
Methodologies forQuantifying (Re-)randomization Security and
Timing under JIT-ROP

Salman Ahmed
Virginia Tech

ahmedms@vt.edu

Ya Xiao
Virginia Tech
yax99@vt.edu

Kevin Z. Snow
Zeropoint Dynamics, LLC

kevin@zeropointdynamics.com

Gang Tan
Penn State University
gtan@cse.psu.edu

Fabian Monrose
UNC at Chapel Hill
fabian@cs.unc.edu

Danfeng (Daphne) Yao
Virginia Tech

danfeng@vt.edu

Abstract

Just-in-time return-oriented programming (JIT-ROP) allows one

to dynamically discover instruction pages and launch code reuse

attacks, effectively bypassing most fine-grained address space lay-

out randomization (ASLR) protection. However, in-depth questions

regarding the impact of code (re-)randomization on code reuse at-

tacks have not been studied. For example, how would one compute

the re-randomization interval effectively by considering the speed of

gadget convergence to defeat JIT-ROP attacks?; how do starting point-

ers in JIT-ROP impact gadget availability and gadget convergence

time?; what impact do fine-grained code randomizations have on the

Turing-complete expressive power of JIT-ROP payloads? We conduct

a comprehensive measurement study on the effectiveness of fine-

grained code randomization schemes, with 5 tools, 20 applications

including 6 browsers, 1 browser engine, and 25 dynamic libraries.

We provide methodologies to measure JIT-ROP gadget availability,

quality, and their Turing-complete expressiveness, as well as to

empirically determine the upper bound of re-randomization inter-

vals in re-randomization schemes using the Turing-complete (TC),

priority, MOV TC, and payload gadget sets. Experiments show that

the upper bound ranges from 1.5 to 3.5 seconds in our tested appli-

cations. Besides, our results show that locations of leaked pointers

used in JIT-ROP attacks have no impacts on gadget availability but

have an impact on how fast attackers find gadgets. Our results also

show that instruction-level single-round randomization thwarts

current gadget finding techniques under the JIT-ROP threat model.

CCS Concepts

• Security and privacy→ Systems security; Software and ap-

plication security.

Keywords

ASLR measurement; security metrics; attack surface quantification;

Re-randomization interval; measurement methodology; address/-

code pointer impact analysis; JITROP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’20, November 9ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417248

ACM Reference Format:

SalmanAhmed, Ya Xiao, Kevin Z. Snow, Gang Tan, FabianMonrose, andDan-

feng (Daphne) Yao. 2020. Methodologies for Quantifying (Re-)randomization

Security and Timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’20), Novem-

ber 9ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3372297.3417248

1 Introduction

Just-in-time return-oriented programming (JIT-ROP) (e.g., [91]) is

a powerful attack technique that enables one to reuse code even

under fine-grained address space layout randomization (ASLR).

Fine-grained ASLR, also known as fine-grained code randomization

or code diversification, reorders and relocates program elements.

Fine-grained randomization would defeat conventional ROP code

reuse attacks [88], as the attacker no longer has direct access to

the code pages of the victim program and its libraries. In other

words, a leaked pointer only unlocks a small portion of the code

region under fine-grained code randomization, seriously limiting

the attack’s ability to harvest code for ROP gadget purposes.

JIT-ROP attacks can discover new code pages dynamically [91],

by leveraging control-flow transfer instructions, such as call and

jmp. Under fine-grained code randomization, the execution of a

JIT-ROP attack is complex, as code page discovery has to be per-

formed at runtime. From the defense perspective, re-randomization

techniques (TASR [6], Shuffler [105], Remix [21], CodeArmor [19],

RuntimeASLR [66], and Stabilizer [29]) have the potential to defeat

JIT-ROP attacks. Besides, protections related to memory permission

such as XnR [4], NEAR [104], Readactor [27], destructive read such

as Heisenbyte [96], and pointer indirection such as Oxymoron [5]

specifically aim to thwart JIT-ROP attacks. Precise implementation

of Control-Flow Integrity (CFI) can protect applications from all

control-oriented attacks. The recent Multi-Layer Type Analysis

(MLTA) [65] technique improves CFI precision greatly by improv-

ing the accuracy in identifying indirect call targets.

Even though the great promise of CFI for protecting control-

oriented attacks, attackers may find ways to launch new exploits

such as control-oriented [24, 38, 45, 84] and non-control-oriented [14,

55, 56] exploits as demonstrated before, where the exploits conform

with CFI. A prime requirement of many of these exploits is infor-

mation or pointer leakage. Thus, a measurement mechanism aiding

the design of risk heuristics-based pointer selection and prioritiza-

tion techniques is necessary for protecting pointers from leakage.

Besides, from a defense-in-depth perspective, a critical system

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1803

requires to deploy multiple complementary security defenses in

practice. A single defense may fail due to deployment issues such

as implementation flaws or configuration issues. Thus, despite the

strong security guarantees of CFI, our ASLR investigation is still

extremely necessary.

Re-randomization techniques continuously shuffle the address

space at runtime. This continuous shuffling breaks the runtime code

discovery process by making the already discovered code pages

obsolete. However, the interval between two consecutive random-

izations must satisfy both performance and security guarantees.

Quantitative evaluation of how code (re-)randomization impacts

code reuse attacks, e.g., in terms of interval choices, gadget avail-

ability, gadget convergence, and speed of convergence has not been

reported. We define gadget convergence as the attack stage where

an attacker has collected all the necessary gadgets. For example, if

an attacker has found at least one gadget for each type of Turing-

complete (TC) operations, then the gadget set is TC convergence.

TC operations include memory, assignment, arithmetic, logic, con-

trol flow, function call, and system call [81].

(Re-)randomization techniques make it difficult for current gad-

get finding techniques to discover all gadgets. Thus, in-depth and

systematic measurement is necessary, which can provide new in-

sights on the impact of code (re-)randomization on various attack

elements, such as code pointer leakage, various gadget sets, and

gadget chain formation. It is also important to investigate how

to systematically compute an effective re-randomization interval.

Current re-randomization literature does not provide a concrete

methodology for experimentally computing an upper bound of re-

randomization intervals. Shorter intervals (e.g., millisecond-level)

incur runtime overhead whereas longer intervals (e.g., second-level)

give attackers more time to launch exploits. An upper bound would

help guide defenders to make informed interval choices.

We report our experimental findings on re-randomization in-

terval choices considering the speed of gadget convergence, code

pointer leakage, gadget availability, and gadget chain formation,

under fine-grained ASLR and re-randomization schemes.

Launching exploits is not a feasible measurement methodology

to evaluate ASLR’s effectiveness, due to i) low scalability ś exploit

payload is not platform or application portable, ii) failure to exploit

may not necessarily mean security, and iii) low reproducibility. Our

evaluation involves up to 20 applications, including 6 browsers, 1

browser engine, and 25 dynamic libraries.

We designed a measurement mechanism that allows us to per-

form JIT-ROP’s code page discovery in a scalable fashion. Thismech-

anism enables us to compare results from a number of programs

and libraries under multiple ASLR conditions (coarse-grained, fine-

grained function level, fine-grained basic block level, fine-grained

instruction level, and register level). Our key experimental findings

and technical contributions are summarized as follows.

• We provide a methodology to compute the upper bound T

for re-randomization intervals. If the re-randomization inter-

val is less than T , then a JIT-ROP attacker is unable to obtain

various gadget sets such as the Turing complete gadget set,

priority gadget set, MOV TC gadget set, and gadgets from

real-world payloads (see the definitions of gadget sets in

Section 2). We compute the upper bound T by measuring

the minimum time for an attacker to find a specific gadget

set, i.e., the shortest time to reach gadget convergence for the

gadget set. The upper bound ranges from 1.5 to 3.5 seconds

in our tested applications such as nginx, proftpd, firefox, etc.

• Our findings show that starting code pointers do not have

any impact (i.e., zero standard deviations) on the reachability

from one code page to another. Every code pointer leak is

equally viable for revealing an address space layout, suggest-

ing that attackers’ discovered gadgets eventually converge

to a gadget set no matter where the starting pointer is.

• Our findings also show that the starting code pointers have

an impact on the speed of convergence. That means the

time needed for a JIT-ROP attacker to discover a gadget set

varies with the locations of starting code pointers. In our

experiments, the time for obtaining the Turing-complete

gadget set ranges from 2.2 to 5.8 seconds.

