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ABSTRACT

A novel algorithm for computing monotone order six piecewise polynomial interpolants is proposed. Alge-

braic constraints for enforcing monotonicity are provided that align with quintic monotonicity theory. The

algorithm is implemented, tested, and applied to several sample problems to demonstrate the improved ac-

curacy of monotone quintic spline interpolants compared to the previous state-of-the-art monotone cubic

spline interpolants.
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1 INTRODUCTION AND MOTIVATION

Many domains of science rely on smooth approximations to real-valued functions over a closed interval.

Piecewise polynomial functions (splines) provide the smooth approximations for animation in graphics

(Herman and Oftedal 2015, Quint 2003), aesthetic structural support in architecture (Brennan 2019), ef-

ficient aerodynamic surfaces in automotive and aerospace engineering (Brennan 2019), prolonged effective

operation of electric motors (Berglund et al. 2009), and accurate nonparametric approximations in statis-

tics (Knott 2012). While polynomial interpolants and regressors apply broadly, splines are often a good

choice because they can approximate globally complex functions while minimizing the local complexity of

an approximation.

It is often the case that the true underlying function or phenomenon being modeled has known properties

e.g., convexity, positivity, various levels of continuity, or monotonicity. Given a reasonable amount of data,

it quickly becomes difficult to achieve desirable properties in a single polynomial function. In general,

the maintenance of function properties through interpolation/regression is referred to as shape preserving

(Fritsch and Carlson 1980, Gregory 1985). The specific shapes this work will achieve in approximations

are monotonicity and C2 continuity. These properties are chiefly important to the approximation of cumu-

lative distribution functions and subsequently the effective generation of random numbers from a specified

distribution.
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2 MONOTONE QUINTIC INTERPOLATION

The following section is composed of three algorithms that together are used to construct a monotone quin-

tic spline interpolant. Without loss of generality, the algorithms will only consider the monotone increasing

(nondecreasing) case. The monotone decreasing case is handled similarly. Algorithm 1 checks monotonic-

ity, Algorithm 2 enforces monotonicity on an order six polynomial piece of the quintic spline, and Algorithm

3 uses the previous two algorithms to enforce monotonicity for the entire quintic spline.

In pseudocode, a function binary_search(g, a, b) is used, where a,b ∈ S ⊂R
p for convex S, g : S →

{FALSE, TRUE} is a right continuous Boolean function, g(b) = TRUE, and for µ ∈ [0,1], g
(

(1− µ)a+

µb
)

= TRUE =⇒ g
(

(1− ν)a+ νb
)

= TRUE for µ ≤ ν ≤ 1. The search returns
(

(1− c)a+ cb
)

for the

smallest c ∈ [0,1] such that g
(

(1− c)a+ cb
)

= TRUE.

These algorithms make use of first and second derivatives of the approximated function where D denotes

the differentiation operator. In the case that the first and second derivative information is not provided along

with function values, the derivatives are estimated with finite differences of the function values. The final

quintic spline is represented as a piecewise polynomial using the Newton form for each polynomial piece,

and ultimately converted to a B-spline representation for evaluation.

Algorithm 1: is_monotone
(

x0,x1, f
)

where x0, x1 ∈ R, x0 < x1, and f is an order six polynomial defined by f (x0), D f (x0), D2 f (x0), f (x1),
D f (x1), D2 f (x1). Returns TRUE if f is monotone increasing on [x0,x1].

1: if
(

f (x0) = f (x1)
)

and not
(

0 = D f (x0) = D f (x1) = D2 f (x0) = D2 f (x1)
)

return FALSE

end if

2: if
(

D f (x0)< 0 or D f (x1)< 0
)

return FALSE

end if

The necessity of these first two steps follows directly from the fact that f is C2. The next case

is in accordance with a simplified condition for quintic monotonicity that reduces to one of cubic

positivity studied in Schmidt and Heß (1988), where α , β , γ , and δ are defined in terms of values

and derivatives of f at x0 and x1. Step 5 checks for the necessary condition that α ≥ 0, Step 6 checks

β ≥ α , and Step 7 checks γ ≥ δ , all from Schmidt and Heß (1988). If all necessary conditions are

met, then the order six piece is monotone and Step 8 concludes this check.

