
Proceedings of the 2020 Winter Simulation Conference

K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

MULTIOBJECTIVE OPTIMIZATION OF THE VARIABILITY

OF THE HIGH-PERFORMANCE LINPACK SOLVER

Tyler H. Chang

Mathematics and Computer Science Division

Argonne National Laboratory

Lemont, IL 60439, USA

Jeffrey Larson

Mathematics and Computer Science Division

Argonne National Laboratory

Lemont, IL 60439, USA

Layne T. Watson

Depts. of Computer Science, Mathematics, and Aerospace & Ocean Eng.

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061, USA

ABSTRACT

Variability in the execution time of computing tasks can cause load imbalance in high-performance computing

(HPC) systems. When configuring system- and application-level parameters, engineers traditionally seek

configurations that will maximize the mean computational throughput. In an HPC setting, however,

high-throughput configurations that do not account for performance variability could result in poor load

balancing. In order to determine the effects of performance variance on computationally expensive numerical

simulations, the High-Performance LINPACK solver is optimized by using multiobjective optimization to

maximize the mean and minimize the standard deviation of the computational throughput on the High-

Performance LINPACK benchmark. We show that specific configurations of the solver can be used to

control for variability at a small sacrifice in mean throughput. We also identify configurations that result

in a relatively high mean throughput, but also result in a high throughput variability.

1 INTRODUCTION

Performance variability—the fluctuation or “jitter” in the observed performance of a computing system—is

a well-known issue in both cloud (Uta et al. 2020) and high-performance computing (HPC) systems (Kramer

and Ryan 2003). In practice, these fluctuations need not be normally distributed; they can follow a variety of

distributions, including multimodal distributions (Xu et al. 2020). Accounting for such distributions often

results in analysis that requires the use of nonparametric statistics (Lux et al. 2018). Performance variability

can have many sources, including interference from system- and OS-level processes (De et al. 2008; Petrini

et al. 2003), filesystem performance (Cao et al. 2017), and application-level parameters (Hammouda et al.

2015). When left unchecked, performance variability can result in poor load balancing (Dean and Barroso

2013) and a significant degradation in performance (Beckman et al. 2008; Chang et al. 2020). In this

paper we investigate the effects of computational throughput variability of an algorithm for solving linear

systems of equations on HPC systems.

Previous research has focused on modeling and analyzing I/O throughput variability (Cameron et al.

2019; Maricq et al. 2018) for memory-bound tasks. However, performance variability in compute-bound

tasks, such as computationally expensive numerical simulations, is relatively unexplored. One dataset and

thorough analyses of performance variability in this context is presented in Patki et al. (2019). Patki et al.

3081978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Chang, Larson, and Watson

(2019) is actually similar to this paper in that they study the tradeoff between various features, including

compute bound, but they just generate a data sample and use network analysis techniques on that dataset

a posteriori, instead of attempting to optimize such features.

For a test problems, we consider the High-Performance LINPACK benchmark (HPLB) (Dongarra et al.

2003) problem. The TOP500 list (Strohmaier et al. 2019) defines the HPLB as the problem of solving a

dense system of linear equations (of any size) using an LU factorization with partial pivoting. Submissions

to the TOP500 list are allowed to present results of solving the HPLB of arbitrary size N and using any

linear system solver, as long as the implementation has a floating-point operation count of 2
3
N3 +O(N2)

and solves the problem in 64-bit precision. The software package HPL (Petitet et al. 2018) is a portable

linear system solver that can utilize massive parallel resources to solve the HPLB. HPL uses a block-cyclic

data distributing, recursive panel factoring, right-looking variant of the LU-decomposition algorithm.

HPL accepts an input file specifying numerous parameters to adjust the underlying algorithm. Properly

identifying the parameters that maximize the observed throughput of HPL is a notoriously difficult task but

has a significant impact on the observed computational throughput (Tan et al. 2009). Traditionally, HPL

is optimized by experimenting with algorithmic parameters and following the recommendations of Petitet

et al. (2018). When submitting performance results to the TOP500 list, researchers may run HPL many

times with various settings and report only the maximum observed throughput. In previous research,

genetic algorithms have been applied to the problem of optimizing HPL, treating this task as a black-box

optimization problem (Dunlop et al. 2008).

In this paper we investigate the effects of throughput variability on performance when solving a dense

linear system usingHPL, and we model the inherent tradeoff betweenHPL’s mean throughput and throughput

standard deviation. The results of this study may not be immediately applicable to the optimization of

HPL for submissions to the TOP500 because such submissions do not need to account for variability in

performance. In fact, the practice of accepting the maximum of all observed overall throughputs may

implicitly encourage configurations with high variability. However, the fundamental algorithm that is

implemented by HPL is similar to others, such as that used by the PDGESV driver from ScaLAPACK,

which also uses parallel resources to solve a dense linear system of equations (Blackford et al. 1997).

Therefore, as an example of a dense linear algebra workload, HPL can be used to gain insight into the

effects of performance variability on parallel computational linear algebra tasks. A similar problem of

interest is the usage of black-box optimization to empirically optimize the basic linear algebra subroutines

(BLAS) for maximum performance on a given system (Whaley et al. 2001). However, previous research

in tuning linear algebra libraries generally has not investigated the effects of performance variability.

