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ABSTRACT

Multiobjective optimization problems (MOPs) are common across many science and engineering fields. A
multiobjective optimization algorithm (MOA) seeks to provide an approximation to the tradeoff surface
between multiple, possibly conflicting, objectives. Many MOPs are the result of objective functions that
require the evaluation of a computationally expensive numerical simulation. Solving these large and com-
plex problems requires efficient coordination between the MOA and the computationally expensive cost
functions. In this work, a recently proposed MOA is integrated into the 1ibEnsemble software library,
which coordinates extreme scale resources for large ensemble computations. Efficient integration requires
fundamental changes to the underlying MOA. The convergence and performance results for the integrated
and original MOA are compared on a set of benchmark problems.

Keywords: multiobjective optimization, blackbox optimization, HPC resource managers

1 INTRODUCTION

Multiobjective optimization problems (MOPs) appear in many science and engineering fields, including
problems in engineering design optimization (Campana et al. 2018). Whereas single-objective optimization
algorithms typically search for a single local or global minimum of a scalar-valued cost function, multiobjec-
tive optimization algorithms (MOAs) seek a set of solutions that describe the tradeoff between the problem
objectives. Ultimately, this allows a decision maker with domain knowledge and unstated preferences to
make an informed decision.

In general, a MOP is defined by a vector-valued cost function F' : X — ), where X C R%and Y C RP.
Here, X denotes the feasible design space with dimension d, and ) denotes the feasible objective space with
dimension p. Conceptually, F' can be decomposed into p scalar cost functions f; : R® = R,i=1,...,p,
such that F'(x) = (f1(x),..., fp(x))T. This paper considers MOPs in a standard form where all component
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functions of F' are to be minimized. For Y7,Y5 € ), Y7 dominates Y5 if Y7 is componentwise less than or
equal to Y5 with strict inequality in at least one component. A solution F'(z*) is said to be nondominated if
F(z) does not dominate F'(z*) for all z € X. If F'(xz*) is nondominated, then z* is said to be efficient and
the pair (z*, F'(x*)) is Pareto optimal. The solution to a MOP is the set of all nondominated points (called
the Pareto front) and the corresponding efficient set. MOAs attempt to find a high-fidelity approximation to
the Pareto front and efficient set. This approximation typically consists of a discrete set of approximately
Pareto optimal pairs. Further reading on MOPs can be found in the book by Ehrgott (2005).

The multiobjective function F' is said to be a blackbox when there is no additional information (such as
gradients) for any of the component functions f; other than their values. Often, blackbox functions are the
result of computationally expensive numerical simulations. Solving such problems requires the use of large
computational resources (Kodiyalam et al. 2004) and often involves an ensemble of codes, including the
numerical simulations from which the cost functions are derived and the optimization software. Solving
such problems at scale on modern HPC systems can be facilitated by a computational resource manager.

libEnsemble is a library for coordinating the concurrent evaluation of dynamic ensembles of calculations
(Hudson et al. 2019). The library is developed at Argonne National Laboratory as a part of the DOE
Exascale Computing Project; it is designed to use massively parallel resources to accelerate the solution
of design, decision, and inference problems and to expand the class of problems that can benefit from
increased concurrency levels. 1ibEnsemble employs a manager-worker scheme that is controlled by user-
defined simulation, generation, and allocation functions (each of which could be using parallel computing
resources). The generation function produces parameter values to be evaluated by the simulation function;
the simulation function uses the specified parameters to run a (potentially expensive) numerical calculation;
and the allocation function decides when a simulation or generation function should be called and with what
resources. If one is using 1ibEnsemble to solve MOPs, the generation function is a MOA, the simulation
function evaluates the blackbox function F', and the allocation function calls the generation function when
the simulation function has evaluated all of the previously requested set of parameter values.

This paper studies the performance of two implementations of the recently published MOA of Deshpande,
Watson, and Canfield (2016): one implementation uses its own communication framework, and one uses
libEnsemble. Section 2 provides further background on 1ibEnsemble and MOPs, then summarizes the
algorithmic details of the MOA that is implemented herein. Section 3 describes both a standalone parallel
driver for the MOA and an alternative interface where the MOA is integrated into 1ibEnsemble. Section
4 shows the outcome of several experiments, where problems with known Pareto sets are used to analyze
the performance of both implementations in terms of convergence to the complete Pareto front, machine
utilization, and computational overhead. Section 5 briefly discusses the results of Section 4.

