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Abstract. Scientific Machine Learning (SciML) is a new multidisci-
plinary methodology that combines the data-driven machine learning
models and the principle-based computational models to improve the
simulations of scientific phenomenon and uncover new scientific rules
from existing measurements. This article reveals the experience of using
the SciML method to discover the nonlinear dynamics that may be hard
to model or be unknown in the real-world scenario. The SciML method
solves the traditional principle-based differential equations by integrat-
ing a neural network to accurately model the nonlinear dynamics while
respecting the scientific constraints and principles. The paper discusses
the latest SciML models and apply them to the oscillator simulations
and experiment. Besides better capacity to simulate, and match with
the observation, the results also demonstrate a successful discovery of
the hidden physics in the pendulum dynamics using SciML.

Keywords: Scientific machine learning * Scientific simulation -
Computational science + Nonlinear dynamics

1 Introduction

Scientific Machine Learning (SciML) [1] has recently emerged as a new method
to solve the scientific computing problems using machine learning models. The
method leverages the success of traditional scientific computational models and
the advances in data-driven machine learning models to augment the efficiency
and accuracy of scientific simulation and inversion. Moreover, it facilitates the
scientific discovery by modeling both well-known scientific rules and the unknown
patterns based on observed data.

The traditional scientific computational models mostly are developed to sim-
ulate the physics, chemistry, biology and other scientific phenomenons by using
various numerical methods, such as the finite difference or finite element meth-
ods, to solve a variety of differential equations. These methods can achieve highly
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accurate simulation results; however, they are also notoriously expensive in con-
suming computational resources. It is why scientific computing is typically con-
ducted on the supercomputers using complex programming models. Moreover,
the scientific computing highly depends on our understanding of the theoretical
principles, which do not fully represent the complexity and nonlinear dynamics
in many real-world phenomenons. Many times, the parameters and other con-
straints are not well known and simulation scientists have nothing better to rely
on educated guesses.

In theory, SciML combines the deterministic scientific principles with the
universal approximation of machine learning to thus provide a more efficient
yet reliable and explainable model-based data-driven solution. SciML provides a
sound scientific theoretic foundation to unveil the new scientific governing rules
with a collection of data and models. For example, SciML may integrate a deep
learning model into a partial differential equation (PDE) to fit the observed data,
which models the well-known principles using the PDE and models the unknown
portion such as noise and friction using the deep learning model.

The latest theoretical and practical advances in machine learning, especially
deep learning, dramatically increase the capacity and accuracy of the universal
approximation of nonlinear functions. Despite the progress, it is still not reliable
and explainable to learn a complex system with nonlinear dynamics or chaos
using deep learning along. Moreover, it requires huge mostly unrealistic big data
sets to train a deep learning model to cover all possible features. Even if we can
successfully train a deep learning-based surrogate model, the model’s extrap-
olation is not questionable. It would be much more reliable and explainable
if we can embed the physical principles to determine the nonlinear dynamics,
and only leave the unknown functions to machine learning. SciML converges
the computational science and data science disciplines powers to improve the
accuracy, performance, and interpretability in scientific simulation. Moreover, it
may unveil scientific rules hidden inside the nonlinear dynamics learned by the
machine learning models.

In this paper, we present the latest four SciML models using a couple of
physics experiments to report our experience, the benefits, and limitations of
the SciML method. Section 2 describes the state-of-art of SciML models; Sect. 3
shows the physics experiments, simulation, and data collection; Sect. 4 discusses
the results of the SciML models; and the Sect.5 concludes the findings of the

paper.
2 Scientific Machine Learning Models

Scientific machine learning is developed to facilitate the scientific computation
either by developing a surrogate model to replace the numerical model or com-
bine the data-driven model to achieve better accuracy and performance. In this
paper, we applies the Physics-Informed Neural Networks (PINNs) [29], the Uni-
versal Differential Equation (UDE) method [27], the Hamiltonian Neural Net-
works (HNNs) [11], and the Neural Ordinary Differential Equation (NODE) [7]
to learn the nonlinear dynamics in several physics experiments.
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2.1 Physics-Informed Neural Networks

The Physics Informed Neural Networks (PINNSs) is one of SciML solutions that
solves the differential equations by modeling the latent solution u(¢,x) directly
with a deep learning model and solves the differential equation by taking advan-
tage of automatic differentiation functionalities [2] in machine learning (ML)
software. The solution u(t,x) is replaced by a neural network or other machine
learning model and its derivatives satisfy the definition of the governing differ-
ential equation.

