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Topological insulators are characterized by an insulating bulk and symmetry-protected bound states
on their boundaries. A “strong” topological insulator is characterized by robust conducting states on
all boundaries protected by certain internal symmetries. A “weak” topological insulator (WTI), how-
ever, requires lattice translation symmetry, making it more sensitive to disorder. However, this sensitivity
gives rise to interesting characteristics, such as anisotropic edge modes, quantized charge polarization, and
bound states appearing at dislocation defects. Despite hosting interesting features, the sensitivity of WTIs
to disorder poses an experimental confirmation challenge. Here we realize a two-dimensional (2D) mag-
netomechanical metamaterial and experimentally demonstrate the unique features of a WTI. Specifically,
we show that the 2D WTI is anisotropic and hosts edge modes only on certain edges, as well as hosting
a bound state at a dislocation defect. We construct the 2D WTI from stacked 1D Su-Schrieffer-Heeger
chains for which we experimentally show the different gapped phases of the 1D model.
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I. INTRODUCTION

Topological insulators (TIs) are bulk-insulating mate-
rials with symmetry-protected conducting states on their
boundaries [1—4]. Since their discovery [5,6], the concept
of TIs has expanded and they have been demonstrated in
different metamaterial systems, including photonic crystals
[7—10], mechanical systems [11—15] and acoustic systems
[16,17]. A “strong” TI is characterized by a quantized
topological invariant and hosts robust conducting states
on all boundary terminations. Furthermore, the boundary
states, and any observable properties dependent on the
topological invariant [18,19], are protected against disor-
der and defects by certain discrete, internal symmetries
[20-23]. Soon after the initial predictions of time-reversal
invariant topological insulators, the concept of “weak”
topological insulators (WTIs) was proposed [24-26]. In
this context the WTIs were protected only in the presence
of time-reversal symmetry and lattice translation symme-
try, which makes them, in principle, more sensitive to
disorder, and hence weaker. The possible classes of WTIs
were extended to allow for many different types of internal
symmetries, but they are all linked by the requirement for
some type of lattice translation symmetry [20]. Strong TIs
are characterized by quantized electromagnetic response
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properties that are isotropic and manifest as robust bound-
ary states on all boundaries [19]. In contrast, since the
symmetry protection of WTIs is related to lattice transla-
tion symmetry, WTIs are typically anisotropic, and exhibit
low-energy boundary modes only on certain boundary
terminations and orientations [24-26]. WTIs may also
exhibit interesting anisotropic electromagnetic properties,
e.g., quantized charge polarization [27], but again, these
are only quantized in the presence of lattice translation
symmetry. In addition to these two types of properties, Ran
et al. [28] made the remarkable prediction that crystal dis-
locations, which are essentially symmetry fluxes for lattice
translation symmetry [29—33], can trap midgap topological
bound states that can be observed spectroscopically.

Let us illustrate these properties in a simple limit. All
WTIs can be generated by stacking lower-dimensional
strong TIs into a periodic array [24]. As an example, we
take copies of a strong one-dimensional (1D) TI aligned
along the x direction [Fig. 1(a)] and stack them in the y
direction with equal spacing [Fig. 1(b)]. This construction
generates a set of lattice lines, the 1D TI chains, parame-
terized by a reciprocal vector G that is orthogonal to the
chains, and sets a stacking direction (G = (27/a)d for
stacking in the direction of unit vector 0 in real space,
where a is the lattice constant). The resulting WTI is
protected by whichever internal symmetries required to
protect the 1D strong TI as well as by lattice translation
symmetry in the stacking direction. Although the WTI
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phase remains stable when the 1D chains are coupled
in the stacking direction, we can identify any interesting
topological properties in the limit when the chains remain
decoupled. We note that in our experiments the coupling is
always nonzero; however, for the sake of clarity, we first
illustrate these phenomena in this decoupled limit. The 1D
TIs have end states, as a result of which the resulting 2D
WTI will have edge states comprised of the stacked 1D
end states on edges parallel to the y axis. However, it will
not have edge states on edges parallel to the x axis, which
illustrates the surface anisotropy [24]. If the 1D TI has a
quantized electromagnetic property then the WTI will typ-
ically exhibit the same property, but with a coefficient that
depends on the number of layers in the G direction [34].
To illustrate the dislocation bound state in a WTI, we
can introduce an edge dislocation, which is essentially an
extra partial line of sites into the system. If the partial line
is parallel to the 1D TI chains [Fig. 1(c)] then the termina-
tion of this extra line, i.e., the dislocation core, will harbor
a localized end state from that 1D TI. The Burgers vector B
of such a dislocation [35] will be parallel to G, and, hence,
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if we apply the topological index theorem introduced in
Ref. [28] then we can count the number of stable disloca-
tion modes to be » = G - B/2w modulo 2. For the example
shown in Fig. 1(c), we have G = 27 ) (setting lattice con-
stant ¢ = 1) and B = —J, whereas in Fig. 1(d), G remains
the same but B = x. Thus, if we insert an odd (even) num-
ber of partial lattice lines, there will be one (no) protected
midgap mode trapped at the dislocation core. While the
picture described above provides a simple description of
the interesting WTI phenomena in the decoupled limit, the
remarkable thing is that it survives even when the chains
are (strongly) coupled as long as the bulk gap does not
close and the symmetries are preserved. Thus, we would
find that the edge states that exist on the edges parallel to
the y axis will couple to each other and disperse along the
edge, and that the dislocation defect traps a 0D mode that
is exponentially localized on the dislocation core in a 2D
system. If B is orthogonal to G, however, no mode will be
trapped at the dislocation defect [Fig. 1(d)].