2  BACKGROUND

This section gives greater detail on 1ibEnsemble; background is provided on common techniques for
solving computationally expensive blackbox MOPs, and the specific MOA of interest is introduced.

2.1 libEnsemble

libEnsemble employs a manager process to allocate work to multiple worker processes. A 1ibEnsemble
worker is the smallest indivisible unit that can perform calculations. For some cases, a worker can be given
a single core to generate a sample of points; in other cases, a worker can be given many nodes to perform a
complex numerical simulation. While one can allocate different resources to different workers throughout
a given libEnsemble run, all instances in this paper give each worker equal computational resources. The
libEnsemble manager-worker communications can utilize various communication media, including MPI,
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multiprocessing, and TCP. Interfacing with user-provided executables is also supported; in this paper, the
generation function requires a Fortan executable. Each worker can control and monitor any level of work,
from small subnode jobs to huge many-node simulations.

In this paper, a persistent generation function is used to produce points to be evaluated: the generation
function is initiated at the beginning of the 1ibEnsemble run when it provides a batch of points to be
evaluated. Only after points in a batch have been evaluated is the generation function informed of the
function values so that it can produce the next batch of points. Hence, workers (and their computational
resources) will be idle when a worker completes a given function evaluation and all remaining points in the
batch are currently being evaluated.

2.2 Common Techniques in Blackbox Multiobjective Optimization

Three broad approaches are used for solving blackbox MOPs. Not all methods neatly fall into one of these
categories, but most widely used software packages use one or more of these strategies. The first class
consists of multiobjective evolutionary algorithms, such as NSGA-II (Deb et al. 2002a). While widely
popular, evolutionary algorithms frequently require many function evaluations in each iteration and are
generally not practical when F' is expensive to evaluate. The second class contains direct multisearch
methods, such as the BiMADS algorithm from the NOMAD software package (Le Digabel 2011). While
efficient for problems with few objectives, many of these techniques do not scale well for problems where p
is large. In particular, BIMADS applies exclusively to the biobjective case.

The third class consists of scalarization techniques, which reduce MOPs to single-objective problems by
composing a scalarization function G : IR? — IR with F. The resulting function G o F' can be minimized
by using a single-objective blackbox optimization solver to approximate a single nondominated point.
Optimizing different scalarizations seeks to produce a set of nondominated points that approximates the
Pareto front. One common scalarization scheme is the weighted-sum method, which uses a vector of strictly
positive weights w = (w1, ..., wp) to produce a “weighted average” cost function

Gu(F(2)) = w;fi(x). (1)
i=1

Because these methods often solve problems with many different weights, modern scalarization techniques
often employ some variation of the response surface methodology (RSM). In the context of MOPs, RSM
approaches fit a computationally cheap surrogate model f, to each component function f; using designed
experiments. Then numerous scalarizations of fl, s fp can be solved for a relatively minimal cost (Myers,
Montgomery, and Anderson-Cook 2016). Algorithm 1 demonstrates how RSM can be combined with the
weighted-sum method to solve a computationally expensive MOP. While this scheme is cost effective, naive
scalarization strategies (e.g., drawing w uniformly from [0, 1]P) can produce clustered points in the solution
set that yield a poor understanding of the Pareto front’s shape. In the context of the weighted-sum method,
an adaptive weighting scheme is needed in order to select sets of weights that yield well-spaced points.

Algorithm 1: Applies RSM to MOPs with the weighted-sum method.
inputs
F :R* — IRP is the objective function;
£ is the number of scalarizations to be solved;
{w(l), - w(’z)} is a set of predetermined scalarizing weight vectors;
begin
Explore the design space (often via a space-filling design, but could be any global search strategy);
Use data from the exploration phase to construct F« ( fl, e fp) where f’l ~ f1,..., fp ~ fp
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fori=1,...,¢do
:i'(l) — arg;nln Gw(i) (F(l’)),
enddo
Evaluate the candidate designs £V, ..., #(9;
end

In Algorithm 1, true function evaluations are required only during the exploration phase and when evaluating
the candidate designs. In this way, one can predict the solution to numerous scalarized subproblems for little
more than the cost of a single design-space exploration.