3: if
(

D f (x0) = 0 or D f (x1) = 0
)

4: w := x0 − x1

v := f (x0)− f (x1)
5: if

(

D2 f (x1)>−4D f (x1)/w
)

return FALSE

6: if
(

D2 f (x1)< (3wD2 f (x0)−24D f (x0)−32D f (x1)+60v/w)/(5w)
)

return FALSE

7: if
(

D2 f (x0)< 3D f (x0)/w
)

return FALSE

8: return TRUE

end if

The following code considers the remaining case where D f (x0) ̸= 0 and D f (x1) ̸= 0.

9: A := D f (x0)
x1 − x0

f (x1)− f (x0)

B := D f (x1)
x1 − x0

f (x1)− f (x0)
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The variables A and B correspond directly to the theoretical foundation for positive quartic polyno-

mials established in Ulrich and Watson (1994), first defined after Equation (18).

10: γ0 := 4
D f (x0)

D f (x1)
(B/A)3/4

γ1 :=
x1 − x0

D f (x1)
(B/A)3/4

α0 := 4(B/A)1/4

α1 :=− x1 − x0

D f (x1)
(B/A)1/4

β0 := 30− 12
(

D f (x0)+D f (x1)
)

(x1 − x0)
(

f (x1)− f (x0)
)√

A
√

B

β1 :=
−3(x1 − x0)

2

2
(

f (x1)− f (x0)
)√

A
√

B

The γ , α , and β terms with subscripts 0 and 1 are algebraic reductions of the simplified conditions

for satisfying Theorem 2 in Equation (16) of Ulrich and Watson (1994). These terms with subscripts

0 and 1 make the computation of α , β , and γ functions of the second derivative terms, as seen in

Step 11 below.

11: γ := γ0 + γ1D2 f (x0)
α := α0 +α1D2 f (x1)
β := β0 +β1

(

D2 f (x0)−D2 f (x1)
)

12: if (β ≤ 6) return
(

α >−(β +2)/2
)

else return
(

γ >−2
√

β −2
)

end if

The reason for structuring the α , β , and γ computations in terms of the second derivative of f (seen in

Step 11 of Algorithm 1) will become more apparent later. The next problem to consider is that of making a

nonmonotone order six polynomial piece into a monotone one by modifying its first and second derivative

values at the ends of an interval. Note that the actual value of the function at the ends of the interval is not

modified, as the resulting polynomial needs to interpolate.

Algorithm 2: make_monotone
(

x0,x1, f
)

where x0, x1 ∈ R, x0 < x1, and f is an order six polynomial defined by f (x0), D f (x0), D2 f (x0), f (x1),
D f (x1), D2 f (x1). Returns f monotone on [x0,x1].

1: if
(

f (x1) = f (x0)
)

D f (x0) := D f (x1) := D2 f (x0) := D2 f (x1) := 0

return

end if

2: D f (x0) := median

(

0, D f (x0), 14
f (x1)− f (x0)

x1 − x0

)

D f (x1) := median

(

0, D f (x1), 14
f (x1)− f (x0)

x1 − x0

)

The selection of values in Step 2 for D f (x0) and D f (x1) is suggested by Ulrich and Watson (1994)

and also by Huynh (1993). These rules quickly enforce upper and lower bounds on derivative values

to ensure quintic monotonicity is obtainable.
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The next case that will be covered is in accordance with a simplified condition for quintic mono-

tonicity that reduces to one of cubic positivity studied in Schmidt and Heß (1988), where α , β , γ ,

and δ are defined in terms of values and derivatives of f at x0 and x1. Steps 5 and 6 ensure that the

following bounds on D2 f (x0) are compatible while Step 7 ensures that the conditions on D2 f (x1)
are compatible. To conclude the simplified case, Step 8 first enforces γ ≥ δ , then Steps 9 and 10

enforce α ≥ 0 and β ≥ α respectively. Combined, these three conditions derived from Equation

(2.18) in Schmidt and Heß (1988) guarantee monotonicity of this polynomial piece.