In this paper, HPL is optimized on an HPC system by using a black-box multiobjective optimization

algorithm to minimize throughput standard deviation and maximize the mean throughput simultaneously.

This produces approximations to the Pareto optimal parameters for HPL, which produce throughput

distributions along the tradeoff curve between mean throughput and throughput standard deviation. The

goals of these experiments are to

• understand the shape of the tradeoff curve between throughput mean and standard deviation when

solving large dense linear algebra problems on parallel resources and

• identify parameters for HPL that balance this tradeoff.

Two experiments are performed. The first is a single-node analysis, where HPL is optimized for a fixed

problem size on a single computing node. The second is a four-node study, where HPL is optimized on a

significantly larger problem size with access to distributed computing resources. The second study requires

much more computation time but is a more accurate representation of a large distributed simulation’s

workload.

Section 2 introduces further details on the configuration parameters for HPL and describes the black-

box multiobjective optimization software package VTMOP that is used in this paper. Section 3 describes

the single-node study, including how HPL is integrated into VTMOP and an analysis of the tradeoff curve

3082

Chang, Larson, and Watson

between mean throughput and throughput standard deviation that results from optimizing HPL using VTMOP.

Section 4 describes the second experiment, which is a four-node variation of the experiments from Section

3. Section 5 summarizes our findings and briefly describes directions for future work.

2 BACKGROUND

This section presents further background on the parameters for HPL and introduces the multiobjective

optimization software package VTMOP.

2.1 Tuning HPL

The driver for HPL solves a linear system Az= b, where A∈R
N×N and b∈R

N . This is done by decomposing

ΠA = LU , where L is lower triangular, U is upper triangular, and Π is a permutation matrix reflecting

row-interchanges. The vector y = L−1
Πb is computed during the factorization. Then the system Uz = y is

solved by using back-substitution. Before computing the decomposition, the parameter EQUIL specifies

whether A will be equilibrated so that its rows and columns have approximately equal magnitudes. Also,

ALIGN specifies the byte alignment for double precision numbers. To compute the decomposition, A is

decomposed into NB×NB blocks, which are cyclically distributed over a two-dimensional grid of P×Q

processors. The parameter PMAP specifies whether these blocks are mapped in row- or column-major

order.

The main loop of HPL’s algorithm works rightward from the leftmost columns of A. In each iteration,

a panel of NB columns is factored by recursively dividing each panel into NDIV S subpanels until each

subpanel has a size of less than or equal to NBMIN. The parameters RFACT and PFACT specify the

algorithm variants (right-looking, left-looking, or Crout’s method) for recursively dividing each panel and

solving each NBMIN-sized subpanel, respectively. After a panel has been factored, each processor must

broadcast updates, using the broadcast topology BCAST . Six broadcast topologies are available, but the

modified increasing ring is strongly recommended. The broadcasts are used to update the lower right

submatrix. While the broadcast operation is being completed, it is possible to begin updating the next

column of the submatrix using a lookahead pipe, whose depth is DEPT H. For each update, users have

the choice between two update algorithms (SWAP): binary exchange or spread-roll. Binary exchange is

preferred when the number of columns in the submatrix is small, and spread-roll is preferred when it is

large; a mix of the two can be used when a threshold SN for swapping between the two algorithms is

provided. Each panel’s lower factors L(1) and the final upper factor U can be stored in either transposed

or non-transposed format, as specified by T L(1) and TU , respectively. After completing the linear solve,

the residual is checked against an error tolerance E to determine whether the HPLB has been solved to an

acceptable precision.

The parameters covered in the preceding paragraphs are summarized in Table 1, along with their

recommended values/ranges for achieving the maximum overall throughput (Petitet et al. 2018).

2.2 The Multiobjective Optimization Algorithm

Multiobjective optimization problems (MOPs) deal with conflicting objectives, whose tradeoffs must be

balanced. In most cases, the solution to a MOP is a multidimensional tradeoff surface, called the Pareto

front. In the standard formulation of a MOP, the goal is to minimize p real-valued cost functions fi : X →R,

i= 1, . . . , p, where X ⊂R
d is called the feasible parameter space. These cost functions fi are conceptualized

as a single vector-valued cost function F :Rd →R
p, where F(x) = (f1(x), . . . , fp(x)). The image Y =F(X)

is called the feasible objective space.