2.3 The Multiobjective Optimization Algorithm

The MOA of Deshpande, Watson, and Canfield (2016) solves blackbox MOPs subject to simple bound
constraints when the component functions are Lipschitz continuous. This algorithm applies RSM in a
sequence of local trust regions (LTRs) using batches of adaptive weights. These LTRs are centered on
isolated points from the current set of nondominated F' values, which are determined by projecting the
nondominated values into a (p — 1)-dimensional space and computing their Delaunay graph. For repeated
centers, the LTR radius is decayed down to some tolerance, and the LTR center is determined by choosing
the most isolated point whose radius would be above the tolerance. In the case where all isolated points
would result in a LTR whose radius is below the tolerance, then the problem has been solved to the maximum
precision. After a suitable isolated point has been identified, a “square” LTR is constructed in the design
space. The Delaunay graph is also used to assign the adaptive weights. For additional details on using
the Delaunay graph to determine point isolation and choosing the LTR radius, see the paper by Deshpande,
Watson, and Canfield (2016). Algorithm 2 shows how the LTRs are combined with RSM and the adaptive
weighting scheme in order to solve a nonconvex MOP, subject to simple bound constraints.
Algorithm 2: Solves a MOP using RSM, adaptive weighting, and LTRs.
inputs
F :R% — IRP: the objective function;
L,U: lower and upper simple bound constraints on the design space;
M the budget for evaluations of F';
variables
B: a database containing every design point evaluated and its corresponding objective value;
P(): the set of nondominated points at the start of iteration k;
D) the set of efficient points corresponding to P(¥);
A®): the kth LTR with (%) as its center
¢(): the number of Delaunay neighbors of F' (i(’“)) in the projective space;
{w®k) L #)1: the kth set of adaptive weight vectors;
begin
B« 0,k +0;
begin the Oth (pre) iteration
Statically assign p + 1 weight vectors for the Oth iteration: w(™?), ... w®+1.0);
Minimize p + 1 instances of (1) for w9 ... w®T10) within [L, U] using RSM (Algorithm 1);
Store all evaluations of F'in B;
end the Oth iteration
k+ k+1;
while |B| < M do
Compute P*) and D(*) based on the current contents of B;
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Identify an isolated point F'((F)) in P(*);
if no isolated point was found then
return P(*) and D)

else
Compute A*) centered at 7(*);
Compute the kth set of adaptive weight vectors {w(l*k), e ,w(é(k) ’k)};
Minimize (1) for w(l’k), .. ,w(em’k) within A®*) using RSM (Algorithm 1);
Store all evaluations of F' in B;
k<+ k+1;
endif
enddo
return P*) and D*)
end

The key contribution of Deshpande et al. is the usage of the Delaunay graph to identify isolated points, but
Deshpande et al. also provide a novel strategy for RSM based on an adaptive Dividing Rectangles (DIRECT)
search. In each RSM exploration phase, DIRECT is applied to each component function fi, ..., f,, either
within the current LTR or over the entire design space (in the Oth iteration). In the Oth iteration, DIRECT is
also run one additional time with an equal weighting of all objectives. After completing the RSM search, a

linear Shepard model (Thacker et al. 2010) is used to construct the surrogate models fl, e fp, and these
surrogate models are optimized for each of the adaptive weights by using the GPS MADS algorithm (Le
Digabel 2011).

For this paper, the DIRECT search is implemented using the VTIDIRECT95 software package (He, Watson,
and Sosonkina 2009), and surrogates are implemented with the LINEAR_SHEPARD module from SHEPPACK
(Thacker et al. 2010). Rather than using the widely distributed NOMAD software package (Le Digabel 2011),
a custom lightweight Fortran implementation of GPS MADS is used because NOMAD includes significant
extra overhead and machinery that is relevant only for optimizing an expensive blackbox function and the
linear Shepard’s models are computationally cheap surrogates. An implementation of the scalable Delaunay
interpolation algorithm of Chang et al. (2018) is used to compute the Delaunay graph in arbitrary dimension.

