 5880 substrate, with 35-um-thick copper on each side. The
resonators that make up each metamaterial are half-wavelength micro-
strip transmission lines, with a characteristicimpedance of each sec-
tion Z,=110 Q. Theresonator layoutis such that the coupling between
resonators forms a square (Extended Data Fig. 1), requiring that the
resonator shape changes slightly from the centre of each board to
the outside. To keep the electrical length of each resonator approxi-
mately equal, the resonators havea curved sectionintheir centre, where
the curvature decreases away from the centre of the C;-symmetric
board, andincreases away from the centre of the C;-symmetric board.
Althoughthere arelosses inboth the dielectric substrate and the copper
conductor, as well as comparatively negligible radiative losses, these
aresmall (the typical resonator linewidth is about 16 MHz, for a typical
quality factor of about 160) and do not affect the underlying topology.
The coupling between resonators is implemented using two discrete
capacitorsinseries, such that the strong coupling capacitanceis 0.3 pF
(two 0.6-pF capacitors), and the weak coupling capacitanceis 0.05 pF
(two 0.1-pF capacitors).

Measuring electric charge equivalent via density of modesina
microwave metamaterial

The metamaterials studied here are neutral bosonic systems and do
not carry literal electric charge; instead, reflection spectroscopy can
be used to measure their local DOS directly with high spatial resolu-
tion. By integrating the measured DOS over the frequency range of an
entire bulk band, and normalizing to correctly count the number of
modesineach unitcell, an analogous quantity to the charge density can
be determined as if each state of the bulk band were filled by a single
electron. This analogous quantity physically represents the density
of modes, or the mode density, in a unit cell over a given frequency
range. Previous work has shown that measurements of mode density
successfully capture previously inaccessible observables such as frac-
tional corner charge, and can be used to identify both first-order and
higher-order topology in TCIs™.

We experimentally find the local DOS of the microwave metamateri-
als by first measuring the reflection spectrum S,,(f) at each resonator,
wherefis the frequency. The reflection measurements are taken using
amicrowave network analyser (Keysight ES063A). The reflection probe
is composed of a 50-Q coaxial cable terminated in a 0.1-pF capacitor,
whichis contacted to eachresonator atananti-node. Owingto the low
probe capacitance, the measured linewidths are dominated by intrin-
sic losses in each resonator. The background reflection contributed
by the probe is evaluated away from any modes and is removed. This
measurement process is similar to that used in ref. >,

The absorptance A(f), which is defined as the ratio of absorbed
power to incident power, can be calculated from the reflection as
A(P) =1-S,(f)>. To obtain the DOS D(f) for each resonator, we divide
the measured absorptance by the frequency squared, D(f) = A(H)/f%,
whichaccounts forincreased coupling to the capacitive probe at higher
frequencies. Finally, we normalize D(f) such that

D(f)=1,

All bands

where the integrationis over the whole band structure and D,(f) is the
local DOS for one resonator, indexed by the resonator number r. As
eachresonator supports asingle mode withinthe measured frequency
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range, such that for an N-resonator system there are Nmodesin total,
this normalization maps each mode to amode density of 1.

Index of fractional disclination charge

In this section, we describe in detail the quantities in equation (1). We
also discuss why the fractional charges trapped by the disclinations
studied in the main text are proportional to their Frank angle.

Adisclination defect is characterized by the amount of net transla-
tion (denoted by the Burgers vector B) and net rotation (denoted by
the Frank angle Q) accumulated under parallel transport of a vector
along aloop enclosing the disclination core. To illustrate these two
quantities, we consider a C,-symmetric square lattice with a disclina-
tiondefectat the centre. Asshownin Extended DataFig. 2a, the lattice
vectors are denoted by e, and e,. The vector v is parallel transported
along theloop ABCA that encloses the disclination core, meaning that
the vector is translated around the loop by aninteger number of lattice
vectors with a 90° rotation at each corner. Compared with the same
transport conductedin a perfect lattice without defects, whichis shown
in the inset of Extended Data Fig. 2a, we find that after enclosing the
disclination core, the final vector has gained an extrarotation of -90°,
and an extra translation of 2e,, corresponding to Q =-90°, B=2e,. In
two-dimensional C,-symmetric lattices, the parity of the sum of the
Burgers vector components classifies disclinations with the same Frank
angles®, such that for a fixed Frank angle there are only two types of
topologically distinct disclination. In type-I disclinations, the sum of
the Burgers vector components is even, as shown in Extended Data
Fig.2a.Atype-lldisclination, where the extra translation accumulated
after looping around the disclination coreisle,, is shownin Extended
DataFig. 2b.

The two different types of disclination trap different fractional
charges, evenifthey have the same Frank angle. As shown recently™, one
canfindthe fractional disclination charge by inspecting the real-space
localized Wannier representation of an insulator. The representation
corresponding to the C,-symmetric HOTIstudied in the main text has
asingle Wannier centre at the corner of a unit cell (Wyckoff position b),
which generates a bulk polarization P=1/2(e, + e,) (we set the charge
e=1). Owingtothe C, symmetry, the single Wannier centre at the unit
cell corner contributes an equal quantized fractional charge of 1/4
to each of the adjacent four unit cells. In Extended Data Fig. 2¢c, d, we
show how the bulk Wannier centres are arranged around both type-l
and type-ll disclinations. For the lattice with a type-1 disclination, the
unitcell atthe corereceives contributions from three Wannier centres,
leading to a fractional charge of 3/4. In contrast, for the lattice with a
type-lldisclination, each of the three unit cells around the disclination
core manifests a fractional charge of 3/4, leading to a total fractional
disclination charge of 9/4 mod 1=1/4.