For two points X ,Y ∈ Y , X dominates Y if X is componentwise less than or equal to Y and strictly

less in at least one component. If F(x∗) is nondominated for all Y ∈ Y , then x∗ is efficient, F(x∗) is a

point on the Pareto front, and the pair (x∗,F(x∗)) is said to be Pareto optimal. As p = 2 in our case, the

3083

Chang, Larson, and Watson

Table 1: Tuning Parameters for HPL

Parameter Meaning Value(s) Recommendation

N problem size positive integer 80% of RAM

NB block size positive integer 32,33, . . . ,256

PMAP process mapping row- or col.-major row-major

P 1st dim. of process grid positive integer P = Q

Q 2nd dim. of process grid positive integer Q = P

E error tolerance real number 16.0

PFACT LU variant for NBMIN-sized panels right, left, Crout Crout

NBMIN recursion stopping criterion positive integer 4 or 8

NDIV S divisions per level of recursion positive integer 2

RFACT LU variant for panel recursion right, left, Crout right

BCAST broadcast topology 6 choices mod. incr.-ring

DEPT H lookahead pipe depth nonnegative integer 1

SWAP update algorithm bin-ex, spread-roll, mix mix

SN swapping threshold (for mix) positive integer NB

T L(1) transpose L(1) Yes or No Yes

TU transpose U Yes or No Yes

EQUIL equilibrate A Yes or No Yes

ALIGN double alignment in bytes positive integer 8

Pareto front is a one-dimensional curve. Further reading on MOPs and classical techniques for solving

them can be found in the textbook of Ehrgott (2005).

The software package VTMOP is a Fortran 2008 implementation of the multiobjective optimization

algorithm described by Deshpande et al. (2016). VTMOP produces a finite set of points approximating the

Pareto front and an efficient set for a computationally expensive black-box MOP subject to lower/upper

bound constraints. Tuning HPL is a black-box problem because we do not have access to partial derivatives

of the objectives with respect to the parameters.

In this paper, we seek to maximize HPL’s mean throughput and minimize HPL’s throughput standard

deviation. Section 3 shows how we account for the fact that many of the parameters that parameterize the

problem are integer valued or categorical.

In each iteration of VTMOP, the first step is to identify an “isolated point” on the current approximation

to the Pareto front. An isolation score is computed by considering the average distance from each known

objective value that is currently nondominated to each of its neighboring objective points in a Delaunay

graph. The preimage of the most isolated point is used as the center for a local trust region. Next, the

package VTDIRECT95 (He et al. 2009) is used to sample within the current trust region, and this data

is used to fit p surrogates using the subroutine LSHEP from SHEPPACK (Thacker et al. 2010). Several

weighted-sum scalarizations are applied to the p LSHEP surrogates and minimized by using the algorithm

GPSMADS (Audet and Dennis, Jr. 2006). For a large budget, VTMOP converges to the true Pareto front

if each component of F satisfies a Lipschitz condition.

3 TUNING HPL ON A SINGLE NODE WITH VTMOP

The single-node optimization of HPL takes place on an Intel Broadwell node of the HPC system Bebop at

Argonne National Laboratory. Each Broadwell node is a 36-core Intel Xeon E5-2695v4 processor with 128

GB of DDR4 RAM. The HPL executable is built by using the Intel 17.0.4 C compiler and the corresponding

Intel Parallel Studio implementation of MPI and Intel Math Kernel Library (MKL) implementation of the

BLAS. VTMOP is built by using the Intel 17.0.4 Fortran compiler.

3084

Chang, Larson, and Watson

3.1 Integrating HPL as a VTMOP Objective Function

Not all of the parameters in Table 1 can be optimized by using VTMOP, and not all of these parameters are

desirable to adjust: for example, adjusting the error tolerance E could allow for problems to be solved at

undesirable precision. For the single-node study, HPL is optimized for the problem size N = 10,000, and

the 6 integer-valued parameters NB, P, NBMIN, NDIV S, DEPT H, and SN are adjusted by VTMOP. Note

that only one dimension (P) of the process grid is adjusted. We assume that the process grid’s dimensions

should match the number of available processors (36 for this study), so Q is inferred using Q = d36/Pe.

The bound constraints for the six adjustable variables are summarized in Table 2. There are over 1011

possible combinations of these variables. All other parameters are fixed to the values recommended by

Petitet et al. (2018) as shown in Table 2.

Table 2: Bounds for Adjustable Inputs When Tuning HPL

Parameter Lower Bound Upper Bound

NB 1 256

P 1 36

NBMIN 1 256

NDIV S 2 36

DEPT H 0 4

SN 1 256

Recall from Section 2 that we seek to minimize the throughput standard deviation and maximize the

mean throughput as a function of the parameter configuration x. However, we do not have direct access

to these two values. Instead, we can run HPL s times to evaluate the i.i.d. sequence of random variables

T1(x), . . . ,Ts(x), each of which is a copy of the random variable T (x), the observed throughput in Gflops

when running HPL with configuration x. Using these values, we can estimate E [T (x)] and
√

Var(T (x)),
the mean throughput and throughput standard deviation, respectively.

For a high-fidelity approximation to the throughput mean and standard deviation, both are computed

after a sample of s = 40 runs of HPL, following the recommendation used by Cameron et al. (2019) when

estimating the I/O throughput variance. On a single Broadwell node of Bebop, the total time for 40 runs of

HPL with a problem size of N = 10,000 is more than a minute for all parameter configurations considered;

certain suboptimal configurations can take much longer. The following steps are taken in order to prevent

VTMOP from spending too much time performing 40 sample evaluations of parameters that are clearly

suboptimal. For every parameter x, the mean and standard deviation estimates are computed after just s = 5

runs of HPL. Let µ̂ and σ̂ be the early termination thresholds. If the five sample estimates for E [T (x)]

and
√

Var(T (x)) with configuration x satisfy

E [T (x)]< µ̂ and
√

Var(T (x))> σ̂ , (1)

then the run is aborted, and the five sample estimates are immediately returned.