3: if
(

D f (x0) = 0 or D f (x1) = 0
)

4: w := x0 − x1

v := f (x0)− f (x1)
5: if

(

5D f (x0)+4D f (x1)> 20v/w)

6: D f (x0) := D f (x0) max

(

0,
20v

w
(

5D f (x0)+4D f (x1)
)

)

D f (x1) := D f (x1) max

(

0,
20v

w
(

5D f (x0)+4D f (x1)
)

)

end if

7: D2 f (x0) := min

(

D2 f (x0),
4(2D f (x0)+D f (x1))+20v/w

w

)

8: D2 f (x0) := max
(

D2 f (x0),3D f (x0)/w
)

9: D2 f (x1) := min
(

D2 f (x1),−4D f (x1)/w
)

10: D2 f (x1) := max

(

D2 f (x1),
3wD2 f (x0)−24D f (x0)−32D f (x1)+60v/w

5w

)

return

end if

The following code considers the case where D f (x0) ̸= 0 and D f (x1) ̸= 0.

11: A := D f (x0)
x1 − x0

f (x1)− f (x0)

B := D f (x1)
x1 − x0

f (x1)− f (x0)
12: if

(

max(A,B)> 6
)

D f (x0) := 6D f (x0)
/

max(A,B)

D f (x1) := 6D f (x1)
/

max(A,B)

end if

This ensures that (A,B) remains within a viable region of monotonicity (satisfying Theorem 4, seen

in Fig. 6 of Ulrich and Watson (1994)).

13: η :=
(

D2 f (x0),D
2 f (x1)

)

η0 :=

(

−
√

A

4

(

7
√

A+3
√

B
)

,

√
B

4

(

3
√

A+7
√

B
)

)

14:
(

D2 f (x0), D2 f (x1)
)

:= binary_search
(

g,η ,η0

)

Here g(z) = is_monotone(x0,x1, f ) where x0, x1, f (x0), f (x1), D f (x0), D f (x1) are fixed, and

the variable z =
(

D2 f (x0),D
2 f (x1)

)

. This binary search identifies feasible values of D2 f (x0) and

D2 f (x1) that are nearest to the current values η . This search is valid because η0 is guaranteed to

produce a monotone function, which can be seen in Equation (23) of Ulrich and Watson (1994).

return
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Notice that both Algorithms 1 and 2 have O(1) runtime assuming a fixed level of precision is chosen be-

forehand. A constant number of operations are needed for verifying monotonicity (Algorithm 1), while a

constant set of operations and a single binary search are performed for enforcing monotonicity (Algorithm

2). The search requires a fixed number of steps to achieve any predetermined relative precision, since its

accuracy is predetermined and not a function of the problem at hand. Also note that an efficient implemen-

tation of Algorithm 2 only needs to recalculate Steps 11 and 12 of Algorithm 1 during the binary search.

Next, an algorithm for constructing a monotone quintic spline interpolant is presented.

Algorithm 3: monotone_spline
(

(k1, . . ., kn), f, s
)

where (k1, . . ., kn) is an increasing sequence of real numbers, f is an order six piecewise polynomial with

breakpoints k1, . . ., kn defined by the data
{

f (ki)
}n

i=1
,
{

D f (ki)
}n

i=1
,
{

D2 f (ki)
}n

i=1
, and s > 1 is an integer

shrink factor.