• We also present a general methodology for quantifying the

number of JIT-ROP gadgets. Our results show that a single-

round instruction-level randomization scheme can limit the

availability of gadgets up to 90% and break the Turing-complete

operations of JIT-ROP payloads. Also, fine-grained random-

ization slightly degrades the gadget quality, in terms of

register-level corruption. A stack has a higher risk of re-

vealing dynamic libraries than a heap or data segment be-

cause our experiments show that stacks contain 16 more libc

pointers than heaps or data segments on average.

Besides, we distill common attack operations in existing ASLR-

bypassing ROP attacks (e.g., [8, 15, 32, 91]) and present a generalized

attack workflow that captures the tasks and goals. This workflow

is useful beyond this specific measurement study.

2 Threat Model and Definitions

Coarse-grained ASLR (or traditionally known as only ASLR [98])

randomly relocates shared libraries, stack, and heap, but does not

effectively relocate the main executable of a process. This defense

only ensures the relocation of the base address of a segment or

module. The internal layout of a segment or module remains un-

changed. The Position Independent Executable (PIE) option allows

to relocate the main executable in random locations in each run. For

comparison purposes, we performed experiments on coarse-grained

ASLR with PIE enabled on a 64-bit Linux system.

Fine-grained ASLR, aka fine-grained code randomization or code

diversification, relocates all the segments and dependencies of

the main executable of a process and restructures the internal

layouts of the segments. The granularity of the randomization

varies, e.g., at the level of functions [25, 43, 58], basic blocks [21,

59, 103], instructions [52], or machine registers [27, 53]. We eval-

uated randomization schemes at various levels of granularities

using Zipr1 [50], Selfrando2 (SR) [25], Compiler-assisted Code Ran-

domization3 (CCR) [59], and Multicompiler4 (MCR) [53]. We also

evaluated Shuffler [105], a re-randomization tool. We are unable to

test other tools due to various robustness and availability issues.

1https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
2https://github.com/immunant/selfrando
3https://github.com/kevinkoo001/CCR
4https://github.com/securesystemslab/multicompiler

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1804

We assume standard defenses such as W⊕X and RELRO are

enabled. W⊕X specifies that no address is writable and executable

at the same time. RELRO stands for Relocation Read Only. It ensures

that the Global Offset Table (GOT) entries are read-only. RELRO is

now by default deployed on mainstream Linux distributions.

Layered defenses. CFI and Code Pointer Integrity (CPI) solutions

are very powerful techniques. Yet, it is still necessary for one to

experimentally measure the effectiveness of various defense im-

plementations in practice (e.g., CPI enforcement with spatial and

temporal guarantees and CFI effectiveness in different granulari-

ties [12]). From a measurement perspective, it is useful and neces-

sary to isolate various defense factors. Decoupling them helps one

better understand the individual factor’s security impact. Otherwise,

it might be too complicated to interpret the experimental results.

This is the reason we chose to focus on ASLR defenses in this work

and omit other defenses (e.g., CFI [1, 28, 42, 69, 70, 72, 78, 108, 109]

and CPI [5, 26, 37, 61, 62, 67]. For similar reasons, we also omit

memory permission protections (e.g., XnR [4], NEAR [104], Readac-

tor [27], Heisenbyte [96], and Execute-only-Memory (XOM5) [64])

for this paper. We also discuss the need for measuring code pointer

protection solutions under the JIT-ROP model in Section 6.

We assume attackers have already obtained a leaked code pointer

(e.g., a function or a virtual table pointer) through remote exploita-

tion of a vulnerability. Such an assumption is standard in existing

attack demonstrations. Also, fine-grained code randomization is

applied in every executable and associated library in a target system

(unless specified otherwise). A JIT-ROP attacker knows nothing

about the applied fine-grained randomization.

Native vs. WebAsm vs. JavaScript version of JIT-ROP. While

the original JIT-ROP attack was demonstrated in a browser using

JavaScript, the attack approach has general applicability in both

native and scripting environments. Our experiments are focused on

the native execution of JIT-ROP attacks. We conducted the experi-

ments for measuring the re-randomization upper bound using the

native JIT-ROP code module. The execution time of WebAssembly

is within 2x of native code execution [49]; JavaScript is on average

34% slower than WebAssembly [49]. Thus, our re-randomization

intervals measured using the native execution would be conserva-

tively applicable for the scripting environments as well. Besides,

JIT-ROP is not related to the JIT compilers of JavaScript (JS) engines

and does not use any flaws of JIT compilers to perform a code-reuse

attack, though some work [3] uses such flaws. JIT-ROP harvests

gadgets from a target binary’s static code, which is finely random-

ized; it does not harvest gadgets from dynamically generated code

(e.g., scripts). Thus, JS or WebAsm versions do not make substantial

differences in gadget availability.

Next, we discuss the terms Turing-complete gadget set, priority

gadget set, MOV TC gadget set, re-randomization upper bound,

minimum footprint gadgets, and extended footprint gadgets.

Definition 1. Turing-complete gadget set refers to a set of gad-

gets that covers the Turing-complete operations including memory

operations (i.e., load memory LM and store memory SM gadgets),

assignments (i.e., load register LR and move register MR gadgets),

arithmetic operations (i.e., arithmetic AM, arithmetic load AM-LD,

5XoM is now supported natively at the hardware level on x86 systems with memory
protection keys (MPK) support and Armv7-M or Armv8-M processors.

and arithmetic store AM-ST gadgets), logical operations (i.e., logical

gadgets), control flow (i.e., jump JMP gadgets), function calls (i.e.,

CALL gadgets), and system calls (i.e., syscall SYS gadgets) [81].

Definition 2. The upper boundTA
P

of a re-randomization scheme

P under a JIT-ROP attacker A is the maximum amount of time

between two consecutive randomization rounds that prevents A

from obtaining a Turing-complete, priority, MOV TC, or payload

gadget set, i.e., for any interval T ′A
P

< TA
P

, the gadgets obtained

under T ′A
P

does not converge to any of the four gadget sets.

Extended and Minimum footprint gadgets: A gadget is an

extended footprint (EX-FP) gadget if it is an instance of the four

gadget sets. An EX-FP gadget may contain additional instructions

that may cause side effects in an attack payload. EX-FP gadgets

include the longer memory addressing expressions. A minimum

footprint (MIN-FP) gadget is also an instance of the four gadget

sets without causing any side effects.

Our definition of the Turing-complete gadget set represents our

best efforts, by no means the only way. For example, a pair of

load (LM) and store (SM) gadgets may potentially replace a move

(MR) gadget. However, they may not be directly equivalent due

to possibly mismatching memory offsets of EX-FP load gadgets or

the scarcity of MIN-FP load gadgets. Excluding load-n-store from

the Turing-complete gadget set might underestimate attackers’

capabilities, while including them might overestimate attackers’

capabilities. We perform our measurements considering the Turing-

complete gadget set that enables the highest expressiveness of

ROP attacks. However, under this condition, our results might

underestimate the attackers’ capabilities. To balance an attacker’s

capabilities, we further break down the Turing-complete gadget

set into two smaller gadget sets: i) priority gadget set and ii) MOV

TC gadget set. The priority gadget set includes 10 most frequently

used gadgets in 15 real-world ROP chains from Metasploit. The

MOV Turing-complete gadget set [35] requires six MOV gadgets

and four unique registers. Besides, we also include three real-world

ROP payloads from Metasploit in our measurement.

New metrics proposed by Brown and Pande’s [11] work ś func-

tional gadget set expressivity and special-purpose gadget availabil-

ity ś are new leads that will help relax the expressiveness condition

of the Turing-complete gadget set in the future.

Our security definition of the upper bound in Definition 2 is spe-

cific to the JIT-ROP threat, and is not applicable to other threats (e.g.,

side-channel threats). A shorter interval may still allow attackers to

gain information. However, as our Section 3 shows, without gadgets

that information may not be sufficient for launching exploits.

3 JIT-ROP vs. Basic ROP Attacks

We manually analyze a number of advanced attacks to extract

common attack elements and identify unique requirements. We

illustrate the key technical differences between JIT-ROP and con-

ventional (or basic) ROP attacks. This section helps one understand

our experimental design in Section 4 and findings in Section 5.

We analyze various attack demonstrations with a focus on attacks

(e.g., [8, 15, 32, 91]) in our threat model.

