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Abstract—Wireless caching networks have been extensively
researched as a promising technique for supporting the massive
data traffic of multimedia services. Many of the existing studies
on real-data traffic have shown that users of a multimedia
service consecutively request multiple contents and this sequence
is strongly dependent on the related list of the first content and/or
the top referrer in the category. This paper thus introduces the
notion of “temporary preference”, characterizing the behavior of
users who are highly likely to request the next content from a
certain target category (i.e., related content list). Based on this
observation, this paper proposes both probabilistic caching and
dynamic delivery policies for categorized contents and consecu-
tive user demands. The proposed caching scheme maximizes the
minimum of the cache hit rates for all users. In the delivery
phase, a dynamic helper association policy for receiving multiple
contents in a row is designed to reduce the delivery latency.
By comparing with the content placement optimized for one-
shot requests, numerical results verify the effects of categorized
contents and consecutive user demands on the proposed caching
and delivery policies.

Index Terms—Wireless caching, Content delivery, Delay-
sensitive communications, Consecutive user demands, and User
preference

I. INTRODUCTION

At present, tens of exabytes of global data traffic are being
handled on a daily basis [1]. In many mobile services, a
relatively small part of popular content is requested very
frequently, e.g., on-demand streaming services [2]. To deal
with these overlapped and repeated user demands, wireless
caching technologies have been studied, wherein the core
network via the base station (BS) pushes popular contents
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during off-peak hours to cache-enabled helpers so that these
helpers can provide popular contents directly to nearby mobile
users [3], [4]. Also, the user devices can be used as helpers,
leading to a device-to-device (D2D)-assisted caching network
[5]–[7].

In a wireless caching network, there are mainly two issues:
1) content placement problem - which contents to be cached
at the caching nodes (e.g., caching helpers or cache-enabled
devices), and 2) node association problem - which caching
node is the optimal one to deliver the requested file to the
user.

The goal of the content placement is to find the optimal
caching policies according to the popularity distribution of
contents and network topology. In practice, caching nodes have
finite storage sizes due to cost issues. Therefore, the system
should determine which content is better to be stored in which
caching nodes. There have been several research efforts on
probabilistic caching methods for various optimization goals,
e.g., maximization of cache hit probability [11], cache-aided
throughput [5], average success probability of content delivery
[12], throughput under the outage constraint [6], and average
successfully enjoyable content quality [13]. However, these
previous research results on the content placement problem
do not consider consecutive user demands for categorized
contents.

In general, content caching is performed before user de-
mands are made; therefore, it is important to determine the ap-
propriate delivery decisions depending on the current caching
distribution. Given the cache states of caching helpers, the
critical challenge is to identify which caching helper is suitable
for transmitting the content; this is called the helper association
problem. In most of the existing studies that considered one-
shot requests of contents having the same size, it is reasonable
for the user to receive the desired content from the caching
helper whose channel condition is the strongest [12]. Mean-
while, for situations in which the same content is stored in
different helpers with different qualities (and hence different
file sizes), [13], [14] proposed dynamic helper associations for
the differentiated quality requirements of users. In particular,
the proposed delivery policy in [14] adaptively determines
the quality level as well as the number of received chunks.
Furthermore, BS or helper associations for content delivery
in caching networks considering the interference caused by
multiple transmitters were presented in [16], [17]. However,
the delivery policies in the above studies are optimized for one-
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shot requests only, assuming that all different content requests
are independent of one another.

Recently, the caching and delivery of categorized contents
based on user preference have been extensively researched.
Ref. [18] supposed that disjoint user groups have different
content preferences and optimized the caching probabilities
of all user groups. On the other hand, content popularity
and user preference are separately defined in [20] and [21],
and the authors characterized the relationship between content
popularity and user preference. However, the user preference
considered in all of the above studies is defined in a global
manner, which is denoted as global preference in this paper.
The global preference considered in [18], [20], [21] can be
obtained by averaging many content requests for all users
during a given period; it is assumed that each request is
independent of all the others. In this regard, some learning-
based caching methods in [23], [24] estimate the time-varying
global popularity profile or global user preference based on
multiple request events within the fixed time interval; however,
their request events are intermittent and independent of each
other.

In multimedia services, e.g., online video services, a user
can consecutively request multiple contents and typically has
the purpose of consuming contents in a specific category. In
this case, the sequence of consecutively requested contents
could be highly correlated. This phenomenon has been called
as temporal locality [25] that characterizes the short-term con-
tent popularity different from long-term popularity. In addition,
the service platform provides the user the related content list
obtained by the recommendation system, and this related list
strongly affects the user’s next requests [26]. According to
the studies on user behaviors based on real data traffic in
YouTube [27]–[29], it is highly probable that the user requests
the next video from the related list. The authors of [27] showed
that the first item contributes to the views of the subsequent
videos. In [28], the view rates of each video and the top
referrer video whose popularity is the highest in the related list
are shown to have a very strong correlation, and the request
rates of the videos in the related list is modeled by a Zipf
distribution. Here, according to [30], almost 80% of the users
consume the limited number of sessions or videos in a specific
category. Also, ref. [31] showed that the category of a given
content is more influential than its individual properties when
the selection is made as a recommended video in YouTube.
Accordingly, this paper considers the related content list based
on the video category, and supposes that the probability of
requesting the content in the given related list is much larger
than that of requesting the content outside the related list after
the user watches the first video.

In this sense, we define temporary preference as the user
preference shown in a short sequence of consecutively re-
quested contents. Unlike global preference, temporary prefer-
ence has the following distinct characteristics: 1) consecutive
content requests in a short sequence are not independent, 2)
these contents are likely to be in the identical target category or
related list, and 3) temporary preference is applied to a given
short sequence of contents and disappears after the user stops
consuming the content. Consequently, elaborate designs for

the caching and delivery of consecutively requested contents
need to take into account the temporary preference.

The content popularity for an one-shot request with the as-
sumption that individual requests are independent is commonly
modeled as the Zipf distribution [5]. Meanwhile, if a user
requests a short sequence of multiple contents continuously,
this sequence could have temporary preference. For example,
when a user begins to watch a video, the popularity of the
first content can be random, e.g., Zipf distribution; however,
the popularity of the next video largely depends on its related
list, and generally follows a different distribution.

Based on this observation, we presented a probabilistic
caching policy for consecutive user demands in wireless
caching helper networks in our conference paper [32]; com-
pared to [32], the current paper improves the popularity model
for consecutively requested contents. In addition, with the
assumption that the user does not know the exact channel state
information, the caching problem in this manuscript maxi-
mizes the cache hit rate for consecutive content requests, rather
than maximization of the successive delivery rate considered
in [32]. Another important difference to [32] is that here we
provide a dynamic helper association scheme for the delivery
phase. Considering the delivery of a sequence of contents,
the user sometimes needs to switch the caching helper for
receiving the next content; however, a new helper association
step consisting of checking the cache state, scheduling request,
and request acceptance generally requires a relatively large
delay time. In this sense, our helper association policy has
the potential to reduce the entire delivery latency when a user
consumes multiple contents in a row.

The main contributions of this paper are as follows:
• Unlike most papers on the content placement problem,

in which only the one-shot content request and global
preference are considered, consecutive content requests
and temporary preference are considered in this paper. In
practice, heavy users continuously consume a sequence of
multiple contents that are likely to be in an identical target
category. To the best of our knowledge, there has been
no research on consecutive user demands and temporary
preference in wireless caching networks.

• An iterative algorithm for finding the optimal probabilis-
tic caching policy for categorized contents and consec-
utive user demands is proposed. The proposed caching
scheme maximizes the minimum of the successful de-
livery probabilities of all users. The proposed iterative
algorithm can ensure convergence.

