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Trapped fractional charges at bulk defects in 
topological insulators

Christopher W. Peterson1, Tianhe Li2, Wentao Jiang1, Taylor L. Hughes2 & Gaurav Bahl3 ✉

Topological crystalline insulators (TCIs) can exhibit unusual, quantized electric 
phenomena such as fractional electric polarization and boundary-localized fractional 
charge1–6. This quantized fractional charge is the generic observable for identification 
of TCIs that lack clear spectral features5–7, including ones with higher-order 
topology8–11. It has been predicted that fractional charges can also manifest where 
crystallographic defects disrupt the lattice structure of TCIs, potentially providing a 
bulk probe of crystalline topology10,12–14. However, this capability has not yet been 
confirmed in experiments, given that measurements of charge distributions in TCIs 
have not been accessible until recently11. Here we experimentally demonstrate that 
disclination defects can robustly trap fractional charges in TCI metamaterials, and 
show that this trapped charge can indicate non-trivial, higher-order crystalline 
topology even in the absence of any spectral signatures. Furthermore, we uncover a 
connection between the trapped charge and the existence of topological bound 
states localized at these defects. We test the robustness of these topological features 
when the protective crystalline symmetry is broken, and find that a single robust 
bound state can be localized at each disclination alongside the fractional charge. Our 
results conclusively show that disclination defects in TCIs can strongly trap fractional 
charges as well as topological bound states, and demonstrate the primacy of 
fractional charge as a probe of crystalline topology.

Topological insulators are materials characterized by quantized topo-
logical invariants that are defined with respect to the symmetries of 
their gapped bulk Hamiltonian15–17. The most well known class of topo-
logical insulators are those that have robust in-gap states on boundaries 
one dimension lower than the bulk, and which are protected by local 
symmetries, such as time reversal18–21. The robust boundary states pro-
vide a characteristic spectral signature for experimental identification. 
In addition to local symmetries, crystalline symmetries can likewise 
protect topological invariants such as a quantized electric polariza-
tion22–24. However, the topological crystalline insulators (TCIs) (we 
note that in this paper, we refer to any system with non-trivial topologi-
cal crystalline invariants as a TCI, including both phases described as 
obstructed atomic limits and phases defined as topological insulators 
according to the topological quantum chemistry paradigm25) protected 
by these symmetries may not always manifest spectral features in their 
bulk bandgap, as crystalline symmetries in many cases protect only 
the degeneracy of boundary-localized states, and do not restrict their 
energy10,11.

Instead, TCIs lacking robust spectral features can be identified by, 
for example, the quantized fractional charge that manifests at their 
boundaries1–6,24,26, including the higher-order TCIs, which manifest 
fractional charge at boundaries with higher co-dimension, such as 
corners in two dimensions8,10,11,27. Crystallographic defects that break 
certain crystalline symmetries, such as disclinations (defects of rota-
tion symmetry), are expected to also trap fractional charges10,13,14. This 

trapped fractional charge thus serves as a generic bulk probe of crys-
talline topology, enabling crystalline insulators to be characterized 
independently from their boundary termination. In rotationally sym-
metric TCIs, the fractional charge Q (in units of elementary charge e) 
trapped by a disclination generically satisfies10,14,28,29

∑Q
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2π
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ij i j
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where the Frank angle Ω and the Burgers vector B characterize the topo-
logical class of the defect, and the electric polarization P and Wannier 
representation index η capture the topology of the TCI’s band struc-
ture (ϵij is the Levi–Civita symbol, where i and j index the dimensions; 
see Methods for a detailed explanation of these quantities). However, 
the experimental confirmation of this relation has remained elusive as 
the measurements of the charge distribution within insulators have 
not been previously accessible.

Recently, an equivalent of boundary-localized fractional charge, the 
integrated mode density over a given frequency range (see Methods 
for details), has been measured experimentally in TCI metamaterials11. 
Using this measurement method, here we report the experimental 
observation of quantized fractional mode density in units of 1/4 trapped 
by two different disclination defects in a C4-symmetric higher-order 
topological (crystalline) insulator (HOTI) metamaterial, one with a neg-
ative Frank angle Ω = −90° and one with a positive Frank angle Ω = +90°, 
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as shown in Fig. 1 (see Methods for details on disclination defects and 
the HOTI metamaterial). Although fractional mode density is typi-
cally associated with topological bound states11, we observe that no 
topological states are trapped by the disclinations when the fractional 
mode density lies within the defective central/core unit cells. For each 
case, we then show that a local deformation around the disclination 
core reveals an odd number of in-gap topological states trapped by 
each disclination defect.

