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ABSTRACT: In this paper, we discuss the concept and properties of
variance-based global sensitivity analysis, as an expansion of local sensitivity
metrics (such as the degree of rate control), for modeling and design of
catalytic reaction systems. Using an illustrative example and supporting
theory, we show that: (i) for small variations in the parameters, global
sensitivities are similar to local derivatives; (ii) for larger variations in the
parameters (i.e., a larger parameter space), the global sensitivities provide a
ranking of importance of parameters and impose a rigorous bound on the
errors that arise from fixing one or more parameters to nominal values; and
(iii) in general, the global sensitivities can be related to the extrema of local
derivatives. We argue that the square root of the total global sensitivity of a
parameter, computed by summing the global sensitivity of that parameter acting independently and in combination with others, is a
“global” degree of rate control for catalytic systems.
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■ INTRODUCTION

Multistep reaction systems are common in catalysis. Numerous
approaches have been proposed to elicit microscopic and
macroscopic information of such systems; this includes: (i)
delineating potential energy surfaces and inferring information
using heuristics such as the step with the largest individual
barrier being rate-controlling or the difference between the
highest state and the initial state being equal to the apparent
barrier, etc.; (ii) the energetic span model1 that, for a single
reaction cycle, relates the reaction rate with the free energy
difference between the highest and the lowest points of a
potential energy surface; (iii) developing rate expressions using
the de Donder relations2,3 or the maximum virtual reaction rate
analysis;4 (iv) developing rate expressions based on presumed
abundant intermediates and rate-determining steps,5,6 and (v)
microkinetic modeling.7−15 While formulating and solving
microkinetic models, one often calculates a normalized
sensitivity analysis or the kinetic/thermodynamic degree of
rate control, by acquiring the local derivatives of the model with
respect to its parameters.16,17

The kinetic degree of rate control (XRC) of an elementary
reaction step, measures the local sensitivity of the rate to
perturbations in its transition-state energy (keeping all other free
energies fixed). Mathematically
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where r denotes the net reaction rate r. Gi
0,TS, ′≠Gi i

0,TS, and Gj
0

correspond to the free energy of the transition state of step i, the
transition state of step other than i, and species j respectively.
The degree of rate control, introduced by Campbell,17,18 has

proven to be a versatile concept as it allows for calculating the
rate-controlling steps and identifying kinetically relevant steps.
Over the years, many variants of the original definition have been
discussed, including the thermodynamic degree of rate control
and the degree of selectivity control.15,19 Furthermore, recent
works have also discussed: (i) relationships among experimental
observables such as apparent orders20 and barriers21,22 and the
degrees of rate control; (ii) the relationship between inferred
microscopic and thermodynamic quantities such as surface
coverages, apparent entropy of activation, stoichiometric
number of a reaction cycle, and the degrees of rate control20;
(iii) the evaluation of the kinetic isotope effect from these
degrees23; (iv) the effect of linear scaling and linear free energy
relations on the degree of rate control24,25; (v) their extension to
describing transient systems26; and (vi) the utility of XRC values
in generating volcano plots quickly.27

All of these definitions are based on local derivatives, so they
offer insights about the specific catalyst under study. In many
cases, such as parameter estimation, uncertainty quantification,
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and catalyst design, a larger parameter space is under
consideration. While the degree of rate control provides
information on the dominant parameters at one point in this
parameter space, it is generally not reflective of the entire space
unless the rate function is linear with respect to a few parameters
or when the space is not large enough. Global sensitivity
measures have been employed while ranking important
parameters of a nonlinear model in a given space28; they
provide a more rigorous framework than the local sensitivity.
Such global sensitivity measures could be (i) derivative-based,29

wherein derivatives are calculated at multiple points and an
ensemble mean is taken or (ii) variance-based,30 wherein the
extent to which a parameter contributes to the variation of a
function over a space is computed. In both methods, the
parameters with high global sensitivity values are considered
dominant in the space taken as a whole, and it is prudent to not
ignore them while computing the properties or evaluating
average characteristics of the space. On the other hand, those
parameters that are not globally sensitive can be set to a nominal
(reference) value or totally dropped.
Various global sensitivity metrics and methods have been

applied in chemistry and catalysis.31−36 Here, we revisit the
definition and properties of variance-based global sensitivities
and demonstrate their usefulness in the modeling and design of
catalytic systems. On the basis of the properties, we define a
global degree of rate control. We begin with a discussion of
variance-based global sensitivity analysis.