To overcome both coarse- and fine-grained ASLR and conduct an

attack using privileged operations, an attacker needs to perform the

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1805

pre-computed system gadgets from dynamic libraries, given that

she manages to obtain a code pointer from a dynamic library (e.g.,

libc). Step 9 in Figure 1 is for this task. This task is performed man-

ually and offline. The attacker may obtain the library code pointer

from an application’s stack or heap or data segment. One can find

system gadgets through step 4 in JIT-ROP.

3.3 Payload Generation

Attackers generate payloads by putting many pieces (e.g., gadgets,

functions, constants, strings, etc.) together. This process must en-

sure a setup for calling system APIs or system gadgets. An attacker

generates a payload dynamically at step 5 under fine-grained code

randomization or manually at step 5′ under coarse-grained code

randomization and stores the payload in a stack/heap. Because a

payload is primarily a set of addresses that point to some exist-

ing code in an application’s address space, attacks do not execute

anything stored in a stack/heap, which is protected by W⊕X. An

attacker may utilize the same vulnerability as in step 2 or a differ-

ent vulnerability to hijack a program’s control flow at step 6 to

redirect the flow to the stored payload. A payload usually targets to

achieve an attack goal, e.g., memory leak or launching a malicious

application/root shell.

Attack chains with minimal side effects are desirable for attack-

ers, i.e., having a payload that fulfills attack goals without gener-

ating any unnecessary computations. However, this property may

not be guaranteed if code randomization limits gadget availability.

We refer to the side effect of gadgets as footprints. We defined the

minimum and extended footprint gadgets in Section 2.

For ROP attacks (e.g., [15]) that bypass control-flow integrity

(CFI) defenses, the attackers also need to prepare specialized pay-

loads in addition to the previous tasks. For example, the Flashing

(FS) and Terminal (TM) gadgets in Table 5 in the Appendix were

designed by Carlini and Wagner [15] to bypass specific CFI imple-

mentations (namely, kBouncer [76] and ROPecker [23]).

4 Measurement Methodologies

We describe our measurement methodologies for evaluating fine-

grained ASLR’s impact on the memory layout derandomization,

system access, and payload generation of JIT-ROP. One major chal-

lenge is how to quantify the impact of fine-grained code random-

ization. Our approach is to count the number of available gadgets

under the JIT-ROP code harvest mechanism. Other challenges are

how to quantify i) the difficulty of accessing privileged operations

and ii) the quality of gadget chains. For the former, our approach is

to measure the number of system gadgets and count libc pointers in

a stack or heap or data-segment of an application. To quantify the

quality of gadget chains, we design a register-level measurement

heuristic by computing the register corruption rate.

4.1 Methodology for Derandomization

Gadget selection. We manually extracted 21 types of gadgets from

various attacks [8, 14, 15, 45, 91]. These gadget types include load

memory (LM), store memory (SM), load register (LR), move regis-

ter (MR), arithmetic (AM), arithmetic load (AM-LD), arithmetic store

(AM-ST), LOGIC, jump (JMP), call (CALL), system call (SYS), and stack

pivoting (SP) gadgets. In addition to these, the gadget types also

include some attack-specific gadgets such as call preceding (CP),

reflect (RF), call site (CS2) and entry point (EP) gadgets. Table 5 in

the Appendix shows those gadget types in more details.

These 21 types of gadgets include the Turing-complete gadget

set (see Definition 1). These gadgets also include the priority and

MOV TC gadget sets (Table 6 in the Appendix). We use the Turing-

complete, priority, and MOV TC gadget sets for our evaluation

because we can precisely identify those gadgets. We also include

gadgets from three real-world ROP payloads from Metasploit [30,

31] and Exploit-Database [13]. We leave the attack-specific gadgets

out of our evaluation due to the lack of their concrete forms and

attack goals. Attackers used the attack-specific gadgets to trick

defense mechanisms. We also discuss the evaluation of the block-

oriented gadgets used for Block-Oriented Programming (BOP) [56].

Methodology for single-round randomization experiments.

In our experiments, wemeasure the occurrences of gadgets from the

Turing-complete gadget set under fine-grained code randomization

schemes. To enforce the code randomization schemes, we used four

relatively new code randomization tools: Zipr [50] (instruction-level

randomization), SR [25] (function-level randomization), CCR [59]

(block-level randomization), andMCR [53] (function + register-level

randomization), because of their reliability. Table 7 in Appendix

shows the key differences between these schemes. We compile and

build a coarse- and a fine-grained version of each application or

dynamic library for each run using each of the four randomization

tools, i.e., each run has a different randomized code. We use LLVM

Clang 3.9, Clang 3.8 and GCC 5.4 as the compilers for CCR, MCR

and SR, respectively. We run, load or rewrite each application or

library 100 times to reduce the impact of variability on the number

of gadgets in each run or load.

We use ropper [83], an offline gadget finder tool, under coarse-

grained ASLR. Under fine-grained ASLR, we write a tool to recreate

the JIT-ROP [91] exploitation process, including code page discov-

ery and gadget mining. Our tool can search for gadgets of a specific

type. We scan the opcodes of ret (0xC3) and ret xxx (0xC2) and

perform a narrow-scoped backward disassembly from those loca-

tions to collect ROP gadgets. Similarly, we scan the opcodes of int

0x80 (0xCD 0x80), syscall (0x0F 0x05), sysenter (0x0F 0x34) and call

gs:[10] (0x65 xFF 0x15 0x10 0x00 0x00 0x00) for system gadgets.

We consider the gadgets only from the legitimate instructions, not

from instructions within overlapping instruction bytes.

Methodology for re-randomization experiments. For code re-

randomization schemes, we attempted to use six re-randomization

tools. However, some of the tools are unavailable and some have

runtime and compile-time issues6; in the end, we were able to ob-

tain only Shuffler [105]. To evaluate the impact of re-randomization,

we take 100 consecutive address space snapshots from an applica-

tion/library re-randomized by Shuffler [105]. Then, we manually

analyze the address space snapshots.

The choice of re-randomization intervals is important for a

re-randomization scheme. An effective re-randomization interval

should hinder attackers’ capabilities while ensuring performance

guarantees. Our measurement methodology determines the up-

per bound (see definition 2) of effective re-randomization intervals

by considering the fastest speed of gadget convergence, i.e., the

6Remix [21] & CodeArmor [19] are not available. TASR [6] is not accessible for policy is-
sues. Runtime ASLR [66] & Stabilizer [29] have run & compile time issues, respectively.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1807

minimum time for convergence. To measure the time of gadget

convergence, we run the recursive code harvest process for an

application and record the times it takes to converge to different

gadget sets such as Turing-complete, priority, MOV TC, and pay-

load gadget sets. We record the number of leaked gadget types

that the code harvest process covered so far, while recording the

convergence time. The code harvest terminates upon gadget con-

vergence. We record multiple convergence times by starting the

code harvesting process from multiple pointer locations to capture

the variability. To select multiple starting pointers, we choose a

random code pointer from each code page of an application. Choos-

ing a single random code pointer from each code page allows us to

identify all instructions and pointers on that code page.

4.2 Methodology for System Access

Wemeasure the difficulty of accessing privileged operations through

the availability of system gadgets and vulnerable library pointers

in a stack, heap or data-segment. For system gadgets, we compare

the number of system gadgets under the coarse- and fine-grained

randomization and compute the reduction in the gadget quantity.

For the measurement of vulnerable pointers in a stack/heap/data-

segment, we examine the overall risk associatedwith a stack/heap/data-

segment by identifying the number of unique libc pointers in that

stack/heap/data-segment. For the evaluation purpose, we do not

exploit vulnerabilities to leak libc pointers from the stack/heap/data-

segment. Rather, we assume that we know the address mapping of

libc and can find the libc pointers through a linear scanning of the

stack/heap/data-segment. We discuss the existence of libc pointers

in popular applications in Section 5.6.

4.3 Methodology for Payload Generation

We focus on measuring the quality of individual gadgets to approx-

imate the quality of a gadget chain. The quality of a set of gadgets

for generating payloads is essential, as attackers need to use gad-

gets to set up and prepare register states. To measure the quality of

individual gadgets, we perform a register corruption analysis for

each gadget, which is briefly described next. The detail description

of our register corruption analysis is in Appendix A.1.