Experimental results
To characterize the fabricated metamaterials, we first measure the 
spectral density of states (DOS) of each site (each resonator) individu-
ally using a network analyser reflection measurement (Methods). The 
total DOS spectrum, calculated by summing over all sites, is shown in 
Fig. 1a, b for the C3- and C5-symmetric metamaterials, respectively. As 
both are based on the same tight-binding Hamiltonian and differ only 
in the Frank angle of their disclination defect, we expect, and indeed 
find, that the spectral DOS are nearly identical. For both insulators, we 
measure three large, well-defined bands and a small number of states 
within the largest bandgap. The in-gap states are strongly localized to 
the materials’ corners (Fig. 1a, b) and lie within the same unit cell as a 
1/4 fractional mode density (Fig. 1c, d), indicating that these are the 
topological corner states of the HOTI11. Later, we will show that the 
fractional charge at the disclination core can also be associated with 
topological bound states, although these states are missing when the 
fractional mode density is within the defective unit cell at the disclina-
tion core, as in Fig. 1a, b. We note that a small on-site potential is added 
to the corner sites to shift these corner states into the bulk bandgap, 
otherwise these states would be obscured by the bulk bands.

Although the DOS spectra of the ideal tight-binding Hamiltonians 
that we implement are symmetric, the measured spectra are asym-
metric for two main reasons. First, chiral symmetry is broken in the 
fabricated metamaterials because the capacitive coupling elements 

effectively increase the electrical length of the resonators, thereby 
decreasing their resonance frequencies. As the bulk resonators have 
more connections than those at the edges and corners, their resonance 
frequencies are shifted by a greater amount11. As a result, the two edge 
bands are observed to overlap with the two higher-frequency bulk 
bands. Second, the capacitive coupling is intrinsically frequency asym-
metric because the electrical impedance of a capacitor is inversely 
proportional to frequency. This causes the coupling rate between 
resonators to increase with frequency, meaning that the bands as 
well as the bandgaps become wider at higher frequencies. However, 
this does not affect the topology of the metamaterials as it does not 
break the crystalline symmetry or close the bandgap (as the strong 
and weak coupling rates increase in the same proportion), such that 
it is a continuous deformation of an ideal system and cannot change 
the fractional features.

We now shift focus to the spatial distribution of mode density within 
the three large bands, concentrating on the fractional part. The spatially 
resolved mode densities for each band of the C3- and C5-symmetric 
metamaterials, which have an identical C4-symmetric unit cell structure, 
are shown in Fig. 1c, d, respectively. As there are no energetic filling 
rules in these systems, we can consider the mode density distribution 
of each band separately. In the lowest and highest frequency bands, 
the edge unit cells have a fractional mode density of approximately 
1/2, and each corner unit cell carries about 1/4 fractional mode density. 
The central band of this HOTI has identical density features to the other 
bands but is doubly degenerate, which doubles the mode density when 
compared with the singly degenerate bands11. As such, in the central 
band, only the corner unit cells have a fractional mode density (a value 
of 1/2). In the bulk unit cells, the mode density takes an integer value for 
all bands, except in the central unit cell where the disclination occurs. 
For the negative disclination (Ω = −90°), this defective central unit cell 
has a fractional mode density of 3/4 in the singly degenerate bands, as 
predicted by the gluing picture in Fig. 1. In contrast, the positive dis-
clination (Ω = +90°) generates a fractional mode density of 1/4 in the 
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Fig. 1 | Measurement of trapped fractional mode density. a, Measured DOS 
for the C3-symmetric board. The highlighted in-gap states are localized to the 
three corners, with no in-gap state at the disclination core. b, Same as a but for 
the C5-symmetric board, which has five in-gap corner states. c, Measured mode 
density per unit cell in each of the three bands of the C3-symmetric board. The 
colour of each unit cell indicates the fractional portion of mode density in that 

cell, and the area of each dot is proportional to the mode density of the 
corresponding resonator. Here the central unit cell has approximately 3/4 
fractional mode density in bands 1 and 3. d, Same as c but for the C5-symmetric 
board. Here the central unit cell has approximately 1/4 fractional mode density 
in bands 1 and 3. Detailed versions of c and d showing the total mode density 
per unit cell are available as Extended Data Figs, 7, 8.
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defective unit cell for these bands, which is also expected. We note that 
these trapped charges are also doubled in the twice-degenerate central 
band. To support these experimental results, we have also performed 
tight-binding simulations of both disclinations in larger finite systems, 
available in Methods.

Trapped topological bound states
Having established the existence of trapped fractional mode density at 
the disclination cores, we now demonstrate its relationship to trapped 
topological bound states. As the systems that we study do not have 
chiral symmetry, the topological bound states are not pinned to the 
zero-energy level, instead their energy directly corresponds to the 
energy of the site where they are localized (see discussion in Meth-
ods). Boundary-induced fractional mode density has been shown to 
be associated with such topological boundary states11, as exempli-
fied by the corner unit cells of both insulators in Fig. 1. However, for 
the reason detailed below, we expect that the association between 
fractional mode density and topological states only holds when all 
unit cells in the system contain the same number of sites/modes. The 
fractional mode density is a collective property of the bulk and cannot 
be changed by deformations, even relatively violent ones that locally 
add or remove sites, as we show in Methods, but such deformations can 
remove topological bound states. This property is clearly evident in 
the zero-correlation-length limit, where the weak coupling rate within 

unit cells goes to zero. In this limit, topological bound states will lie 
entirely on sites that are decoupled from the rest of the system. As 
such, removing these sites will also remove the bound states. As the 
zero-correlation-length limit can always be deformed into an arbitrary 
finite correlation length without closing the bandgap or changing 
the number of bound states, this property is also true in general (see 
discussion in Methods).