In order to determine the values of µ̂ and σ̂ to use in (1), HPL was run 40 times with the recommended

settings of NB= 128, P= 6, NBMIN = 8, NDIV S = 2, DEPT H = 1, and SN = 128. The resulting estimates

for throughput mean and standard deviation (rounded to three decimal places) are E [T (x)] = 613.041 and
√

Var(T (x)) = 3.800, and the early termination thresholds are assigned the arbitrary values µ̂ = 300 and

σ̂ = 8.

VTMOP can be initialized with a database of precomputed function evaluations. Before starting the single-

node study, VTMOP is given an initial database containing the observed mean throughput and throughput

standard deviation from running HPL with the recommended parameter evaluation. This inclusion serves

as a sanity check since any parameter configurations whose result is dominated by the recommended

parameters will not appear in the solution set.

3085

Chang, Larson, and Watson

As discussed in Section 2, VTMOP solves MOPs that are real-valued minimization problems. As posed

above, HPL is an integer-valued stochastic min/max problem. The following adjustments to VTMOP are

made for compatibility.

• The parameter space tolerance (an optional input to VTMOP) is set to 0.99. This prevents VTMOP

from evaluating any two points in the parameter space whose Euclidean distance is less than or

equal to 0.99 and prevents VTDIRECT95 from dividing any box whose diameter is less than 0.99.

• During the surrogate model optimization phase, the GPSMADS mesh size is restricted to an integer

value. This ensures that each batch of candidate parameters values will be spaced on an integer

lattice, offset by the position of the current trust region center.

• Before each set of parameters requested by VTMOP is evaluated (by running HPL), all of its

components are “binned” by rounding to the nearest integer.

• Tuning HPL is posed as a MOP with the objective F(x) =
(

−E [T (x)] ,
√

Var(T (x))
)

.

• All other parameters for VTMOP were given default values.

3.2 Results

Figure 1 shows an approximation to the tradeoff curve between the estimated mean throughput and throughput

standard deviation based on 40 runs of HPL on a single node with N = 10,000. These results were attained

by using VTMOP with a budget of 2,000 evaluations. Note that the scale of the mean throughput is two

orders of magnitude larger than the scale of the throughput standard deviation.

0 100 200 300 400 500 600

Mean Throughput (Gflops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
h
ro
u
gh
p
u
t
V
ar
ia
n
ce

(G
fl
op
s)

Figure 1: Tradeoff curve between mean throughput and throughput standard deviation in 40 runs of HPL

when using the approximate Pareto optimal configurations on a single node with N = 10,000.

VTMOP found 24 approximate Pareto optimal configurations, as shown in Figure 1 and whose values

are given in Table 3 listed in ascending order by mean throughput/throughput standard deviation. Note that

the four configurations in Table 3 with the lowest overall mean/standard deviation have dismal throughputs

and are probably not of interest to most readers. Also note that whenever NBMIN ≥ NB, no recursion

takes place, and therefore the variable NDIV S is unused and meaningless.

For the 20 configurations that offer reasonable throughputs, the trends in Table 3 indicate that the

“simple” variations of the HPL algorithm (i.e., no lookahead and no recursion) produce significantly lower

standard deviations at a steep cost to the mean throughput. On the other hand, using lookahead and allowing

for many levels of recursion (i.e., NBMIN and NDIV S small) result in maximal mean throughput, at the cost

of increased variability. Each of these trends has several discontinuities, which could indicate that either

the underlying Pareto front/efficient set is discontinuous or VTMOP did not fully converge in certain regions

of the Pareto front with the given budget. With the exception of the four extremely low throughput settings,

all of the approximate Pareto optimal configurations have block sizes that are close to the recommended

3086

Chang, Larson, and Watson

Table 3: Approximate Pareto Optimal Set for Single-Node Runs of HPL with N = 10,000

E [T (x)]
√

Var(T (x)) NB P NBMIN NDIV S DEPT H SN

21.31 0.120 2 19 48 27 3 122

21.35 0.121 2 19 48 27 3 123

25.89 0.131 3 25 47 28 2 122

30.48 0.139 3 20 47 28 3 122

217.82 0.208 129 1 129 19 0 129

218.15 0.252 129 1 256 2 0 1

400.37 0.471 128 1 16 10 0 128

419.73 0.494 129 1 1 2 0 1

511.87 0.523 214 4 15 33 0 72

551.07 0.734 204 4 3 33 0 62

552.12 0.852 204 4 25 35 0 62

560.54 0.991 204 4 15 23 0 185

562.78 1.030 204 4 6 22 0 185

562.84 1.053 204 4 6 33 0 66

562.95 1.080 204 4 6 23 0 182

564.01 1.177 204 4 6 22 0 195

564.06 1.314 204 4 6 22 0 191

567.05 1.355 204 4 9 22 0 191

568.34 1.461 133 3 9 3 2 128

581.69 1.746 128 3 9 3 2 123

599.21 1.961 128 3 4 3 1 128

601.69 2.264 128 3 9 9 1 123

602.93 2.539 128 3 9 6 1 124

613.04 3.800 128 6 8 2 1 128

value of 128. The recommended configuration that was supplied in the initial database is Pareto optimal

and achieves the highest mean throughput; it is the last row in Table 3.