• A dynamic helper association scheme for content delivery
is presented. Considering the additional delay time caused
by the switching of the caching helper associations, we
propose a decision method to find an appropriate caching
helper depending on the caching distribution and channel
conditions when receiving multiple contents in a row.
This association scheme can be used for any caching
scheme.

• The numerical results show the impacts of the temporary
preference on caching and helper association policies.
The performance gains of the proposed scheme increase
as the probability of consecutively requesting contents in
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Fig. 1: Wireless caching network model

the same category increases and the number of consecu-
tive requested contents grows.

The rest of this paper is organized as follows. The system
model is described in Section II. The probabilistic caching and
the helper association schemes are proposed in Sections III
and IV, respectively. Numerical results are shown in Section
V, and Section VI concludes the paper.

II. SYSTEM MODEL

This section describes the wireless caching network and the
content popularity model. We consider a scenario in which
users consume multiple contents in sequence, and the contents
are grouped into several categories.

A. Wireless Caching Network

This paper considers a cellular model consisting of multiple
caching helpers at fixed locations, and the users request a
particular cached content from a library F . Suppose that
the library F consists of F contents, i.e., ci ∈ F for all
i ∈ {1, · · · , F}, and all the contents have normalized unit
sizes. For contents with different sizes, each content can be
partitioned into small chunks of the same size and each chunk
can be considered as an individual content. Suppose that there
are given K categories (which can be interpreted as lists of
related contents) in F , denoted by Gk for k ∈ {1, · · · ,K},
where

⋃K
k=1 Gk = F holds. Here, we note that it is not

necessary for categories to be disjoint; therefore, denote the
index set of the categories that ci belongs to by K(ci). Also,
G(ci) =

⋃
k∈I(ci)

Gk is the set of the contents in one of the
categories that ci belongs to. The number of contents in Gk
is Fk, i.e., |Gk| = Fk. Caching helpers have a finite storage
size of M , which means that only M contents can be cached
in each helper. In practice, F > M ; therefore, the caching
helpers cannot store all the contents in F . The set of contents
cached in helper α is denoted by Cα.

This paper considers the situation where active users con-
sume multiple contents continuously, and each user can
consume different numbers of videos. Therefore, this paper
considers L types of users, where a type-l user requests l
contents in a row from nearby helpers. We denote the l0-
th requested content of the type-l user by c(l0) ∈ F for
any l0 ∈ {1, · · · , l}. The spatial distributions of the caching
helpers and users follow homogeneous Poisson point processes

TABLE I: System Description Parameters

F Number of contents
K Number of categories
Gk Category k
Fk Number of contents in category k
M Cache size
λ Intensity of Poisson point process of device distribution
Cα Content set cached in helper α
L User type (Number of requested contents)
ci Content i
c(l) l-th requested content
fi Global popularity of content i
fj|i Temporary popularity of content j when c(1) = ci
ν Temporary preference probability
pi Caching probability of content i
τN Delay time for a switch of helper association
τB Delay time for a backhaul communication

(PPP) with intensities λ and λu, respectively. In this study, we
utilize the probabilistic caching method [5] for the caching
helpers to store file i with probability pi.

A Rayleigh fading channel is assumed for wireless links
from users to caching helpers. The channel is denoted by
hα =

√
Dαg, where Dα ∝ 1/dβα denotes the path gain

(the inverse of the path loss) between the user and helper
α, dα and β are the distance between the user and helper α
and the path loss exponent, respectively, and g represents a
fast fading component with a circularly symmetric complex
Gaussian distribution g ∼ CN(0, 1). Here, the shadowing
effects are ignored for mathematical convenience.

B. Distance-Based Interference Management

In this paper, distance-based interference management is
used. Activation of a new delivery link causes two types
of interference, 1) from the caching nodes already serving
existing users to the new user, and 2) from the caching node
associated with the new user to existing users. Therefore, we
set the pair {ρ, ε} to allow or to ban the new link activation,
where ρ is the data rate threshold and ε is the minimum outage
probability. In other words, a new link can be established only
when the outage probabilities of all links are smaller than ε,
where the link outage occurs if the data rate is smaller than
ρ. Here, we assume that ρ is sufficiently large so that the
content delivery can be successfully completed. Based on this
criterion with the pair {ρ, ε}, we define ru and ra as the safety
distances for guaranteeing the performances of the new user
and the existing active users, respectively.

First, ru is defined as the maximum distance between the
new user and helper α supposed to deliver the content to the
new user. The outage probability of the new link is given by

Pr
{
B log2

(
1 +

|g|2

dβασ2(Υu + 1)

)
≤ ρ
}
, (1)

where B is the bandwidth and Υu is the interference-to-noise
ratio (INR), assuming a unit transmit power and a normalized
noise variance of σ2. Since |g|2 follows the chi-squared
distribution and the outage probability should be smaller than
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ε, we can obtain the following inequality,

dα ≤
( 2

σ2(Υu + 1)(2ρ/B − 1)
ln

1

1− ε

) 1
β

= ru, (2)

and we define ru as the righthand side of (2).
In addition, ra is defined as the minimum distance between

the helper that establishes the new delivery link and any
existing active user. With the sufficiently large value of ra, we
can suppose that the interference from outside of the radius ra
could be ignored. In order to determine ra appropriately, the
newly activated delivery link has to inform their locations and
interfering power to nearby potential users and helpers. Based
on this information, the new user can measure its INR Υu

in (1). Then, we can give a guideline for activation of a new
delivery link by using ru and ra. When a user requests the
content, it has to find the helper within the radius ru, and that
helper should be at least ra away from all the existing active
users. If these conditions are satisfied, the new delivery link
can be established, and all links satisfy the criterion {ρ, ε}.

Especially, if the density of content-requesting users is not
very large compared to that of potential helpers, we can
consider the constraint on ru only. Therefore, we suppose that
the content-requesting users are not very densely distributed,
in other words, the active links are separated sufficiently not
to significantly interfere with each other. A representative
example scenario is the D2D-assisted caching network in
which all the inactive devices act as the caching helpers and
the number of inactive devices is much larger than that of
active users [34]. In this scenario, the constraint on ra is not
very hard; accordingly, this paper considers the constraint on
ru only. In addition, if the density of active user distributions
is sufficiently smaller than that of potential helper devices,
the interference power becomes week and Υu could be also
ignored in (1). Here, if there is no caching helper that can
satisfy the condition of ru, the new user can request the content
from the core network via the BS. In the general content
delivery network (CDN), the BS has access to one or more
servers in the core network through backhaul connections and
the servers have the whole file library.

C. Content Popularity Model

Unlike most of the existing works on wireless caching,
this paper allows each user to consecutively request multiple
contents. For example, on-demand streaming users usually
have the intention of watching videos in a specific category
[30], and the short sequence of the requested contents is
strongly correlated. We will call this tendency temporary
preference in order to distinguish it from global preference
in [18], [20], [21]. Given the target category (i.e., related list)
for a video, we can expect that the probability of requesting
any content in the target category is much larger than that of
requesting content outside the target category. According to
[30], the number of sessions or videos that the user consumes
continuously is not very long; therefore, we suppose that the
related list is unchanged during consuming multiple contents.