3 PARALLEL IMPLEMENTATIONS

In this section, several novel parallel implementations of Algorithm 2 are proposed. The first implementation
introduces no significant modifications to the underlying algorithm or RSM strategy, as proposed by Desh-
pande, Watson, and Canfield (2016). The remaining implementations are tailored to use the 1ibEnsemble
framework to efficiently exploit parallel resources. In all cases, the cost of evaluating F' is assumed to
overwhelm all iteration costs. Therefore, the focus is placed on parallelism between independent evaluations
of F', and opportunities for parallelizing iteration tasks are not considered. In a real-world application, the
evaluation of F' may be its own parallel process, featuring concurrency within the implementation of each
component function f; and between evaluations of the component functions fi, ..., f,. Since this level of
parallelism is specific to the application, it should be implemented by the user. This is explicitly supported
by libEnsemble, which allows for each simulation function to utilize parallel resources.

3.1 A Parallel Implementation of the Original Algorithm

First, consider a parallel implementation of Algorithm 2, without leveraging 1ibEnsemble. Algorithm 1 is
called once per iteration of Algorithm 2; and, as previously discussed, there are two locations in Algorithm 1
where F' must be evaluated. The second of these locations is trivial to parallelize, since it involves evaluation
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over a batch of precomputed design points. However, proper parallelization of the first location (design
space/LTR exploration using either p 4 1 or p instances of VIDIRECT95) is slightly more challenging and
requires exploitation of two nested levels of parallelism.

In order to efficiently parallelize up to p 4+ 1 instances of the DIRECT search, parallelism within each
instance of VTDIRECT95 should be exploited as well as parallelism over multiple calls to VTIDIRECT95.
For parallelism within a single call, VTDIRECT95 provides a parallel driver subroutine pVTdirect, which
distributes function evaluations and memory burden over a network using MPI in a fully distributed paradigm,
with decentralized memory. Because Algorithm 2 maintains all function evaluation data in a central database
B, this fully distributed paradigm is not appropriate for the RSM exploration phase in Algorithm 1. Instead,
a slight modification is made to the serial driver VTdirect to parallelize its loop over each small batch of
“potentially optimal” boxes. Hereafter, this implementation is referred to as bVTdirect.

When parallelizing over multiple instances of bVTdirect, additional issues arise. Specifically, because the
DIRECT algorithm samples on an implicit mesh, multiple DIRECT instances often request the same design
points. In order to prevent unnecessary evaluations of F', a system of locks is placed on the database B from
Algorithm 2. When a new design point is evaluated, B is first checked to see whether that point has been (or
is currently being) evaluated. If so, that instance of bVTdirect must wait (if necessary) until the evaluation
is complete, then receive the result.

This parallelism strategy is implemented entirely by using OpenMP for shared-memory parallelism. The
choice of OpenMP places the burden of across-node distribution on the user, whose implementation of F’
should involve machinery to distribute F' across a network. This paradigm is appropriate for many modern
HPC systems because it allows users greater control over how memory and computations are distributed.
Because certain OpenMP threads will have to “wait” on design points that are currently being evaluated,
there can be many idle OpenMP threads. Generally, it is recommended to overload the master node with
OpenMP threads to achieve the maximum number of evaluations. However, only a controlled number of
distributed-memory tasks (matching the number of nodes on the network) can be achieved by the user.

3.2 Integration with libEnsemble

Algorithm 2 can also be implemented as a 1ibEnsemble generation function. Naively, this could be
achieved by running Algorithm 2 until evaluations of F' are needed (during a reference to Algorithm 1),
using 1ibEnsemble to distribute the appropriate simulations, recording the results of these simulations in
the database B, and proceeding with Algorithm 2. However, one of the goals of 1ibEnsemble is to make
efficient usage of extreme scale resources. While Algorithms 1 and 2 ultimately evaluate F' at small batches
of points, there is no mechanism to control the size of each batch, thus leading to poor load balancing
when implemented over statically allocated HPC resources. Therefore, two significant modifications to
Algorithms 1 and 2 have been made for integration with 1ibEnsemble to allow for greater control over the
number of concurrent function evaluations.