In order to further understand the throughput distributions that are shown in Figure 1 and Table 3,

the 12 configuration with the highest mean throughputs were used for 100 runs of HPL, and the resulting

histograms are shown in Figure 2. The distributions are ordered from left to right, top to bottom in ascending

order by mean/standard deviation.

Figure 2 shows that each of the throughput distributions has a few outliers that are far below the median

value. When running numerous numerical simulations in a batch (as described by Chang et al. 2020),

the presence of a few “low” outliers could slow the entire computation (Dean and Barroso 2013). For a

few of the distributions, there appears to be a cluster of lower throughput values, indicating a multimodal

distribution. This mirrors the findings of Xu et al. (2020) for the distribution of I/O throughputs.

The findings in this section provide some insight into parameters for HPL that can be used to control

the tradeoff between mean throughput and throughput variability. However, since HPL is intended for

usage in a distributed memory environment, single-node runs are less interesting than multi-node runs. In

the Section 4, this study is expanded to the multinode case.

4 TUNING HPL ON MULTIPLE NODES

In this section, HPL is optimized for four 36-core Intel Broadwell nodes, each of which is as described in

Section 3. Thus, there are 144 total processors available and 512 GB of distributed RAM. In order to ensure

that there is enough work for all 144 processors, the problem size considered in this section is increased

3087

Chang, Larson, and Watson

560 565

0

20

40

557.5 560.0 562.5

0

20

40

560 565

0

20

40

560 565

0

20

40

560 565

0

20

40

555 560 565

0

20

40

565 570

0

20

40

575 580 585

0

20

40

590 600

0

20

40

600 610

0

20

40

600 610

0

20

40

610 620

0

20

40

Figure 2: Histograms of observed throughputs when running HPL on a single node with N = 10,000, for

the 12 highest mean throughput configurations. Distributions are ordered from left to right, top to bottom

in ascending order by mean/standard deviation.

to N = 20,000. The operation count for HPL grows cubically with the problem size, so our doubling of

N should result in each run of HPL requiring roughly eight times as many operations as the runs from

Section 3.

The experiment is configured as in Section 3, with the following adjustments.

• Because evaluating the objectives is more expensive, a sample of only s = 30 runs of HPL is used

to compute each configuration’s mean and standard deviation, and VTMOP is given a budget of only

1,000 evaluations of F (half the budget from Section 3).

• Because the budget for evaluating F has been lowered, the variable NB is eliminated in order to

reduce the size of the search space. Based on Petitet et al. (2018) and the results from Section 3,

NB = 128 producing a five-variable problem with roughly 4×108 possible configurations.

• Because the processor count is now 144, the upper bound for P (as previously listed in Table 2) is

increased to 144, and Q is inferred by using Q = d144/Pe.

• The five-sample thresholds in (1) are µ̂ = 1000 and σ̂ = 40, based on 40 runs with the recommended

settings of P = 12, NBMIN = 8, NDIV S = 2, DEPT H = 1, and SN = 128, which produced the

estimates E [T (x)] = 2236.558 and
√

Var(T (x)) = 21.362. As in Section 3, VTMOP is initialized

with these precomputed values in its database.

Figure 3 shows an approximation to the tradeoff curve between the estimated mean throughput and

throughput standard deviation based on 30 runs of HPL on four nodes with N = 20,000. The shape of the

tradeoff curve in Figure 3 is somewhat similar to the shape of the curve from Figure 1, but is less smooth,

and the scale of the mean throughput is three orders of magnitude larger than the scale of the throughput

standard deviation.

Again, 24 approximate Pareto optimal configurations are identified, as shown in Figure 3. Their values

are given in Table 4, listed in ascending order by mean throughput/throughput standard deviation. Recall

that NBMIN = 128 for all of these configurations, so only one of the configurations in Table 4 (P = 8,

NBMIN = 129, NDIV S = 20, DEPT H = 0, SN = 138) results in no recursion, and every other configuration

results in exactly one level of recursion.

Unlike in Section 3, the recommended configuration of P = 12, NBMIN = 8, NDIV S = 2, DEPT H = 1,

and SN = 128, which produced the observations E [T (x)] = 2236.558 and
√

Var(T (x)) = 21.362, is not

one of the approximate Pareto optimal configurations listed in Table 4. Notice that the recommended

configuration’s mean throughput is relatively close to the fastest mean throughputs in Table 4, but the

3088

Chang, Larson, and Watson

1000 1200 1400 1600 1800 2000 2200

Mean Throughput (Gflops)

1

2

3

4

5

6

7

T
h
ro
u
gh
p
u
t
V
ar
ia
n
ce

(G
fl
op
s)

Figure 3: Tradeoff curve between mean throughput and throughput standard deviation in 30 runs of HPL

when using the approximate Pareto optimal configurations on four nodes with N = 20,000.

standard deviation of the recommended configuration is about three times the largest standard deviation in

Table 4 and more than four times that of configurations with similar mean throughputs.