Typically, a gadget contains one core instruction that serves the

purpose of that gadget. For example, an MR gadget may contain

mov eax, edx as the core instruction and some additional instruc-

tions before/after the core instruction. We measure the register

corruption rate by analyzing how the core instruction of a gadget

can get modified by those additional instructions. In the case of

multiple core instructions of a gadget type, we consider the core

instruction that is closest to the ret instruction. A core instruction

may be modified by i) the instruction(s) before the core instruction,

ii) the instruction(s) after the core instruction, and iii) both the

instruction(s) before/after the core instruction. For each gadget, we

consider these three scenarios and determine whether the gadget

is corrupted or not. Next, in the following paragraphs, we discuss

the code randomization and re-randomization tools briefly.

Shuffler [105] runs itself alongside the user space program that

it aims to protect. It has a separate asynchronous thread that con-

tinuously permutes all the functions to make any memory leaks

unusable as fast as possible.

Zipr [50] reorders the location of each instruction in an exe-

cutable or library (an example in Figure 9 in the Appendix). Zipr

works directly on binaries or libraries with no compiler supports.

Zipr [50] is based on the Intermediate Representation Database

(IRDB) code. Zipr shuffles code during the rewriting process, which

is called block-level instruction layout randomization.

Selfrando (SR) [25] is compiler-agnostic and applies code diversi-

fication at the load time using function boundary-metadata called

Translation and Protection (TRaP) and inserting a dynamic library

called libselfrando. At the load time, libselfrando takes control of the

execution, reorders the position of each function in an executable

utilizing the TRaP information, and relinquishes the control to the

original entry point of the executable.

Multicompiler (MCR) [27, 53] applies the code diversification at

the link time. This tool randomizes functions, machine registers,

stack-layout, global symbols, VTable, PLT entries, and contents of

the data section. The tool also supports insertion of NOP, global

padding, and padding between stack frames.We choose the function

and machine register level randomization for our evaluation. MCR

uses the Clang-3.8 LLVM compiler.

Compiler-Assisted Code Randomization (CCR) [59] applies the

code diversification at the installation time, i.e., rewrites an ex-

ecutable binary by reordering the functions and basic blocks of

the executable. This tool collects metadata for code layout, block

boundaries (i.e., the basic block, functional block, and object block

boundaries), fixup, and jump table of an executable during compi-

lation and linking phases. A Python script rewrites the executable

binary utilizing the collected metadata. In our experiments, CCR

uses the clang-3.9 LLVM compiler.

Availability and robustness of fine-grained ASLR tools. We found

that the majority of code diversification implementations, including

ASR [43], ASLP [58], Remix [21], and STIR [103], are not publicly

available. Some available tools (e.g., MCR [27, 53], CCR [59] and

SR [25]) operate on the source code level that requires recompila-

tion. We experienced multiple linking issues while using CCR and

SR to compile Glibc code. The tool authors confirmed the limita-

tions (discussed in Section 6). ORP [77] was the randomization tool

used in Snow et al.’s JIT-ROP demonstration [91]. It operates on

Windows binaries, incompatible with our setup.

5 Evaluation Results and Insights

Experimental setup.We implemented a JIT-ROP native code mod-

ule. All experiments are performed on a Linuxmachinewith Ubuntu

16.04 LTS 64-bit operating system.Wewrite Python and bash scripts

for automating our measurement process. Our code and data are

available at https://github.com/salmanyam/jitrop-native.

We perform our experiments on the latest and stable versions of

applications including bzip2, cherokee, hiawatha, httpd, lighttpd,

mupdf, nginx, openssl, proftpd, sqlite, openssh, thttpd, xpdf, and

mupdf, browsers including firefox, chromium7, tor, midori, netsurf,

and rekonq and browser engines such as webkit. We also perform

our experiments on dynamic libraries. Dynamic libraries include

7Due to the incompatibility of the LLVM compiler version and the use of custom
linkers with custom linking flags, we are unable to randomize the Chromium browser
using SR, CCR, and MCR. Zipr also fails to randomize chromium possibly due to the
large size of the executable (∼944MB). However, we include a non-randomized version
of the chromium browser in our re-randomization experiments.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1808

We also observe similar non-reactive times for obtaining the

priority and MOV TC gadget sets. The variability in the minimum

time of the four gadget sets is due to the Arithmetic-Load (AM-LD)

gadget type. Since the priority gadget set does not include AM-LD,

its code page harvest process is the fastest. The time for the MOV

TC gadget set is relatively longer than the TC and priority gadget

set, even though MOV TC does not include AM-LD. The reason for

this long time is that the MOV TC set includes several specialized

Load-Memory (LM) and Store-Memory (ST) gadget types.

The MOV TC gadget set is powerful since it takes only a few

mov instructions with four register pairs to perform the Turing-

complete operations. To observe to what extent MOV TC gadgets

are prevalent in applications, we count the numbers of six MOV

gadgets (MR, ST, STCONSTEX, STCONST, LM, and LMEX described Ta-

ble 6 in the Appendix) and the System Call (SYS) gadget while

measuring the minimum time to find these gadgets. STCONSTEX,

STCONST, and LMEX gadgets are variants of ST and LM gadgets. The

average number of gadgets for MR is 51, ST is 14, STCONSTEX is 35,

STCONST is 2, LM is 3, LMEX is 15, and SYS is 23. As expected, the

number of Load-Memory (LM) gadgets is low, which indicates the

scarcity of this gadgets. Besides, we observe the number of Store-

Constant (STCONST) is also low, which is necessary for performing

comparison and conditional operations.

Our re-randomization upper bound calculation includes the gad-

get analysis overhead. Thus, we perform additional analyses to

investigate the time spent to leak address space versus gadget anal-

ysis. We find that on average around 15% of the time is spent on

leaking address space, while the rest for gadget searching (Table 2).

This result indicates that a JIT-ROP attacker spends a significant

amount of time searching for gadget types. Thus, the upper bound

of re-randomization intervals is subject to change based upon an

optimized gadget search strategy.

Clearly, the upper bound for the re-randomization intervals also

depends on the machine (e.g., CPUs, cache size, memory, etc.) where

the measurement is conducted. Using our methodology, defenders

can perform the measurement on their machines to determine what

intervals are appropriate for their applications, while satisfying

overhead constraints. In Section 6, we discuss the implications of

re-randomization intervals in real-world operations.

We call the upper bound of re-randomization intervals as the

łbest-casež re-randomization interval from a defender’s perspective

because the defender has to rerandomize by the time of the interval,

if not sooner. This raises the question regarding the effectiveness of

łbest-casež intervals over łworst-casež intervals. The łworst-casež

interval indicates the time required to build a useful gadget chain

using a minimal set of gadgets. In reality, attackers’ goals vary. It

is difficult to determine a minimum set of gadgets common and

necessary across all attack chains. Besides, our łbest-casež interval

includes the time for discovering SYS gadgets that are scarce. Some

attack scenarios may not require the SYS gadgets, but the necessity

of SYS gadgets or system APIs in attack chains have been shown

by previous work [8, 10, 15, 32, 91].

5.2 Impact of the Location of Pointer Leakage

We measure the impact of pointer locations on JIT-ROP attack

capabilities, by comparing the number of gadgets harvested and

the time of harvest under different starting pointer locations. We

aim to find out whether or not the number of gadgets and the time

depend on the location of a pointer leakage when a fine-grained

randomization scheme is applied.

Impact of pointer locations on gadget availability. Tomeasure

the impact of pointer locations on gadget availability, we collect

the number of minimum and extended footprint gadgets by leaking

a random code pointer from each code page of hiawatha, httpd,

lighttpd, nginx, proftpd, and thttpd and starting the code harvesting

process from that leaked code pointer. Then we calculate the av-

erage number of gadgets for each leaked pointer. We leak a single

code pointer from a single code page randomly because choosing

any single random code pointer from a code page allows us to iden-

tify all instructions and all code pointers on that code page. Table 3

shows the number of leak code pointers or addresses and the num-

bers of minimum and extended footprint gadgets. We restrict the

code harvest process to harvest gadgets from the main executable

of an application to find how well the code of that application is

connected. We exclude the dynamic libraries for this experiment

because many applications use a common set of libraries and the

gadgets from this common set of libraries (if not excluded) would

dominate the total number of gadgets.

For all applications, we observe that the pointer’s location does

not have any impact on the total number of minimum and extended

footprint gadgets. For example, regardless of the location of starting

point in nginx, we observe 26 minimum and 788 extended gadgets

when randomized by the instruction-level randomization scheme;

222 minimum and 5277 extended footprint gadgets when random-

ized by the function-level scheme; 111 minimum and 1731 extended

footprint gadgets when randomized by function + register-level

scheme; and 204 minimum and 4822 extended footprint gadgets

when randomized by block-level scheme.These findings indicate

that an application’s code segment is very well-connected,

making JIT-ROP attacks easier.