The first modification is made to the RSM search strategy in Algorithm 1. The DIRECT-based search algo-
rithm proposed by Deshpande et al. is not appropriate for integration with 1ibEnsemble for several reasons.
First, 1ibEnsemble requires decoupling between the optimization algorithm and its calls to F' since these
tasks are separately controlled by using the simulation and generation functions. The VIDIRECT95 driver
subroutines strongly couple objective function evaluations with the optimization algorithm, so integration of
VTDIRECT95 with 1ibEnsemble would require fundamental reworking of the driver subroutines. Second,
VTDIRECT95 sequentially evaluates batches of design points of varying sizes, with no consideration for
the amount of available resources. Such behavior makes inefficient use of 1ibEnsemble’s leveraging of
computational resources.



Chang, Larson, Watson, and Lux

Suppose that Algorithm 2 is implemented as a 1ibEnsemble generator on an HPC system with sufficient
resources for n, concurrent evaluations of F'. When n,, is large, an efficient strategy would be to evaluate
fewer batches, each containing more design points. Preferably, users should be able to adjust these batch
sizes, targeting a multiple of n,. Therefore, a space-filling design of controllable size is preferable to
the DIRECT-based search. So, when 1ibEnsemble reaches the RSM search phase of Algorithm 1, the
libEnsemble generator returns a Latin hypercube design over the current search space. When the size of
the Latin hypercube design is small relative to ny, the size should typically be a multiple of n,. After the
design has been generated, 1ibEnsemble coordinates the concurrent simulation evaluations.

The second modification allows users to control the batch size for generating candidate designs at the end
of Algorithm 1 in order to match n,. The adaptive weighting scheme proposed by Deshpande, Watson, and
Canfield (2016) produces variable-sized batches of candidate designs by default, which is not conducive to
load balancing. Every candidate design for one of the adaptive weightings must be evaluated, in order to
ensure that new solutions are found surrounding the current isolated point. So, the goal of this modification
is to achieve the smallest possible multiple of n; that is greater than the original number of candidate designs.

Suppose that n, additional candidates are needed to achieve a multiple of n. In order to find n, additional
candidates to pad out the current batch, a large number (greater than n,) of additional convex weight
vectors are randomly generated during each iteration of Algorithm 2. When optimized over the surrogate
models, these random weight vectors produce additional candidate designs within the current LTR, in the
neighborhood of the current isolated point in the objective space. It is not always possible to find n,
additional candidates, however, especially when n; is large. The reason is that different weight vectors
can yield the same candidate solutions (particularly when F' is nonconvex). Therefore, a fixed number of
additional random weights is always generated and used to produce a pool of additional candidates. If this
pool of additional candidates is larger than n,, then the first n, candidates are added to pad out the batch
returned by the 1ibEnsemble generator function. If fewer than n, additional candidates are generated, then
all additional candidates are added, padding out the batch as much as possible.

Note that generating this additional pool of candidates to pad out each batch significantly increases the
iteration costs for Algorithm 2 since many additional surrogate optimization problems must be solved.
In order to demonstrate the costs and benefits of this approach, two variations have been implemented in
libEnsemble. Inthe firstimplementation (LibEnsemblel), no additional candidate solutions are generated.
In the second implementation (LibEnsemble2), additional candidate solutions are generated, as described
in the preceding paragraph.

4 EXPERIMENTS AND RESULTS

Two test problems have been run on the Bebop system at Argonne National Laboratory using the implemen-
tations described in Section 3. Performance data has been collected for all implementations, showing the
degree to which the solutions approximate the Pareto front and the utilization of available system resources.

4.1 Description of Test Problems

Let d > p, and let e; denote the ith standard basis vector in IR?. Then the first test problem is defined by
1 1
Fua) = (o= erld - llo = geplB) . @€ [-11 )
The Pareto front for F, is a portion of a rotated parabola in IR”. Because this problem is convex, it is an
easier problem for MOAs. The second test problem is the nonconvex problem DTLZ2, as described by Deb
et al. (2002b). Its Pareto front is the unit sphere in the positive orthant. This Pareto front is concave, which

generally presents a problem for adaptive weighting schemes.
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In order to emulate the expense of a blackbox simulation problem, an artificial runtime is simulated using
the CPU clock. For both F, and DTLZ2, two variations are created. In the first variation, the runtime is set
to one second; in the second variation, the runtime is a random value drawn uniformly from the interval
[0.5s,1.5s]. This tests the methods for their ability to load balance function evaluation times that vary.

