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Abstract—To mitigate the long-term spectrum crunch problem,
the FCC recently opened up the 6 GHz frequency band for
unlicensed use. However, the existing spectrum sharing strate-
gies cannot support the operation of access points in moving
vehicles such as cars and UAVs. This is primarily because of
the directionality-based spectrum sharing among the incumbent
systems in this band and the high mobility of the moving
vehicles, which together make it challenging to control the cross-
system interference. In this paper we propose SwarmShare, a
mobility-resilient spectrum sharing framework for swarm UAV
networking in the 6 GHz band. We first present a mathematical
formulation of the SwarmShare problem, where the objective is
to maximize the spectral efficiency of the UAV network by jointly
controlling the flight and transmission power of the UAVs and
their association with the ground users, under the interference
constraints of the incumbent system. We find that there are no
closed-form mathematical models that can be used characterize
the statistical behaviors of the aggregate interference from the
UAVs to the incumbent system. Then we propose a data-driven
three-phase spectrum sharing approach, including Initial Power
Enforcement, Offline-dataset Guided Online Power Adaptation, and
Reinforcement Learning-based UAV Optimization. We validate the
effectiveness of SwarmShare through an extensive simulation
campaign. Results indicate that, based on SwarmShare, the aggre-
gate interference from the UAVs to the incumbent system can be
effectively controlled below the target level without requiring the
real-time cross-system channel state information. The mobility
resilience of SwarmShare is also validated in coexisting networks
with no precise UAV location information.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been envisioned as a

key technology for next-generation (i.e., B5G or 6G) wireless

networks [1], [2]. Because of their features of fast deployment,

high mobility and small size, UAVs have a great potential to

enable a wide set of new applications, including UAV-aided
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guidance, small cells with flying base stations, emergency

wireless networking in the aftermath of disasters, among

others. The foreseen wide adoption of UAV systems can pose

a significant burden on the capacity of the underlying wireless

networks. In this paper we aim to explore new approaches that

can enable UAV operations in the 6 GHz band to harvest the

addtitional 1.2 GHz spectrum bandwidth [3].

The primary challenge towards this goal is in the spectrum

sharing approaches adopted by the incumbent systems in this

frequency band. The 6 GHz band consists of four sub-bands,

i.e., U-NII-5 (5.925-6.425 GHz), U-NII-6 (6.425-6.525 GHz),

U-NII-7 (6.525-6.875 GHz), and U-NII-8 (6.875-7.125 GHz).

These bands have been previously occupied by a set of non-

government services, including fixed point-to-point services,

fixed-satellite service (Earth-to-space), broadcast auxiliary ser-

vice and cable television relay service [3]. These incumbent

systems coexist with each other by sharing the spectrum on

a directional basis, i.e., they use highly directional antennas

to concentrate the signal energy in a particular direction such

that mutual interference can be effectively mitigated as long as

their antennas are not pointed toward each other. As a result,

traditional carrier-sensing-based spectrum sharing as in Wi-Fi

networks is non-applicable to extend those wireless systems

with omnidirectional antennas to this frequency band, because

of the low detectability of the incumbent systems. For this

reason, two operation modes have been proposed by the FCC,

i.e., standard-power and low-power modes. The former allows

both indoor and outdoor operations on the U-NII-5 and U-NII-

7 bands with maximum transmission power of 30 dBm. The

latter focuses on indoor operations in the U-NII-6 and U-NII-8

bands with maximum transmission power of 24 dBm.

However, none of the above two modes support UAV

operations in the 6 GHz bands [3], [4]. A major concern is

with the high mobility of the UAV systems, which makes it

difficult to model and control their aggregate interference to

the incumbent systems. The situation gets even worse when

considering the altitude-dependent interference range of UAVs

and the higher probability of line-of-sight signal propagation

at higher altitudes. Additionally, it is also challenging for

the distributed UAVs to control their aggregate interference978-1-6654-4108-7/21/$31.00 c©2021 IEEE
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collaboratively by jointly considering their spectrum access

strategies and association to the ground users.

To address these challenges, a key step is to understand the

statistical behaviors and effects of the aggregate interference

experienced by the incumbent systems, since no real-time

cross-system channel state information (CSI) is available. To

this end, in this paper we focus on a new spectrum sharing

scenario in the 6 GHz band called SwarmShare, where a set

of UAVs collaboratively provide data streaming services to

ground users, by sharing the spectrum with the incumbent sys-

tems on the 6 GHz band under the cross-system interference

constraints. Within this framework, we model and analyze

the aggregate interference from the UAVs to the incumbent,

and propose a mobility-resilient stochastic spectrum sharing

approach. The main contributions of this work are as follows:

• We first present a mathematical formulation of the

SwarmShare problem, where the objective is to maximize

the spectral efficiency of the wireless UAV network

by jointly controlling the UAVs’ transmission power

and flight trajectory as well as their association to the

ground users, under the interference constraints of the

incumbent system. It is shown that the resulting problem

is a mixed integer nonlinear non-convex programming

(MINLP) problem.

• We analyze the statistical behavior of the aggregate

interference from the UAVs to the incumbent sys-

tem, and find that no existing models can be used to

characterize the statistical behavior of the interference.

With this observation, we propose to solve the above

MINLP spectrum sharing problem following a data-

driven three-phase approach: Initial Power Enforcement,
Offline-dataset Guided Online Power Adaptation, and

Reinforcement Learning-based UAV Optimization.

• We validate the effectiveness of SwarmShare by con-

ducting an extensive simulation campaign over UBSim,

a newly developed Universal Broadband Simulator for

integrated aerial-ground wireless networks. It is found

that, with SwarmShare, effective spectrum sharing can

be achieved without real-time cross-system channel state

information, and, which is somewhat surprising, even

with no precise location information of the UAVs.