The numbers of leaked addresses in Table 3 are different for

different randomization schemes because we use different back-

ends (i.e., compilers) to enforce the schemes. Different backends

optimize the same application differently. This increases/decreases

the number of code pages. Since we leak a random address from

each code page, the number of leaked addresses varies with tools.

Impact of pointer locations on code harvest time. To mea-

sure the impact of code pointer locations on the time, we measure

the time required to leak all gadget types from the Turing-complete

gadget set. We start the code harvest process from a random code

pointer leaked from each code page of an application or browser

and record the time to collect all gadget types. Figure 4 shows the

minimum, maximum, and average time to leak all gadgets for differ-

ent applications and browsers. For a few code pointers from several

applications/browsers (e.g., 3 out of 111 code pointers for nginx or

8 out of 40 code pointers for openssl or 2 out of 41 for tor), the code

harvest process takes significantly shorter time than the average.

We analyze the reason for this phenomenon.

We find that most applications/browsers have some code pages

that contain a diverse set of gadgets. For example, nginx contains

9 code pages that have at least 5 distinct gadget types from the

Turing-complete gadget set. Whenever the code harvest process

accesses those code pages sooner, the discovered gadgets quickly

converge to Turing-complete.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1810

Table 4: Impact of fine-grained single-round randomization on the availability of gadgets in various applications and dynamic

libraries. Instruction-level randomization scheme [50] is applied on 15 applications and 14 dynamic libraries, function-level

scheme [25] on 17 applications and 21 dynamic libraries, function + register-level scheme [27, 53] on 12 applications and 13

dynamic libraries, and basic block-level scheme [59] on 15 applications and 15 dynamic libraries. The data of each application

or library is the average result of 100 runs/loads/rewrites. The standard deviations vary between 0.3∼3.4 forminimumfootprint

and 5.04∼22.85 for extended footprint gadgets. ⇓ indicates reduction.

Reduction (%) of Turing-complete (TC) gadgets in 7 TC operations (MIN-FP | EX-FP)

Randomization schemes Granularity
⇓ (%)

MIN-FP

⇓ (%)

EX-FP
Memory Assignment Arithmetic Logical

Control

Flow

Function

Call

System

Call

TC

Preserved?

Applications

Inst. level rando. [50] Inst. 79.7 82.5 97.4 | 82.7 58.8 | 81.7 95.9 | 64.9 85.8 | 85.4 49.4 | 80.1 67.4 | 83.9 83.3 | 0 ✗*

Func. level rando. [25] FB 27.63 36.55 0.8 | 29.2 10.6 | 43.5 19.3 | 15.1 35.1 | 35.9 21.1 | 29.1 18.2 | 46.9 0 | 0 ✓

Func.+Reg. level rando. [53] FB & Reg. 17.62 42.37 -8.3 | 35.0 -5.1 | 35.2 26.1 | 44.9 21.3 | 38.1 34.0 | 60.2 11.8 | 64.9 80.0 | 0 ✓

Block level rand. [59] BB 19.58 44.64 5.5 | 40.9 6.1 | 47 26.1 | 33.7 20.4 | 37.4 41.2 | 63.1 23.3 | 56.3 0.0 | 0 ✓

Libraries

Inst. level rando. [50] Inst. 81.3 92.2 93.7 | 96.1 60.7 | 93 91.8 | 84.9 84.5 | 90.4 59.8 | 93.5 51.8 | 92.9 66.7 | 0 ✗*

Func. level rando. [25] FB 46.5 43.8 24.2 | 71.1 15.9 | 31 41.2 | 65.4 56.9 | 25 34.5 | 78.7 23 | 75.8 3.5 | 14.5 ✓

Func.+Reg. level rando. [53] FB & Reg. 44.2 43.9 35.5 | 44.8 35.3 | 43.4 63.2 | 61.8 44.8 | 49.0 36.4 | 52.1 43.1 | 35.3 66.7 | 0 ✓

Block level rand. [59] BB 20.98 37.0 7.3 | 36.3 8.1 | 32.1 13.9 | 55.9 24.8 | 31.6 22.2 | 52.1 18.1 | 44.6 50.0 | 0 ✓

* For instruction-level randomization scheme [50], TC is not preserved for minimum footprint gadgets, but TC is preserved for extended footprint gadgets.

We also assess the gadget availability under a single randomiza-

tion pass of Shuffler [105] by analyzing 100 consecutive address

space snapshots from nginx after each re-randomization with an

interval of 30 seconds. On average, we observe a 24% and 3% re-

duction in gadget availability for minimum and extended footprint

gadgets compared to a non-randomized nginx, respectively. The low

reductions are expected, as Shuffler’s security relies on continuous

randomization, not a single randomization pass.

Ideally, function-level randomization does not break gadgets,

only shifts the gadgets from one location to another. Basic-block or

machine-register-level randomization may break some gadgets due

to the memory layout perturbation and register allocation random-

ization. It is not surprising that the function, block, or register-level

randomizations to have low gadget reduction. However, instruction-

level randomization perturbs the memory layout significantly as

we observe a large gadget reduction by Zipr.

Future directions. Redefining traditional ROP gadgets into smaller

(e.g., one line) building blocks and demonstrating new gadget chain

compilers (e.g., two-level construction) by tackling the instruction-

level perturbations are interesting new attack directions.

5.4 Impact on Performance Overhead

Wemeasure the performance overhead of the five (re-)randomization

tools to evaluate the overhead in our measurement environment.

To measure the performance overhead, we use 8 applications in

domains such as web servers, FTP servers, browsers, security pro-

tocols, and file compression tools. The applications are nginx, httpd,

proftpd, hiawatha, lighttpd, openssl, firefox, and bzip. Applications

are randomized using the five (re-)randomization tools.We use crite-

ria such as HTTP request latency, FTP upload speed, browser page-

load time, compression time, and effectiveness of cryptographic

algorithms to measure the performance overhead.

We measure HTTP request latency by running an HTTP bench-

mark using wrk [44] for 30 seconds to read an HTML page from

a server. The benchmark includes 12 threads and 400 HTTP open

connections. To measure FTP upload speed, we run a benchmark

using ftpbench [102]. The benchmark runs 10 concurrent operations

for 10 seconds. We use OpenSSL speed to test the performance of

aes-128-gcm, aes-256-gcm, aes-128-cbc, and aes-256-cbc algorithms.

We use the Linux time command to measure compression time. Fi-

nally, we use a website speed test tool [99] to measure a browser’s

page load time. For Shuffler, we measure the overhead for three

different re-randomization intervals: 10ms, 100ms, and 1s.

We run each measurement for five times and calculate the av-

erage for each application. Then, we average the overheads over

the 8 applications. For Shuffler, we observe 3% overhead with 1s

re-randomization interval, 5% for 100ms, and 12% for the 10ms

interval consistent with the reported result [105]. We observe 23%

overhead for Zipr, 10% for SR, 3% for CCR, and 10% for MCR which

are comparable to or higher than what’s reported. The reported

overheads for Zipr, SR, CCR, and MCR are around 5% [50], 1% [25],

0.28% [59], and 1% [53], respectively.

5.5 Impact on the Quality of a Gadget Chain

The purpose of this analysis is to estimate the quality of a gadget

chain. We measure the quality of a gadget through the register

corruption analysis for individual gadgets, following the procedure

described in Section 4.3. We measure the register corruption rate for

MV, LR, AM, LM, AM-LD, SM, AM-ST, SP, and CALL gadgets. Some gadgets

such as CP, RF, and EP (described in Table 5 in the Appendix) are

special purpose gadgets that are used to trick defense mechanisms,

such as CFI [1], kBouncer [76], and ropecker [23]. Thus, we omit

these gadgets from the quality analysis.

We found that the overall register corruption rate is slightly

higher (∼6%) in the presence of fine-grained randomization. This

slightly higher register corruption rate indicates that the formation

of gadget chain is slightly harder in fine-grained randomization

compare to the coarse-grained randomization.

We present the detailed results in Table 8 in the Appendix, in-

cluding the average number of unique registers used in each gadget.