For all problems considered, the design dimension is d = 5. The objective dimensions considered are p = 2,
p = 3, and p = 4, and the function evaluation budgets, M, of sizes 1,000, 1,500, and 2,000 are considered.
Note that these values of M are an order of magnitude less than the recommendations of Deb et al. (2002b).
However, for a computationally expensive numerical simulation (such as a three-dimensional fluid dynamics
simulation), these budgets would be considered generous.

Evaluation of how well points evaluated by a MOA approximate the true Pareto front is an open problem
(Audet et al. 2018). Three criteria to measure the quality of an approximate Pareto surface are considered:

e The number of nondominated solution points identified
e The distance between points on the approximate and true Pareto front
e The degree to which those points are spread evenly across the entire Pareto front

In this paper, the cardinality, the root mean squared error (RMSE), and the star discrepancy as described by
Kugele, Trosset, and Watson (2008) of the solution set are used to measure these three criteria, respectively.
Note that the RMSE can be easily computed because the test functions have analytic Pareto fronts. In order to
compute the star discrepancy, unions of path-connected Delaunay simplices are used as a family of Lebesgue
measurable sets. The Delaunay discrepancy approaches zero when evaluated for uniformly spaced points.

4.2 Description of Hardware and Algorithm Settings

Experiments have been performed on the Bebop computer at the Laboratory Computing Resource Center at
Argonne National Laboratory. Each Broadwell node has an Intel Xeon E5-2695v4 CPU, with 36 cores and
128 GB of DDR4 RAM. A single node has been dedicated for each problem instance run and both timing and
convergence data was collected. In the context of a true simulation-based MOP, this methodology models
the availability of computational resources to perform up to 36 concurrent evaluations of F'. In order to
evaluate runtime performance, both wall time and CPU time have been measured.

Two variations of the parallel implementation from Section 3.1 are run. The first variation (bVTdirectl)
demonstrates the true performance of Algorithm 1 using bVTdirect on a shared-memory system, as the total
number of OpenMP threads is limited to 36. This implies that less than 36 threads can be working during
each run of bVTdirect, since numerous threads can be waiting at any given time. In the second variation
(bVTdirect2), the maximum number of OpenMP threads is unlimited, but the number of concurrent
evaluations of F' is capped at 36 using an internal counter. This simulates a distributed-memory setting
where sufficient resources for 36 concurrent evaluations are available. For the bVTdirect2 variation,
one cannot accurately estimate the total CPU time since multiple instances of bVTdirect are allowed to
timeshare on a single CPU and the function evaluation time is set by using the CPU clock. Therefore,
multiple evaluations of F' can occur on a single core and evaluated “concurrently” without extra CPU time.

For both variations, bVTdirect is given a budget of 10 iterations for the Oth search (over the entire design
space) and 5 iterations in each subsequent search (over the kth LTR). For F, the initial trust region radius is
set to 0.4 and decayed by a factor of 0.5 down to a minimum tolerance of 0.04. For DTLZ2, the initial trust
region radius is set to 0.2 and decayed by a factor of 0.5 down to a minimum tolerance of 0.02.

For both 1ibEnsemble variations, 36 workers are allocated. The Oth Latin hypercube search (over the entire
design space) consists of 500 function evaluations, and all subsequent searches (over the kth LTR) consist
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of 72 function evaluations. The preferred batch size for each batch of candidates is n, = 36, and for the
libEnsemble? variation, 54 random weight vectors are generated to pad out batches. The trust region radii
and tolerances are the same as with bVTdirect.