1) First content request: When the user begins to request
the content, the global content popularity distribution is em-
ployed. Each content ci ∈ F has a popularity probability

Fig. 2: Popularity of contents given the target category

fi, which follows the M-Zipf distribution [35]: fi = (i +
q)−γ/

∑F
j=1(j + q)−γ , where γ and q denote the popularity

distribution skewness and the plateau factor, respectively.
2) Consecutive content requests: After consuming the first

content, temporary preference is applied to the consecutive
content requests. Here, since c(1) could belong to multiple
categories, the target category of c(1) becomes G(1) = G(c(1)).
The popularity of the following content cj is denoted by fj|i(1)
and fj|i(1) 6= fj , where i(1) is the file index of c(1). In order to
characterize the temporary preference, we simply use constant
probabilities νk which is the probability of requesting the next
content in Gk for all k ∈ K(c(1)). It satisfies

∑
k∈K(c(1)) νk =

ν, and the user can request the next content from outside of
G(1) with probability 1− ν.

After the user determines the category to request the next
content, the category-based conditional popularity distribution
of a chosen target category Gk is modeled as an M-Zipf dis-
tribution [35], i.e., f ink,i = (i+ qink )−γ

in
k /
∑K
j=1(j + qink )−γ

in
k ,

which represents the popularity of the i-th popular content
in Gk for all i ∈ {1, · · · , Fk}. If ν is large, i.e., ν ≈ 1,
popularities of contents not belonging to G(1) are much smaller
than that of any content in G(1). Fig. 2 shows the popular-
ity distribution of 100 contents for a given target category,
grouped into 5 exclusive categories consisting of 20 contents.
This figure is obtained with ν = 0.9, γink = 2.4, and qink = 69.
In Fig. 2, contents 1–20 belong to the target category, and their
popularity is relatively much larger than that of the others.
Therefore, if ν is sufficiently large, we can approximate the
popularity of contents outside the target category as a uniform
distribution. Consequently, the popularity model of fj|i(1) is
assumed as follows:

fj|i(1) =


νk · (j+qink )−γ

in
k∑Fk

n=1(n+qink )−γ
in
k

cj ∈ Gk, ∀k ∈ K(c(1))

1−ν
F−

∑
k∈K(c(1))

Fk
cj /∈ Gk

.

(3)
It can be seen from (3) that the popularity model for each
content depends only on whether the requested content is
in G(1) or not. Therefore, the caching and delivery methods
proposed in this paper are not affected by the categorization
of the contents.

Remark: Based on the real data traffic and user behaviors
in online video services, it is worthy to derive the appropriate
values of νk in (3). For example, a live performance video
belongs to both music and entertainment categories. By inves-
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tigating user behaviors, relevance of this video to each related
category can be measured, e.g., 90% correlation with music
and 60% correlation with entertainment. Then, we can notice
that νk of this video for the music category is larger than
that for entertainment. However, investigations and analysis
of real data traffic and the exact modeling of the popularity
for consecutively requested contents are out of scope of this
paper.

III. THE PROBABILISTIC CACHING POLICY MAXIMIZING
THE MINIMUM CACHE HIT RATE

This section introduces the cache hit rate for consecutive
user demands and finds the probabilistic caching policy that
maximizes the minimum cache hit rate of all users.

A. The Average Cache Hit Rate of Type-l User

Note that a type-l user requests l contents in a row, and the
sufficiently large ρ guarantees the successful content delivery
from any caching helper which is at some distance smaller
than ru away from the user. Therefore, a cache hit event
occurs for the type-l user if each of the l requested contents
can be delivered from any helper within the radius ru of the
user. Based on Slivnyak’s theorem, we consider a typical user
located at the origin, and the statistics of the typical user
represent those of any other user generated by a PPP with
the same intensity.

Denote the caching probability of ci by pi. Then, the
probability that there is no helper caching ci within the radius
of ru from the user becomes e−λpiπr

2
u . Note that λpi is the

intensity of the PPP for the helpers caching ci. the average
cache hit rate of the type-l user is given by

Phl =
∑
i(1)

· · ·
∑
i(l)

fi(1)fi(2)|i(1) · · · fi(l)|i(1)

·
i(l)∏
i=i(1)

(1− Pr{Ni(ru) = 0}) (4)

=
∑
i(1)

· · ·
∑
i(l)

fi(1)fi(2)|i(1) · · · fi(l)|i(1) ·
i(l)∏
i=i(1)

(1− e−λpiπr
2
u),

(5)

where i(l) represents the index of the l-th requested content.
The summation

∑
i(l) averages the l-th requested content by

using its popularity fi(l)|i(1) . Devices usually store recently
consumed contents in their local cache memory and repeated
requests are directly provided from its local cache memory;
therefore, we suppose that i(l) 6= i(1), · · · , i(l−1) for all l =
2, · · · , L in (5).

In practical scenarios, users consume different numbers of
contents, and the number of contents that the user requested
could vary also. Therefore, to improve the cache hit rates of
all types of the users, we maximize the minimum cache hit

rate of the users of all types 1, · · · , L as follows:

p∗ = arg max
pi,i∈{1,··· ,F}

[
min{Ph1 , · · · , PhL}

]
(6)

s.t.
F∑
i=1

pi ≤M (7)

0 ≤ pi ≤ 1, ∀i ∈ {1, · · · , F}, (8)

where (7) results from the finite memory size of caching
helpers in [11].

The main reason why we maximize the minimum cache hit
rates among all types of users is to weigh the importance of
the heavy users. For example, one user watching ten videos on
average is better than ten users consuming only one content.
Users watching one video are not very loyal to this service
or application, and we cannot guarantee that they will be
back to this service for consuming more contents. For this
reason, we would like to support the heavy users in the content
providers’ view by maximizing the minimum cache hit rate
because Lemma 1 shows that the heaviest user’s cache hit
rate is the smallest.

B. Key Lemmas and Problem Re-Organization

The optimization problem of (6)–(7) can be reorganized via
the following lemmas. By using Lemma 1, the max-min prob-
lem of (6)–(7) can be transformed into a convex optimization
problem. In addition, Lemma 2 turns the inequality constraint
(7) into an equality constraint.

Lemma 1. Phl > Phm for any l,m ∈ {1, · · · , L} and l < m.

Proof: By showing Phl > Phl+k for a positive integer k,
this can be proved.

Phl − Phl+1

=
∑
i(1)

· · ·
∑
i(l)

fi(1)fi(2)|i(1) · · · fi(l)|i(1) ·

[
i(l)∏
i=i(1)

(1− e−Cpi)

−
∑
i(l+1)

fi(l+1)|i(1)

{ i(l)∏
i=i(1)

(1− e−Cpi)(1− e−Cpi(l+1) )

}]
=
∑
i(1)

· · ·
∑
i(l)

fi(1)fi(2)|i(1) · · · fi(l)|i(1) ·[
i(l)∏
i=i(1)

(1− e−Cpi)
(

1−
∑
i(l+1)

fi(l+1)|i(1)(1− e−Cpi(l+1) )
)]

> 0.

Since
∑
i(l+1) fi(l+1)|i(l) = 1, the second equality and the last

inequality are satisfied. Thus, Phl > Phl+1 > · · · > Phk , and
this lemma is proved.

Lemma 2. The optimum vector p∗ = (p∗1, · · · , p∗F )T satisfies

F∑
i=1

p∗i = M. (9)

Proof: Assume
∑F
i=1 p

∗
i < M ; then, ∃ε > 0 such that∑F

i=1 p
∗
i +ε ≤M and p∗k+ε ≤ 1 for a certain k ∈ {1, · · · , F}.
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Let p′ , (p∗1, · · · , p∗k + ε, · · · , p∗F )T ; then, since PhL is an
increasing function of any pi for i = {1, · · · , L}, PhL(p′) <
PhL(p∗). Here, according to Lemma 1, the problem of (6)–
(8) is converted into a maximization problem of PhL . Thus, it
obviously leads to a contradiction.