We observe the number of unique registers used in each gadget

ranges from 1 to 4 in our register corruption measurement.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1812

but only SR can randomize musl-libc. Shuffler can reorder Glibc

by disabling manual jump table construction.

Limitations. Both CFI and XoM defenses are powerful and have ca-

pabilities to prevent JIT-ROP attacks. These two defenses with con-

tinuous re-randomization would be even more powerful. However,

we did not enforce CFI and XoM in this work to isolate an individual

defense’s security impact. In this work, we addressed many impor-

tant questions related to fine-grained (re-)randomization, not yet

answered by the literature. We leave the analysis and measurement

of CFI and XoM as future research.

Our current work does not measure zombie gadgets [92] and

microgadgets [54]. The gadgets that are available after applying

destructive read defenses (e.g., XnR [4], NEAR [104], Readactor [27],

and Heisenbyte [96]) are called zombie gadgets [92]. Destructive

read defenses only allow code execution, no read after execution. In

this way, destructive reads can limit gadget availability, but cannot

eliminate all gadgets. We plan to assess the availability of zombie

and microgadgets in our future work.

Another limitation is that we assume the code pointer obfus-

cation is not enforced. If enforced, code pointer obfuscation (e.g.,

CPI [61, 62], Oxymoron [5]) could make JIT-ROP code page discov-

ery less effective, reducing the gadget availability. Understanding

how code pointer obfuscation impacts JIT-ROP and measuring the

effectiveness of this defense under various attack conditions (e.g.,

Isomeron [32] and COOP [84]) are interesting problems.

One limitation of time-based re-randomization schemes is that

the intervals need recalculation with the evolution of hardware or a

program itself. Event-based re-randomization schemes can be effec-

tive in this case. However, event-based schemes may trigger unnec-

essary re-randomization if events are frequent, e.g., re-randomizing

every time a program outputs [6].

Key Takeaways

❶ Effective re-randomization upper bound. Our methodology for

measuring various gadget sets systematically by considering the

gadget convergence time helps compute the effective upper bound

for re-randomization intervals of a re-randomization scheme. Our

results show that this upper bound ranges from 1.5 to 3.5 sec-

onds. Applying our methodology on their machines will help re-

randomization adopters to make informed configuration decisions.

❷ All leaked pointers are created equal for gadget convergence, but

not for the speed of gadget convergence. Regardless of the location

of pointer leakage, we obtained the same number of minimum and

extended footprint gadgets via JIT-ROP. This observation indicates

that any pointer leak from an application’s code segment is equally

useful for attackers. However, the time for obtaining the gadgets

varies for different leaked pointers.

❸ Turing-complete operations. Function, basic-block, or machine reg-

ister level fine-grained randomization preserves Turing-complete

expressive power of ROP gadgets, however, instruction-level ran-

domization does not.

❹ Connectivity. Code connectivity is the main enabler of JIT-ROP.

As the conventional entropy metric does not capture code connec-

tivity, it should not be used to measure ASLR security under the

JIT-ROP threat model.

❺ Gadget quality. Our findings suggest that current fine-grained

randomizations do not impose significant gadget corruption.

7 Related Work

The related research has two themes: 1) demonstrating attacks and

2) discovering countermeasures. Attack demonstrations range from

stack smashing [75], return-to-libc [60, 79, 106], to ROP [15, 17, 57],

JOP [10], DOP [55], ASLR bypasses [8, 32, 40, 47, 55, 91], and CFI

bypasses [7, 14, 15, 45, 56].

Researchers have also proposed a range of defenses for ROP

attacks [1, 9, 18, 23, 27, 28, 33, 34, 36, 39, 46, 72, 74, 76ś78, 85, 100,

108, 109], CFI bypass [108], and ASLR bypass [4ś6, 21, 27, 32, 43, 52,

58, 59, 67, 68, 77, 96, 103ś105]. A categorical representation of these

defenses is given in our attack-path diagram (Figure 10 in the Ap-

pendix). Binary analysis tools are also available to understand [90]

and mitigate [101] these ROP or code-reuse attacks.

Most of the above-mentioned defenses are variants of W⊕X

(e.g., NEAR [104] and Heisenbyte [96]), memory safety (e.g., Hard-

Scope [73], Memcheck [71], AddressSanitizer [87], and StackAr-

mor [20]), ASLR (e.g., fine-grained randomization [6, 21, 59, 86, 103,

105]), and CFI (e.g., CCFIR [108] and bin-CFI [109]). These defenses

are capable of preventing most code-reuse attacks [8, 32, 40, 91] ex-

cept a few cases such as inference attacks that are performed using

zombie gadgets [92] or relative address space layout [48, 82]. The

latest advancement in control-flow transfers such as MLTA [65]

significantly advances CFI that can prevent most control-oriented

attacks. Recent attention on non-control-oriented or data-only at-

tacks [55, 56] motivated researchers to develop practical Data-Flow-

Integrity (DFI) [16] solutions (details of non-control attacks in [22]).

Currently, it is challenging to implement a practical DFI solution

considering the overhead of data-flow tracking.

From the defense-in-depth perspective, it is desirable to have

some degree of redundancy (e.g., CFI, ASLR, or complementary

solutions like anomaly detection [107]) in system protection. A

single deployed defense may be compromised due to unknown

implementation flaws or configuration issues. Thus, investigations

in multiple directions [12, 54, 89, 100] is necessary for gauging

the feasibility of existing defenses. Our work investigates various

aspects of ASLR ś including timing ś by evaluating security metrics

such as various gadget sets, interval choices, and code pointer

leakages. We also assess how security tools in the ASLR domain

impact on these security metrics, quantitatively.

8 Conclusions

We presented multiple general methodologies for quantitatively

measuring the ASLR security under the JIT-ROP threat model and

conducted a comprehensive measurement study. One method is for

computing the number of various types of gadgets and their qual-

ity. Another method is for experimentally determining the upper

bound of re-randomization intervals. The upper bound helps guide

re-randomization adopters to make more informed configuration

decisions.

Acknowledgments

We thank our shepherd, Georgios Portokalidis, for his support and

valuable feedback for this work. We also thank the anonymous

reviewers for their valuable comments and suggestions. This work

was supported in part by the NSF under grant No. CNS-1838271.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1814

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-
flow integrity. In Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 340ś353.

[2] Patroklos Argyroudis and Chariton Karamitas. 2012. Exploiting the jemalloc
memory allocator: Owning Firefox’s heap. Blackhat USA (2012).

[3] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios
Portokalidis, and Sotiris Ioannidis. 2015. The Devil is in the Constants: Bypassing
Defenses in Browser JIT Engines. In NDSS.

[4] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You can run but you can’t read: Preventing
disclosure exploits in executable code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1342ś1353.

[5] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing. InUSENIX Security
Symposium. 433ś447.

[6] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 268ś279.

[7] Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets. NDSS.

[8] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking blind. In 2014 IEEE Symposium on Security and Privacy. IEEE,
227ś242.

[9] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating code-reuse
attacks with control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 353ś362.

[10] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.
ACM, 30ś40.

[11] Michael D. Brown and Santosh Pande. 2019. Is less really more? Towards
better metrics for measuring security improvements realized through software
debloating. In 12th USENIX Workshop on Cyber Security Experimentation and
Test (CSET 19).

[12] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16.

[13] Exploit Database by Offensive Security. 2012. HT Editor 2.0.20 - Local Buffer
Overflow (ROP). https://www.exploit-db.com/exploits/22683. Last accessed 05
May 2020.

[14] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity. In USENIX Security Symposium. 161ś176.

[15] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security Symposium. 385ś399.

[16] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on Operating
systems design and implementation. USENIX Association, 147ś160.

[17] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 559ś572.

[18] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. 2009.
DROP: Detecting return-oriented programming malicious code. In International
Conference on Information Systems Security. Springer, 163ś177.

[19] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing
the code space to counter disclosure attacks. In 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 514ś529.

[20] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
2015. StackArmor: Comprehensive Protection From Stack-based Memory Error
Vulnerabilities for Binaries. In NDSS.

[21] Yue Chen, Zhi Wang, David Whalley, and Long Lu. 2016. Remix: On-demand
live randomization. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy. ACM, 50ś61.

[22] Long Cheng, Hans Liljestrand, Md Salman Ahmed, Thomas Nyman, Trent Jaeger,
N Asokan, and Danfeng Daphne Yao. 2019. Exploitation techniques and defenses
for data-oriented attacks. In 2019 IEEE Secure Development, SecDev 2019. Institute
of Electrical and Electronics Engineers Inc., 114ś128.