4.3 Results
The performance statistics in this section are gathered by averaging over five repeated trials.
4.3.1 Approximation Results

Tables 1, 2, and 3 show the average number of solution points, RMSE, and Delaunay discrepancy, respectively,
for the unmodified MOA (using bVTdirect) and the two 1ibEnsemble variations. Statistics are shown
for budgets of 1,000, 1,500, and 2,000 in a comma separated list. The average number of solution points
is rounded to the nearest integer, and RMSE and discrepancies are rounded to three significant figures.
Because the changes between bVTdirectl and bVTdirect?2 affect only the runtime and not the solution
set, there is no need to differentiate between these two variations in this section. Similarly, there is no
need to differentiate between the runs that are performed with and without runtime variance. The Delaunay
discrepancy is computed by using SciPy, whose Delaunay triangulation algorithm can produce “flat”
simplices when given grid-aligned data with p > 4. Since bVTdirect samples on an implicit mesh, the
Delaunay discrepancy could not be evaluated for bVTdirect for p = 4. These entries are labeled “NA.”

Table 1: Number of solutions found by bVTdir, 1ibE1, and 1ibE2 for test problems F, and DTLZ2.

Problem/Method p=2 p=3 p=4

F./bVTdir 42,55,73 | 81,141,173 | 103, 195, 288
F./1ibE1l 16, 26, 38 40, 64,93 | 59,111,171
F./1ibE2 48, 65,78 | 67,135,189 | 105, 201, 283
DTLZ2 /bVTdir | 70, 108, 139 | 190, 286, 354 | 328, 481, 658
DTLZ2/1ibE1l 48, 64, 80 | 102, 170, 264 | 243, 366, 510
DTLZ2/ 1ibE2 27,45,66 | 89,170,258 | 228, 379, 548

Table 2: RMSE reported by bVTdir, 1ibE1, and 1ibE2 for test problems F, and DTLZ2.

Problem/Method p=2 p=3 p=4

F,./bVTdir .00267, .00139, .00100 | .0587, .0515, .0505 122, .107, .101
F./1ibE1l .0254, .0153, .0115 | .0902, .0725, .0665 146, 127, .117
F,./1ibE2 .0187, .0143, .0127 | .0675, .0599, .0560 123, .110, .104
DTLZ2 /bVTdir | .00903, .00805, .00713 | .0263, .0338, .0401 | .0289, .0432, .0443
DTLZ2/1ibEl 144, 112, .0993 283, .200, .167 289, .236, .210
DTLZ2/1ibE2 .163, .126, .103 262, .192, .175 255, .211, .201

For both problems, the bVTdirect variation appears to outperform both 1ibEnsemble variations at a fixed
function evaluation budget. For the harder problem DTLZ2, the difference in performance is more pronounced.
This is not surprising since bVTdirect utilizes function evaluation information to improve performance
during each RSM search phase, at the expense of parallel efficiency. Between the two libEnsemble
variations, there is no clear best algorithm for any of the criteria.
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Table 3: Discrepancy for bVTdir, 1ibE1, and 1ibE2 for test problems F, and DTLZ2.

Problem/Method p=2 p=3 p=4

F, /bVTdir 0663, .117, .207 | .627, .564, .579 NA, NA, NA
F./1ibE1l 177, .201, .180 | .513, .486, .512 | .733, .676, .689
F,/1ibE2 181, .209, .158 | .432, .560, .429 | .556, .554, .551
DTLZ2/bVTdir | .132,.137,.109 | .348, .221, .230 NA, NA, NA
DTLZ2/1ibE1 11, .106, .139 | .340, .430, .458 | .635, .672, .757
DTLZ2/1ibE2 218, .208, .201 | .322, .528, .691 | .580, .804, .793

4.3.2 Runtime Performance Results

Table 4 shows the average wall times and CPU times in seconds for solving both F,. and DTLZ2 with
and without performance variance with a budget of 2,000 function evaluations. Summary statistics are
reported for p = 2, p = 3, and p = 4 objectives, using the bVTdirectl, bVTdirect2, libEnsemblel and
libEnsemble2 methods. Note that the total amount of CPU time required to perform all 2,000 evaluations
is (approximately) 2,000 seconds for all problems, without considering iteration tasks. Also, recall that the
CPU times could not be accurately computed for the bVTdirect?2 variation; these entries are labeled “NA.”

Table 4: Runtime performance summary (CPU time / wall time).