In our fabricated metamaterials, the unit cell contains four sites, but 
the defective central unit cell has three sites in the C3-symmetric insula-
tor and five in the C5-symmetric insulator. Hence, we do not expect a 
conventional association between the trapped fractional mode density 
and topological bound states. This is supported by the measurements in 
Fig. 1, which show no evidence of bound states at the disclinations—the 
spectrum of each site in the bulk is identically gapped, leaving no room 
for a localized bound state. However, although neither of these central 
unit cells hosts topological bound states, we will now show that such 
states can be generated near the disclination core by deformations 
that shift the fractional charge from the defective unit cell into the sur-
rounding intact unit cells. We note that these newly generated bound 
states are not created by adding or removing sites from the system, 
but naturally appear due to the topological nature of the disclination 
defects when the defective unit cell at the core is transitioned into a 
topologically trivial phase.

We first deform the central unit cell in both metamaterials such that 
the sites within it are strongly coupled to each other and are weakly 
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Fig. 2 | Local deformation reveals trapped 
in-gap state (C3). a, Deformed C3-symmetric 
lattice with trivial central unit cell (only 
highlighted unit cells are deformed). b, Measured 
DOS for the deformed lattice in a. Highlighted 
in-gap states are localized to the original exterior 
corners, plus three interior corners. c, Measured 
mode density for each of the three bands shown in 
b. The central unit cell now has an integer mode 
density and surrounding unit cells host fractional 
mode density. d–f, Same as a–c, but the lattice is 
further deformed, breaking C3 rotation symmetry, 
such that two of the interior corner states are 
gapped out. Highlighted unit cells in d are 
deformed from a. The fractional mode density in 
bands 2 and 3 changes in these unit cells due to the 
deformation. Detailed versions of c and f showing 
the total mode density per unit cell are available as 
Extended Data Fig. 9.
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coupled to sites in neighbouring unit cells. This is equivalent to putting 
only the central unit cell in a topologically trivial phase. We also deform 
the unit cells immediately adjacent to the disclination such that they 
form an interior boundary, similar to the exterior boundary, around 
the central unit cell. These deformations do not break the global rota-
tion symmetry, as illustrated in the schematics of the deformed C3- and 
C5-symmetric insulators shown in Figs. 2a, 3a, respectively. After the 
deformations are complete, we again measure the spectral DOS of each 
site to find the spatial mode density, which is shown in Figs. 2c, 3c for 
the C3- and C5-symmetric materials, respectively.

As the central unit cell of both metamaterials is now topologically 
trivial, the mode density in this unit cell takes an integer value in all 
three bands. We find that the fractional mode density that was previ-
ously trapped at the disclination has symmetrically split and moved 
to the interior boundary, with 3/4 charges on each interior corner and 
1/2 charges along the interior edge in the singly degenerate bands. In 
the C3-symmetric insulator, the original 3/4 mode density splits, cre-
ating three unit cells with 3/4 mode density and three with 1/2 mode 
density (total 3 and 3/4). Likewise, the C5-symmetric insulator, which 
originally had a 1/4 mode density in the centre unit cell, contains five 
unit cells with 3/4 mode density and five with 1/2 mode density after 
the deformation (total 6 and 1/4). We note that the total fractional part 

of the mode density (that is, the mode density modulo 1) in each sector 
remains constant for each of the bands, even after these deformations, 
as we do not break the global rotation symmetry and the bulk bandgap 
does not close away from the core.

In addition to the splitting of fractional mode density, this deforma-
tion also results in three (or five) additional topological bound states 
within the bandgap. These states are located at the interior corners of 
the system around the trivial central unit cell, as shown in Figs. 2b, 3b, 
respectively. We note that there are an odd number of bound states that 
emerge in both deformed systems, which is required by the global C3 or 
C5 rotation symmetry as the bound states must either lie at the rotation 
centre or be identically distributed in each of the three (or five) sym-
metric sectors. These states are not protected against deformations 
that break these symmetries; however, even if the rotation symmetry 
is broken, the topologically non-trivial nature of these disclination 
defects ensures that one bound state always survives (except in the 
cases where the unit cell is defective and broken, as discussed above). 
We demonstrate this property by breaking the rotation symmetry 
through further local deformation of both metamaterial samples, as 
illustrated schematically in Figs. 2d, 3d. Note that only the highlighted 
unit cells are deformed. This deformation strongly couples all but one 
of the disclination-induced bound states in pairs. The coupled states 
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Fig. 3 | Local deformation reveals trapped in-gap state (C5). a–f, Same as Fig. 2 but for the C5-symmetric insulator. Detailed versions of c and f showing the total 
mode density per unit cell are available as Extended Data Fig. 10.
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become gapped and no longer lie within the bandgap (Figs. 2e, 3e), 
instead splitting such that they enter both the central and upper bulk 
bands. This is accompanied by an increase of 1/2 fractional mode den-
sity in each of these bands within the highlighted interior-corner unit 
cells (Figs. 2f, 3f).