According to Lemmas 1 and 2, the max-min optimization
problem of (6)–(7) can be transformed into the following
convex maximization problem:

p∗ = arg max
pi,i∈{1,··· ,F}

PhL (10)

s.t.
F∑
i=1

pi = M and 0 ≤ pi ≤ 1, ∀i ∈ {1, · · · , F}. (11)

C. Subproblem for Optimization of Two Contents and Iterative
Algorithm

Since PhL is a multivariable function consisting of many
exponential terms, an iterative algorithm is used to maximize
PhL . A subproblem with respect to two decision variables is
formulated by considering the other variables as constants. Let
pm and pn be the caching probabilities to be optimized and
let the other probabilities {pi}i6=m,n be fixed. In terms of pm
and pn, PhL of (5) can be divided into four different parts as
follows:

PhL = am,n(1− e−Cpm)(1− e−Cpn)

+ bm,n(1− e−Cpm) + dm,n(1− e−Cpn) + em,n, (12)

where am,n, bm,n, dm,n, and em,n are coefficients consisting
of the system parameters, e.g., fi, fj|i(1) , e−Cpk for any
i, j, k ∈ {1, · · · , F} and k 6= m,n. The first term of
(1− e−Cpm)(1− e−Cpn) represents the event where the user
requests both cm and cn. Similarly, the second and third parts
of (1 − e−Cpm) and (1 − e−Cpn) correspond to the events
where the user requests cm but not cn, and cn but not cm,
respectively. The last constant term em,n is obtained when the
user does not request either cm and cn. For example, bm,n is
given by

bm,n = fm
∑
i(2)

· · ·
∑
i(L)

fi(2)|m · · · fi(L)|i(L−1)

+
∑
i(1)

∑
i(3)

· · ·
∑
i(L)

fi(1)fm|i(1) · · · fi(L)|i(L−1)

+ · · ·+
∑
i(1)

· · ·
∑
i(L−1)

fi(1) · · · fi(L−1)|i(L−2)fm|i(L−1) . (13)

In addition, am,n, dm,n, and em,n can be obtained in a similar
way by using the procedure used to obtain bm,n. Then, the
subproblem for finding the optimal pm and pn is formulated
as follows:

{p∗m, p∗n} = arg min
pm,pn

M(pm,pn) (14)

s.t. pm + pn = zm,n = M −
F∑

i=1,i6=m,n

pi (15)

0 ≤ pm, pn ≤ 1, (16)

where M(pm,pn) = (am,n + bm,n)e−C·pm + (am,n +
dm,n)e−C·pn . M(pm,pn) is obtained from (12) by removing

the constant terms and reversing the sign. Since {pi}i6=m,n
are fixed, pm + pn also becomes a constant. The following
proposition provides the solution for the above subproblem.

Proposition 1. The optimal solution of the problem (14)–(16)
is as follows:

{p∗m, p∗n} =
{p̃m, p̃n} if 0 ≤ p̃m, p̃n ≤ 1

arg min
{pm,pn}

{M(0,zm,n),M(zm,n,0)} else if zm,n < 1

arg min
{pm,pn}

{M(1,zm,n−1),M(zm,n−1,1)} else if zm,n ≥ 1,

(17)

where
p̃m =

1

2C
log

bm,n
dm,n

+
1

2
zm,n

p̃n =
1

2C
log

dm,n
bm,n

+
1

2
zm,n.

(18)

Proof: According to the arithmetic-geometric mean
inequality, the lower bound on M(pm,pn) is given by
bm,ne

−C·p̃m + dm,ne
−C·p̃n ≥ 2

√
bm,ndm,ne−C·zm,n . The

equality holds if and only if bm,ne−C·p̃m = dm,ne
−C·p̃n .

Since p̃m = zm,n − p̃n, p̃m and p̃n are obtained using (18).
For (16), p̃m and p̃n become the optimal solution only when
0 ≤ p̃m, p̃n ≤ 1. Otherwise, the four boundary conditions
are compared as follows: 1) pm = 0 and pn = zm,n, 2)
pm = zm,n and pn = 0, 3) pm = 1 and pn = zm,n − 1,
and 4) pm = zm,n and pn = zm,n − 1. Thus, the optimal
solution (17) is obtained.

Note that bm,n represents the probability that cm is in the
sequence of L content requests but cn is not, and dm,n is the
probability that cn is in the sequence of L content request but
cm is not. bm,n and dm,n would be large if cm and cn are
in G(1) respectively, and caching probabilities are determined
depending on their values as shown in (18).

If the convergence is guaranteed, a multivariable function
PhL can be optimized by iteratively optimizing the subset of
variables. To find p∗ = [p∗1, · · · , p∗F ], the subproblem of (14)–
(15) can be iteratively optimized for all combinations of m and
n, where m,n ∈ {1, · · · , F} and m 6= n. The details are given
in Algorithm 1. We find the minimum of the dual-variable
problem of (14)–(15) in each iteration, and the sequence of
updated objective values M(pm,pn) is nonincreasing. There-
fore, the corresponding sequence of updated PhL from (10)
is nondecreasing. Since PhL has a trivial upper bound of 1,
i.e., PhL ≤ 1, the convergence of Algorithm 1 is guaranteed.
If we randomly pick two different variables m and n from
{1, · · · , F} and sufficient iterations are performed, the global
optimal solution of the problem (10)–(11) can be obtained.

Algorithm 1 requires F 2 iterations, and its computational
complexity can be a serious problem when F is large. How-
ever, we can skip some iterations required for solving the
subproblem of two contents having very small popularity both.
Note that if randomly picked two contents have very small
popularity, we do not have to accurately derive their caching
probabilities because they have very little influence on the
cache hit rate. We generate a subset of the content indices,
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Algorithm 1 Iterative algorithm for the optimization problem
of (10)-(11)

Precondition:
1: • M : memory size

• F : the number of contents
2: p∗i = M

F for all i ∈ {1, · · · , F}
3: for ∀(m,n) ∈ {1, · · · , F} × {1, · · · , F} and m 6= n do
4: zm,n = M − p∗m − p∗n
5: Find p̃m and p̃n according to (18).
6: if 0 ≤ p̃m, p̃n ≤ 1 then
7: p∗m ← p̃m and p∗n ← p̃∗n
8: else if zm,n < 1 then
9: {p∗m, p∗n} ← arg min

{pm,pn}
{M(0,zm,n),M(zm,n,0)}

10: else if zm,n ≥ 1 then
11: {p∗m, p∗n} ← arg min

{pm,pn}
{M(1,zm,n−1),M(zm,n−1,1)}

12: end if
13: end for

i.e., Ψ ⊂ {1, · · · , F}, whose contents have popularity smaller
than a predefined threshold ζ. This method leads Algorithm
1 to iterate the dual-variable optimization process for all
(m,n) ∈ {1, · · · , F}× {1, · · · , F} \Ψ. The iteration number
of this method is still linearly increasing with F ; however, it
can significantly reduce the complexity because a large portion
of the contents are in Ψ. In addition, large L may significantly
increase the complexity of Algorithm 1 for computing the
coefficients as given by (13). However, according to [30], the
number of contents that a user consumes is limited; therefore,
its required complexity is also not very large.

IV. DYNAMIC CONTENT DELIVERY FOR CONSECUTIVE
USER DEMANDS

In this section, we propose a strategy to determine an
appropriate caching helper for satisfying the consecutive user
demands. Based on the Markov decision process (MDP), we
formulate the helper association problem. Here, we assume
that an additional delay occurs when the user changes the
caching helper for receiving the next content. Then, dynamic
programming (DP) can provide a dynamic content delivery
strategy for consecutive user demands.