[23] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H. Deng.
2014. ROPecker: A generic and practical approach for defending against ROP
attack. In NDSS.

[24] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. ACM, 952ś963.
[25] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-

pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.
2016. Selfrando: Securing the tor browser against de-anonymization exploits.
Proceedings on Privacy Enhancing Technologies 2016, 4 (2016), 454ś469.

[26] Stanley Crispin Cowan, Seth Richard Arnold, Steven Michael Beattie, and
Perry Michael Wagle. 2010. Pointguard: method and system for protecting
programs against pointer corruption attacks. US Patent 7,752,459.

[27] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readac-
tor: Practical code randomization resilient to memory disclosure. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 763ś780.

[28] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
control-flow integrity for commodity operating system kernels. In 2014 IEEE
Symposium on Security and Privacy. IEEE, 292ś307.

[29] Charlie Curtsinger and Emery D. Berger. 2013. Stabilizer: Statistically sound
performance evaluation. ACM SIGARCH Computer Architecture News 41, 1
(2013), 219ś228.

[30] Rapid7 Vulnerability & Exploit Database. 2018. Firebird Relational Database
CNCT Group Number Buffer Overflow. https://www.rapid7.com/db/modules/
exploit/windows/misc/fb_cnct_group. Last accessed 05 May 2020.

[31] Rapid7 Vulnerability & Exploit Database. 2018. ProFTPD 1.3.2rc3 - 1.3.3b Telnet
IAC Buffer Overflow (Linux). https://www.rapid7.com/db/modules/exploit/
linux/ftp/proftp_telnet_iac. Last accessed 05 May 2020.

[32] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-
Time) Return-Oriented Programming. In NDSS.

[33] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2009. Dynamic in-
tegrity measurement and attestation: towards defense against return-oriented
programming attacks. In Proceedings of the 2009 ACM workshop on Scalable
trusted computing. ACM, 49ś54.

[34] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender:
A detection tool to defend against return-oriented programming attacks. In
Proceedings of the 6th ACM Symposium on Information, Computer and Commu-
nications Security. ACM, 40ś51.

[35] Stephen Dolan. 2013. mov is Turing-complete. Cl. Cam. Ac. Uk (2013), 1ś4.
[36] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C

Necula. 2006. XFI: Software guards for system address spaces. In Proceedings of
the 7th symposium on Operating systems design and implementation. USENIX
Association, 75ś88.

[37] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. 2015. Missing the point(er): On the effectiveness of code pointer
integrity. In 2015 IEEE Symposium on Security and Privacy. IEEE, 781ś796.

[38] RezaMirzazade Farkhani, Saman Jafari, Sajjad Arshad,William Robertson, Engin
Kirda, and Hamed Okhravi. 2018. On the Effectiveness of Type-based Control
Flow Integrity. In Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, 28ś39.

[39] Ivan Fratrić. 2012. ROPGuard: Runtime prevention of return-oriented program-
ming attacks. In Technical report.

[40] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and
Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to Overcome Di-
versification and Information Hiding. In NDSS.

[41] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In NDSS.

[42] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trim-
ming. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1009ś1022.

[43] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced
Operating System Security Through Efficient and Fine-grained Address Space
Randomization. In USENIX Security Symposium. 475ś490.

[44] Will Glozer. 2018. wrk-a HTTP benchmarking tool. https://github.com/wg/wrk.
Last accessed 03 May 2020.

[45] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of control: Overcoming control-flow integrity. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 575ś589.

[46] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size does matter: Why using gadget-chain length to
prevent code-reuse attacks is hard. In 23rd USENIX Security Symposium (USENIX
Security 14). 417ś432.

[47] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Geor-
gios Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining
information hiding (and what to do about it). In 25th USENIX Security Sympo-
sium (USENIX Security 16). 105ś119.

[48] Enes Göktaş, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-
tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-
independent code reuse: On the effectiveness of ASLR in the absence of infor-
mation disclosure. In 2018 IEEE European Symposium on Security and Privacy

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1815

(EuroS&P). IEEE, 227ś242.
[49] AndreasHaas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185ś200.

[50] William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong, and
Jack W. Davidson. 2017. Zipr: Efficient Static Binary Rewriting for Security. In
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 559ś566.

[51] Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic heap layout
manipulation for exploitation. arXiv preprint arXiv:1804.08470 (2018).

[52] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-
son. 2012. ILR: Where’d my gadgets go?. In 2012 IEEE Symposium on Security
and Privacy. IEEE, 571ś585.

[53] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2013. Profile-guided automated software diversity. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE Computer Society, 1ś11.

[54] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2012. Microgadgets: size does matter in turing-complete return-oriented
programming. In Proceedings of the 6th USENIX conference on Offensive Tech-
nologies. USENIX Association, 7ś7.

[55] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness
of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 969ś986.

[56] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1868ś1882.

[57] Mehmet Kayaalp, Meltem Ozsoy, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2012. Branch regulation: Low-overhead protection from code reuse attacks. In
Computer Architecture (ISCA), 2012 39th Annual International Symposium on.
IEEE, 94ś105.

[58] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address space layout permutation (ASLP): Towards fine-grained randomization
of commodity software. In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 339ś348.

[59] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis
Polychronakis. 2018. Compiler-assisted Code Randomization. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 461ś477.

[60] Sebastian Krahmer. 2005. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. https://users.suse.com/~krahmer/no-nx.pdf.
Last accessed 10 May 2020.

[61] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’14), Vol. 14.

[62] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2018. Code-Pointer Integrity. In The Continuing Arms Race.
Association for Computing Machinery and Morgan & Claypool, 81ś116.

[63] Musl libc. 2011. A lightweight standard C library. https://www.musl-libc.org.
Last accessed 09 May 2020.

[64] David Lie, Chandramohan Thekkath, MarkMitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. Acm SIGPLAN Notices 35, 11 (2000), 168ś177.

[65] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1867ś1881.

[66] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization. In NDSS.

[67] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,
and Wenke Lee. 2015. ASLR-Guard: Stopping address space leakage for code
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 280ś291.

[68] Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2016. What Cannot
Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses.
In USENIX Security Symposium. 139ś156.

[69] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015.
CCFI: cryptographically enforced control flow integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
941ś951.

[70] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael
Franz. 2015. Opaque Control-Flow Integrity. In NDSS, Vol. 26. 27ś30.

[71] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM SIGPLAN notices 42, 6 (2007),
89ś100.

[72] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 577ś587.
[73] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew

Paverd, N. Asokan, and Ahmad-Reza Sadeghi. 2019. HardScope: Hardening
Embedded Systems Against Data-Oriented Attacks. In 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1ś6.

[74] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
2010. G-Free: defeating return-oriented programming through gadget-less bina-
ries. In Proceedings of the 26th Annual Computer Security Applications Conference.
ACM, 49ś58.

[75] Aleph One. 1996. Smashing the Stack for Fun and Profit. Phrack 7, 49 (November
1996). http://www.phrack.com/issues.html?issue=49&id=14

[76] Vasilis Pappas, Michalis Polychronakis, and Angelos Keromytis. 2013. Transpar-
ent ROP Exploit Mitigation Using Indirect Branch Tracing. In USENIX Security
Symposium. 447ś462.

[77] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In 2012 IEEE Symposium on Security and Privacy. IEEE, 601ś615.

[78] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-grained
control-flow integrity through binary hardening. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
144ś164.

[79] Alexander Peslyak. 1997. łreturn-to-libcž attack. Bugtraq, Aug (1997).
[80] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. 2016. Flip feng shui: Hammering a needle in the software stack. In
25th USENIX Security Symposium (USENIX Security 16). 1ś18.

[81] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 2.

[82] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
et al. 2017. Address Oblivious Code Reuse: On the Effectiveness of Leakage
Resilient Diversity. In NDSS.

[83] Sascha Schirra. 2014. Ropper tool. https://github.com/sashs/Ropper. Last
accessed 4 July 2018.

[84] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse attacks in C++ applications. In
2015 IEEE Symposium on Security and Privacy. IEEE, 745ś762.

[85] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. 2014. Evaluating the effectiveness
of current anti-ROP defenses. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 88ś108.

[86] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In NDSS.

[87] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). 309ś318.

[88] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and Communications Security. ACM, 552ś561.