We note that this increase is only possible because the rotation sym-
metry is broken by the deformation, and the fractional mode density in 
each sector is no longer symmetry protected. Following these deforma-
tions, a single topological bound state remains within the bulk of each 
deformed insulator, as shown in Figs. 2e, 3e. Although only a single 
bound state remains, the association between fractional mode density 
and topological bound states discussed above still holds in these cases. 
As the rotation symmetry is broken, this association no longer applies to 
each symmetric sector but to the total disclination-induced fractional 
mode density. Thus, the singular bound states in the triangular and 
pentagonal metamaterials can be associated with the trapped 3/4 and 
1/4 fractional mode densities, respectively.

Potential applications
Topological bound states trapped by disclinations could prove use-
ful for a variety of engineering applications as these defects can lie 
deep within the bulk away from the material boundaries. For exam-
ple, topological pumps have been shown to be capable of robustly 
transferring vibrational energy between topological bound states30. 
Similar pumping processes could be used to transfer energy into 
bound states trapped at disclinations deep within the bulk of a mate-
rial, where the energy could be safely stored without radiative decay 
due to the surrounding insulator. Topological edge states have also 
been shown to exhibit desirable properties for laser applications, 
including high-power single-mode lasing, robustness against fabri-
cation defects and high slope efficiency31–33. Defect-bound topological 
states could be used to create similar topological lasers (especially in 
three-dimensional HOTIs), which could prove less sensitive to external 
noise and radiative loss as they are not fixed to a surface. Furthermore, 
experiments on certain types of nonlinear topological insulators have 
shown that topological bound states can be used to drive topological 
transitions34,35, including in HOTIs36. Our results provide an important 
first step to these applications, demonstrating that topological features 
trapped at disclinations can be identified through measurement of 
charge density and, if necessary, revealed through local deformations.

Fractional charge trapped at lattice defects could potentially also be 
used to identify crystalline topology in solid-state materials, where the 
local DOS can be measured through, for example, scanning tunnelling 
spectroscopy37,38 or using a scanning single electron transistor39, but 
boundary-localized fractional charges may be more challenging to 
observe. In addition, if one can tune a transition between the topologi-
cally non-trivial and trivial phases in situ, it may be possible to meas-
ure a precise current associated with the accumulation of fractional 
charge by tracking the change in Coulomb blockade peaks using a 
single-electron transistor device40.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods

Disclination defects
The C4-symmetric HOTI metamaterials in this study are based on a 
simple tight-binding model where each unit cell contains four atoms. 
Each atom is strongly bonded to its nearest neighbours in adjacent 
unit cells, as shown in Extended Data Fig. 1a, and is weakly bonded to its 
nearest neighbours within the same unit cell. This HOTI has four bulk 
bands separated by two bandgaps (the central two bands are degen-
erate), gapped edge bands and topological corner states11,41,42. Most 
importantly for our study, at 1/4 filling (that is, only the lowest-energy 
bulk band is filled) the HOTI exhibits a fractional charge of 1/2 at edges 
and 1/4 at the corners10,11.

The creation of disclination defects through a ‘cutting and gluing’ 
procedure is illustrated in Extended Data Fig. 1 for the HOTI described 
above, for disclinations with both negative and positive Frank angles. 
First, the lattice is cut into four identical sectors, which is always pos-
sible due to the C4 symmetry. As the bulk of these sectors is identical to 
the original insulator, each sector also has a 1/2 edge fractional charge 
and 1/4 corner fractional charge. A disclination defect with a negative 
Frank angle can be formed by removing one sector and then gluing the 
three remaining pieces back together, forming a nominally triangular 
shape (Extended Data Fig. 1b). The Frank angle Ω can be calculated 
by drawing a closed loop around the disclination, as illustrated in the 
schematic of Extended Data Fig. 1b (red arrows). Here a closed loop 
around the defect needs only three 90° turns, one less than a closed 
loop in a defect-free lattice, giving a negative Frank angle Ω = −90°. A 
disclination with a positive Frank angle can be formed by adding one 
sector, forming a pentagonal shape (Extended Data Fig. 1c). In this 
case, a closed loop around the defect requires five 90° turns, giving 
a positive Frank angle Ω = +90°. We note that although the HOTI has 
non-zero electric polarization at 1/4 filling, the contribution to frac-
tional charge from the second term in equation (1) is zero for both 
disclinations; both are characterized by the same Burgers vector. We 
therefore expect the trapped charge at the disclinations to be directly 
proportional to their Frank angle.

When all four sectors are combined, the fractional boundary charges 
sum to an integer everywhere within the bulk, leaving a uniform inte-
ger charge density. However, at disclination defects, an odd number 
of sectors are combined, leading to leftover fractional charge at the 
disclination core. The necessity for this leftover charge can also be seen 
from the exterior of the system, which has only three (or five) exterior 
corners due to the defect. In general, the total charge of any insulator 
must take an integer value as the number of filled states is always an 
integer. Here, because each corner carries a 1/4 fractional charge, the 
odd number of corners contributes an overall fractional charge of ±1/4 
to the insulator, which can only be compensated by a 1/4 fractional 
charge in the bulk. We note this 1/4 fractional charge trapped by the 
disclinations is a feature unique to higher-order topological insulators11, 
as the first-order features in C4 symmetric TCIs, namely the polarization 
and related edge fractional charge, are always quantized in units of 1/2.