A. Caching helper associations for consecutive user demands

Let the user request ci ∈ F first and helper α is assumed to
deliver ci to this user. If this user subsequently requests another
content cj 6= ci and α does not cache cj , then the user has
to find another helper. In order to switch the caching helper
for receiving cj , the user should send the request message to
some helpers for link activation, and helpers choose whether
to accept or reject the request. These message exchanges
cause additional time delay; therefore, we suppose that an
additional delay τN is generated when the user switches the
caching helper. The user thus prefers to find the helper that can
continuously provide as many contents as possible to reduce
the overall delay time while consuming subsequent contents.

Fig. 3: Helper association example

If the content delivery fails due to the bad channel condi-
tion, we call this event as link outage and the user requires
retransmission. Therefore, considering discretized time slots
t ∈ {1, 2, · · · }, the delay, which is equal to the unit time
duration to, is caused by an outage event. Assuming that the
size of a content is S, the content delivery can be successful
if the data rate is larger than S/to. Therefore, the threshold
of data rate to ensure successful delivery in each slot can
be determined as ρ = S

to
. According to (1), the successful

delivery probability can be obtained as

zsα = 1− exp
{
− 1

2
(dβασ

2(Υu + 1))(2ρ/B − 1)
}
. (19)

The expected delay time caused by the outage event when
the user receives the content from helper α is denoted by τo,α,
which can be obtained as

τo,α =

∞∑
k=1

zsα · (1− zsα)k · k · to =
1− zsα
zsα

to. (20)

If a content consists of V chunks, the expected delay time
caused by outage events until V chunks are successfully
delivered to the user is obtained as follows:

τo,α =

∞∑
k=1

(
V + k − 1

k

)
(zsα)V (1− zsα)k · k · to

=
V (1− zsα)

zsα
to. (21)

Each term in (20) and (21) represents the delay time incurred
by k outage events for all k ∈ {1, 2, · · · }. If the user cannot
find an appropriate helper caching the requested content within
radius ru, then the user needs to receive the content from a
server (which has the whole file library) via backhaul com-
munications. Suppose that a backhaul delay τB is generated
when the user has to receive the content from the server.
Since backhaul communications generate greater latency than
that when employing the caching network, we suppose that
to < τN < τB .

For example, consider two helpers around the content-
requesting user as shown in Fig. 3. Let ck,i denote the i-th
content in Gk. Suppose that the user requests c1,1 at first. Then,
the user is highly likely to request another content in G1 next.
Assume that Cx = {c1,1, c2,1, c3,1} and Cy = {c1,1, c1,2, c1,3}.
Then, some delay time due to the switching of helper associ-
ations can be saved when the user is initially associated with
αy , which is more probable to provide multiple contents in
a row compared to αx. However, if αy has a worse channel
condition than αx, outage events could occur more frequently
at the link with αy than at the link with αx. In this case, there
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exists a tradeoff between link outage events and the switching
of helper associations in terms of delay time. Definitely, the
helper that caches many contents of the target category and has
a good channel condition that is the best choice; otherwise, the
tradeoff between link outage events and switching of helper
associations should be taken into account at the user side.

B. Dynamic Delivery for Consecutive User Demands

The goal of this subsection is to find an appropriate caching
helper α(l) to receive c(l) for all l ∈ {1, · · · , L}. The
problem that minimizes the expected delay can be formulated
as follows:

α = arg min
α(l)∈A(l)

L∑
l=1

τ (l), (22)

where α = [α(1), · · · , α(L)], A(l) is the helper candidate set
storing c(l), τ (l) is the expected delay for receiving c(l), and
L is the type of the user. The problem in (22) is a stochastic
shortest path problem based on MDP. c(1) and A(1) are given
before making decisions on α in the future.

When requesting the l-th content, the previously associated
helper α(l−1) represents the state, and c(l) is a random event.
Then, the state α(l−1) can have a Markov property because
the decision on whether maintaining or switching the helper
depends on both α(l−1) and c(l). The action becomes a choice
of α(l), and how valuable the action is can be assessed by its
expected delay time. The action at the l-th request is denoted
by Θ(l). Although the choice of c(l) is random and does not
depend on the previous node associations, the user obviously
knows its next desired content and c(l) determines A(l) which
is the action space at the l-th request. Therefore, c(l) can be
an element of the state set, and we can define the state at the
l-th request as S(l) = {α(l−1), c(l)}. Also, define S , A×F
and Ξ , A as the state space and action space, respectively,
where A is the set of helper candidates.

The cost of MDP is the expected delay time caused by
action Θ(l) = α(l) when the agent is at state S(l) =
{α(l−1), c(l)}, as given by

g(S(l),Θ(l)) =
1−zs

α(l)

zs
α(l)

τo,α(l) if c(l) ∈ Cα(l) and α(l) = α(l−1)

1−zs
α(l)

zs
α(l)

τo,α(l) + τN if c(l) ∈ Cα(l) and α(l) 6= α(l−1)

τB if c(l) /∈ Cα(l)

.

(23)

Since α(l) is determined by any action Θ(l) ∈ Ξ, the transition
probability from S(l) to S(l + 1) follows the temporary
popularity in (3), and can be defined for all states s and s′

as

Ps′s(θ) = Pr{S(l + 1) = s′|S(l) = s,Θ(l) = θ}
= I{θ = s′} · fψ(c(l))|ψ(c(1)), (24)

where s, s′ ∈ S , θ ∈ Ξ, I(.) is the indicator function and ψ(c)
is the index of content c in library F . The term I{θ = s′}
forces the agent to choose the helper that the action indicates.

The minimum incurred cost at S(l0) = s0 conditioned on
Θ(l0) ∈ A(l0) is given by

G(s0) = min
Θ

E
[ L∑
l=l0

g(S(l),Θ(l))
∣∣∣S(l0) = s0

]
, (25)

According to Bellman optimality equation, the DP minimizes
the cost as follows:

G(s0)

= min
θ

E
[
g(s0, θ) +G

(
S(l0 + 1)

)∣∣S(l0) = s0,Θ(l0) = θ
]

= min
θ

E
[
g(s0, θ) +

∑
y∈S

Py,s0(θ)G(y)

∣∣S(l0) = s0,Θ(l0) = θ
]

(26)

where the expectation of (26) is with respect to {c(l) : l ∈ {l0+
1, · · · , L}}. The minimum cost is obtained by greedily testing
all possible actions (i.e., helper associations) Θ(l0) ∈ A(l0).

The end costs of G(S(L + 1)) are required to find the
optimal costs G∗(S(l)) for all l ∈ {1, · · · , L} and S(l) ∈ S .
Note that at the end of the path, the user stops requesting the
content; therefore, the state space at the end is A, rather than
A × F . Even if the helper that does not cache the requested
content is chosen in MDP, the user is able to receive the
content from the server with the cost τB . It means that any path
from l = 1 to l = L ensures that L consecutive user demands
are provided to the user; therefore, we do not have to assign
different end costs; therefore, suppose that G(S(L+ 1)) = 0
for all S(L+ 1) ∈ A. Then, G∗(S(l)) for all l ∈ {1, · · · , L}
and S(l) ∈ S can be obtained by using the DP equation
(26). After finding the cost sums at the first step for all
α ∈ A(1), the user determines the initial caching helper by
comparing cost values, as described in (22). In addition, the
helper association plan for every content can be designed by
storing the expected costs at every step of the MDP.