The rest of the paper is organized as follows. In Section II,

we discuss the related works. The system model and problem

formulation is presented in Section III. In Section IV, we

describe the spectrum sharing framework. Performance eval-

uation results are discussed in Section V and finally we draw

the main conclusions in Section VI.

II. RELATED WORK

UAV systems have attracted significant research attention

in both academia and industry [1], [5]–[8]. For example, in

[1] the authors optimize the achievable rate of UAV-aided

cognitive IoT networks. Wang et al. propose in [5] a dynamic

hyper-graph coloring approach for spectrum sharing in UAV-

assisted networks. In [6], the authors optimize mobile termi-

nals’ throughput by jointly controlling UAV trajectory, band-

width allocation and user partitioning between the UAV and

ground base stations. In [7], UAV is used as relay to assist D2D

communications. [8] studies machine learning based spectrum

sharing for UAV-assisted emergency communications. Readers

are referred to [9] and references therein for a survey of the

main results in this area.

Spectrum sharing in cognitive radio networks has also been

a hot research topic for a long time with a sizable and

increasing body of literature. In [10], the authors aim to

maintain network connectivity in cognitive radio networks by

controlling the transmission power of sensors. In [11], the

authors maximize the revenue of the newly joined systems in

cognitive radio networks by controlling the channel access of

new users. The authors of [12] propose a cognitive backscat-

ter network to maximize the data rate of the newly joined

networks.

Spectrum sharing between directional- and omnidirectional-

antenna wireless systems has also been studied in existing

literature. For example, [13] optimizes the performance of

LTE-Unlicensed networks while guaranteeing the performance

of the co-located radar system. The authors of [14] propose

RadChat, a distributed networking protocol for mitigation

of interference among frequency modulated continuous wave

radars. A cooperative spectrum sharing model is proposed

in [15] to mitigate the mutual interference among radar and

communication system. Please refer to [16] and references

therein for a good survey of the main results in this field.

Different from the above discussed works, none of which

have considered the spectrum sharing between UAVs and the

incumbent wireless systems in the 6 GHz band, in this paper

we aim to design a new, mobility-resilient spectrum sharing
framework to enable wireless UAV networking in this band.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless UAV network coexisting with an

incumbent communication pair Tx and Rx by sharing the

same portion of spectrum B in the 6 GHz band. The UAV

network consists of a set K of UAVs collaborating with each

other to serve a set M of ground users. The transmission

time is divided into a set T of consecutive time slots. In

each time slot t ∈ T , denote the coordinate vector of UAV

k ∈ K as codt
k = [xt

k, y
t
k, z

t
k]

T, with T being the transpose

operation and xt
k, y

t
k and ztk representing the x-, y- and z-

axis components, respectively. Similarly, denote respectively

codTx = [xTx, yTx, zTx]
T, codRx = [xRx, yRx, zRx]

T and

codi = [xi, yi, zi]
T as the coordinate vectors of incumbent

transmitter Tx, incumbent receiver Rx and ground node i ∈
M∪{Tx,Rx}. Denote A = K∪M∪{Tx,Rx} as the set of all

the nodes in the heterogeneous network. The objective of the

UAV network is to maximize its own spectral efficiency under

the interference constraints of the incumbent system. Before

presenting the formal formulation of the spectrum sharing

problem, we first describe the considered channel, antenna and

throughput models.



A. Channel Model

We consider both large-scale path-loss and small-scale fad-

ing. For path-loss, we consider line-of-sight (LoS) wireless

channels between the incumbent transmitter Tx and its receiver

Rx. This is feasible because the incumbent systems are usually

carefully deployed such that their antennas are well-aligned

without any obstructions in the link. However, we consider

non-line-of-sight (NLoS) links between the incumbent nodes

and the ground users of the coexisting networks. For UAV

network, we consider as in [17] a probabilistic path-loss model

for the links between UAVs and ground nodes. Then, the LoS

and NLoS path-loss (in dB) between UAV k ∈ K and ground

node i ∈ M∪ {Tx,Rx} can be given as, in time slot t ∈ T ,

HLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηLoS, (1)

HNLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηNLoS, (2)

where the first item on the righ-hand side of (1) and (2)

represents the free space path-loss with dtki = ||codt
k−codi||2

being the distance between UAV k and receiver i in time slot

t, f is the carrier frequency of UAV k, c is the speed of light,

and ηLoS and ηNLoS are the additional attenuation factors due

to LoS and NLoS transmissions, respectively. Let Pr(HLoS,t
ki )

represent the probability of LoS transmissions in time slot t,
then Pr(HLoS,t

ki ) can be expressed as [18],

Pr(HLoS,t
ki ) = (1 +X exp (−Y [φki −X]))−1, (3)

where X and Y are given environment-dependent constants

and φki = sin−1(ztk/d
t
ki). Accordingly, the probability of

NLoS transmissions between UAV k ∈ K and receiver i ∈
M∪{Tx,Rx} can be given as Pr(HNLoS,t

ki ) = 1−Pr(HLoS,t
ki ).

Finally, for small-scale fading we consider Rician fading for

LoS transmissions and Rayleigh fading for NLoS. Denote Kij

as the Rician factor for the wireless channel between nodes

i, j ∈ A, then Kij can be given as Kij = 13 − 0.03dij for

LoS transmissions and 0 for NLoS, where dij is the distance

between the two nodes. Denote the resulting small-scale fading

coefficient as ht
ij � ht

ij(Kij) for nodes i, j ∈ A.

B. Antenna Model

As described in section I, in this work we consider direc-

tional transmissions for the incumbent wireless systems and

omnidirectional transmissions for the coexisting UAV network.

Specifically, we consider as in [19] bi-sectorized antenna

model to characterize the interference between directional

and omnidirectional antennas. Denote θTx and θRx as the

signal beamwidth of the incumbent transmitter and receiver’s

antennas, respectively. Let θm ∈ [−π, π] denote the offset

angle of the boresight direction of the Tx’s antenna with

respect to the reference direction for ground user m ∈ M.