Design of microwave-frequency metamaterials
We physically realize the HOTIs with disclination defects in metamateri-
als consisting of coupled microstrip resonators, each with a fundamen-
tal resonance frequency f0 ≈ 2.6 GHz and a quality factor of about 160. 
Each resonator corresponds to an atom, or a single degree of freedom, 
and the resonators are coupled by discrete capacitors that correspond 
to the bonds between atoms. The fabricated microwave-frequency 
metamaterials with negative and positive disclination angles are shown 
in Extended Data Fig. 1d, e, respectively. Note that the physical coupling 
within the bulk forms a symmetric square in both metamaterials, as 
shown in the insets of Extended Data Fig. 1d, e and schematically in 
Extended Data Fig. 1b, c, except at the centre of each board. To preserve 
this square coupling region, which helps to ensure equal coupling rates 

between resonators, the shapes of the individual resonators become 
distorted towards the edges of the board. Nevertheless, all resonators 
are designed to have the same electric length and as such have the 
same fundamental resonance frequency of 2.6 GHz. The metamaterials 
are also designed to have an overall C3 or C5 symmetry, as this global 
rotation symmetry fixes the total fractional mode density in each sym-
metric sector.

The metamaterials are fabricated on 0.787-mm-thick Rogers RT/
duroid 5880 substrate, with 35-μm-thick copper on each side. The 
resonators that make up each metamaterial are half-wavelength micro-
strip transmission lines, with a characteristic impedance of each sec-
tion Z0 ≈ 110 Ω. The resonator layout is such that the coupling between 
resonators forms a square (Extended Data Fig. 1), requiring that the 
resonator shape changes slightly from the centre of each board to 
the outside. To keep the electrical length of each resonator approxi-
mately equal, the resonators have a curved section in their centre, where 
the curvature decreases away from the centre of the C3-symmetric 
board, and increases away from the centre of the C5-symmetric board. 
Although there are losses in both the dielectric substrate and the copper 
conductor, as well as comparatively negligible radiative losses, these 
are small (the typical resonator linewidth is about 16 MHz, for a typical 
quality factor of about 160) and do not affect the underlying topology. 
The coupling between resonators is implemented using two discrete 
capacitors in series, such that the strong coupling capacitance is 0.3 pF 
(two 0.6-pF capacitors), and the weak coupling capacitance is 0.05 pF 
(two 0.1-pF capacitors).

Measuring electric charge equivalent via density of modes in a 
microwave metamaterial
The metamaterials studied here are neutral bosonic systems and do 
not carry literal electric charge; instead, reflection spectroscopy can 
be used to measure their local DOS directly with high spatial resolu-
tion. By integrating the measured DOS over the frequency range of an 
entire bulk band, and normalizing to correctly count the number of 
modes in each unit cell, an analogous quantity to the charge density can 
be determined as if each state of the bulk band were filled by a single 
electron. This analogous quantity physically represents the density 
of modes, or the mode density, in a unit cell over a given frequency 
range. Previous work has shown that measurements of mode density 
successfully capture previously inaccessible observables such as frac-
tional corner charge, and can be used to identify both first-order and 
higher-order topology in TCIs11.

We experimentally find the local DOS of the microwave metamateri-
als by first measuring the reflection spectrum S11(f) at each resonator, 
where f is the frequency. The reflection measurements are taken using 
a microwave network analyser (Keysight E5063A). The reflection probe 
is composed of a 50-Ω coaxial cable terminated in a 0.1-pF capacitor, 
which is contacted to each resonator at an anti-node. Owing to the low 
probe capacitance, the measured linewidths are dominated by intrin-
sic losses in each resonator. The background reflection contributed 
by the probe is evaluated away from any modes and is removed. This 
measurement process is similar to that used in ref. 43.

The absorptance A(f), which is defined as the ratio of absorbed 
power to incident power, can be calculated from the reflection as 
A(f) = 1 − |S11(f)|2. To obtain the DOS D(f) for each resonator, we divide 
the measured absorptance by the frequency squared, D(f) = A(f)/f2, 
which accounts for increased coupling to the capacitive probe at higher 
frequencies. Finally, we normalize D(f) such that

r∫ D f( ) = 1,
All bands

where the integration is over the whole band structure and Dr(f) is the 
local DOS for one resonator, indexed by the resonator number r. As 
each resonator supports a single mode within the measured frequency 
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range, such that for an N-resonator system there are N modes in total, 
this normalization maps each mode to a mode density of 1.

Index of fractional disclination charge
In this section, we describe in detail the quantities in equation (1). We 
also discuss why the fractional charges trapped by the disclinations 
studied in the main text are proportional to their Frank angle.