Remark: Note that the proposed delivery scheme is adap-
tive to the time-varying channel and random user demands;
therefore, this delivery phase is not jointly optimized with the
caching part. The caching method proposed in Section III is
optimized in a probabilistic manner to observe the effects of
consecutively requested contents whose popularity depends on
the first content. On the other hand, in the delivery phase,
we aimed at demonstrating the effects of switching of helper
associations while requesting multiple contents continuously.
However, it is very difficult to derive the probabilistic node
association method with consideration of the delivery latency
because it has to average out helper distribution as well as
contents randomly cached in all nearby caching helpers. Thus,
we consider the deterministic scenario in the delivery phase
where locations and cache states of helpers are fixed and
the user knows them. Nevertheless, the main goal of both
caching and delivery proposed in this paper is the same,
which makes consecutive user demands be provided from the
identical caching helper as much as possible.

As future research directions, modeling of the popularity
profile and joint optimization of caching and delivery for
consecutive user demands are worthy to consider. Since the
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content delivery depends on the user’s random requests, the
relationship between the caching distribution and the popular-
ity profile of consecutively requested contents would be a key
for joint optimization of caching and delivery. Therefore, after
the popularity capturing the temporary preference is closely
modeled, caching and delivery for consecutive user demands
can be jointly optimized.

C. Dynamic Delivery Analysis in a Two-Helper Scenario

This subsection provides the guideline to the user for helper
association to minimize the delivery latency. We first begin
with the simple situation in which there are two helper options
and the user requests two contents in a row. Later, it will
be generalized to multiple helper options and L consecutive
content requests. Consider the situation shown in Fig. 3 where
two helpers are denoted as αx and αy , and their content sets
are denoted by Cx and Cy , respectively. In this scenario, if
any content not cached in both helpers is requested, the delay
τB is caused regardless of which helper is associated with the
user; therefore, this case is not considered here.

The following lemma gives the condition that determines
which helper is better for the user to be associated in terms
of latency minimization, especially when there are only two
helper options and L = 2.

Lemma 3. When τo,αx ≤ τo,αy and a user consecutively
requests L = 2 contents, if (27) is satisfied, it is better for
the user to be initially associated with αx than αy in terms of
the expected delivery delay.

τN

( ∑
cj∈Cx\Cy

fj|i(1) −
∑

cu∈Cy\Cx

fu|i(1)
)

+ (τo,αy − τo,αx)
( ∑
cj∈Cx∩Cy

fj|i(1) + 1
)
≥ 0. (27)

Proof: Let Dα(l) denote the expected delay sum while
receiving l contents in a row when the initial helper association
is α. If the user initially chooses αx, the expected delay for
delivery of two contents is obtained as

Dαx(2) = τo,αx
∑
cj∈Cx

fj|i(1)

+ (τo,αy + τN )
∑

cu∈Cy\Cx

fu|i(1) + τo,αx , (28)

where the last term τo,αx is the latency for the first content
delivery and the other terms represent the expected delivery
delay of the second content. Similarly, if αy is initially
associated with the user, the expected latency is given by

Dαy (2) = (τo,αx + τN )
∑

cj∈Cx\Cy

fj|i(1)

+ τo,αy
∑
cu∈Cy

fu|i(1) + τo,αy . (29)

Therefore, if (27) is satisfied, Dαy (2) ≥ Dαx(2).
In Lemma 3, we can easily notice that the first term in (27)

gives an importance to the helper that caches more contents
in the user’s target category, and the helper which is closer to

the user benefits from the second term in (27). Conversely, if
the condition in (27) is not satisfied, initial association with
αy is recommended to the user. Here, in order for the user to
choose the initial helper based on (27) in practical scenarios,
the user has to know the popularity of the contents stored
in both helpers and the distances from helpers in advance of
helper association.

The following lemmas and proposition are extended from
Lemma 3 and provide the guideline for the general helper
association with multiple helper options and L consecutive
content requests.

Lemma 4. If (27) is satisfied and Dαi(L) ≤ Dαj (L) for any
i, j ∈ {x, y} and i 6= j, then Dαi(L + 1) ≤ Dαj (L + 1) is
satisfied for all L ≥ 2.

Proof: Suppose that Dαy (L) ≥ Dαx(L) for any L ≥ 2.
The sequence vector of consecutively requested contents is
denoted by c(L) = {c(1), c(2), · · · , c(L)}. The delivery phase
for L contents can be divided into two different situations,
in which α(L) = αx and α(L) = αy . Suppose that the user
continuously requests the (L + 1)-th content c(L+1). Then,
c(L+1) can be in one of following exclusive sets: Cx \ Cy ,
Cy \ Cx, Cx ∩Cy , and (Cx ∪Cy)c. The expected latency during
delivery of L contents when the initial helper is α and α(L) =
αi is given by Dα(L|α(L) = αi) for any i ∈ {x, y}. Then,

Dα(L+ 1|α(L) = αx) =

Dα(L|α(L) = αx) +
(

Pr{c(L+1) ∈ Cx} · τo,αx
+ Pr{c(L+1) ∈ Cy \ Cx} · (τN + τo,αy )

+ Pr{c(L+1) ∈ (Cx ∪ Cy)c} · τB
)

(30)

and

Dα(L+ 1|α(L) = αy) =

Dα(L|α(L) = αy) +
(

Pr{c(L+1) ∈ Cy} · τo,αy
+ Pr{c(L+1) ∈ Cx \ Cy} · (τN + τo,αx)

+ Pr{c(L+1) ∈ (Cx ∪ Cy)c} · τB
)
. (31)

Let ∆α(1)(L+ 1) denote the expected additional delay while
receiving the (L + 1)-th content when the initial associated
helper is α(1); then, Dα(L+ 1) = Dα(L) + ∆α(L+ 1). Here,
∆α(1)(L+ 1) can be obtained as

∆α(1)(L+ 1) = Pr{α(L) = αx|α(1)} · δ(αx)

+ Pr{α(L) = αy|α(1)} · δ(αy), (32)

where δ(α) represents the latency during delivery of a content
when the previously associated helper is α, according to (30)
and (31), as given by

δ(αx) = Pr{c(L+1) ∈ Cy \ Cx} · (τN + τo,αy )

+ Pr{c(L+1) ∈ Cx} · τo,αx + Pr{c(L+1) ∈ (Cx ∪ Cy)c} · τB
(33)
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and

δ(αy) = Pr{c(L+1) ∈ Cx \ Cy} · (τN + τo,αx)

+ Pr{c(L+1) ∈ Cy} · τo,αy + Pr{c(L+1) ∈ (Cx ∪ Cy)c} · τB .
(34)

Since we assume that (27) is satisfied, δ(αx) ≤ δ(αy) can be
proven by

δ(αy)− δ(αx)

= Pr{c(L+1) ∈ Cy}τo,αy − Pr{c(L+1) ∈ Cx}τo,αx
+ Pr{c(L+1) ∈ Cx \ Cy}(τN + τo,αx)

− Pr{c(L+1) ∈ Cy \ Cx}(τN + τo,αy )

=
(

Pr{c(L+1) ∈ Cx \ Cy} − Pr{c(L+1) ∈ Cy \ Cx}
)
· τN

+ Pr{c(L+1) ∈ Cx ∩ Cy} · (τo,αy − τo,αx)

≥ 0. (35)

In (32), Pr{α(L) = αx|α(1)} and Pr{α(L) = αy|α(1)} can
be obtained in the following manner:

Pr{α(L) = αx|α(1) = αx} = Pr{c(2,L−1)}Pr{c(L) ∈ Cx \ Cy}
+ Pr{c(2,L−1)} · Pr{c(L−1) ∈ Cx \ Cy}