Method F, no variance F_, w/ variance | DTLZ2, no variance | DTLZ2, w/ variance
bVTdiri| 2008.15/1037.60 | 2007.22 / 1039.40 | 2007.74 / 1093.20 | 2004.87 / 1082.22
p=2|bVTdir2 NA /170.58 NA /239.09 NA /175.28 NA /240.15
1ibE1l 2015.46 /88.64 | 2016.78 / 107.32 2027.76 / 89.38 2011.80/109.09
1ibE2 2051.96/112.32 | 2070.76 / 142.66 2060.57 / 111.98 2064.93 / 143.50
bVTdirl| 2012.50/717.86| 2012.79/719.34 2021.66 / 797.24 2018.79 /797.70
p=3|bVTdir2 NA /137.08 NA /207.48 NA /165.54 NA /237.07
1ibE1 2023.13/94.05 | 2033.94/116.28 2039.76 / 95.31 2023.30/116.91
1ibE2 2077.04 /133.10 | 2066.47 / 144.46 2054.04 / 99.34 2057.03 /126.77
bVTdirl| 2026.62/582.50| 2029.23/586.49 2177.44 / 807.59 2149.43 /782.86
p=4]|bVTdir2 NA /134.42 NA /208.84 NA /280.75 NA /348.38
1ibE1 2041.90/107.90 | 2044.53/127.45 2176.07 / 199.70 2200.73 /280.49
1ibE2 2134.58 /190.23 | 2124.67 / 186.57 2182.78 /227.51 2185.34 /257.72

For all the problems, the 1ibEnsemble variations appears to perform better in terms of CPU time over
wall time. However, the CPU time required by the 1ibEnsemble?2 variation is greater than that required
by the bVTdirect1 variation because of the additional computations required for padding out the batches
of candidate points. The 1ibEnsemblel variation also requires slightly more CPU time than bVTdirectl1,
but it is not as pronounced. None of the implementations appear to make full utilization of all 36 cores.

In the case of bVTdirect1, this lack of full utilization is caused by a lack of opportunity for increased levels
of concurrency. For the 1ibEnsemble variations, the lack of full CPU utilization is shown in Figure 1.
Figure 1 shows how the CPU is utilized over time in the three-objective case for all four problem variations
with both variations of 1ibEnsemble. Note that the performance peaks occur when evaluating a batch of
simulations in parallel, and the performance valleys represent iteration tasks, which are not parallelized.
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Figure 1: CPU utilization over time for a single run of 1ibEnsemblel (left) and 1ibEnsemble?2 (right) with
p = 3 objectives on both test problems, with and without runtime variance. The y-axis shows proportion of
CPU resources being utilized and the x-axis shows the time in seconds since the beginning of the computation.

In the usage plot for 1ibEnsemblel, half the performance peaks approach nearly 100% CPU utilization,
while the other half utilize only a small fraction of the 36 available cores. This is expected since the
libEnsemblel variation makes no effort to pad out each batch of candidate solutions. In the case of
libEnsemble2, all of the performance peaks approach 100% CPU utilization for the convex problem F..
For the nonconvex problem DTLZ2, it is impossible to find n, unique solutions to fully pad out each batch
of candidate designs. The overall CPU utilization for the 1ibEnsemble?2 variation is consistently worse,
due to the width of the performance valley for each iteration task. These iteration tasks take longer for
the 1ibEnsemble2 variation because of the added expense of solving additional surrogate optimization
problems to pad out the candidate design batches. For real-world objective functions involving expensive
simulations, the evaluation times are often significantly greater than one second and would overwhelm these
heightened iteration costs. Therefore, the 1ibEnsemble?2 variation is recommended.

S  DISCUSSION

In this paper, several variations of a recent MOA are implemented and demonstrated on several analytic
problems. One of these implementations leverages a variation of VTDIRECT95, and the other two integrate
with 1ibEnsemble and are tailored for load balancing. The “l1ibEnsemble2” variation is recommended in
an HPC setting since it would achieve better HPC resource utilization for computationally expensive cost
functions. However, the “bVTdirect” implementation can achieve slightly better approximations to the
Pareto front for a fixed function evaluation budget.
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