A disclination defect is characterized by the amount of net transla-
tion (denoted by the Burgers vector B) and net rotation (denoted by 
the Frank angle Ω) accumulated under parallel transport of a vector 
along a loop enclosing the disclination core. To illustrate these two 
quantities, we consider a C4-symmetric square lattice with a disclina-
tion defect at the centre. As shown in Extended Data Fig. 2a, the lattice 
vectors are denoted by e1 and e2. The vector v is parallel transported 
along the loop ABCA that encloses the disclination core, meaning that 
the vector is translated around the loop by an integer number of lattice 
vectors with a 90° rotation at each corner. Compared with the same 
transport conducted in a perfect lattice without defects, which is shown 
in the inset of Extended Data Fig. 2a, we find that after enclosing the 
disclination core, the final vector has gained an extra rotation of −90°, 
and an extra translation of 2e2, corresponding to Ω = −90°, B = 2e2. In 
two-dimensional C4-symmetric lattices, the parity of the sum of the 
Burgers vector components classifies disclinations with the same Frank 
angles28, such that for a fixed Frank angle there are only two types of 
topologically distinct disclination. In type-I disclinations, the sum of 
the Burgers vector components is even, as shown in Extended Data 
Fig. 2a. A type-II disclination, where the extra translation accumulated 
after looping around the disclination core is 1e2, is shown in Extended 
Data Fig. 2b.

The two different types of disclination trap different fractional 
charges, even if they have the same Frank angle. As shown recently14, one 
can find the fractional disclination charge by inspecting the real-space 
localized Wannier representation of an insulator. The representation 
corresponding to the C4-symmetric HOTI studied in the main text has 
a single Wannier centre at the corner of a unit cell (Wyckoff position b), 
which generates a bulk polarization P = 1/2(e1 + e2) (we set the charge 
e = 1). Owing to the C4 symmetry, the single Wannier centre at the unit 
cell corner contributes an equal quantized fractional charge of 1/4 
to each of the adjacent four unit cells. In Extended Data Fig. 2c, d, we 
show how the bulk Wannier centres are arranged around both type-I 
and type-II disclinations. For the lattice with a type-I disclination, the 
unit cell at the core receives contributions from three Wannier centres, 
leading to a fractional charge of 3/4. In contrast, for the lattice with a 
type-II disclination, each of the three unit cells around the disclination 
core manifests a fractional charge of 3/4, leading to a total fractional 
disclination charge of 9/4 mod 1 = 1/4.

In addition to the corner of the unit cell (Wyckoff position b), Wan-
nier centres in a C4-symmetric insulator are allowed at all the positions 
shown in Extended Data Fig. 2e. For these more general cases, the index 
of fractional disclination charge in C4-symmetric insulators is14

∑Q
Ω

n n ϵ B P=
2π

( + 2 ) + modulo 1 (2)b c
i j

ij i jdis
, =1,2

where nb and nc are the number of Wannier centres located at the Wyck-
off positions c and b, respectively, which are determined by the band 
topology of the insulator; Bi and Pi are the component of the Burgers 
vector and the bulk polarization, respectively; and ϵii = 0, ϵij = −ϵji = 1. 
Notice that for type-I disclinations in C4-symmetric insulators, as the 
sum of components of the Burgers vector is always even and P1 = P2, the 
second term in equation (2) always gives an integer number. Therefore, 
the fractional disclination charge index for the type-I disclination is 

Q
Ω

n n=
2π

( + 2 ) modulo 1. (3)b cdis, type-I

Therefore, the fractional charge trapped at the disclination core for 
a given band structure is only proportional to the Frank angle Ω, which 
is consistent with our experimental measurement.

Spectral flow of topological bound states
In this section, we take the deformed triangular HOTI that is measured 
in the main text as an example to illustrate the unique behaviour of the 
topological bound states when local on-site potentials are applied. As 
we will show, without chiral symmetry the energy of the topological 
bound states is given by the on-site energy of the site where they are 
localized.

The lattice configuration of the triangular C4-symmetric HOTI is 
shown in Extended Data Fig. 3a. We apply an on-site potential to an 
interior corner site (hosting a topological bound state) and a bulk site, 
marked by the red and green circles in Extended Data Fig. 3a, respec-
tively. In Extended Data Fig. 3b, we show the simulated spectrum as a 
function of the on-site potential for both sites. The topological bound 
state moves approximately linearly across the entire band structure 
as the on-site potential is tuned. This transfer of a mode between bulk 
bands, which resembles a topological pumping process, is a charac-
teristic feature of topological bound states.

In contrast, for the bulk site, we observe an avoided crossing of the 
localized mode with the band structure. We can pull a mode from the 
lower bulk band below the band structure when a large negative on-site 
potential is applied, or pull a mode from the upper bulk band above 
the band structure with a large positive on-site potential. However, 
a mode cannot be transferred between bands across the entire bulk  
bandgap.

As a further comparison, in Extended Data Fig. 3c, we show the simu-
lated spatial distribution of the emergent in-gap modes for both the 
topological bound state and the de-tuned bulk site. In both cases, 
the in-gap mode is localized at the position of the applied on-site 
potential, but this localization alone does not qualify these modes as 
topological bound states. For the de-tuned bulk site, the in-gap mode 
is distributed among four neighbouring bulk sites and not confined 
to one sublattice, indicating a topologically trivial defect state. In the 
topological phase, the in-gap mode is confined to the same sublattice 
site in bulk and edge unit cells, indicating a topological state that is 
supported by the bulk.