■ METHOD
Variance-Based Global Sensitivity Analysis. Consider a

continuous real-valued nonlinear multivariate function f(x)
where x = {x1, x2, ..., xn} are independent and uniformly
distributed variables (or parameters) and xi∈ I = [0, 1] such that
the parameter space is In. If no closed-form expression exists that
relates f with x, as is usually the case in many physical systems
including the catalytic reaction systems, inferring the influence
of each parameter by themselves and in concert with others is
nontrivial. Indeed, partial derivatives only offer a local picture;
furthermore, locally, parameters can be taken to influence f
independently. One way to obtain a global picture of the
relationship between x and f comes from the concept of analysis
of variance (ANOVA30) to decompose the function as
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where f 0 is the average of f over I
n given by
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It is important to note that the terms of eq 2 of the form
f i1...is(xi1,...,xis) represent the combined nonlinear effect of xi1,...,xis
on f(x). That is, f i(xi) is the independent effect of xi, f ij(xi, xj) is
the combined effect of xi and xj, and so forth.

Furthermore, for the decomposition to be based on ANOVA,
we require that

∫ =f x x x x( , ..., )d ...d 0i i i i i i... s s s1 1 1 (5)

and

∫ =

{ } ≠ { }

f x x x x f x x x x

i i k k

( , ..., )d ...d ( , ..., )d ...d 0

if , ..., , ...,

i i i i i i k k k k k k

s s

... ...

1 1

s s s s s s1 1 1 1 1 1

(6)

From eqs 2, 5, and 6, it can be shown that
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Therefore, mathematically
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We can now define total variance, D, of f in In as
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where Di or, more generally, Di1...is is the variance of f i or f i1...is
respectively.
The global sensitivity of parameter xi is given by

=S
D
Di
i

(11)

The global sensitivity of the combination of parameters
xi1,...,xis is given by
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We can further define the total sensitivity of parameter xi by
collecting all terms containing it, that is,

∑=
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Global sensitivities have several valuable properties. First, by
definition, they add up to 1
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Second, if some of the parameters of x, let us say, z is fixed to
some nominal value, z0, while the rest y (i.e., x ≡ (y, z)) are
allowed to vary, the approximation error of f(y, z0) over the
parameter space, given by

∫δ = [ − ]z
D
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(15)
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is of the same order as Sz
T. Indeed, it can be shown that
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where P{α} is the probability that α is true.
Third, it can be shown that, for two real values Cl and Cu such

that ≤ ≤C Cl
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thereby relating global sensitivity with the partial derivative.
We finally note that

∫
=S

f x x x x

D

( , )d d
ij

ij i j i j
2

(19)

An illustration of Sij using simple nonlinear models is given in
the Supporting Information S1.6. To summarize that discussion,
Si captures the influence of parameter i alone; Sij essentially
captures the influence of the combination of parameters i and j.
In essence, it captures the nonlinearity of the model and the
extent to which the derivative with respect to parameter i (or j) is
dependent on the value of the other. Si

T captures the net
influence of parameter i, independently or via combination with
other parameters.
The important properties of ANOVA-based global sensitiv-

ities are summarized here. First, the sensitivities add up to 1. As
sensitivities are non-negative by definition (because variances
are non-negative), any sensitivity value has to be between 0 and
1 and a larger value implies that the parameter (or a combination
of parameters) is more important. Second, the error introduced
by fixing a parameter can be rigorously estimated using eqs 16
and 17; therefore, while ranking the parameters, their
importance can be quantified. This would allow one to
rigorously say, for instance, that the first n′ of the important
parameters account for x % in the total variance of a function.
Third, ANOVA-based global sensitivities are related to local
derivatives by eq 18; therefore, for small parameter ranges, Cl ≈
Cu and Si ∼ Cu