Here, the reference direction refers to the direction along

which the Tx’s antenna would be exactly pointed to user

m. Then the antenna gain of incumbent transmitter Tx with

respect to ground user m ∈ M in time slot t, denoted as

wt
mTx, can be written as

wt
mTx =

{
wmax

Tx , if θm ≤ θTx

wmin
Tx , otherwise

, (4)

where wmax
Tx and wmin

Tx represent the maximum and minimum

transmit gains of the incumbent transmitter, respectively. Sim-

ilarly, the receive gain of the incumbent receiver Rx with

respect to UAV k ∈ K, denoted as wt
kRx, can be given as

wt
kRx =

{
wmax

Rx , if θk ≤ θRx

wmin
Rx , otherwise

, (5)

with wmax
Rx and wmin

Rx being the maximum and minimum

receive gains of the incumbent receiver, respectively. The

transmit and receive gains are set to the maximum values for

incumbent transmissions, i.e., wmax
Tx and wmax

Rx , respectively.

C. Throughput Model
Based on the above channel and antenna models, the signal-

to-interference-plus-noise ratio (SINR) of the incumbent re-

ceiver Rx, denoted as γt
RX for time slot t, can be written as

γt
RX =

pTxw
max
Tx wmax

Rx · (ht
TxRx)

2/HLoS
TxRx∑

k∈K
ptkw

t
kRxwk · (ht

kRx)
2/Ht

kRx + (σRx)2
(6)

where pTx and ptk represent the transmission power of the

incumbent transmitter Tx and UAV k ∈ K in time slot t ∈ T ,

respectively; wk denotes the transmit gain of the UAV and

is considered to be constant for omnidirectional antennas;

and (σRx)
2 is the power of Additive White Gaussian Noise

(AWGN) at the incumbent receiver.

The objective of SwarmShare is to guarantee satisfactory

SINR for the incumbent system (i.e., γt
RX above) by con-

trolling the transmission power of the coexisting UAVs. To

this end, we consider single-home association strategy for the

ground users of the UAV network, that is in each time slot

t ∈ T each ground user can be served by at most one UAV.

Denote αkm as the association variable, with αkm = 1 if

ground user m ∈ M is associated with UAV k ∈ K and

αkm = 0 otherwise. Then we have∑
k∈K

αt
km ≤ 1, ∀k ∈ K,m ∈ M, t ∈ T (7)

αt
km ∈ {0, 1}, ∀k ∈ K,m ∈ M, t ∈ T (8)

Denote Mt
k � {m|m ∈ M, αt

km = 1} as the set of ground

users served by UAV k in time slot t.
We further consider FDMA-based spectrum access among

the UAVs in K and TDMA for the ground users served by the

same UAV. Then, the SINR of ground user m ∈ M in time

slot t, denoted as γt
m = γt

m(Ht
mTx) can be expressed as

γt
m =

ptk(m) · (ht
k(m)m)2/Ht

k(m)m

(pTx/|K|) · wt
mTxŵm · (ht

mTx)
2/(Ht

mTx) + σ2
m

, (9)

where k(m) and ŵm represent the serving UAV and receive

gain of ground user m, respectively; |K| denotes the number

of UAVs in K; Ht
k(m)m ∈ {HNLoS,t

k(m)m , HLoS,t
k(m)m} is the path-

loss from UAV k(m) to ground user m in time slot t with

HNLoS,t
k(m)m and HLoS,t

k(m)m defined in Section III-A; and σ2
m is the

power of the AWGN noise at ground user m. Notice in (9) that



only 1
|K| of the incumbent transmitter’s power (i.e., pTx/|K|)

is considered for each UAV and its associated ground users

because of the UAVs’ FDMA-based spectrum access. It is

worth pointing out that we consider FDMA- and TDMA-

based spectrum access for the UAV networks because we want

to focus this work on the interference control between the

UAV and the incumbent systems. The resulting cross-system

spectrum sharing scheme can also be extended to other more

advanced spectrum access schemes for UAVs [20], [21].

Finally, the capacity achievable by user m in time slot t,
denoted as Ct

k(m)m, can be expressed as

Ct
k(m)m =

B

|K||Mt
k|
[
Pr

(
HNLoS,t

k(m)m

)
log2

(
1 + γt

m(HNLoS
k(m)m)

)
+ Pr

(
HLoS,t

k(m)m

)
log2

(
1 + γt

m(HLoS
k(m)m)

)]
, (10)

where Pr(·) is the probability of LoS and NLoS transmissions

defined in Section III-A and γt
m(·) is the SINR of ground user

m defined in (9).

D. Problem Formulation

Define P = (ptk)
t∈T
k∈K as the transmission power vector of

the UAVs, A = (αt
km)t∈T

k∈K,m∈M as the UAV-user association

vector, and Q = (codt
k)

t∈T
k∈K as the UAV location vector.

Then the objective of the SwarmShare control problem is

to maximize the aggregate capacity of the UAV network by

jointly controlling the transmission power of the UAVs and

their flight trajectory as well as association with the ground

users, while meeting the cross-system interference constraints,

as formulated as

Maximize
P, A, Q

1

|T |
∑
t∈T

∑
m∈M

Ct
k(m)m (11)

Subject to : 0 ≤ ptk ≤ pmax, ∀k ∈ K, t ∈ T , (12)

Association Constraints (7), (8) (13)

1

|T |
∑
t∈T

I(γt
Rx ≤ γth

Rx) ≤ Prmax
Rx︸ ︷︷ ︸

Cross−system Interference Constraint

(14)

where Ct
k(m)m is defined in (10), pmax is the maximum

transmission power of each UAV, I(·) is the indication function

taking value of 1 if the condition holds and 0 otherwise, and

γth
Rx and Prmax

Rx denote threshold SINR and the maximum

tolerable SINR outage probability of the incumbent system.