For example, the harmonic pendulum differential equation is defined as the
Eq. (1). 0

-zt %sin(@) =0 (1)
where ¢ is gravity, L is the length of the pendulum and 6 is the angle with
respect to the vertical in radians.

PINNSs redefines the equation by substitute its solution f(¢) with a neural
network N, (t), where N is the neural network and p is its trainable parameters.
The new equation is depicted as the Eq. (2).

N () + % sin(6) = 0 (2)

By creating a loss function to minimize the Eq. (2), PINNs utilizes the auto-
matic differentiation capability in machine learning software to calculate the
second order derivatives of N,(t) and optimize the loss function. As the result,
the N,(t) is an approximation of the solution of Eq. (1).

Furthermore, PINNs can be effectively used to solve the forward problem
as well as the inverse problem with minimum modifications to computational
codes [18]. Additionally, a Petrov-Galerkin [10] version of PINNs have been
employed to solve variational form of PDEs to reduce the training cost [14].
Likewise, modified versions of PINNs have been employed to solve fractional
differential equations [23] and stochastic differential equations [34]. As a method
to address lack of uncertainty quantification in PINNs, Zhang et al. [35] put
forward the idea of using multiple deep neural networks to quantify the para-
metric uncertainty and dropouts to model the uncertainty stemming from the
approximations resulting from the neural networks. As an effort to develop a the-
oretical basis of PINNs, Shin et al. [31] studied the convergence of the sequence
of minimizers generated from PINNs corresponding to the sequence of neural
networks to the solution of the given PDE. They found sequence of the minimiz-
ers strongly converges to the PDE solution in L2 space as well as each minimizer
satisfies both initial and boundary conditions.

2.2 Universal Differential Equations

The Universal Differential Equations (UDE) method has some similarities with
the PINN method: both rely on the scientific principles represented as differential
equations to guide the computation and impose constraints. However, UDE is
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more flexible to model the unknown functions and combine them with existing
scientific knowledge. UDE relies on the numerical differential equation solvers to
solve the problem while learning the unknown functions during the calculation.
The pendulum equation using UDE is depicted as the Eq. (3), which intro-
duces a neural network N, that represents the unknown function is the exper-
iment, such as the friction and/or the external force. As the result, the UDE
solution better fits with the observed experiment results as described in Sect. 3.
d?o
=+ %Sin(&) + Ny(u) =0 (3)
The method designs a machine learning model representing unknown physical
functions while computing the ODE numerically using the ODE solver. The
benefit of using the UDE method is that the neural network does not learn
the full dynamics, which may be extremely hard or even impossible due to the
nonlinear dynamics in chaotic systems. The approximation caused by the neural
network may much diverge the long-term prediction results if we simply use
the data-driven statistics-based machine learning model. It is hard to believe
that a neural network’s universal approximation can be accurate enough for
nonlinear dynamics prediction. The physical principles in dynamics need to be
honored during the calculation. The UDE method applies the powerful universal
approximation capacity in machine learning and respects physical constraints
such as symmetry, invariance, and conservation.

2.3 Hamiltonian Neural Networks

In classical mechanics, Hamiltonian equations are widely adopted to model con-
tinuous time evolution of dynamic systems with physically conserved quantities
such as energy and they can be effectively used to predict the phase space of
dynamic system’s using the current state of the generalized position and momen-
tum. Additionally, Hamiltonian mechanics are smooth, time reversible and pro-
vide integral paths that conserve certain physical quantities such as energy. Grey-
danus et al. [11] introduced Hamiltonian neural networks (HNN) by incorporat-
ing Hamiltonian equations into the loss function of the neural network to learn
the Hamiltonian of simple systems with noisy phase space data. Additionally,
Toth et al. [33] used a generative model to infer the Hamiltonian from dynamic
systems using high dimension data (pixel). Matteakis et al. [20] embedded phys-
ical constraints into the structure of the neural network using the Hamiltonian
equations deviating from other studies using the HNN method.