Despite having a range of interesting features, WTIs
pose a challenge to confirm experimentally due to their
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(a) Mlustration of a dimerized array forming a 1D topological insulator—the SSH chain. For visual simplicity, we illustrate

the limiting case where intracell coupling y; is zero. This 1D array exhibits two midgap states localized on the two edges. (b) A 2D
WTTI is formed by stacking SSH 1D TIs while preserving translation symmetry. Localized midgap modes should appear on edges that
are parallel to the stacking vector G. In this array, starting from any point and taking Ny.ep (Nsiep is an integer) steps in each direction
(the step size is equal to the lattice constant for both directions) will always result in a closed path. Here we demonstrate the case
with Ny, = 3, and the closed path is indicated by orange arrows. Taking the same closed path around a dislocation will result in a
mismatch between the beginning and end points. The Burgers vector B is the vector connecting these two points and characterizes the
dislocation. (c) A 2D WTI with a dislocation defect having Burgers vector B = —p traps a localized mode at the dislocation core. (d)
A 2D WTI with a dislocation defect having Burgers vector B = x does not trap a mode at the dislocation core due to orthogonality
with the stacking vector G.
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fragility to disorder [36,37], and as a result, WTIs have
only recently been verified experimentally in solid-state
systems [26] and photonic crystals [38,39]. Here we take
another approach for the realization of WTIs using a
2D magnetomechanical metamaterial [40]. We exhibit the
important spectroscopic features mentioned above, i.e., the
anisotropic edge states, and the dislocation bound state.
As the building block of our 2D WTI, we use a 1D Su-
Schrieffer-Heeger (SSH) strong TI [41—43] composed of
a dimerized chain of mechanical resonators. As a proof
of concept, we first demonstrate different gapped phases
of the SSH chain as well as a localized mode trapped on
the domain wall between topologically trivial and nontriv-
ial phases. We then generate a WTI by stacking the SSH
chains in the transverse direction. We demonstrate the WTI
anisotropy by showing the existence of edge modes in only
one direction (i.e., left and right but not on top and bot-
tom). Upon introducing a dislocation with Burgers vector
orthogonal to the stacking direction, we observe a bound
state trapped at the core of the dislocation which signals
the nontrivial topology of the deformed lattice.

II. EXPERIMENTAL RESULTS

We experimentally implement the 1D SSH chains
using an array of identical mechanical resonators coupled
through magnetic interaction. Each resonator has a single
rotational degree of freedom 6 around the Z axis and is
designed to operate in its torsional resonance mode [Fig.
2(a)]. The resonance is facilitated by an aluminum ser-
pentine spring that provides a mechanical restoring torque
when 6 # 0. Each resonator has a neodymium magnet
bonded to a central platform that serves as the resonat-
ing mass, while simultaneously producing a magnetic field
through which adjacent resonators are coupled [44]. This
magnetic field decays cubically with distance, allowing
control of the coupling rates by manipulating the spacing
between resonators. Each mechanical resonator is analo-
gous to an atom and we define a unit cell as two adjacent
resonators with intracell coupling y;. We can then arrange
these unit cells with periodicity along X and J to produce
desired structures.

The magnetically induced torque between dipoles intro-
duces an additional spring effect that can either soften or
stiffen the torsional mechanical stiffness of each resonator
[45] depending on its local magnetic environment. Since
the resonators on the ends of these arrays have only a single
neighbor, they experience a different magnetostatic spring
effect compared against resonators within the bulk, and as
a result, their resonance frequency is detuned. We com-
pensate for this undesirable effect with the use of fixed
magnets at both ends of the array, and ensure that the
frequencies across the array are as uniform as possible.