2/12 D. Fourth, the global sensitivities allow for
evaluating the importance of combined influence (or correlated
behavior) of two or more parameters arising from the structure
of the function f.
Global Sensitivities for Reaction Systems. For an

arbitrary reaction system with n elementary steps, we know
that the steady-state reaction rate r, or its natural logarithm,
ln(r), are real-valued functions of kinetic and/or equilibrium
parameters. Here, for conceptual simplicity, we begin by
considering the kinetic parameters (k1, ..., kn); however, we
note that the method of global sensitivity analysis is agnostic to
the specific nature of the parameters one wishes to include. We
further define a dimensionless parameter ei ∈ [0, 1] because of
the following: ei = (Eai− Eai,l)/(RTΔ), where Eai =−RT ln(ki/
Ai) is the activation barrier of step i, Eai,l is the lower bound of
this barrier,Δ = (Eai,u− Eai,l)/RT is the chosen parameter range
of interest, and Eai,u is the upper bound of the barrier. Note that
one can use the free energies of the transition state instead of the
activation barrier as the parameter sets. We can write the
ANOVA decomposition of ln(r) as
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where r0 is the average over the parameter space, ri is the unique
contribution of parameter ei, rij is the combined contribution of ei
and ej, and so forth.
We note that simplifying approximations can be made as

needed to limit the number of terms in eq 20; specifically, we can
truncate the equation to limit the level of interactions we permit.
This approximates eq 20 as (if only third-order combinations are
permitted)
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We can now expand our parameter set to include the energies
of the intermediates as well by defining a dimensionless
parameter ej ∈ [0, 1] for species j as ej = (Gj − Gj,l)/(RT Δ),
where Gj is the free energy of the intermediate, Gj,l is the lower
bound of free energy, Δ = (Gj,u − Gj,l)/RT is the chosen free
energy range of interest, and Gj,u is the upper bound of free
energy.
At this stage, we note that the parameters are assumed to be

independent and uniformly distributed across the space. This
represents a generic scenario of an uninformed but reasonable
prior. Information about correlations between parameters to
reflect physical realities or data-derived statistical distributions
can also be treated in the general framework, as briefly discussed
in the Supporting Information.

Computing the Global Sensitivities. Traditionally,
ANOVA-based global sensitivities are computed through
Monte Carlo integration of individual variance integrals. This
can be quite cumbersome and slow to converge and is often
considered an impediment to the implementation of this
method despite its popularity. Recently, however, it has been
shown that if a surrogate model of f(x) can be built via
multivariate orthogonal polynomial expansions in a data-driven
manner,37 the individual sensitivities can be computed with
comparative computational efficiency. The details of this
formulation are provided in the Supporting Information. For
independent and uniformly distributed variables, the chosen
basis set is the Legendre polynomials, while if the parameter
distributions are known a priori, other polynomial basis sets can
be employed (which, however, are beyond the scope of this
work).

■ RESULTSDEMONSTRATION USING THE
WATER-GAS SHIFT REACTION ON CU(111)

Illustrative Example. Here, we consider the water-gas shift
(WGS) reaction as an example. The elementary set of species
and reactions are given in Tables 1 and 2. The adsorption
energies and activation barriers were obtained from previously
reported density functional theory (DFT) calculations for
Cu(111). These parameters were further adjusted by construct-
ing a Bayesian inference problem to learn from the kinetic
experimental data of WGS on Cu(111)38 and the experimental
adsorption energy dataset (see Tian and Rangarajan13 for more
details). The optimized kinetic parameters are set as the nominal
point for our analysis and the rate and equilibrium constants of
each elementary step are shown in Table 2 for a representative
temperature (610 K). The microkinetic model was formulated
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as a dynamic continuous stirred-tank reactor under differential
conditions and the steady state rates were obtained by
integrating to a large enough time (>103 s). The comparison
between the microkinetic model prediction at the nominal point
and kinetic experiments on Cu(111)38 is shown in Figure S1.
Global Sensitivities. Figure 1 shows the values of the degree

of rate control (kinetic or thermodynamic) of each of the
reaction steps and surface intermediates in Tables 1 and 2 for
Cu(111). As per the prediction of the optimized microkinetic
model, (i) H2O* dissociation to H* and OH* is the most rate-