HNN may also help reduce the expensive computational costs for solving
scientific problems. The HNN method creates a neural network N, that meets
the following requirements:

doy _OH _ON, dw __OH _ 0N, @
dt o 81‘2 o 8.1317 dt o 8.131 o 81‘2
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where (21, z2) are two inputs of the HNN network, and denote the position
and momentum.

2.4 Neural Ordinary Differential Equations (Neural ODE)

Since it was first observed by Weinan E [8], the relation between ResNet [13]
and dynamical systems has been widely explored and utilized to increase the
capability and stability of deep networks [4-6,17,19,32]. Connecting deep net-
works with ODE was largely inspired by the success of ResNet, whose network
architecture is strikingly similar to the well-known Euler method for differential
equations. With this observation, a natural idea is to generalize existing numeri-
cal methods to deep networks [19,36]. Neural ODE, proposed by Chen et al. [6],
went one step further: it replaces deep networks such as ResNet with existing
efficient ODE solvers.

One key difference between solving ODE and training deep networks is that
their goals are different. The goal of training deep networks is to find functions
that fit the data while numerical ODE is to approximate solutions of the ODE.
The idea of the dynamical systems approach for deep networks is to tune the
vector field so that its flow map can reproduce nonlinear functions needed to fit
the data [8]. More specifically, consider

d

== f(=t.0), 0=z (5)
Let z(t,x,p) be the solution to the initial value problem (5), let 7' > 0 be a

fixed time and p be a set of parameters. The flow map

x— z(T,x,0)

defines a function from input to output, which is generally nonlinear [8]. Here
f could be a neural network to model vector fields.

Neural ODE uses existing solvers to solve the ODE (5) for a given set of
parameter and input values. The step after solving the ODE is to adjust the
values of p and repeat the process to find optimal values for p so that the flow
map fits the data best. Just as regular optimization, this process requires to
compute the gradient of a designed loss function with respect to p. A beautiful
benefit coming out of Neural ODE approach is that the computation of gradient
is easier and independent of the solver and can be carried out by the classical
adjoint sensitivity method [26]. Another benefit of this method is that Neural
ODE can naturally used for time dependent data as the pendulum data discussed
in this paper.

A computational disadvantage is that ODE solver often requires a larger
number of evaluations than in a standard deep network, which tends to get
worse over the training [16].
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3 Physical Experiments

3.1 Quadruple Spring Mass System

A quadruple-springs-mass system allowed to move in a 2-D frictionless surface
(Fig. 1) can exhibit simple harmonic motion as well as non-linear dynamic motion.
The motion depends on the initial conditions of the system and also on the
physical properties of the springs (i.e. spring constants and unstretched lengths
of the springs). For simplicity, here we only consider massless springs.

The time independent Hamiltonian of the quadruple-springs-mass system can
be given using generalized position(z,y) and momentum(p,,p,) as;

2 2
%+ 1
H = Pe TPy + = Z ki(li — (li)2 (6)

where: a; = un-stretched lengths of the springs,
l; = stretched lengths of the springs,
k; = springs constants,
m = mass of the particle in the middle

Fig. 1. Quadruple-springs-mass system

Where, l1 = /(a1 +2)* + 9, lo = /(a2 —2)* + ¢, I3 = /(a3 —y)* +2?
and Iy = /(a4 + y)? + 22. We simulate one instance of simple harmonic motion
and another instance of non-linear dynamic motion of the quadruple-springs-
mass system by solving the Hamiltonian equations (Eq.4) while utilizing the
Hamiltonian given in Eq.6. Initial conditions for the simple harmonic motion
and the non-linear dynamic motion are given in Table 1. The data generated for
a period of 57 from the two experiments.
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Table 1. Initial conditions for the simple harmonic motion and non-linear dynamic
motion

Motion type Unstretched length | Spring const | Init. pos Init. moment | Mass
Parameters ai,az,as,aq ki,ko, k3, k4 | o, Y0 Pro, Pyo m
SHM 1,1,1,1 1,1,1,1 -0.2,—0.2 /0.1, 0.1 1.0
Nonlinear dynamics | 1,2, 3,4 4,3,2,1 —-0.2,0.1 |0.1,-0.2 1.0

3.2 Pendulum

A pendulum is a classical physical phenomenon that has been studied to under-
stand its dynamics for a long time. Figure 2 shows a simple gravity pendulum
with angle (0) and the length of slender rod L, the mass of pendulum bob m,
and its angular velocity w = 4%.