The values of DEPT H and SN that produce the highest mean throughputs are identical or very similar to

their recommendations. The value of P that produces the highest mean throughput is P = 9 (which implies

Q = 16). Although the recommended setting used in this experiment was P = 12, the recommendation of

Table 4: Approximate Pareto Optimal Set for Four-Node Runs of HPL with N = 20,000, NB = 128

E [T (x)]
√

Var(T (x)) P NBMIN NDIV S DEPT H SN

1007.1933 1.2741281 3 123 26 3 123

1007.4800 1.3432847 3 123 26 3 118

1040.2800 1.5831875 3 117 31 3 123

1040.3267 1.7903830 3 117 31 3 118

1196.7100 1.7968075 3 117 21 2 123

1196.7167 2.0589725 3 117 21 2 121

1197.0267 2.1971664 3 117 23 2 123

1199.9100 2.2000549 3 116 21 2 123

1227.7600 2.4454885 3 112 31 2 123

1704.5900 2.5906130 8 129 20 0 138

1840.7733 2.9114439 6 117 26 3 121

1998.3433 3.2330922 7 117 26 3 123

2069.1700 3.5682653 9 124 21 3 134

2095.6033 4.2372310 9 114 21 3 134

2153.0533 4.2825011 6 123 21 1 127

2178.2900 4.5079508 6 117 21 1 121

2205.2133 4.5274438 6 112 15 1 121

2228.8300 4.6360767 9 112 21 2 123

2238.9800 5.3728821 9 107 15 2 123

2243.0733 5.5329068 7 114 21 1 123

2281.7467 5.6351565 9 119 23 1 129

2306.3233 5.6427973 9 114 23 1 123

2309.9733 6.6279416 9 107 21 1 123

2312.3500 7.1394364 9 107 26 1 118

3089

Chang, Larson, and Watson

Table 5: Additional Evaluations of HPL with N = 20,000, NB = 128

E [T (x)]
√

Var(T (x)) P NBMIN NDIV S DEPT H SN

2330.69 15.178 9 4 2 1 128

2319.27 14.011 9 8 2 1 128

2323.22 14.302 9 4 16 1 128

2310.85 13.302 9 8 32 1 128

2060 2080

0

20

40

2050 2100

0

20

40

2125 2150

0

20

40

2150 2175

0

20

40

2180 2200

0

20

40

2200 2220

0

20

40

2200 2250

0

20

40

1100 1200

0

20

40

2270 2280 2290

0

20

40

2275 2300

0

20

40

2275 2300 2325

0

20

40

2275 2300 2325

0

20

40

2300 2320 2340 2360

0

20

40
P=9, NBMIN=4, NDIVS=2, DEPTH=1, SN=128

2275 2300 2325 2350

0

20

40
P=9, NBMIN=4, NDIVS=32, DEPTH=1, SN=128

Figure 4: Histograms of observed throughputs when runningHPL on four nodes with N = 20,000, NB= 128.

The throughput distributions for the 12 highest mean throughput configurations are from Table 4 (left) and

the two nondominated configurations are from Table 5 (right).

Petitet et al. (2018) is actually to use either P = Q or P slightly less than Q, so P = 9 is still in line with this

recommendation. However, the values NBMIN > 100 and NDIV S > 20 seem to strongly contrast with the

recommendations of Petitet et al. (2018) that NBMIN = 4 or 8 and NDIV S = 2. On closer inspection, with

a fixed block size of NB = 128, using NDIV S = 21, . . . ,26 (as in the highest mean configurations in Table

4) results in an effective minimum block size of between 4 and 6 after a single level of recursion. This

partially agrees with the recommendations of Petitet et al. (2018), who recommend a similar minimum

block size of after many more levels of recursion.

Based on these results, one reasonable hypothesis is that the settings of P = 9, NBMIN ∈ [4,8],
DEPT H = 1, and SN = 128 produce the highest mean throughputs, and a large number of divisions per

level (resulting in very few levels of recursion before achieving NBMIN) produces low variance. In order

to check this hypothesis, 4 additional configurations are evaluated with a budget of 100, whose results are

given in Table 5. Of the configurations in Table 5, the two configurations with NB = 4 are nondominated

with respect to other configurations in Table 4, exhibiting significantly higher mean throughputs than the

configurations found by VTMOP at the cost of a steep increase in the throughput standard deviation. These

results somewhat support the hypothesis that the number of levels of recursion is correlated with higher

throughput standard deviation. However, the last few entries of Table 4 offer significantly lower standard

deviations, which suggest that the configurations NDIV S = 21, . . . ,26 and SN = 118, . . . ,123 may further

affect the mean throughput and throughput standard deviation.