In order to measure the local magnetomechanical sus-
ceptibility (angular displacement per applied torque) of

the array, we employ a frequency domain forced-response
measurement. We harmonically drive each resonator with
a small solenoid coil, and measure the resulting torsional
oscillation as a function of frequency using a Hall sen-
sor placed nearby [Fig. 2(a)]. The susceptibility spectrum
is then calculated as the ratio of the angular amplitude to
the applied torque at a given frequency. This susceptibility
spectrum measured at each resonator is directly propor-
tional to the local spectral density of states. By averaging
these local measurements from all the resonators in the
array we obtain the system-wide density of states, up to
a proportionality factor.

The resonator arrays studied in this paper are charac-
terized by mechanical second-order equations of motion.
Using a slowly varying envelope approximation [44], we
rewrite these equations to obtain the momentum space
Bloch Hamiltonian. For a 1D SSH chain [Fig. 1(a)] com-
posed of magnetomechanical resonators, having intracell
coupling y; and intercell coupling y,, this Hamiltonian
reads

Gow i ¢ poyn

H(k,) = 2w 2 2w , @, 1)
Ve Y @-ef Qe c
w w 2w 21 2w

(1

Here £, is the momentum, c is a viscous damping coef-

ficient, / is the mechanical moment of inertia, w, is the
effective resonance frequency (including both the mechan-
ical resonance frequency and magnetostatic spring effect
[45]), and w is the angular frequency of a harmonically
oscillating solution. Note that the Hamiltonian in Eq. (1)
differs from a SSH model Hamiltonian [43] only by a term
proportional to the identity matrix; therefore, the eigen-
states of the two are identical, and thus so are all of the
topological properties.

We experimentally assembled 1D SSH chains com-
prised from four unit cells periodically arranged along the
x direction. We demonstrate the three configurations of the
SSH model corresponding to topologically trivial (y; >
1), critical (y; = y»), and nontrivial (y; < y,) phases by
adjusting the relative distances between the resonators,
i.e., changing the ratio between the intercell and intracell
couplings y,/y;. The measured system-wide normalized
mechanical susceptibility (mechanical density of states) of
these configurations is presented in Figs. 2(b)-2(d) where
different response bands are highlighted. The spatial mode
distribution corresponding to the highlighted regions is
presented as well. For an array in the topologically triv-
ial phase [Fig. 2(b)], two bands separated by a bandgap are
obtained, as expected [43], and the states in both bands
are spatially distributed almost evenly across the array.
Since the magnetic coupling between resonators decays
cubically with distance, next-nearest neighbor coupling is
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(a) Hlustration of a magnetomechanical resonator and its torsional resonance mode. The mechanical restoring torque is

produced by an aluminum serpentine spring. A drive coil and Hall sensor are used to make local spectroscopic measurements at each
resonator. We perform a series of experiments for 1D configurations of a dimerized resonator chain, corresponding to the (b) trivial
phase (insulator), (c) critical point (metallic), and (d) nontrivial phase (topological insulator). (¢) Demonstration of a domain wall
between a trivial and a nontrivial phase. For each case in (b)—(e), we present a photograph of the experimental setup with a tight
binding model illustration (thicker lines correspond to higher coupling rates). We also present experimentally measured system-wide
normalized mechanical susceptibility, which is the averaged system susceptibility at each frequency and corresponds to the mechanical
density of states. The dashed lines are the theoretical model predictions. Panels (b)—(e) also include the spatial distribution of states
averaged over the highlighted bands (circle size corresponds to the excitation amplitude).

inherent in the system, which breaks the sublattice (chi-
ral) symmetry. This manifests as a slight asymmetry in the
height and spectral width of the two bands, even though
the number of states in them is the same. For the criti-
cal configuration where the bandgap is closed [Fig. 2(¢c)],
we observe a single band with almost uniform spatial dis-
tribution of states across the array. In the topologically
nontrivial phase [Fig. 2(d)] three bands are identified. The
lower and upper bands exhibit bulk modes, while the
midgap band exhibits edge-localized modes, as can be
clearly observed in the spatial distribution plots.

To rule out the possibility of the midgap modes aris-
ing from geometrical edge properties in our structure, we
produced an additional arrangement having a domain wall
between topologically trivial and nontrivial phases. This

arrangement [Fig. 2(e)] is comprised of four unit cells, two
of which are in the trivial phase and two in the nontriv-
ial phase. The region between these two phases forms a
domain wall and is therefore expected to exhibit a local-
ized midgap mode. The average mechanical susceptibility
measured in this system reveals four bands. The two outer
bands are again observed to correspond to bulk modes,
while the two states in the middle correspond to the local-
ized modes formed at the boundaries of the topologically
nontrivial phase. The frequency of the localized mode
at the domain wall is slightly shifted (compared to the
frequency of the mode at the right edge) due to slight
differences in the local magnetostatic spring effect.