IV. SPECTRUM COEXISTENCE DESIGN

The SwarmShare problem formulated in (11)-(14) is a

mixed integer nonlinear nonconvex programming (MINLP)

problem, because of the binary UAV-user association variables
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Fig. 1: SwarmShare Spectrum Sharing Framework.

αt
km and the underlying complicated mathematical expressions

in (11) and (14). Moreover, to solve the problem directly it

requires to know the real-time channel state information (CSI)

between the UAV network and the incumbent system, which

is however unavailable, as discussed in Section I, because of

the low-detectability of the directional incumbent signals.

To address the above challenges, in this work we consider

an AFC (Automated Frequency Controller)-assisted spectrum

sharing. AFC has been adopted for spectrum sharing in the TV

whitespace band as well as the 6 GHz band by determining

certain exclusion zones nearby the incumbent systems [3].

Our work differs from this with our objective to enable

exclusion-zone-free hence more flexible spectrum sharing, and

study the statistical behavior of the aggregate interference

from the UAV networks to the incumbent system, while

keeping the cross-system signaling at a minimum level. The

diagram of the proposed spectrum coexistence framework is

illustrated in Fig. 1, where there are three major components,

i.e., Initial Power Enforcement, Offline-dataset Guided Online
Power Adaptation, and Reinforcement Learning-based UAV
Optimization.

A. Initial Power Enforcement

The objective of this phase is to determine, following a

set of Power Control Principles, a rough transmission power

for each of the UAVs. In this work, we consider three basic

principles to accommodate the effects of the UAVs’ flight

altitude and their locations on the interference to the incumbent

system, while more sophisticated principles can be incorpo-

rated in the future. These principles are i) UAVs that are closer

to the incumbent receiver should transmit at lower power; (ii)

with the same distance to the incumbent receiver, UAVs flying

higher should transmit at lower power; and (iii) with the same

distance and altitude, UAVs with smaller angles relative to the

boresight axis of the incumbent receivers’ directional antenna

should transmit at lower power. Particularly, the rationale of

the second principle is that, with the hybrid LoS/NLoS channel

model described in Section III-A, it is more likely for a UAV

to establish LoS links to the incumbent receiver when flying

higher and hence cause more interference. Similarly, for the

third principle, based on the directional antenna model de-

scribed in Section III-B, a UAV will cause higher interference

when more aligned with the incumbent receiver’s antenna.

In SwarmShare, an initial power enforcement coefficient,

denoted as Enf(codt
k, codRx, angInc), will be calculated for

each UAV k ∈ K in time slot t ∈ T based on the above three

principles. This is accomplished using three Sigmoid-family

functions Sig1(·), Sig2(·) and Sig3(·), as follows:

Enf(codt
k, codRx, angRx) =

Sig1

(
leuc(cod

t
k, codRx)

ltheuc

)
︸ ︷︷ ︸

Principle 1

·Sig2
(
h(codt

k) + h(codRx)

lthhgh

)
︸ ︷︷ ︸

Principle 2

· Sig3
(
lrad(cod

t
k, codRx, angInc)

)
︸ ︷︷ ︸

Principle 3

, (15)



where leuc(·, ·) represents the Euclidean distance between

UAV k and the incumbent receiver given their coordinates;

h(·) represents their height, and lrad(·, ·, ·) ∈ [0, π] is the

angle (in radians) of UAV k with respect to the boresight

axis of the incumbent receiver antenna; finally, ltheuc and

lthhgh in equation (15) are respectively threshold distance and

height beyond which Sig1(·) and Sig2(·) become nearly

constant. It is worth pointing out that, since a standard sigmoid

function is a differentiable, monotonically increasing, real

function taking values in [0, 1], we design Sig1(·), Sig2(·)
and Sig3(·) by scaling, shifting and reversing the standard

sigmoid function to consider the effects of UAV location,

flight altitude and relative angle to the incumbent receiver.

For example, Sig1(x) = 1
1+e−3(x/70−2) has been adopted for

principle 1 in this work, while Sig2(·) and Sig3(·) can be

defined similarly. With the obtained power enforcement coef-

ficient Enf(codt
k, codRx, angInc), each UAV’s power can be

initialized as, in time slot t ∈ T ,

pinik = pmaxEnf(codt
k, codRx, angInc), ∀k ∈ K, (16)

where pmax is the maximum transmission power of each UAV.

B. Offline-dataset Guided Online Power Adaptation

Recall in Section III that our goal is to enable UAV

operations in the 6 GHz band while meeting the cross-system

interference constraint (14). In SwarmShare, this is accom-

plished by fine tuning the above obtained initial transmission

powers for the UAVs following a three-step approach, as

described as follows.

1) Model-based Feature Extraction: In this step, we first

extract the network features that can be used later in Data-
Driven Calibration, rather than using directly the raw network

topology information such as UAV location vector (codt
k)

t∈T
k∈K.

This is important to mitigate the curse of dimensionality

problem [22] especially with large number of UAVs. In

SwarmShare, we select the power adaptation coefficient, de-

noted as ηt for time slot t, as the network feature. Then, given

the above obtained initial transmission power pinik for UAV

k ∈ K, a new transmission power ptk can be calculated as

ptk = pinik ηt (17)

and interference constraint (14) can be rewritten as

1

|T |
∑
t∈T

I(γt
Rx(η

t) ≤ γth
Rx) ≤ Prmax

Rx , (18)

where γt
Rx(η

t) is the SINR of the incumbent receiver de-

fined in (6) by substituting (17) into (6). Consider ergodic

stochastic process for the aggregate interference and denote

Prob
(
γt
Rx(η

t) ≤ γth
Rx

)
as the SINR outage probability in time

slot t ∈ T , then the left-hand side of (18) can be equivalently

represented as

Prob
(
γt
Rx(η

t) ≤ γth
Rx

)
(19)

= Prob

(
P sig
Rx

P itf
Rx

≤ γth
Rx

)
(20)