Fig. 2. Pendulum motion

The simple gravity pendulum [22] is a harmonic motion without any friction
or external forces, which is governed by the simple second-order differential Eq. 1.

For Eq. (1), we may use numerical methods to solve the ODE by specifying
a small-enough time step. The results are a sequence of the angles # and the
angular velocities % for each time step during the pendulum simulation time
span.

The differential equation (1) is changed by adding the air resistance or fric-
tion component to simulate a damping harmonic pendulum, linear or nonlinear,
depending on the scenario. Equation (7) shows linear air resistance/friction inte-
grated into the motion to slow the pendulum down gradually.
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d*0 o g .
ﬁ + ME + Z Sln(@) =0 (7)

where: M% = the linear air resistance/friction.

The air resistance/friction may also be nonlinear represented as a polynomial
function such as: y12(92)? + 411 % then the Eq. (7) is changed to Eq. (8).

20 o\ > o\ g .
2T <M2 <dt> Jr#ldt) + ZSIH(Q) =0 (8)

Besides the gravity and resistance, an external force may interfere with the
pendulum motion, which creates a non-harmonic oscillator. The external force
f(0) can be a motor or wind that varies based on the pendulum’s radiant. The
differential equation (8) is expanded to become a non-homogeneous differential
equation (9) including the external force in Eq. (10).

) 2
and 6
f(6) = o cos(6) (10)

where m is the mass of pendulum bob and f is the external force driven
by a wind or a motor. In Sect. 3.3, we assume that the external force f(6) is
independent of time. However, it could be time-dependent as f(¢,0), as the
example detailed in Sect. 3.4, or even stochastic.

3.3 Simulated Pendulum

It is challenging or impossible to analytically solve the nonlinear dynamics equa-
tion since it is tough to simplify or divide-and-conquer the problem. Fortunately,
we can solve the problem approximately using the numerical method using the
finite difference method (FDM), the finite element method (FEM), or the finite
volume method (FVM).

These differential equations described in Sect.3.2 can be solved using the
ODE numerical solvers implemented in SciPy or Julia. There are many numerical
algorithms for these ODE solvers to choose to solve these equations that simulate
the temporal behavior of the pendulum dynamics concerning the pendulum’s
angle (0) and its angular velocity (w) during a time frame.

The work uses the Julia [3] programming environment and its DifferentialE-
Quations.jl package [28] to solve these ODEs for pendulum simulations. Julia
provides a high-level programming interface similar to Matlab/Python with sal-
able performance on both CPUs and GPUs. It includes a rich set of compu-
tational packages such as differential equations of ODEs/PDEs, linear algebra,
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optimizations, automatic differentiation, dynamical systems, and data science
packages such as its machine learning package Flux and Boltzmann Machines.

The Julia code that defines the pendulum ODE and initial values is listed in
Fig. 3. The ODE solver uses the Tsit5 algorithm - the Tsitouras 5/4 Runge-Kutta
method with the free fourth-order interpolant, which is efficient and accurate
in solving the pendulum ODE equation. The code defines a non-homogeneous
differential equation with an external force and polynomial friction. The initial
0 value is /2 and the velocity w is 0. The period is set from 0 to 10s, with 0.1s
as the time step. It generates 101 samples of (0, w) after the calculation.

1 0o = pi/2 # initial angular deflection [rad]
2 wo = 0.0 # initial angular velocity [rad/s]
3 ug = [0o, wol # initial state wvector

4 tspan = (0.0,10.0) # time range

5 At =0.1 # time interval

6 M= 0->2.0%cos(6) # external torque [Nm]

7

8 function pendulum!(du,u,p,t)

9 dul1] = u[2] #0'(t) = wl(t)

10 du[2] = poly_friction(du[1]) -(g/L)*sin(ul1]) + 3/(m*L~2)*p(ul1])
#w'(t) = friction(w(t)) -g/(L)sin O(t) + 3/(ml~2)M(0(t))

12 end

14 prob = ODEProblem(pendulum!,up,tspan,M)
15 sol = solve(prob, Tsit5(), saveat=At)

Fig. 3. Pendulum motion ODE code

Figure 4(a) shows the phase space of the pendulum dynamics based on the 6
and the w for 10 s motion with nonlinear friction and external torque. Figure 4b
illustrates the pendulum angles # and the angular velocity w temporal changes
during the 10s of pendulum motion simulation. Due to the external torque
and friction, the motion is non-harmonic, leaning toward its right-hand side
gradually.