·
(

Pr{c(L) ∈ Cx ∩ Cy}+ Pr{cL ∈ (Cx ∪ Cy)c}
)

+ · · ·+ Pr{c(2)} · Pr{c(3) ∈ Cx \ Cy}

·
L∏
l=4

(
Pr{c(l) ∈ Cx ∩ Cy}+ Pr{c(l) ∈ (Cx ∪ Cy)c}

)
+ Pr{c(2) ∈ Cx} ·

L∏
l=3

(
Pr{c(l) ∈ Cx ∩ Cy}

+ Pr{c(l) ∈ (Cx ∪ Cy)c}
)

(36)

Pr{α(L) = αy|α(1) = αx} = Pr{c(2,L−1)}Pr{c(L) ∈ Cx \ Cy}
+ Pr{c(2,L−1)} · Pr{c(L−1) ∈ Cx \ Cy}

·
(

Pr{c(L) ∈ Cx ∩ Cy}+ Pr{c(L) ∈ (Cx ∪ Cy)c}
)

+ · · ·+ Pr{c(2)} · Pr{c(3) ∈ Cx \ Cy}·
L∏
l=4

(
Pr{c(l) ∈ Cx ∩ Cy} ·+Pr{c(l) ∈ (Cx ∪ Cy)c}

)
+ Pr{c(2) ∈ Cx \ Cy} ·

L∏
l=3

(
Pr{c(l) ∈ Cx ∩ Cy}

+ Pr{c(l) ∈ (Cx ∪ Cy)c}
)
, (37)

where c(m,n) is the sequence vector from the m-th content
to the n-th content for m < n. Note that every term in (36)
and (37) is the same except for the last term. The last term
in (36) includes Pr{c(2) ∈ Cx}, but that in (37) includes
Pr{c(2) ∈ Cx \ Cy}; therefore, Pr{α(L) = αx|α(1) = αx} >
Pr{α(L) = αy|α(1) = αx}. Similarly, Pr{α(L) = αx|α(1) =
αy} < Pr{α(L) = αy|α(1) = αy} can be obtained.

Fig. 4: Example scenario for load balancing at helper side

Therefore, ∆αy (L+ 1) > ∆αx(L+ 1) can be proven by

∆αy (L+ 1)−∆αx(L+ 1)

= δ(αx) · Pr{α(L) = αx|α(1) = αy}
+ δ(α2) · Pr{α(L) = αy|α(1) = αy}
− δ(α1) · Pr{α(L) = αx|α(1) = αx}
− δ(α2) · Pr{α(L) = αy|α(1) = αx}

= Pr{c(2) ∈ Cx ∩ Cy} ·
L∏
l=3

(
Pr{c(l) ∈ Cx ∩ Cy}

+ Pr{c(l) ∈ (Cx ∪ Cy)c}
)
· (δ(αy)− δ(αx)). (38)

We have already proved δ(αy) ≥ δ(αx); therefore, ∆αy (L+
1) ≥ ∆αx(L + 1) and finally Dαy (L + 1) ≥ Dαx(L + 1) if
Dαy (L) ≥ Dαx(L) is satisfied for any L ≥ 2.

Proposition 2. When the user requests L > 1 contents
consecutively, if τo,αx ≤ τo,αy (27) is satisfied, it is better for
the user to be initially associated with αx than αy in terms of
the expected delivery delay.

Proof: This proposition can be proved by mathematical
induction using Lemmas 3 and 4.

Proposition 2 provides a guideline on which of the two
caching helpers would be better for a content-requesting user
in order to reduce the delivery latency. Even if there are K
caching helpers that can deliver the desired content around the
user, Proposition 2 can greedily find the best initial caching
helper association. The worst case requires K−1 comparison
steps, and K would not be a very large number in practical
scenarios; therefore, this greedy search is a reasonable method.
Note that Proposition 2 is applied to an individual content
request taking into account near-future requests; however, the
DP-based delivery proposed in Section IV-B provides even
near-future helper associations by estimating consecutive user
demands. This enables the user to prepare the next association
while consuming the current content, which is more efficient
for reducing delays incurred by the switching of helper asso-
ciations.

D. Load Balancing at Caching Helpers

In the previous subsections, we consider only the scenario
where caching helper candidates do not support any other
user before. Since we suppose that the density of active
users is smaller than that of potential helpers, this scenario
is consistent with this assumption; however, still the proposed
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node association method can be extended to deal with the load
balancing issue.

When multiple users attempt to request their desired con-
tents from the identical caching helper, appropriate resource
allocation at the helper is required to support multiple delivery
links. The example scenario is illustrated in Fig. 4, in which
user 1 is receiving its desired content from helper B, and user
2 newly requests the content. Helpers A and B cache user 1’s
desired content, and helpers B and C can provide the content
request of user 2. When helper B receives the association
request from user 2, helper B lets user 2 know its available
resources (e.g., frequency bands) while still supporting the
reliable delivery for user 1. Then, user 2 can estimate the
expected latency for receiving contents from helper B. In this
way, user 2 can compare the expected delivery delays from
helpers B and C, and finally decide which helper is better in
terms of latency minimization. The basic concept of comparing
the expected delivery delays from nearby potential helpers is
still consistent with the core of the node association method
proposed in Section IV-B.

Here, the point is how to allocate fractions of the resources
of helper B to user 1 (existing user) and user 2 (new user).
Since user 1 already chose helper B rather than helper A,
suppose that helper B should provide the sufficient data rate
not to lose the advantage of being associated with helper
B. Therefore, even though helper B allocates fractions of
frequency bands to user 2, the expected latency of the link
between helper B and user 1 has to be smaller than or
equal to at least that of the link between helper A and
user 1. Accordingly, when the user is associated with certain
helper, this user should remember its minimum data rate
guarantee to preserve the advantage of the helper choice. With
the knowledge of the available resources of helper B while
guaranteeing the minimum data rate for user 1, user 2 can
estimate the expected latency by using the proposed MDP-
based method. However, depending on channel conditions, it
would be better that user 1 changes its association to helper A,
and helper B uses all of its resources for user 2. In this case,
other existing delivery links can be reconstructed serially and
the centralized link scheduling is required, but this is out of
scope in this manuscript.

V. NUMERICAL RESULTS

In this section, we numerically show the impacts of catego-
rized contents and consecutive user demands on the proposed
caching and delivery in Sections III and IV, respectively.
The simulation settings are as follows: F = 25 contents
are grouped into K = 5 categories and each consists of
Fk = 5 contents for all k. Suppose that a lower con-
tent index indicates a more popular content, i.e., fi > fj
for i < j, and the content lists of K categories are as
follows: G1 = {1, 6, 11, 16, 21}, G2 = {2, 7, 12, 17, 22},
G3 = {3, 8, 13, 18, 23}, G4 = {4, 9, 14, 19, 24}, and G5 =
{5, 10, 15, 20, 25}. Here, all categories are assumed to be
disjoint for simplicity and lack of the exact modeling of
the popularity profile for consecutively requested contents.
Assume that M = 7, ν = 0.9, B = 1MHz, ρ = 1Mbps,

Fig. 5: Caching probabilities for each content

L = 4, λ = 0.03, and β = 4, unless otherwise noted. In
addition, following M-Zipf parameters are used: γ = 1.2,
q = −0.65, γink = 2.5, and qink = 3 for all k. For comparison
purposes, the probabilistic caching policy optimized for one-
shot requests only, i.e., L = 1, in [12] is used.