Effects of removing sites from the lattice
In this section, we show through simulations that removing a site 
from the lattice will not change the total fractional mode density, 
but can remove topological bound states. Let us consider the same 
C4-symmetric HOTI as studied in the main text, the lattice configura-
tion of which is shown (with no defects) in Extended Data Fig. 4a, d. 
To mimic our experiments, we intentionally do not compensate the 
intrinsic capacitive loading effect11, which shifts the energy of the bulk 
bands down in relation to the energy of the topological corner states 
(Extended Data Fig. 4b, e). The resulting system has three bands as 
shown in Extended Data Fig. 4b, e, and can be divided into four identical 
sectors due to the C4 symmetry. The singly degenerate bands, band 1 
and band 3, manifest a fractional mode density of 1/4 in each sector, 
while the doubly degenerate band 2 manifests that of 1/2 per sector.

To simulate removing a site adiabatically, we apply an increasing 
on-site potential to that site. We first consider detuning the resona-
tor at the top-right corner, which hosts a localized topological corner 
mode. As shown in Extended Data Fig. 4b, the corner mode is lifted and 
separated from the band structure as the on-site potential increases 
and the corner site is effectively removed from the lattice. However, it 
is evident from Extended Data Fig. 4c that the fractional part of mode 
density in each band, integrated over the whole top-right sector, 
remains constant through the whole process. This occurs because an 
integer number of modes are removed from that sector, such that the 
mode density can only change by an integer number. Furthermore, 



the fractional part of the total mode density is a collective behaviour 
of all modes in the band, and with only nearest-neighbour couplings, 
a local deformation does not affect the mode density in the areas far 
away from that deformation.

We also consider removing a bulk resonator in the top-right sector, 
and the resulting spectrum and sector fractional mode density are 
shown in Extended Data Fig. 4e, f. As before, one mode, localized where 
the on-site potential is applied, is dragged out of the band structure 
while the integrated fractional mode density in the top-right sector 
remains the same. In addition, note that this deformation introduces 
one mode into the bandgap, thereby creating an in-gap bound state 
despite not changing the fractional mode density.

Simulations for large systems
In Extended Data Figs. 5, 6, we present tight-binding simulations of 
the fractional mode density for larger versions (15 unit cells per side) 
of the crystalline insulators studied in the main text. These simula-
tions confirm our experimental findings that disclination defects can 
robustly trap fractional charges and this trapped charge can indicate 
non-trivial, higher-order crystalline topology even in the absence of 
any spectral signatures.

Detailed experimental figures
We present detailed versions of the experimental figures in the main 
manuscript as Extended Data, showing explicitly the total measured 
mode density for each unit cell. The data in Fig. 1 are shown in Extended 
Data Figs. 7, 8, the data in Fig. 2 are shown in Extended Data Fig. 9, and 
the data in Fig. 3 are shown in Extended Data Fig. 10.

Data availability
The data that support the findings of this study are available from the 
authors on reasonable request.
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Extended Data Fig. 1 | Fractional charge at disclination defects.  
a, C4-symmetric HOTI with 1/4 corner charge and 1/2 edge charge. A schematic 
of the tight-binding model (black dots are atoms, black lines are strong bonds) 
and illustration of the fractional charge are shown. Owing to its C4 symmetry, 
the HOTI can be cut into four identical sectors. b, One sector is removed and the 
remaining three are glued together to create a disclination defect with a 
negative Frank angle Ω = −90°. Red arrows on the schematic show calculation of 
the Frank angle. The disclination traps a 3/4 fractional charge, as it is formed by 

combining three 1/4 charge corners. c, One sector is added and the resulting 
five are glued together to create a disclination defect with a positive Frank 
angle Ω = +90°. Red arrows on the schematic show calculation of the Frank 
angle. The disclination traps a 1/4 fractional charge, as it is formed by 
combining five 1/4 charge corners. d, Photo of fabricated 
microwave-frequency circuit topological insulator with disclination having a 
Frank angle Ω = −90°. e, Photo of fabricated circuit with disclination having a 
Frank angle Ω = +90°. Insets show C4-symmetric bulk coupling.



Extended Data Fig. 2 | Burgers vector and Frank angle of disclinations.  
a, b, Demonstration of calculating the Burgers vector and Frank angle for a 
C4-symmetric square lattice with the type-I disclination (a) and type-II 
disclination (b). The black arrows indicate the vector being parallel transport 
enclosing the disclination core and the dashed grey arrows indicate that vector 

in the process of the parallel transport. c, d, The Wannier centre configuration 
and fractional charge in defective lattices with the type-I disclination (c) and 
type-I disclination (d). e, Allowed positions of Wannier centres by the C4 
symmetry in one unit cell.
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Extended Data Fig. 3 | Spectral flow of topological bound states.  
a, Schematic of the lattice configuration for the C3 symmetric TCI. t0 and t 
indicate the intracell coupling strength and intercell coupling strength, 
respectively. We apply an on-site potential to the bottom-left corner site.  
b, The spectrum of the C3 TCI as a function of on-site potential α for a 
topological phase with t = 1.0 and t0 = 0.5 (top) and a trivial phase with t = 0.5 and 

t = 1.0 (bottom). The red line represents energy shift of the corner mode. c, The 
spatial distribution of the in-gap mode (encircled in b) over the bottom-left 
corner of the lattice. We use α = −1 for the topological phase and α = 1 for the 
trivial phase. The simulation is conducted on a triangle lattice with 15 unit cells 
per side.