We now stack multiple SSH chains in the nontrivial
phase [Fig. 2(d)] to produce a 2D WTI [as illustrated in
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Fig. 3(a)] with a stacking (reciprocal) vector G = 27y /d,,,
where d, is the distance between layers in the y direction
that we set to unity for convenience. The 1D TI chains

w? —w? ic c 2y3

Hky, k) = 2w 21 2o o
X vy )/2 ) )/1
_elkx + —
0] 0]

where the k., are momenta along the X,y directions,
respectively [44]. In Fig. 3(b) we evaluate the dispersion
relation of the 2D WTI, with periodic boundary conditions
in the p direction, and open boundaries in the ¥ direction,
showing the existence of the midgap modes [34]. Because

Resonator vector G.

are weakly and uniformly coupled along the vertical direc-
tion with coupling rate y; (in our experiments we set the
couplings y3 < y1 < y»2). We have

cos k, Ee"kx + n
w? — w? az?c c © )
= 3
- ——+ cosk,
2w 21 2w w

of the aforementioned anisotropy of a WTI, these midgap
modes will not appear if the X direction is periodic and the
y direction is open.

The measured average mechanical susceptibility of the
entire 2D array [Fig. 3(c)] reveals three bands. The lower
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and upper bands correspond to bulk modes [left-hand plot
of Fig. 3(d)], and the middle band corresponds to local-
ized modes on the left and right edges [right-hand plot
of Fig. 3(d)] as expected. The individual susceptibility
measurements of all 40 resonators are available in the
Supplemental Material [44].

Next, we test the occurrence of 0D midgap modes
trapped at the core of a topological defect. For this, we
produce a dislocation with Burgers vector B = p by termi-
nating one of the TI chains early, as shown in Fig. 4(a).

The X-axis positions of the resonators in the last column
are then adjusted to restore translation symmetry and to
roughly restore an even interchain coupling y;. In this con-
figuration we expect localized modes on the left and right
edges as in the case of the WTI without the dislocation,
and an additional mode trapped at the dislocation core [Fig.
1(c)]. We choose three resonators as representative of the
array characteristics: (I) a resonator on the left edge that
is expected to have a localized mode, (II) a resonator deep
inside the array that is expected to show the bulk bandgap,

(a) FIG. 4. Observation of a trapped mode
at a dislocation defect in a 2D WTIL (a)
Iustration of the 2D WTI composed of
@ Edge ID TI chains (dimerized coupling) along
resonator the X direction, and approximately uniform
coupling in the y direction. A unit cell is
@ Bulk removed from the right edge of the mid-
: : dle row to create the dislocation defect, and
resonator Dislocation @ o "
—e the y-axis positions of the last column are
core adjusted to compensate. Three resonators of
interest (red circles) are identified. (b) The
b c . C mgasured susceptibilities at the rgsqnators
(b) Frequency response () Spatial dlStnbUtlon_ at of interest show the array characteristics and
at selected resonators selected frequencies are used to identify frequencies that may
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and (IIT) the dislocation core that is also expected to show
a localized mode. The measured normalized mechanical
susceptibility of these three resonators is presented in Fig.
4(b), and matches the theoretical predictions. Once again,
the individual susceptibility measurements of all 38 res-
onators are provided in the Supplemental Material [44].
These measurements allow us to identify frequencies of
interest that should correspond to the edge mode, the bulk
bands, and the dislocation defect mode. In Fig. 4(c) we
present the spatial distribution of states over the entire sys-
tem of 38 resonators at the identified frequencies, using the
system-wide measured susceptibility. This spatial visual-
ization confirms that the bulk and edge modes all appear
as anticipated, and that the dislocation core now harbors a
single trapped mode.

We note that the magnetomechanical implementation
shown here is inherently disordered, e.g., resonator fre-
quencies can only be matched within +0.1 Hz, which is
significant compared to an approximately 2.5 Hz bandgap.
The cubic dependence of magnetomechanical coupling
makes the array very sensitive to variations in the inter-
resonator distance, and susceptible to next-nearest neigh-
bor coupling. In spite of this, we observe that the governing
topological characteristics for WTIs still hold.

I11. DISCUSSION

In this work we have presented an experimental demon-
stration of the anisotropic edge modes of a WTI, as well
as a trapped mode at the core of a dislocation defect.
These results confirm the ability of WTIs to generate
both 1D and 0D topological bound states from the same
2D bulk system, which are the remarkable implications
of a topological index theorem. Broadly speaking, it has
been a common assumption that topological insulators pro-
tect states that are one dimension lower than that of the
host material. This assumption has come to be challenged
recently by the rise of high-order topological insulators
[46—53] that exhibit protected states of higher codimen-
sion. Our work experimentally demonstrates yet another
path to obtain lower-dimensional protected states, without
relying on high-order topology. The expanded capability
of producing both 0D and 1D states within the same 2D
material could open up alternative avenues for robust sys-
tems, such as sensors, filters, and other signal processing
devices that are resilient to disorder that might appear in
manufacturing or during operation.
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