1: create queue

create changed(1, . . ., n) := FALSE

create step_size(1, . . ., n) :=
(

D f (k1)/s, . . ., D f (kn)/s
)

The three variables defined in Step 1 are used to ensure the eventual achievement of monotonicity.

The queue is a standard first in first out (FIFO) queue with enqueue and dequeue operations.

The array changed contains Booleans describing whether or not a breakpoint belongs to an inter-

val that has been modified to enforce monotonicity. The step_size array contains the real-valued

derivative decrement step sizes to use in the search for a valid monotone spline.

2: for i := 1, . . ., n−1

enqueue
(

(ki,ki+1)
)

end for

Initially, all intervals must be checked for monotonicity. The following loop will continue until all

intervals are verified as monotone without need for modification.

3: while (size(queue)> 0)
4: (k j, k j+1) := dequeue

5: if
(

not is_monotone(k j, k j+1, f )
)

6: if
(

changed( j)
)

D f (k j) := D f (k j)−step_size( j)

if
(

changed( j+1)
)

D f (k j+1) := D f (k j+1)−step_size( j+1)

If a breakpoint belongs to an interval that has been previously modified, then the enforced

monotonicity conditions on the second derivatives of adjacent intervals must contradict one

another. In turn, the involved first derivatives are decreased towards zero by a predeter-

mined step size.

7: make_monotone(k j, k j+1, f )
8: changed( j) := TRUE

changed( j+1) := TRUE

9: if
(

j > 1 and (k j−1,k j) ̸∈ queue
)

enqueue
(

(k j−1,k j)
)

enqueue
(

(k j,k j+1)
)

if
(

j+1 < n and (k j+1,k j+2) ̸∈ queue
)

enqueue
(

(k j+1,k j+2)
)

Step 8 records the endpoints of the current interval as having been changed, while 9 adds

adjacent intervals to queue that may have inadvertently been made nonmonotone by the

changes to the present interval.

end if
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Table 1: The minimum, median, and maximum number of checks, fixes, and binary search steps required

in the execution of make_spline for increasing size sequences, n, over 100 randomly generated sets of

monotone data. Notice the maximum for each counter is often significantly greater than the minimum and

median, because the distribution of each counter is skewed right.

n
Checks Fixes Search Steps

min median max min median max min median max

5 4 6 274 0 1 154 3 31 2006

25 28 47 378 2 14 225 80 348 3742

50 61 124 484 6 40 238 217 851 4445

75 102 216 842 14 74 411 463 1491 6333

100 142 306 776 21 107 380 629 2140 7414

cost of evaluating the spline after construction is unchanged. While the number of computations required per

interval has increased, the number of points required to achieve the same level of accuracy has decreased.

In the present state, the algorithm for enforcing monotonicity on a spline is not as trivially parallel as the

cubic algorithm, however it can still be parallelized. The checks for monotonicity across all intervals are

independent and the monotonicity adjustments could be computed independently and intelligently merged

with minor changes to the serial algorithm.

Acknowledging that the algorithm for constructing a monotone quintic spline interpolant is slightly more

expensive than the cubic case, gains in accuracy or decreased necessary number of points are often worth the

computational effort. In practice the costs of spline interpolation are often dominated by evaluation rather

than construction, and the increased accuracy is afforded for a negligible increase in computational cost.

5 CONCLUSION AND FUTURE WORK

This paper proposes and tests an algorithm for constructing monotone quintic spline interpolants. Experi-

ments demonstrate an improvement in approximation accuracy over monotone cubic spline interpolants, as

expected based on theory. There are still open avenues of research going forward, such as an alternative

sufficient condition for enforcing monotonicity or increased order monotone approximations. If the mono-

tonicity conditions can be generalized to any order or made linear, the search for a monotone interpolating

spline could potentially be formulated as a convex optimization problem. Finally, this work could be used

to improve cumulative distribution function (CDF) estimates as well as predictive models that use CDFs.
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