controlling, (ii) OH* dissociation to H* and O* also has a
significant positive degree of rate control, and (iii) step 1, H2(g)
dissociation also has a positive degree of rate control.
Furthermore, Figure 2 shows the global sensitivities (Si and
Si
T) pertaining to these steps for different parameter ranges of
deviation of activation barriers and binding energy values from
the DFT-calculated values (from [−0.1, 0.1] to [−20, 20] kJ/
mol). Figure 3 shows the heat map of Sij (which can be thought
of as a 2D correlation plot). Sij quantifies the extent to which the
activity depends on the combination of kinetics of parameters i
and j. The global sensitivities depend largely on the parameter
range specified by the user.
For small deviations from the nominal point, we can see that

global sensitivities are qualitatively similar to local sensitivities. It
should be noted that the degree of rate control can be negative
for some catalytic systems, while global sensitivities are non-
negative by definition. A comparison of the degree of rate
control with the global sensitivities for only the kinetic
parameters is shown in the Supporting Information. We can
note in Figure S2 that for small deviations, the global sensitivities
are also close to the degree of rate control. Furthermore, for
small deviations, we note that Si ∼ Si

T, indicating that the
individual contribution of the parameters dominates the total
variance. This is also seen in Figure 3, wherein all values are near
zero. As the range of allowed deviation is increased, more
parameters become important and the sensitivity of R9, R10, I3,
and I4 are progressively diminished but still have a level of
contribution. In general, global sensitivities reliably capture
important parameters; however, there can be situations wherein
a parameter is significant in a very narrow region (the system is
highly nonlinear) and relatively insignificant everywhere else
(the target parameter range is large). In such circumstances, the
variance-based global sensitivity method will fail to identify the
parameter as important. In addition, we can now start seeing that
Si < Si

T, indicating that the combined contribution of multiple
parameters becomes more significant. Figure 3 is consistent with
this, as the average magnitude of Sij values progressively
increases as the range is expanded from [−0.1, 0.1] to [−20,
20] kJ/mol. For instance, in the largest chosen parameter range
([−20, 20] kJ/mol for each parameter), the largest values are for
the combinations: R1, R9, R10, I3, I4, and I5. This is not to say that
the individual Sij values keep increasing or decreasing
monotonously as they are dependent on the change in the
total variance. R9 and R10 are correlated because they shared
intermediates H* and OH*, and both reactions are kinetically
significant. The fact that I4 and R10, I3 and R10, and I5 and R6 are
correlated is meaningful because the intermediates are included
in the reactions.

Table 1. List of Gaseous Species and Surface Intermediates in
the Mechanism of WGS Reaction (Taken from Grabow and
Mavrikakis12)

index intermediate

I1 H*
I2 O*
I3 OH*
I4 H2O*
I5 CO*
I6 CO2*
I7 HCOO*
I8 COOH*
G1 H2(g)
G2 CO(g)
G3 CO2(g)
G4 H2O(g)

Table 2. Elementary Reaction Network and Optimized
Kinetic Parameters of WGS Reaction on Cu(111)a

index reaction ki (s
−1) Ki

b

R1 H2(g) + 2* → 2H* 5.43 × 105 3.97 × 10−5

R2 CO(g) + * → CO* 1.18 × 108 1.34 × 10−6

R3 CO2(g) + * → CO2* 9.42 × 107 1.92 × 10−8

R4 H2O(g) + * → H2O* 1.47 × 108 1.52 × 10−5

R5 CO* + O* → CO2* + * 5.43 × 105 2.04 × 108

R6 CO* + OH* → COOH* + * 8.95 × 105 7.21 × 10−4

R7 COOH* + * → CO2* + * 6.06 × 104 3.89 × 105

R8 COOH* + OH* → CO2* + H2O* 5.66 × 1012 7.01 × 107

R9 H2O* + * → OH* + H* 3.46 × 102 5.55 × 10−3

R10 OH* + * → O* + H* 4.95 × 100 1.38 × 10−6

R11 2OH* → H2O* + O* 6.05 × 107 2.48 × 10−4

R12 CO2* + H* → HCOO* + * 7.07 × 106 1.49 × 101

aForward rate constant (ki) and equilibrium constant (Ki) at
temperature 610 K are listed. “*” denotes a free site (used in itself)
or a surface intermediate (used after a species). bThe unit of Ki is
unitless for the surface reaction; atm−1 for the adsorption reaction.