=

∫ +∞

0

∫ +∞

P
sig
Rx

γth
Rx

pdfP sig
Rx

(psig)︸ ︷︷ ︸
Noncentral
Chi−square

Distribution

· pdfP itf
Rx
(pitf)︸ ︷︷ ︸

Gamma
Distribution

dpitfdpsig, (21)

where P sig
Rx and P itf

Rx are the numerator and denominator of

(6), respectively; Rayleigh distribution has been considered

for the small-scale fading and hence noncentral chi-square

distribution [23] for the receive power of the incumbent

signals; and finally as in [24], [25] Gamma distribution is

considered for the aggregate interference power. The details

of mathematical equations are omitted for the distributions

due to space limitations. It is worth pointing out that, as

shown later in Section V, the aggregate interference of UAVs

does not follow any existing statistical distributions. In this

work, we consider Gamma distribution in (21) because we

want to obtain a rough estimation of the power adaptation

coefficient ηt, which will be further calibrated based on offline

dataset. Notice that given the maximum tolerable SINR outage

probability Prmax
Rx in (18), the maximum ηt can be determined

efficiently by bisection search, since the left-hand side of (18),

which is equivalent to (21), is a monotonically increasing

function of the UAVs’ transmission power hence ηt.
2) Offline-dataset Generation: Given the above obtained

network feature ηt, and each UAV’s transmission power ptk
can be updated according to (17). Since the power adaptation

may be inaccurate because of the inaccuracy of the Gamma

distribution-based interference model in (21), we further cali-

brate the power control for UAVs with the assistance of offline

measurements. Specifically, given the transmission power vec-

tor (ptk)k∈K, the corresponding SINR outage probability of the

incumbent system can be obtained by offline simulations. By

varying the number of UAVs, their locations as well as the

maximum tolerable SINR outage probability in the simula-

tions, we are able to obtain an SINR outage probability vector.

Denote Prmax
Rx = (Prmax

Rx ) as the vector of the maximum toler-

able outage probability, and accordingly denote the simulated

outage probability vector as Pr
max

Rx (η) = (Pr
max

Rx (ηt)) with

Pr
max

Rx (ηt) being the SINR outage probability given network

metric ηt and η = (ηt) the network feature vector.

3) Data-Driven Calibration: Finally, a mapping between

Prmax
Rx and Pr

max

Rx (η) can be established through function

approximation, e.g., based on linear regression [26], echo state

learning [27] or deep neural networks [28]. In this work we

find that it is enough to approximate the mapping based on lin-

ear regression. Denote the mapping as Prmax
Rx = f(Pr

max

Rx (ηt).
Then, given Pr

max

Rx , the value of Prmax
Rx and the corresponding

network feature ηt can be obtained at network run time and

further used for UAV power control based on (17).

C. Reinforcement Learning-based UAV Optimization

As illustrated in Fig. 1, the above obtained ηt will be broad-

cast to the UAVs, which will then calculate their transmission

power based on (17). Meanwhile, the UAVs will update their



flight and association strategies to serve their users with higher

spectral efficiency. To this end, we consider as in [19] shortest-

distance-based association strategy. Then, in each time slot

t ∈ T the association variables αk,m defined in Section III

can be determined as

αk,m =

{
1, if k = argmink‖codt

k − codm‖2
0, otherwise

. (22)

Further divide the whole network area into a set of three

dimensional rectangles. In each time slot, each UAV is allowed

to either move to one of its adjacent rectangles or stay in the

current. For each of the candidate rectangles, the UAV will first

calculate the achievable capacity given the transmission power

calculated in Sections IV-A and IV-B and the set of ground

users it serves. Finally, as in [29], reinforcement learning

with ε-greedy search is adopted to guide the exploitation and

exploration during the UAV’s flight control. The details of the

learing algorithm are omitted due to space limitations.

D. Complexity Analysis

The most time-consuming operation in the above pro-

cedure is offline-dataset guided online power adaptation in

Section IV-B. In Section IV-B1, we need to determine the

network feature ηt given the UAV network’s topology and the

maximum tolerable SINR outage probability. Since the SINR

outage probability is a monotonically increasing function of ηt,
the value of ηt can be obtained efficiently based on bisection

search. The dataset generation and regression in Section IV-B2

can be conducted offline, and in Section IV-B3 Prmax
Rx can be

determined online by solving a linear problem.

Regarding communication overhead, as illustrated in Fig. 1,

in Section IV-A the AFC needs to collect one-time location and

orientation information of the incumbent system and broadcast

the collected information to the UAVs. If the incumbent system

does not move frequently (which is usually the case, e.g.,

fixed point-to-point applications), the resulting communication

overhead can be neglected. The AFC also needs to collect

periodically the UAVs’ locations and broadcast the updated

power adaptation coefficient ηt to the UAVs. Since it is enough

to represent these information in 16 bytes (three float numbers

for location and one for the power adaptation coefficient,

and each float number takes 4 bytes), the resulting broadcast

overhead is low as well. Moreover, we will show later in

Section V that the UAVs do not need to report their locations to

the AFC in real-time, without obviously increasing the SINR

outage probability of the incumbent system. This will further

reduce the communication overhead.

V. PERFORMANCE EVALUATION
In this section we validate the effectiveness of the

SwarmShare framework described in Sections III and IV. We

consider a network area of 500×500×50 m3, with 50 ground

users randomly located in the network and the number of

UAVs varying from 3 to 24. The incumbent transmitter and

receiver are deployed with coordinates of (200, 200, 10) and

(250, 250, 10), respectively. The center frequency of the shared

spectrum is set to 6 GHz with total bandwidth of 10 MHz. The

maximum transmission power of the incumbent transmitter

and the UAVs are set to 1 W and 0.25 W, respectively.