3.4 Simulation of Wind Forced Pendulum

In this simulation a quick air flow is used to start the oscillations of pendulum.
The goal of the experiment is to infer the time profile of the air flow pulse from
the simulated measurements of the angular position of the pendulum (Fig. 5).
We assume that the drag force that acts on the pendulum is proportional
to the relative velocity of the pendulum with respect to the air, according to
Stoke’s law:
Fy=b(@ — 7)
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Pendulum Phase Space

(a) Pendulum Phase Space in 10 Seconds (b) Pendulum Motion Simulation in 10
Seconds

Fig. 4. Pendulum motion simulation shown in the phase space

u(t)

t

air flow profile

|b|ower —
—>

Fig.5. A pendulum forced to oscillate by a quick air blow of wind

where the drag coefficient is b = 67nr for a spherical object of radius r, and
1 is the viscosity. The air flow is assumed to be uniform, and oriented along
the z-axis uw = u(t)Z. Under these assumptions, the differential equation for the
pendulum is
d?o 9 no b df
e A
with initial conditions: #(0) = df/dt(0) = 0. The solution #(¢) depends on
the airflow profile u(t) and the drag coefficient b as external parameters, while
gravity ¢g and length L of the pendulum are assumed to be known.
Given a set of measurements of time and angular position ({tx,0r}, k =
1,2,...,N), the unknown airflow profile, as well as the drag coefficient, can be
inferred by minimizing the loss function

N
Z (tx) —Gk

k=1

+ b ()COSH (11)

L(u

w\»—‘
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This can be obtained by using a Conjugate Gradient Descent method where
better candidates for b and u(t) are calculated at each iteration as

0L oL

Ngye  ulte) = u'(ty) = ulty) =57~

b—b =b—
- du(ty)

where 7 is a small learning rate chosen appropriately and the airflow pro-
file is discretized at the same temporal points tj, for convenience. The partial
derivatives of L with respect to b and u(t) are obtained in turn as

) A a0
— =) (0(tx) — Or) =-(t)
b ]; k k 8[) k
and
L & by gy 00,
m_;((k)_ k)M(k)

The sensitivities of the ODE solution 90/0b and 06/Ju(ty,) can be calculated
in several ways [25]. For our example, we used forward differentiation package
ForwardDiff [30], that employs dual numbers [12] during the iterative calculation
of the solution of Eq.(11). Each time step during the iterative calculation is
calculated according to Heun’s modification of Euler’s method [9]. At the start of
integration all parameters are set as dual numbers with zero dual part, except the
parameter for which the sensitivity is required, which is set with 1. The solution
obtained at the grid points ¢; will in turn be dual numbers that represent the
solution, as the main part, and the sensitivity of the solution with respect to the
chosen parameter, as its dual part. The advantage of this approach is that all
calculations are done in place with modest memory requirements.

Figure 6 show the results of our experiment. We simulated a 1.0 kg pendulum
of length 1.0m that has a drag coefficient of b = 0.25 kg/s. The pendulum is
forced to oscillate by a short gaussian blow pulse of amplitude 4.0 m/s, centered
around ¢t = 2.8, with standard deviation of 0.2s. Starting from random guesses
for b and wu(t), the procedure converges toward the anticipated values. At every
time step, only positive values of u(t) are allowed. The convergence is slow, but it
can be accelerated by using more refined strategies, like ADAM or RMSProp [15].

3.5 Physical Experimental Pendulum

Besides the simulation, we also recorded a one-minute video for the pendulum
experiment shown in Fig.7(a). In the experiment, we measured the mass of
the pendulum bob and the length of the pendulum. The angle # and angular
velocity w were calculated based on the image processing algorithms. The friction
is unknown in the experiment.