[89] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM conference on Computer and Communications
Security. ACM, 298ś307.

[90] Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna, RuoyuWang, Christo-
pher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, et al. 2016. Sok: (State of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138ś157.

[91] Kevin Z. Snow, FabianMonrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout randomization. In 2013 IEEE
Symposium on Security and Privacy. IEEE, 574ś588.

[92] Kevin Z. Snow, Roman Rogowski, Jan Werner, Hyungjoon Koo, Fabian Monrose,
and Michalis Polychronakis. 2016. Return to the zombie gadgets: Undermining
destructive code reads via code inference attacks. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 954ś968.

[93] Alexander Sotirov. 2007. Heap feng shui in JavaScript. Black Hat Europe (2007).
[94] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lach-

mund, and Thomas Walter. 2009. Breaking the memory secrecy assumption. In
Proceedings of the Second European Workshop on System Security. ACM, 1ś8.

[95] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal
war in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48ś62.

[96] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting memory disclosure attacks using destructive code reads. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 256ś267.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1816

Table 5: Gadgets used in advanced ROP attacks [8, 14, 15, 45, 91] . △ indicates an addition/subtraction/multiply/division. ϕ

indicates logical operations such as and, or, left-shift, and right-shift. ▽ indicates any operation that modifies stack pointer

(SP). SN → Short name. TC? indicates whether a gadget is included in the Turing-complete gadget set or not.

Gadget types Purpose Minimum footprint Example TC? SN Source

Move register Sets the value of one register by another mov reg1, reg2; ret mov rdi, rax; ret ✓ MR [91]

Load register Loads a constant value to a register pop reg; ret pop rbx; ret ✓ LR [14, 91]

Arithmetic
Stores an arithmetic operation’s result of

two register values to the first
△ reg1, reg2; ret add rcx, rbx; ret ✓ AM [91]

Load memory Loads a memory content to a register mov reg1, [reg2]; ret mov rax, [rdx]; ret ✓ LM [14, 91]

Arithmetic load
△ a memory content to/from/by a

register and store in that register
△ reg1, [reg2]; ret add rsi, [rbp]; ret ✓ AM-LD [91]

Store memory Stores the value of a register in memory mov [reg1], reg2; ret mov [rdi], rax; ret ✓ SM [91]

Arithmetic store
△ a register value to/from/by a memory

content and stores in that memory
△ [reg1], reg2; ret sub [ebx], eax; ret ✓ AM-ST [91]

Logical Performs logical operations

ϕ reg1, reg2; ret

ϕ reg1, const; ret

ϕ [reg1], reg2; ret

ϕ [reg1], const; ret

shl rax, cl; ret; ✓ LOGIC [81]

Stack pivot Sets the stack pointer, SP ▽ sp, reg xchg rsp, rax × SP [91]

Jump Sets instruction pointer, EIP. jmp reg jmp rdi ✓ JMP [91]

Call
Jumps to a function through a register

or memory indirect call
call reg or call [reg] call rdi ✓ CALL [91]

System Call Invokes system functions syscall or int 0x80; ret syscall ✓ SYS [81]

Call preceded Bypasses call-ret ROP defense policy
mov [reg1], reg2;

call reg3

mov [rsp], rsi;

call rdi
× CP [14]

Context switch
Allows processes to write to Last

Branch Record (LBR) to flash it
long loop.

3dd4: dec, ecx

3dd5: fmul, [BC8h]

3ddb: jne, 3dd4

× CS1 [14]

Flashing
Clears the history of LBR

(Last Branch Record)

Any simple call

preceded gadgets with

a ret instruction

jmp A

...

A: mov rax, 3; ret;

× FS [15]

Terminal Bypasses kBouncer heuristics
Any gadgets that are

20 instructions long
N/A × TM [15]

Reflector
Allows to jump to both call-preceded

or non-call-preceded gadgets

mov [reg1], reg2;

call reg3; ... ; jmp reg4

mov [rsp], rsi;

call rdi; ... ; jmp rax
× RF [14]

Call site

This gadget chains the control to go

forward when we have the control

on the stack and ret

call reg or call [reg];

...

ret;

call rdi;

...

ret;

× CS2 [45]

Entry point

This gadget chains the control to go

forward when we have the control

of a call instruction

pop rbp;

...

call/jmp reg or

call/jmp [reg]

pop rbp

...

call/jmp reg or

call/jmp [reg]

× EP [45]

BROP Restores all saved registers

pop rbx; pop rbp;

pop r12; pop r13;

pop r14; pop rsi;

pop r15; pop rdi;

ret;

pop rbx; pop rbp;

pop r12; pop r13;

pop r14; pop rsi;

pop r15; pop rdi;

ret;

× BROP [8]

Stop Halts the program execution Infinite loop
4a833dd4: inc rax

3ddb: jmp 3dd4
× STOP [8]

Table 6: Gadgets with gadget types in the priority and MOV

TC gadget sets.

Priority MOV TC
Type Gadget Type Gadget

LR
1. pop reg
2. pop reg; pop reg

MR 1. mov reg, reg/const

AM 3. add reg, const ST 2. mov [reg], reg
LM 4. mov reg, [reg]; ret STCONSTEX 3. mov [reg+offset], reg/const
JMP 5. jmp reg STCONST 4. mov [reg], const
ST 6. mov [reg], reg; ret LM 5. mov reg, [reg]
SP 7. xchg rsp, reg LMEX 6. mov reg, [reg+offset]

LOGIC
8. xor reg, reg
9. xor reg, const

SYS 7. syscall

MR
10. mov reg, reg
11. mov reg, const

CALL
12. call reg
13. mov reg, reg, call reg

SYS 14. syscall

In this way, wemeasure the register corruption rate for MV, LR, AM,

LM, AM-LD, SM, AM-ST, SP, and CALL gadgets by dividing the number

of corrupted gadgets by the number of all gadgets.

A.2 Validation of randomization results

Weevaluate the randomization tools, i.e., Zipr [50], SR [25],MCR [53],

and CCR [59] using the common set of applications and libraries

that the four randomization tools can randomize. Figure 7 shows

the reduction of Turing-complete gadgets observed for four (4) ran-

domization tools using the common set of applications and libraries.

In most cases, the reduction using a different set of applications

and libraries is similar to the reduction using a common set of

applications.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1818

CFI

ASLR

Re-randomization (TASR [6],
Shuffler [105], Remix [21])

𝐴𝐶1 : Vulnerable to
simple ROP attacks

𝐴𝐶2 : Vulnerable to simple ROP
attacks if re-randomization time

window is longer than the attack time

Memory protection + CPI or
DPI (XnR [4], NEAR [104],

Readactor [27], Heisenbyte [96],
Oxymoron [5], ASLR-Guard [67])

Re-randomization (TASR [6],
Shuffler [105], Remix [21])

𝐴𝐶3 : Vulnerable to JIT-ROP [91]
and BROP [8] type attacks

𝐴𝐶4 : Vulnerable to JIT-ROP [91] type attacks if re-randomization
time window is longer than the attack time

𝐴𝐶5 : Vulnerable to AOCR [82]
and CROP [40] type attacks

𝐴𝐶6 : Prevents ROP-based
attacks but vulnerable to
data-only attacks [55, 56]

No Yes

Coarse Fine

No Yes
No Yes

No Yes

Figure 10: High-level view of the types of ROP attacks and attack-paths based on various security measures. Each rectangle

and circle indicate security measures and attack types, respectively. AC stands for attack condition. All the attack conditions

have W⊕X, PIE, Canary, and RELRO implicitly.

Session 6B: Exploitation and Defenses CCS '20, November 9–13, 2020, Virtual Event, USA

1820

	Abstract
	1 Introduction
	2 Threat Model and Definitions
	3 JIT-ROP vs. Basic ROP Attacks
	3.1 Memory Layout Derandomization
	3.2 System Access
	3.3 Payload Generation

	4 Measurement Methodologies
	4.1 Methodology for Derandomization
	4.2 Methodology for System Access
	4.3 Methodology for Payload Generation

	5 Evaluation Results and Insights
	5.1 Re-randomization Upper Bound
	5.2 Impact of the Location of Pointer Leakage
	5.3 Impact on the Availability of Gadgets
	5.4 Impact on Performance Overhead
	5.5 Impact on the Quality of a Gadget Chain
	5.6 Availability of Libc Pointers

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Appendix
	A.1 Register corruption analysis
	A.2 Validation of randomization results