A. Probabilistic Caching for Consecutive User Demands

Fig. 5 shows the caching probabilities of all contents in F .
In Fig. 5, the caching probabilities obtained by the comparison
scheme in [12] depend on individual content popularities, i.e.,
Zipf distribution. On the other hand, the caching probabilities
of the proposed scheme are largely influenced by the popular-
ity model for consecutive content requests characterized by ν.
The caching probabilities of the contents in G1 are the highest
among all categories, and the contents in G5 have the smallest
caching probabilities. For example, in the proposed scheme,
even though f5 is much larger than f11, p5 is smaller than p11

because c11 belongs to the category of G1. This phenomenon is
consistent with the observation in [28] which is that the view
rate of each content is very similar to that of its top referrer
one; therefore, in this example, p11 is relatively as large as
p1 which is the top referrer in G1. Especially when L = 4,
contents in the same category have more similar caching
probabilities; in other words, temporary preference becomes
stronger than global preference. Meanwhile, when L = 2,
contents 1–5 have evidently larger caching probabilities than
most of the other contents in the same category; in this case,
the temporary preference is weakened compared to the case
with L = 4. Definitely, as ν grows, the temporary preference
becomes stronger; therefore, the popularity of each content
becomes more similar to that of its top referrer content.

Fig. 6 shows the plots of cache miss rates versus density
of caching helpers (i.e., λ). As λ grows, the user can easily
find the caching helpers that store the requested contents;
therefore, the cache miss rates decrease. Overall, the proposed
caching policy outperforms the comparison scheme; however,
the performance gain increases as λ decreases. The reason is
that when λ is large, there are sufficiently many helpers that
can provide the requested contents without the caching scheme
being optimized for consecutive user demands. Additionally,
the performance gain of the proposed caching compared to the
comparison scheme increases as L grows. This is consistent
with the results in Fig. 5, which show that the caching
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Fig. 6: The cache hit rate vs. λ

Fig. 7: The cache miss rate vs. γ

Fig. 8: The cache miss rate vs. M

probabilities of the proposed scheme and the comparison
scheme have more differences with larger L.

The impacts of the skew factor of the M-Zipf distribution
for the first content request (i.e., γ) and the cache size (i.e.,
M ) are shown in Figs. 7 and 8, respectively. Interestingly, the
cache miss rate of the proposed scheme decreases, but that of
the comparison method increases as γ grows in Fig. 7. A large
γ significantly increases the difference in global popularity
among all contents, and it makes the global popularity profile

deviate considerably from the temporary content popularity.
For example, as γ increases, f5 grows but f16 decreases. In
this case, the comparison scheme is more likely to cache c5
rather than c16. However, when the user consecutively requests
multiple contents, the view rate of c16 would be also as
large as that of c1, resulting in decline of the cache hit rate
of the comparison scheme. Meanwhile, the proposed scheme
captures the effect of the temporary preference so that it is still
more likely to cache c16 than c5; therefore, its performance
still increases slightly with γ. In Fig. 8, performance gaps
between the proposed and comparison techniques increase as
M decreases. The reason is that if M is not large, contents
with a small global popularity are not likely to be stored
in the caching helpers for the comparison scheme in [12],
even though their popularity can be boosted by the temporary
preference.

B. Dynamic Delivery for Consecutive User Demands

In this subsection, the delivery latency parameters are as-
sumed as follows: to = 0.1, τN = 1.0, and τB = 2.0. To
observe the effects of switches of caching helpers, we con-
sider the situation where there are multiple helper candidates
for delivering consecutively requested contents. Also, outage
events due to channel fading are considered; therefore, a larger
λ = 0.05 is used in this section unless otherwise noted. In
order to show the advantages of the proposed caching and
delivery schemes separately, simulations are performed using
the following approaches:
• ‘Proposed, Proposed’: The proposed caching and dy-

namic helper association methods are applied; these are
described in Sections III and IV, respectively.

• ‘Proposed, Nearest’: The proposed caching method is
applied; however, the nearest caching helper among the
helpers having the desired content is chosen for delivering
the content to the user, which is a traditional method for
helper association.

• ‘ [12], Proposed’: Caching is optimized for a one-shot
request as in [12]; however, the proposed dynamic helper
association is applied.

• ‘ [12], Nearest’: Caching is optimized for a one-shot
request, and the nearest caching helper among helpers
having the desired content is chosen for delivering the
content.

Figs. 9 and 10 show the expected delay performances versus
λ when ν = 0.90 and ν = 0.99, respectively. Overall, the
proposed technique outperforms other comparison approaches,
and the expected delays decrease as λ increases. Comparing
the proposed scheme with ‘Proposed, Nearest’, it can be seen
that the performance gains of the proposed scheme slightly
increase as λ grows. Since there are many caching helpers
around the user with a large λ, it is highly probable for the user
to find a helper having multiple requested contents; therefore,
the delays caused by switches of helper associations can be
reduced further when λ is large. When there is a small number
of caching helpers around the user, the comparison method
optimized for only one-shot requests makes it difficult for the
user to find the helper that can provide multiple contents in



13

Fig. 9: Expected delays vs. λ when ν = 0.90

Fig. 10: Expected delays vs. λ when ν = 0.99

the request sequence; therefore, the delay performance gains
over ‘ [12], Proposed’ increase as λ decreases. In addition,
if ν increases, i.e., the temporary user preference becomes
stronger, bigger performance gains of the proposed caching
method are achieved.

Fig. 11 shows the impacts of M on the expected delays;
the delay performance gains of the proposed scheme increase
as M grows, compared to other methods. When M is large,
a helper is likely to store contents in the same category in the
proposed caching method; therefore, it can reduce the latency
required for switches of caching helpers. On the other hand, a
very small M requires frequent updates of helper associations
and finally even the proposed scheme generates comparable
delivery latency to comparison methods with a small M .

Fig. 12 shows the plots of the expected delay per content
request versus L, when the caching method is optimized for
L = 4. Since users can request any number of contents in
{1, · · · , L}, although the caching method is optimized for L
consecutive content requests, the usefulness of the proposed
scheme can be verified by investigating its performance in
the situation in which the user requests l contents in a row,
where l < L. Since the caching method in [12] is optimized
for L = 1, the expected delay of [12] is smaller than that of
the proposed caching when L = 1; however, the proposed
caching outperforms the comparison scheme with L ≥ 3.
Meanwhile, the proposed delivery policy is not optimized at

Fig. 11: Expected delays vs. M

Fig. 12: Expected delays vs. L

a specific value L. Therefore, the performance gain obtained
by the proposed delivery scheme can be observed immediately
when the user requests more than one content. Note that Fig.
12 shows the expected delay per request so that total delay
of the type-L user incurred during the sequence of consumed
contents becomes L times the result in Fig. 12. It means that
the total delay generated while consuming l ≥ 3 contents can
be reduced further by using the proposed caching and delivery
methods. Thus, we can conclude that the proposed scheme is
useful to support heavy users consuming many contents at
once.

VI. CONCLUDING REMARKS

This paper proposes a probabilistic caching policy and
dynamic helper associations for content delivery when users
request different numbers of categorized content. Unlike the
existing studies that consider global user preference, this
paper introduces temporary user preference. Temporary user
preference is an essential characteristic of multimedia services
where users continuously consume multiple contents in an
identical related content list in a row, and the contents in
this short sequence of consumption are strongly correlated.
Given categorized contents (i.e., related content lists), the
probabilistic caching is optimized to maximize the minimum
cache hit rates of all users. In addition, in the delivery phase,
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a DP-based helper association method is used to minimize the
expected delivery latency. Since multiple content consumption
is considered, delay incurred by switching the caching helper
for receiving the next content is also captured.
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