For the bisectorized antenna model desribed in Section III,

the maximum and minimum gains are set to 1 and 0.5,

respectively. The power density of the AWGN is set to -

174 dBm/Hz. The probability of LoS and NLoS links are set

to 0.7 and 0.3, respectively. The threshold parameters ltheuc and

lthhgh in (15) are set to 70 m and 30 m, respectively. Next, before

discussing the interference control results, we first determine

the threshold angle for the directional antenna model described

in Section III-B and validate the effectiveness of the data-

driven calibration scheme proposed in Section IV-B.

Threshold Angle Measurement. We first determine the

threshold angle for the directional antenna model described

in Section III-B by conducting a set of experimental mea-

surements. A snapshot of the testbed is shown in Fig. 2(a),

where the transmitter is a USRP B210 software radio with

omnidirectional antenna, the receiver is another USRP B210

with Tupavco TP542 antenna, and the baseband signal pro-

cessing is conducted based on GNU Radio on a Dell Latitude

7400 laptop. Tupavco TP542 is a directional Wi-Fi antenna

operating in frequency range up to 5.8 GHz (very close to the

6 GHz band) with antenna gain of 13 dBi. We measure the

received power by varying the relative of the transmitter with

respect to the boresight direction of the directional antenna

(as illustrated in Fig. 2 (a)) and the transmission distance

from 1 to 3 meters. Examples of the measurement results

are given in Fig. 2(b) with transmission range of 1 m and

relative angles varying from 0 to 120 degrees at step of

30 degrees. The mapping between the received power and

relative angle is established based on logarithmic regression

method [30]. Based on the regression results, we set 30 degree

Transmitter 
(USRP B210)

Receiver
(USRP B210 &

Tupavco TP542)

Host 
(Dell Latitude 7400 )

Protractor

Boresight 
Direction

0 Degrees 30 Degrees

60 Degrees 90 Degrees 120 Degrees

(a) (b)
Fig. 2: (a) Snapshot of the testbed setup for threshold angle measurement; (b) Examples of the measurement results.



(a) (b) (c)

Fig. 3: Aggregate interference pdf with (a) 10 and (b) 20 UAVs; (c) Validation of data-driven predication of the SINR outage probability
for the incumbent system.

Fig. 4: Case study of power control based on SwarmShare. D#1[#2]:
#1 is the UAV index, and #2 denotes the transmission power of the
UAV in mW.

as the threshold angle for the bisectorized antenna model

Section III-B, which corresponds to the 3 dB angle of the

Tupavco TP542 antenna.

Data-driven Interference Prediction. Given the above

obtained threshold angle, we further characterize the statistical

behavior of the aggregate interference from the coexisting

UAVs to the incumbent receiver. To this end, we conduct a

set of simulations over UBSim, a newly developed Universal

Broadband Simulator for integrated aerial-ground networking.

Details of the simulator are omitted due to space limitations.

The results are reported in Figs. 3(a) and (b) with 10 and

20 UAVs, respectively. We fit as in [31], [32] the collected

interference values using four distributions, including Gaus-

sian, Inverse Gaussian, Gamma and Inverse Gamma, and find

that the power of the aggregate interference does not follow

any of these distributions. This is actually our motivation to

design SwarmShare based on a data-driven approach. Fig. 3(c)

reports the results of the data-driven prediction of the SINR

outage probability. We can find that the predicted SINR outage

probability matches well the simulated.

Case Study. Figure 4 shows an example of the power

control results based on SwarmShare. To visualize the effects

of the power control principles described in Section IV-A,

in this example all the 24 UAVs are deployed uniformlly

along 4 circles with different altitudes and radiuses. From

the figure it can be seen that lower transmission powers have

been allocated to UAVs along the lower circles. Also, because

of the shorter distances from the incumbent receiver, lower

transmission power has been allocated to the UAVs of the first

circle from the bottom, e.g., 1.0102 mW for UAV 1 (i.e., D1[1]

in Fig. 4) against 16.7896 mW for UAV 7 and 39.6234 mW

for UAV 13 along the second and third circles, respectively.

Moreover, along the same circle UAVs more aligned with the

incumbent receiver have been allocated lower transmission

powers, e.g., 8.3948 mW for UAV 10 vs 39.6234 mW for UAV

9 along the second circle. Finally, we notice in this example

that all the UAVs along the fourth (i.e., the highest) circle have

been allocated zero transmission power because no users are

associated with them based on the shortest-distance association

strategy described in Section IV-C. This also conforms to the

third power control principle, i.e., with the same distance and

relative angle, higher altitudes result in lower transmission

power because of higher probability of LoS transmissions.

It is worth pointing out that the power allocation results are

determined by jointly considering the three basic principles

described in Section IV-A. In the following experiments, we

will further evaluate the effectiveness of SwarmShare on the

cross-system interference control.

In Figs. 5 and 6, we plot the instantaneous capacity achiev-

able by the incumbent system and the UAV networks with dif-

ferent numbers of UAVs. In Fig. 5(a), we consider 6 hovering

UAVs, and the maximum tolerable SINR outage probability

is set to 0.05 for the incumbent system. The achievable

capacity is plotted for 1000 time slots. Results indicate that the

interference constraint of the incumbent system can be very

well fulfilled, with SINR outage probability of 0.032. Similar

results can be obtained with 12 and 18 hovering UAVs in

Figs. 5(b) and (c), with the SINR outage probabilities of 0.029

and 0.021, respectively.

Figure 6 shows the corresponding results with moving

UAVs. In this experiment, the network area is divided into

a set of three-dimension rectangles each of 50× 50× 10 m3.

The trajectory of the UAVs are controlled as described in

Section IV-C, with exploitation probability of 0.98. The same

as in Fig. 5, the incumbent system’s interference constraints

can be satisfied in all the tested cases, with SINR outage

probability of 0.023, 0.019 and 0.018 for 6, 12 and 18

UAVs, respectively, all below the maximum tolerable outage

probability 0.05. This verifies the effectiveness of SwarmShare
in cross-system interference control.