To process the experiment video, we first extract the frames out of the
video that is recorded with the frame rate of 60 per seconds. We then apply
the Blob detection algorithm from the Scikit-image image processing package,
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Fig. 6. Left panel: comparison between the exact and calculated airflow profiles, and
angle vs. time (inset). Right panel: convergence of the loss function.

(a) Experimental Pendulum Video (b) Labeled Experimental Pendulum
Video

Fig. 7. Pendulum experiment recorded in video

which detects the coordinates of the pendulum bob and center. The Difference
of Hessian (DoH) algorithm in Blob detection gives us the best performance and
less false positives. Figure 7(b) shows the detected coordinates of pendulum cen-
ter and bob. These coordinates detected are used to compute the angle # and
angular velocity w based on the geometry and the prior state. The results are
a collection of 3600 pendulum angles and angular velocity states in one minute
with 1/60s for each time step.

4 Learning the Nonlinear Dynamics with Scientific
Machine Learning

In Sect. 3, the paper shows the simulation results pendulum nonlinear dynamics
with assumptions of known functions of the friction and external torque. Can
SciML augment the scientific machine learning by using the collected data set?
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For real-world experiment, we may not know some of these functions, but we can
collect the motion data (f and w) based on experiments Sect. 3.5. The question
is if the SciML model can learn the unknown nonlinear dynamics hidden in these
systems?

4.1 What Do These SciML Models Learn?

In the pendulum study, we knew that the simple harmonic pendulum’s motion
is governed by the Eq. (1). The initial conditions include the pendulum angle,
the angular velocity, the length, the mass, and the constant gravity. All of them
can be measured to determine the motion. In reality, what we do not know
at the beginning is the friction and external force in the Eq. (9) and (10). The
SciML model only models the friction and external force functions using a neural
network and learns the two functions through the recorded data. The ODE solver
calculates the harmonic motion.

0 g . df
W -+ Z Sln(e) = NP(E,m,L) (12)
The Eq. (9) and (10) is revised as the new Eq. (12), in which the N,(%¢ m, L)

is a neural network with four inputs and one output that learns the friction and
external torque. The N, is a four-layer fully connected neural network with 4-
64-64-1 neurons in each layer, and it uses the hyperbolic tangent tanh as its
activation function.

The software package used in the paper is one of the SciML packages named
DiffEqFlux implemented in Julia software stack. The neural network is trained
by using a small data set from the pendulum simulation with a time span of [0,
10] and a time step 0.1, which gives us 101 samples. The training starts with
the Adam optimizer for the first 100 iterations and then switch to the BFGS
optimizer after the 100th iteration. Figure 8 shows the loss values of using these
two optimizers. In this experiment, the BFGS optimizer learns the function faster
than Adam optimizer.

100 10°* 10 10 10 10**
Iterations

Fig. 8. Loss values during the UDE training



274 L. Huang et al.

Once the loss value becomes small enough (<107%), the neural network
approximates the friction and torque functions well. It is interesting to under-
stand what the neural network learned and compares it with the ground-truth
friction and torque functions. Figure 9a shows the overlay graph of the neural
network and the ground-truth friction and torque functions. The figure shows
that the neural network and ground-truth functions are close enough at most
input spaces. Some minor differences are showing in the boundary areas of the
input space. Figure 9b illustrates the differences between these two functions.

o

2
1
]
-1

00

-01

-02

-03

-15

05 00 o5 10 05 oo

(a) The overlay plot of Neural Network (b) Differences between Neural Network
and ground-truth and ground-truth

Fig. 9. A comparison of the trained neural network and the ground-truth function

For the experiment pendulum in Sect. 3.5, the friction is unknown. The SciML
UDE models the friction as part of the differential equation of pendulum dynam-
ics. After training to fit with the collected coordinates and angular velocity from
the video, the SciML UDE discovers the friction exerted in the pendulum shown
in Fig. 10. Note that the SciML. UDE may produce multiple solutions of the
friction that fits the observed data well. We believe that the friction should has
the property of odd symmetry where f(z) = —f(—x). We selected Fig. 10 as the
correct solution.