Figure 1.Degree of rate control of each reaction step and intermediate (see Tables 1 and 2) of theWGS reaction on Cu(111) based on k, K in Table 2
at 610 K, PH2O = 1.3 kPa, and PCO = 3.5 kPa.
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We can also estimate the bounds on the approximation error
upon fixing some of the parameters using eqs 16 and 17. Table 3

lists various sets of insensitive parameters, z, the combined total

sensitivities of these parameters, Sz
tot, and the approximation

error δ(z0) for the parameter range [−20, 20]. Then, clearly,
about 50% of the parameters can be fixed so that the

approximation error is still only 50%.

■ DISCUSSION

From inequality 18 and the definition of ei for kinetic parameters,
we can note that

≤ ≤

∂
∂

∂
∂( ) ( )

D
S

D12 12

r
k

i

r
k

ln
ln min

2

T

ln
ln max

2

i i

(22)

That is, the total sensitivity of parameter i is related to the degree
of rate control but applicable in a global sense. Therefore, we can
define a “global” average degree of rate control of a reaction,
GRC,i, as

=G DS12i iRC,
T

(23)

AsD is constant for a specific parameter range, we can say that
GRC,i ∝ (Si

T)1/2; similar to Campbell’s degree of rate control,
GRC,i is larger for a more important parameter. It also holds
several important properties derived from Si

T: (i) 0≤ Si
T≤ 1, (ii)

∑iSi
T≥ 1, and (iii) Si

T≤ δi, where δi is the approximation error of
fixing parameter i, and (iv) δi≤ (3, 5, 6, 11) Si

T with greater than
50, 75, 80, and 90% probability, respectively.

Figure 2.Global sensitivity values Si and Si
T for each of the reactions and intermediates of the WGS reaction on Cu(111) at 610 K, PH2O = 1.3 kPa, and

PCO = 3.5 kPa for various ranges ([−0.1, 0.1] to [−20, 20] kJ/mol) of parameter deviations. The ranges are set around the re-optimized energies which
are taken as the reference (nominal) point.

Figure 3.Heat maps of Sij values for each of the reactions and intermediates of the WGS reaction on Cu(111) at 610 K, PH2O = 1.3 kPa, and PCO = 3.5
kPa for various ranges ([−0.1, 0.1] to [−20, 20] kJ/mol) for various parameter ranges. Note that the map is symmetric, that is, Sij = Sji and Sii is not
defined. On an average, more Sij values are non-zero as the parameter range is expanded.

Table 3. Estimation of Approximation Errors upon Fixing
Some of the Parameters to Its Nominal Value When the
Parameter Range Is [−20, 20]

z Sz
tot δ(z0)

R7, R11, R12, I1, I6, I7 0.04 [0.04, 0.12]
R7, R11, R12, I1, I6, I7, I8 0.09 [0.09, 0.27]
R7, R11, R12, I1, I2, I6, I7, I8 0.15 [0.15, 0.45]

aThe last column provides the 50% probability bounds of
approximation error (in fraction of the total original variance, D).
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Global sensitivity can be computed for any property of the
reaction system with respect to any parameter. For instance, the
function f(x) can be the selectivity to a specific product,
conversion of a reactant, contribution of a specific reaction or
pathway to the overall flux. Similarly, the parameters, x, can be
related to kinetics, thermodynamics, or reactor operation (feed
flow rate, temperature, pressure, concentration, etc.). We argue
that global sensitivities and the global degree of rate control are
useful in the modeling and design of catalytic systems. In
particular, they can be used in the following.
Uncertainty Quantification. There are intrinsic errors in

energies computed using standard functionals.39 Such errors can
either be quantified by comparing with single-crystal thermo-
chemistry data,13 a higher level of theory, or can be extracted
from functionals such as the Bayesian error exchange func-
tional.40 These uncertainties can be forward-propagated
through a microkinetic model by simply sampling the energies
from the distribution, computing the associated thermochem-
istry/kinetics, solving the microkinetic model with those
parameters, collecting an ensemble of such model predictions,
and providing a statistical distribution.13,41 This process can be
computationally demanding for larger reaction networks;11