Extended Data Fig. 4 | Removing lattice sites. a, d, Lattice configuration of 
the HOTI used in simulations. We consider a lattice with 10 × 10 unit cells, 
intracell coupling strength of 0.25 (dashed lines) and intercell coupling 
strength of 1 (solid lines). The resonator being removed is denoted by a red 

circle. b, e, The spectrum of the lattice in a and d as a function of the on-site 
potential applied to the highlighted resonators. c, f, The fractional part of the 
mode density integrated over the shaded sector in a and d for each band.
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Extended Data Fig. 5 | Fractional mode density in large systems. 
Tight-binding simulation of fractional mode density in large systems (15 unit 
cells per side) with Frank angles Ω = ±90°. We set the intercell coupling strength 
to be 1 and intracell coupling strength to be 0.2. a, Simulated DOS spectrum 
and real-space distribution of in-gap modes for a Frank angle Ω = −90°. On-site 
potentials are applied to the corner sites to pull the corner states into the bulk 
bandgap. b, Fractional portion of the mode density for each band. The colour 

of each unit cell indicates the fractional portion of mode density in that cell, 
and the area of each dot is proportional to the mode density of the 
corresponding resonator. The fractional part of the integrated mode density 
around the central unit cell is 3/4 for bands 1 and 3 and 1/2 for band 2. c, d, Same 
as a and b but for Frank angle Ω = +90°. The fractional part of the integrated 
mode density around the central unit cell is 1/4 for bands 1 and 3 and 1/2 for 
band 2.



Extended Data Fig. 6 | Fractional mode density in large trivial and 
deformed systems. a, b, Tight-binding simulation of fractional mode density 
in large topologically trivial system (15 unit cells per side) with a Frank angle 
Ω = −90°. We set the intercell coupling strength to be 0.2 and intracell coupling 
strength to be 1. a, Simulated DOS spectrum and real-space distribution of 
in-gap modes. The in-gap modes are localized within the central defective  
unit cell, which only has three sites. b, Fractional portion of the mode density 
for each band. The mode density takes an integer value in all unit cells.  
c–e, Tight-binding simulation of fractional mode density in a large system  
(15 unit cells per side) with a Frank angle Ω = −90° and with the central unit cell 

trivialized. We set the intercell coupling strength to be 1 and intracell coupling 
strength to be 0.2. c, Schematic of deformed lattice with trivialized central unit 
cell. d, Simulated DOS spectrum and real-space distribution of in-gap modes. 
On-site potentials are applied to the corner sites as well as the ‘interior corners’ 
to pull six topological bound states into the bulk bandgap. e, Fractional portion 
of the mode density for each band. The colour of each unit cell indicates the 
fractional portion of mode density in that cell, and the area of each dot is 
proportional to the mode density of the corresponding resonator. The 
fractional part of the integrated mode density around the central unit cell 
remains 3/4 for bands 1 and 3 and 1/2 for band 2.
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Extended Data Fig. 7 | Detailed mode density for the C3-symmetric 
insulator. Measured mode density for the C3-symmetric insulator, as shown in 
Fig. 1c. The total mode density for each band is listed numerically in each unit 

cell, and the area of each dot is proportional to the mode density of the 
corresponding resonator. The colour of each unit cell indicates the fractional 
portion of mode density.



Extended Data Fig. 8 | Detailed mode density for the C5-symmetric 
insulator. Measured mode density for the C5-symmetric insulator, as shown in 
Fig. 1d. The total mode density for each band is listed numerically in each unit 

cell, and the area of each dot is proportional to the mode density of the 
corresponding resonator. The colour of each unit cell indicates the fractional 
portion of mode density.
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Extended Data Fig. 9 | Detailed mode density for deformed C3-symmetric 
insulator. a, Measured fractional mode density for the C3-symmetric insulator 
after the central unit cell is trivialized, as shown in Fig. 2c. The total mode 
density for each band is listed numerically in each unit cell, and the area of each 

dot is proportional to the mode density of the corresponding resonator. The 
colour of each unit cell indicates the fractional portion of mode density.  
b, Same as a but with broken rotation symmetry as in Fig. 2f.



Extended Data Fig. 10 | Detailed mode density for deformed C5-symmetric 
insulator. a, Measured fractional mode density for the C5-symmetric insulator 
after the central unit cell is trivialized, as shown in Fig. 3c. The total mode 
density for each band is listed numerically in each unit cell, and the area of each 

dot is proportional to the mode density of the corresponding resonator. The 
colour of each unit cell indicates the fractional portion of mode density.  
b, Same as a but with broken rotation symmetry as in Fig. 3f.
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