Average Results. In Fig.7 we report the average capacity
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Fig. 5: Instantaneous capacity of the incumbent system and the UAV network with hovering UAVs. The violation probabilities

are (a) 0.032, (b) 0.029 and (c) 0.021, respectively.
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Fig. 6: Instantaneous capacity of the incumbent system and the UAV network with moving UAVs. The violation probabilities are (a) 0.023,
(b) 0.019 and (c) 0.018, respectively.
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Fig. 7: Average capacity of the incumbent system and UAV networks
with moving UAVs.

achievable by the incumbent system and the UAV network

with the number of UAVs varying from 3 to 15 at step of

3. Three UAV motility patterns are considered: i) random

movement; ii) reinforcement learning controlled movement

with exploitation probability of 0.98; and iii) hovering UAVs.

The resutls are obtained by averaging over 50000 time slots

for each mobility pattern. It can be seen that, as expected,

obvious capacity gain can be achieved by the UAV network

with all the above three mobility patterns by deploying more

UAVs. For example, for hovering UAVs, the average capacity

increases from around 60 Mbps with 3 UAVs to 80 Mbps

with 15 UAVs. The capacity is further increased to around

100 Mbps with RL-controlled UAV movement. Particularly,

we find that there is no obvious degradation in the capacity of

the incumbent system when there are 6 or more coexisting

UAVs. The average capacity of the incumbent system can

be further increased with less UAVs, e.g., 3, because of the
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Fig. 8: SINR outage probability vs UAV location reporting period.

reduced cross-system interference.

In previous experiments (i.e., Fig. 5) the UAVs report their

locations to the AFC in every time slot. In this experiment,

we investigate the mobility resilience of SwarmShare for

spectrum sharing in the presence of inaccurate UAV locations.

The SINR outage probability results are reported in Fig. 8,

where two mobility patterns are considered for the UAVs,

i.e., random movement and RL-guided movement, and the

maximum tolerable SINR outage probability is set to 0.05 for

the incumbent system. The location reporting period is varied

from 10 time slots to 60. It can be seen that the SINR outage

probability of the incumbent system increases monotonically

with the location reporting period if the UAVs move in an

uncontrolled manner, i.e., completely randomly. For example,

the outage probability is around 0.07 when the reporting period

is 10 time slots and can be up to 0.2 for 60 time slots.

In the case of controlled UAV movement, the SINR outage



probability is barely affected by the location reporting period

and always below the maximum tolerable. This is because

the UAVs will stick with their current best locations at a

high probability (0.98 in this experiment) while exploring new

locations at a low probability (0.02). As a result, the topology

of the UAV network and hence the statistical behavior of their

aggregate interference to the incumbent system changes only

slowly. Therefore, with controlled UAV movement, effective

interference control can be achieved with SwarmShare in

mobile scenarios even with inaccurate UAV locations, e.g.,

because of the temporary loss of the connections to the AFC.

VI. CONCLUSIONS

In this paper, we proposed a new framework called

SwarmShare to enable spectrum sharing between the incum-

bent systems and the coexisting UAV networks in the 6 GHz

band. We validated the effectiveness of the framework through

an extensive simulation campaign. SwarmShare is shown to be

mobility-resilient and hence is suitable for the operations of

moving vehicles such as cars and UAVs on this newly opened

spectrum band without requiring pre-defined exclusion zones.

It is also found that the aggregate interference of the UAVs

does not follow any existing distributions. In future work

we will develop new theoretical models to characterize the

aggregate interference of the UAVs and further validate the

effectiveness of SwarmShare over the UAV testing facilities

being developed in our lab.

REFERENCES

[1] Z. Chu, W. Hao, P. Xiao, and J. Shi, “UAV Assisted Spectrum Sharing
Ultra-Reliable and Low-Latency Communications,” in Proc. of IEEE
GLOBECOM, Waikoloa, USA, Dec. 2019.

[2] B. Shang, L. Liu, R. M. Rao, V. Marojevic, and J. H. Reed, “3D Spec-
trum Sharing for Hybrid D2D and UAV Networks,” IEEE Transactions
on Communications, vol. 68, no. 9, pp. 5375–5389, May 2020.

[3] “Unlicensed Use of 6 GHz Band,” in Notice of Proposed Rulemaking
ET Docket No.18-295; GN Docket No. 17-183, Oct. 2018.

[4] V. Sathya, M. I. Rochman, M. Ghosh, and S. Roy, “Standardization
Advances for Cellular and Wi-Fi Coexistence in the Unlicensed 5 and
6 GHz Bands,” GetMobile, vol. 24, no. 1, pp. 5–15, March 2020.

[5] B. Wang, Y. Sun, Z. Sun, L. D. Nguyen, and T. Q. Duong, “UAV-
Assisted Emergency Communications in Social IoT: A Dynamic Hy-
pergraph Coloring Approach,” IEEE Internet of Things Journal, vol. 7,
no. 8, pp. 7663–7677, April 2020.

[6] J. Lyu, Y. Zeng, and R. Zhang, “Spectrum Sharing and Cyclical
Multiple Access in UAV-Aided Cellular Offloading,” in Proc. of IEEE
GLOBECOM, Singapore, January 2018.

[7] H. Wang, J. Wang, G. Ding, J. Chen, Y. Li, and Z. Han, “Spectrum
Sharing Planning for Full-Duplex UAV Relaying Systems With Under-
laid D2D Communications,” IEEE JSAC, vol. 36, no. 9, pp. 1986–1999,
August 2018.

[8] T. Q. Duong, L. D. Nguyen, H. D. Tuan, and L. Hanzo, “Learning-
Aided Realtime Performance Optimisation of Cognitive UAV-Assisted
Disaster Communication,” in Proc. of IEEE GLOBECOM, Waikoloa,
USA, February 2019.