instead, global sensitivities can be computed to rank the order of
the important parameters, so that only the errors of these
parameters are propagated through the microkinetic model to
quantify uncertainties (while keeping other parameters fixed).
Furthermore, instead of the microkinetic model, the surrogate
orthogonal polynomial expansion (see the Supporting Informa-
tion Section S1) can be used to compute the turnover frequency
at any point. This leads to a substantial reduction in the cost of
computation. We note here that the set of important parameters
that can be allowed to vary (and therefore the fixed ones) can be
rigorously identified based on estimating δ(z). To validate the
global sensitivity in uncertainty quantification, in the Supporting
Information S2.4, we have compared different methods for
predicting the distribution of the turnover frequency assuming
that each kinetic and thermodynamic parameter has an error of
±20 kJ/mol. As shown in Figure S5, the global method is more
accurate than the local method when the parameter space is
wide.
Parameter Estimation. Given the intrinsic errors in DFT,

often the kinetic and thermodynamic parameters are re-
evaluated to fit to kinetic experiments. This can be achieved
using the maximum likelihood estimator (or obtaining the
parameters that minimize the sum-of-squared errors) or via
Bayesian inference. In both cases, global sensitivity analysis can
be used to identify the most important parameters in a certain
parameter space. In the former case, the parameter estimation
(via nonlinear optimization) can be restricted to only the most
important parameters. This can actually improve the robustness
of the estimation process as fewer parameters will have to be
reoptimized. For Bayesian inference,13,42 again the most
important parameters along with the surrogate polynomial
expansion of the full microkinetic model can be used in the
Markov Chain Monte Carlo process of obtaining the posterior
parameter distribution.
Catalyst Design.Once the design space of interest (i.e., the

material space, e.g., binary alloy catalysts composed of late
transition metals) is specified, and if the corresponding
parameter space (the bounds) can be estimated, global
sensitivity analysis can be used to identify the set of important
parameters for a chosen metric (e.g., activity or selectivity).
These parameters then provide the direction for searching for a

better catalyst in that space. New catalysts can be evaluated by
computing only the top few parameters in this list and then using
the surrogate model to quickly estimate the overall rate (or
selectivity, etc.) as long as all parameters are guaranteed to be
within the design space (i.e., within the corresponding
parameter space). Alternatively, machine-learned models, such
as those reported for binding energies, can be developed only for
the top few properties and these models can then be used to
screen a large library of catalysts. For example, the important
parameters for designing WGS catalysts are R8−R10 and I2−I6
when the parameter range is [−20, 20] with R9 and I4 being the
most important. In effect, then, globally sensitive parameters can
be used as descriptors of the design space.
It should be noted that a local sensitivity method such as DRC

can also be used, in principle, for each of those three cases.
However, this requires making a linear extrapolation which can
have considerable error if the parameter space is large (shown in
the Supporting Information S2.4). Although global sensitivities
are more computationally demanding to compute, they offer the
following: (1) a more robust and quantitative (via eqs 16 and
17) way for the identification of important parameters and (2) a
good surrogate model (compared to linear extrapolation) that
can be used in lieu of explicit evaluation of rates via a
microkinetic model.

■ CONCLUSIONS

We discussed the use of variance-based global sensitivity analysis
in heterogeneous catalysis. The global sensitivity values of a
kinetic model for its parameters offer a quantitative means of
ranking important parameters. Compared to local sensitivities,
global sensitivities capture the importance of parameters in a
broad parameter space; however, they are still bounded by the
extrema in local sensitivity values. As a result, it can be argued
that the square root of the variance-based total global sensitivity
values can be viewed as a measure of the “global” degree of rate
control. Global sensitivities can be efficiently computed using
non-intrusive orthogonal polynomial expansions which are also
good surrogates for the full kinetic model. Global sensitivities
can be used in parameter estimation, uncertainty quantification,
and catalyst design. These sensitivities allow one to rigorously
identify the set of unessential parameters that can be fixed, while
the surrogate model (computed in the process) provides for
quick estimation of the reactivity, thereby reducing the
computational burden significantly.
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The Supporting Information is available free of charge at
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Implementation details of orthogonal polynomial ex-
pansion; calculation of global sensitivity indices from the
orthogonal polynomial model; additional examples and
discussion related to global sensitivity analysis and
surrogate modeling; and additional results of WGS
reaction examples The code about the global sensitivity
analysis of microkinetic modeling in this article are
available in the gsMK repository at https://github.com/
thj2009/gsMk.git (PDF)
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