4.2 Can SciML Predict the Future?

In this experiment, the neural network training data was generated using a time
interval of 0.1s, which is sampled with a low frequency and generates sparse
data points. Can the neural network be trained using the small data set and
generalize well to predict the high-frequency data? It is a question about the
capacity of the neural network’s interpolation.

The paper answers the question by testing the SciML solution for the same
period [0, 10] but reduce the time interval by ten times to 0.01. The result shows
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Fig. 10. The friction learned by sciml in the experiment pendulum

that the SciML solution with the trained neural network can predict the high-
frequency data with a time step of 0.01. The interpolation and generalization
capacity is well preserved in the SciML solution.

predicted 8 [rad]
True 6 [rad]

0 10 20 30 ] 1000 2000 3000

predicted w [rad/s] 2+ predicted w [rad/s]
True w [rad/s] N True w (rad/s)
of
af

(a) a (b) b

Fig. 11. (a) Prediction of the simulated pendulum motion for 30s (b) Prediction of
the experiment pendulum motion for 60s

One weakness of machine learning is that it does not perform well on extrap-
olation. In particular, if the problem is not periodic, it is very challenging or even
impossible to predict the future without gaining the full data covering the entire
problem space. By using the SciML methodology, the extrapolation is feasible
since the neural network is embedded in the ODE models as a time-independent
function. The ODE solver calculates all time-related dynamics. The combina-
tion of ODE and neural network works well on extrapolation in predicting the
nonlinear pendulum dynamics.

Figure 11a shows the results of the simulated pendulum motion prediction for
30 s with a time interval of 0.01. The neural network was trained using 10s of data
with a time interval of 0.1. The figure shows a complete overlay of the prediction
and the ground-truth data, which indicates that the prediction matches the real
data very well. Note that the prediction is performed to generate much higher-
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frequency data than the training data, which also proves that both interpolation
and extrapolation work well using SciML.

Figure 11b shows the results of the experiment pendulum motion prediction
for one minute with a time interval of 1/60. The neural work trained to learn
the friction and the results fit well with the observed data. Note that the figure
actually shows both observed and predicted 6 and w, which overlap too well to
distinguish them.

4.3 Can HNN Solve Complex Dynamic Problems?

The both simple harmonic motion and the non-linear dynamic motion of the
quadruple-springs-mass system (Fig. 1) are also simulated using HNN method
described by Mattheakis et al. [21]. We used four parametric solutions in the form
of 2(t) = z(0)+ f(t)(N(t) — 2(0) to solve for the four generalized coordinates [24].
We choose a parametric function f(t) = 1 — exp(—t) and a symmetric activation
function of sin following Mattheakis et al. [21]. We used six layer neural network
with ten neurons for the HNN. We also used a learning rate of 0.0001.

The HNN based simulation of the simple harmonic motion agrees well with
the ground truth trajectories as shown in the Fig.12(a) and 12(b). But, the
energy does not seems to be conserved. However, the simulation of the non-
linear dynamic system using HNN fails to produce the desired results (Fig. 13(a),
13(b)). The loss functions for the both systems are shown in the Fig. 14(a) and
14(b). The loss value of the simple harmonic motion is much lower than the
non-linear dynamic system.

The HNN method requires to incorporate more physical constraints such
as symmetry [20] to the neural network to improve the simulations of complex
non-linear motions.
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(a) Motion in the x-direction. (b) Motion in the y-direction.

Fig.12. A simulation of the simple harmonic motion of the quadruple-springs-mass
system using the HNN method.
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Fig. 13. A simulation of the non-linear dynamic motion of the quadruple-springs-mass

system using HNN method.
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Fig. 14. The loss functions for the HNN method

5 Conclusion

SciML is a new method that combines the scientific principle-based solutions and
the data-driven machine learning models, which creates a new set of tools for
scientists to understand the scientific rules using existing theories and learning
from data directly. The combination equips scientists with additional flexibility
in modeling a scientific problem with partially known knowledge and limited
data sets. The requirement of big data for machine learning may be relaxed to
learn a scientific phenomenon since only the unknown portion is approximated
with machine learning, while other portions are still governed by the existing
deterministic scientific principles, which dramatically reduces the training com-

plexity in machine learning.
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