Figure 4 (left) shows histograms of observed throughputs in 100 runs of HPL with the 12 configurations

from Table 4 with the highest mean throughput, listed from left to right, top to bottom in ascending order

by mean/standard deviation. Figure 4 (right) shows histograms of observed throughputs in 100 runs of HPL

with the two nondominated configurations from Table 5. The maximum throughput distribution (from Table

5) has a flatter shape, associated with hits having higher standard deviation, while other high-throughput

configurations are either normally distributed or left-skewed.

3090

Chang, Larson, and Watson

5 CONCLUSIONS AND FUTURE WORK

In this paper, the software package VTMOP was used to optimize the HPL solver for the HPLB.

• The performance variability in HPL can be meaningfully controlled by adjusting configuration

parameters and sacrificing mean throughput.

• The number of levels of recursion used by HPL is a factor that significantly contributes to throughput

variability but does not explain all throughput variability.

• Configurations for HPL that are nearly optimal for maximizing mean throughput (such as the

recommended setting used in Section 4) could result in a throughput standard deviation that is many

times higher than the throughput standard deviation for configurations that are Pareto optimal and

achieve comparable mean throughput.

Additionally, the techniques that are introduced in this paper can be repurposed or generalized for

studying performance tradeoffs in different types of problems. A similar framework could be used to

study the tradeoff between mean throughput and throughput variability for I/O bound tasks, for example,

by considering the IOzone benchmark used by Cameron et al. (2019). It would also be interesting

to repeat this study for solving large sparse linear systems, which appear in many real-world numerical

simulations (e.g., finite element methods). Furthermore, it would be interesting to investigate the impact

of variability when tuning linear algebra libraries. For example, the ScaLAPACK linear system driver

PDGESV is extremely similar to HPL.

ACKNOWLEDGMENT

This work was supported by the U.S. Dept. of Energy (DOE) through the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of two DOE organizations, the Office of Science and the National

Nuclear Security Administration. This work was also supported by the National Science Foundation under

Grant No. CNS-1838271 and by the DOE, Office of Science Graduate Student Research (SCGSR) program.

The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE), which

is managed by ORAU under contract number DE-SC0014664. All opinions in this paper are the authors’

and do not necessarily reflect the policies and views of the DOE, ORAU, or ORISE. The authors gratefully

acknowledge the computing resources provided on Bebop, an HPC system operated by the Laboratory

Computing Resource Center at Argonne National Laboratory.

REFERENCES

Audet, C., and J. E. Dennis, Jr.. 2006. “Mesh Adaptive Direct Search Algorithms for Constrained Optimization”. SIAM Journal

on Optimization 17(1):188–217.

Beckman, P., K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj. 2008. “Benchmarking the Effects of Operating System Interference

on Extreme-Scale Parallel Machines”. Cluster Computing 11(1):3–16.

Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, and

K. Stanley. 1997. ScaLAPACK Users’ Guide, Volume 4. Philidelphia, PA: Society for Industrial and Applied Mathematics.

Cameron, K. W., A. Anwar, Y. Cheng, L. Xu, B. Li, U. Ananth, J. Bernard, C. Jearls, T. Lux, Y. Hong, L. T. Watson, and

A. R. Butt. 2019. “MOANA: Modeling and Analyzing I/O Variability in Parallel System Experimental Design”. IEEE

Transactions on Parallel and Distributed Systems 30(8):1843–1856.

Cao, Z., V. Tarasov, H. P. Raman, D. Hildebrand, and E. Zadok. 2017. “On the Performance Variation in Modern Storage

Stacks”. In Proc. 15th USENIX Conference on File and Storage Technologies (FAST ’17), 329–344. Santa Clara, CA:

USENIX Association.

Chang, T. H., J. Larson, L. T. Watson, and T. C. H. Lux. 2020. “Managing Computationally Expensive Blackbox Multiobjective

Optimization Problems with libEnsemble”. In Proc. 2020 Spring Simulation Conference (SpringSim ’20), Number 31,

1–12. Fairfax, VA: Society for Modeling and Simulation International.

De, P., R. Kothari, and V. Mann. 2008. “A Trace-Driven Emulation Framework to Predict Scalability of Large Clusters in

Presence of OS Jitter”. In Proc. 2008 IEEE International Conference on Cluster Computing, 232–241. Tsukuba, Japan:

Institute of Electrical and Electronics Engineers.

3091

Chang, Larson, and Watson

Dean, J., and L. A. Barroso. 2013. “The Tail at Scale”. Communications of the ACM 56(2):74–80.

Deshpande, S., L. T. Watson, and R. A. Canfield. 2016. “Multiobjective Optimization Using an Adaptive Weighting Scheme”.

Optimization Methods and Software 31(1):110–133.

Dongarra, J. J., P. Luszczek, and A. Petitet. 2003. “The LINPACK Benchmark: Past, Present, and Future”. Concurrency and

Computation: Practice and Experience 15(9):803–820.

Dunlop, D., S. Varrette, and P. Bouvry. 2008. “On the Use of a Genetic Algorithm in High Performance Computing Benchmark

Tuning”. In Proc. 2008 International Symposium on Performance Evaluation of Computer and Telecommunication Systems,

105–113. Edinburgh, UK: Institute of Electrical and Electronics Engineers.