In addition to the corner of the unit cell (Wyckoff position ), Wan-
nier centresinaC,-symmetricinsulator are allowed at all the positions
showninExtended DataFig. 2e. For these more general cases, theindex
of fractional disclination charge in C,-symmetric insulators is**

0
Qui= E(nb +2n,.)+ iJ:ZI,Z €;B,P; modulo 1 2)

where n,and n,are the number of Wannier centres located at the Wyck-
off positions cand b, respectively, which are determined by the band
topology of the insulator; B;and P;are the component of the Burgers
vector and the bulk polarization, respectively; and €;=0, €;=-¢;=1.
Notice that for type-l disclinations in C,-symmetric insulators, as the
sum of components of the Burgers vector is always even and P,=P,, the
second termin equation (2) always gives aninteger number. Therefore,
the fractional disclination charge index for the type-l disclination is

0
Qi type1 = 577 (% 21) modulo 1. (3)

Therefore, the fractional charge trapped at the disclination core for
agivenband structureisonly proportional to the Frank angle Q, which
is consistent with our experimental measurement.

Spectral flow of topological bound states

Inthis section, we take the deformed triangular HOTI that is measured
inthe main textas an exampletoillustrate the unique behaviour of the
topological bound states when local on-site potentials are applied. As
we will show, without chiral symmetry the energy of the topological
bound states is given by the on-site energy of the site where they are
localized.

The lattice configuration of the triangular C,-symmetric HOTI is
shown in Extended Data Fig. 3a. We apply an on-site potential to an
interior corner site (hosting atopological bound state) and abulk site,
marked by the red and green circles in Extended Data Fig. 3a, respec-
tively. In Extended Data Fig. 3b, we show the simulated spectrumas a
function of the on-site potential for both ites. The topological bound
state moves approximately linearly across the entire band structure
asthe on-site potentialis tuned. This transfer of amode between bulk
bands, which resembles a topological pumping process, is a charac-
teristic feature of topological bound states.

In contrast, for the bulk site, we observe an avoided crossing of the
localized mode with the band structure. We can pullamode from the
lower bulk band below the band structure when alarge negative on-site
potential is applied, or pull a mode from the upper bulk band above
the band structure with a large positive on-site potential. However,
amode cannot be transferred between bands across the entire bulk
bandgap.

Asafurther comparison, in Extended Data Fig. 3c, we show the simu-
lated spatial distribution of the emergent in-gap modes for both the
topological bound state and the de-tuned bulk site. In both cases,
the in-gap mode is localized at the position of the applied on-site
potential, but this localization alone does not qualify these modes as
topological bound states. For the de-tuned bulk site, the in-gap mode
is distributed among four neighbouring bulk sites and not confined
toonesublattice, indicating atopologically trivial defect state. Inthe
topological phase, the in-gap mode is confined to the same sublattice
site in bulk and edge unit cells, indicating a topological state that is
supported by the bulk.

Effects of removingsites from the lattice
In this section, we show through simulations that removing a site
from the lattice will not change the total fractional mode density,
but can remove topological bound states. Let us consider the same
C,-symmetric HOTI as studied in the main text, the lattice configura-
tion of which is shown (with no defects) in Extended Data Fig. 4a, d.
To mimic our experiments, we intentionally do not compensate the
intrinsic capacitive loading effect”, which shifts the energy of the bulk
bands down in relation to the energy of the topological corner states
(Extended Data Fig. 4b, e). The resulting system has three bands as
showninExtended DataFig.4b, e, and canbe divided into fouridentical
sectors due to the C, symmetry. The singly degenerate bands, band 1
and band 3, manifest a fractional mode density of 1/4 in each sector,
while the doubly degenerate band 2 manifests that of 1/2 per sector.
To simulate removing a site adiabatically, we apply an increasing
on-site potential to that site. We first consider detuning the resona-
tor at the top-right corner, which hosts alocalized topological corner
mode. Asshownin Extended DataFig.4b, the corner mode s lifted and
separated from the band structure as the on-site potential increases
andthe cornersiteis effectively removed from the lattice. However, it
isevident from Extended Data Fig. 4c that the fractional part of mode
density in each band, integrated over the whole top-right sector,
remains constant through the whole process. This occurs because an
integer number of modes are removed from that sector, such that the
mode density can only change by an integer number. Furthermore,



the fractional part of the total mode density is a collective behaviour
of allmodes in the band, and with only nearest-neighbour couplings,
alocal deformation does not affect the mode density in the areas far
away from that deformation.

We also consider removing a bulk resonator in the top-right sector,
and the resulting spectrum and sector fractional mode density are
showninExtended DataFig. 4e, f. Asbefore, one mode, localized where
the on-site potential is applied, is dragged out of the band structure
while the integrated fractional mode density in the top-right sector
remains the same. In addition, note that this deformation introduces
one mode into the bandgap, thereby creating an in-gap bound state
despite not changing the fractional mode density.

Simulations for large systems

In Extended Data Figs. 5, 6, we present tight-binding simulations of
the fractional mode density for larger versions (15 unit cells per side)
of the crystalline insulators studied in the main text. These simula-
tions confirm our experimental findings that disclination defects can
robustly trap fractional charges and this trapped charge canindicate
non-trivial, higher-order crystalline topology even in the absence of
any spectral signatures.

Detailed experimental figures

We present detailed versions of the experimental figures in the main
manuscript as Extended Data, showing explicitly the total measured
mode density foreach unit cell. The datain Fig.1are shownin Extended
DataFigs. 7, 8, the datain Fig. 2 are shown in Extended Data Fig. 9, and
the datain Fig. 3 are shown in Extended Data Fig. 10.

Data availability

The datathat support the findings of this study are available from the
authorsonreasonable request.
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