[9] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-
Rodriguez, and J. Yuan, “Survey on UAV Cellular Communications:
Practical Aspects, Standardization Advancements, Regulation, and Se-
curity Challenges,” IEEE Communications Surveys Tutorials, vol. 21,
no. 4, pp. 3417–3442, March 2019.

[10] M. Zareei, C. Vargas-Rosales, R. V. Hernndez, and E. Azpilicueta,
“Efficient Transmission Power Control for Energy-harvesting Cognitive
Radio Sensor Network,” in Proc. of IEEE International Symposium on
PIMRC Workshops, Istanbul, Turkey, Sept. 2019.

[11] Jie Xiang, Yan Zhang, and Tor Skeie, “Joint Admission and Power
Control for Cognitive Radio Cellular Networks,” in Proc. of IEEE
Singapore Int’l. Conference on Communication Systems, Guangzhou,
China, Jan. 2008.

[12] H. Guo, R. Long, and Y. Liang, “Cognitive Backscatter Network: A
Spectrum Sharing Paradigm for Passive IoT,” IEEE Wireless Communi-
cations Letters, vol. 8, no. 5, pp. 1423–1426, Oct. 2019.

[13] M. Labib, A. F. Martone, V. Marojevic, J. H. Reed, and A. I. Zaghloul,
“A Stochastic Optimization Approach for Spectrum Sharing of Radar
and LTE Systems,” IEEE Access, vol. 7, pp. 60 814–60 826, April 2019.

[14] C. Aydogdu et al., “RadChat: Spectrum Sharing for Automotive Radar
Interference Mitigation,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 22, no. 1, pp. 416–429, December 2021.

[15] A. F. Martone, K. A. Gallagher, and K. D. Sherbondy, “Joint Radar and
Communication System Optimization for Spectrum Sharing,” in Proc.
of IEEE Radar Conference (RadarConf), Boston, USA, April 2019.

[16] M. L. Attiah, A. A. M. Isa, Z. Zakaria, M. Abdulhameed, M. K. Mohsen,
and I. Ali, “A Survey of mmWave User Association Mechanisms
and Spectrum Sharing Approaches: An Overview, Open Issues and
Challenges, Future Research Trends,” Wireless Networks, vol. 26, no. 4,
pp. 2487–2514, 2020.

[17] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An Edge-
Computing Based Architecture for Mobile Augmented Reality,” IEEE
Network, vol. 33, no. 4, pp. 162–169, January 2019.

[18] J. Cui, Y. Liu, and A. Nallanathan, “Multi-Agent Reinforcement
Learning-Based Resource Allocation for UAV Networks,” IEEE Trans.
on Wireless Communications, vol. 19, no. 2, pp. 729–743, August 2020.

[19] S. K. Moorthy and Z. Guan, “FlyTera: Echo State Learning for Joint
Access and Flight Control in THz-enabled Drone Networks,” in Proc.
of IEEE SECON, Como, Italy, June 2020.

[20] L. Bertizzolo, E. Demirors, Z. Guan, and T. Melodia, “CoBeam:
Beamforming-based Spectrum Sharing with Zero Cross-Technology
Signaling for 5G Wireless Networks,” in Proc. of IEEE INFOCOM,
Toronto, Canada, July 2020.

[21] Y. Li, H. Zhang, K. Long, S. Choi, and A. Nallanathan, “Resource
Allocation for Optimizing Energy Efficiency in NOMA-based Fog
UAV Wireless Networks,” IEEE Network, vol. 34, no. 2, pp. 158–163,
September 2020.

[22] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the
Curse of Dimensionality Using Decompositions of Incomplete Tensors:
Tensor-based Scientific Computing in Big Data Analysis,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 71–79, August 2014.

[23] K. T. Hemachandra and N. C. Beaulieu, “Novel Representations for
the Equicorrelated Multivariate Non-Central Chi-Square Distribution and
Applications to MIMO Systems in Correlated Rician Fading,” IEEE
Trans. on Commun., vol. 59, no. 9, pp. 2349–2354, March 2011.

[24] S. Kusaladharma and C. Tellambura, “Aggregate Interference Analysis
for Underlay Cognitive Radio Networks,” IEEE Wireless Communica-
tions Letters, vol. 1, no. 6, pp. 641–644, December 2012.

[25] A. A. Khuwaja, Y. Chen, and G. Zheng, “Effect of User Mobility and
Channel Fading on the Outage Performance of UAV Communications,”
IEEE Wireless Commun. Letters, vol. 9, no. 3, pp. 367–370, March 2020.

[26] A. F. Schmidt and C. Finan, “Linear Regression and the Normality
Assumption,” Journal of clinical epidemiology, vol. 98, pp. 146–151,
June 2018.

[27] S. K. Moorthy and Z. Guan, “Beam Learning in MmWave/THz-band
Drone Networks Under In-Flight Mobility Uncertainties,” IEEE Trans-
actions on Mobile Computing, accepted for publication, Oct. 2020.

[28] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. M. Leung, “Power
Control Based on Deep Reinforcement Learning for Spectrum Sharing,”
IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp.
4209–4219, June 2020.

[29] S. A. Al-Ahmed, M. Z. Shakir, and S. A. R. Zaidi, “Optimal 3D UAV
Base Station Placement by Considering Autonomous Coverage Hole
Detection, Wireless Backhaul and User Demand,” Journal of Commun.
and Networks, vol. 22, no. 6, pp. 467–475, December 2020.

[30] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic
Regression. USA: John Wiley & Sons, 2013.

[31] Z. Guan, T. Melodia, and G. Scutari, “To Transmit or Not to Transmit?
Distributed Queueing Games for Infrastructureless Wireless Networks,”
IEEE/ACM Trans. on Netw., vol. 24, no. 2, pp. 1153–1166, April 2016.

[32] R. K. Ganti and M. Haenggi, “Interference in Ad Hoc Networks with
General Motion-Invariant Node Distributions,” in Proc. of IEEE Int’l.
Symposium on Information Theory, Toronto, Canada, July 2008.