Ehrgott, M. 2005. Multicriteria Optimization. 2nd ed. Lecture Notes in Economics and Mathematical Systems Series. Heidelberg,

Germany: Springer.

Hammouda, A., A. R. Siegel, and S. F. Siegel. 2015. “Noise-Tolerant Explicit Stencil Computations for Nonuniform Process

Execution Rates”. ACM Transactions on Parallel Computing 2(1):7:1–7:33.

He, J., L. T. Watson, and M. Sosonkina. 2009. “Algorithm 897: VTDIRECT95: Serial and Parallel Codes for the Global

Optimization Algorithm DIRECT”. ACM Transactions on Mathematical Software 36(3):17:1–17:24.

Kramer, W. T., and C. Ryan. 2003. “Performance Variability of Highly Parallel Architectures”. In Proc. International Conference

on Computational Science (ICCS 2003), 560–569. St. Petersburg, Russia: Springer.

Lux, T. C. H., L. T. Watson, T. H. Chang, J. Bernard, B. Li, X. Yu, L. Xu, G. Back, A. R. Butt, K. W. Cameron, and Y. Hong.

2018. “Nonparametric Distribution Models for Predicting and Managing Computational Performance Variability”. In Proc.

IEEE SoutheastCon 2018, 1–7. St. Petersburg, FL: Institute of Electrical and Electronics Engineers.

Maricq, A., D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and R. Ricci. 2018. “Taming Performance Variability”. In

Proc. 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), 409–425. Carlsbad, CA:

USENIX Association.

Patki, T., J. J. Thiagarajan, A. Ayala, and T. Z. Islam. 2019. “Performance Optimality or Reproducibility: That is the Question”.

In Proc. The International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19),

1–30. Denver, CO: Association for Computing Machinery.

Petitet, A., R. C. Whaley, J. Dongarra, and A. Cleary. 2018. HPL – A Portable Implementation of the High-Performance

Linpack Benchmark for Distributed-Memory Computers. Version 2.3. https://www.netlib.org/benchmark/hpl, accessed 5th

April, 2020.

Petrini, F., D. J. Kerbyson, and S. Pakin. 2003. “The Case of the Missing Supercomputer Performance: Achieving Optimal

Performance on the 8,192 Processors of ASCI Q”. In Proc. 2003 ACM/IEEE Conference on Supercomputing (SC ’03),

55–55. Phoenix, AZ: Association for Computing Machinery.

Strohmaier, E., J. Dongarra, H. Simon, and M. Meuer. 2019, November. The Top 500 List. https://www.top500.org, accessed

18th April, 2020.

Tan, T. Z., R. S. M. Goh, V. March, and S. See. 2009. “Data Mining Analysis to Validate Performance Tuning Practices

for HPL”. In Proc. 2009 IEEE International Conference on Cluster Computing and Workshops, 1–8. New Orleans, LA:

Institute of Electrical and Electronics Engineers.

Thacker, W. I., J. Zhang, L. T. Watson, J. B. Birch, M. A. Iyer, and M. W. Berry. 2010. “Algorithm 905: SHEPPACK:

Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data”. ACM Transactions on Mathematical

Software 37(3):34:1–34:20.

Uta, A., A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer, C. Maltzahn, R. Ricci, and A. Iosup. 2020. “Is Big Data

Performance Reproducible in Modern Cloud Networks?”. In Proc. 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20), 513–527. Santa Clara, CA: USENIX Association.

Whaley, R. C., A. Petitet, and J. J. Dongarra. 2001. “Automated Empirical Optimizations of Software and the ATLAS Project”.

Parallel Computing 27(1–2):3–35.

Xu, L., Y. Wang, T. Lux, T. Chang, J. Bernard, B. Li, Y. Hong, K. Cameron, and L. Watson. 2020. “Modeling I/O Performance

Variability in High-Performance Computing Systems Using Mixture Distributions”. Journal of Parallel and Distributed

Computing 139:87–89.

AUTHOR BIOGRAPHIES

TYLER H. CHANG (Ph.D., Virginia Tech, 2020) is a postdoc studying multiobjective optimization at Argonne National

Laboratory. He is interested in numerical analysis, algorithms, and parallel computing. His email is tchang@anl.gov.

JEFFREY LARSON (Ph.D., University of Colorado Denver, 2012) is a computational mathematician at Argonne National

Laboratory. He studies algorithms for optimizing computationally expensive functions. His email is jmlarson@anl.gov.

LAYNE T. WATSON (Ph.D., Michigan, 1974) is a professor at Virginia Tech. He has interests in numerical analysis,

mathematical programming, bioinformatics, and data science. His email is ltw@cs.vt.edu.

3092

	INTRODUCTION
	BACKGROUND
	Tuning HPL
	The Multiobjective Optimization Algorithm

	TUNING HPL ON A SINGLE NODE WITH VTMOP
	Integrating HPL as a VTMOP Objective Function
	Results

	TUNING HPL ON MULTIPLE NODES
	CONCLUSIONS AND FUTURE WORK

