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Abstract
We consider a natural generalization of classical scheduling problems to a setting in which
using a time unit for processing a job causes some time-dependent cost, the time-of-use tar-
iff, which must be paid in addition to the standard scheduling cost. We focus on preemptive
single-machine scheduling and two classical scheduling cost functions, the sumof (weighted)
completion times and themaximumcompletion time, that is, themakespan.While these prob-
lems are easy to solve in the classical scheduling setting, they are considerably more complex
when time-of-use tariffs must be considered. We contribute optimal polynomial-time algo-
rithms and best possible approximation algorithms. For the problem of minimizing the total
(weighted) completion time on a single machine, we present a polynomial-time algorithm
that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of
time slots to be used for preemptively scheduling jobs according to the given sequence. This
result is based on dynamic programming using a subtle analysis of the structure of optimal
solutions and a potential function argument. With this algorithm, we solve the unweighted
problem optimally in polynomial time. For the more general problem, in which jobs may
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have individual weights, we develop a polynomial-time approximation scheme (PTAS) based
on a dual scheduling approach introduced for scheduling on a machine of varying speed. As
the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we
can hope for. For preemptive scheduling to minimize the makespan, we show that there is a
comparably simple optimal algorithm with polynomial running time. This is true even in a
certain generalized model with unrelated machines.

Keywords Scheduling · Time-of-use tariffs · Dynamic programming · Polynomial-time
approximation scheme (PTAS) · Total weighted completion time · Makespan

1 Introduction

One of the classical problems in operations research is the Production Planning problem. It
appears in almost any introductory course in Operations Research (Hillier and Lieberman
2014; Taha 2007). In its deterministic form, a production plan at lowest total cost is required
to meet known demands over the next few weeks, given holding cost for keeping inventory
at the end of the week, and with unit production cost varying over the weeks. It is a very
early example of a problemmodel in which unit cost, or tariffs, for production, service, labor,
energy, etc., vary over time.

Nowadays, new technologies allow direct communication of amuch larger variety of time-
of-use tariffs to customers. For example, in practice, electricity prices can differ largely from
hour to hour. Producers or providers of these resources use this kind of variable pricing more
and more to spread demand for their services, which can save enormously on the excessive
costs that are usually involved to serve high peak demands. Customers are persuaded to
direct their use of the scarce resources to time slots that are offered at cheaper rates. From
the provider’s point of view variable pricing problems have been studied quite extensively.
For instance, revenue management is a well established subfield of operations research (e.g.,
Talluri and Van Ryzin 2006).

As in the Production Planning problem, in this paper we advocate models from the point
of view of the user of the resources, who may take advantage of variable pricing by traveling,
renting labor, using electricity, etc. at moments at which these services are offered at a lower
price. This point of view forms a rich class of optimization problems in which in addition to
classical objectives, the cost of using services needs to be taken into account.

This widely applicable framework is particularly well suited for scheduling problems, in
which jobs need to be scheduled over time. Processing jobs requires labor, energy, computer
power, or other resources that often exhibit variable tariffs over time. It leads to the natural
generalization of scheduling problems, inwhich using a time slot incurs a certain cost, varying
over time, which we refer to as utilization cost, that must be paid in addition to the actual
scheduling cost. However natural and practicable this may seem, there appears to be very
little theoretical research on such scheduling models. The only work we are aware of is by
Wan and Qi (2010), Kulkarni and Munagala (2013), Fang et al. (2016) and Chen and Zhang
(2019), where variable tariffs concern the cost of labor or the cost of energy.

The goal of this paper is to expedite the theoretical understanding of fundamental schedul-
ing problems within the framework of time-varying costs or tariffs. We contribute optimal
polynomial-time algorithms and best possible approximation algorithms for fundamental
single-machine scheduling problems with the objectives of minimizing the sum of weighted
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completion times and the makespan. We further consider an extension of the makespan
problem to unrelated machines.

1.1 Problem definition

We first describe the underlying classical scheduling problems. We are given a set of jobs
J := {1, . . . , n} where every job j ∈ J has a given processing time p j ∈ N and possibly a
weight w j ∈ Q≥0. Our main focus is on the problem of finding a preemptive schedule on a
single machine such that the total (weighted) completion time,

∑
j∈J w jC j , is minimized;

here C j denotes the completion time of job j . Preemption means that the processing of
a job may be interrupted at any time and can continue at any time later at no additional
cost. In the three-field scheduling notation (Graham et al. 1979), this problem is denoted
as 1 | pmtn | ∑

w jC j . We also consider the objective of minimizing the makespan Cmax :=
max j∈J C j and investigate a more general multi-machine environment, namely, unrelated
machines, R | pmtn |Cmax. In this setting, there is given a set of machines M , and each job
j ∈ J has an individual processing time pi j ∈ N for running on machine i ∈ M .

In this paper, we additionally consider time-of-use tariffs when making scheduling deci-
sions. We assume that time is discretized into unit-size time slots. We are given a tariff or
cost function e : N → Q≥0, where e(t) denotes the tariff for processing job(s) at time slot
[t, t + 1). We assume that e is a piecewise constant function, i.e., we assume that the time
horizon is partitioned into given intervals Ik = [sk, dk) with sk, dk ∈ N, k ∈ {1, 2, . . . , K },
withinwhich e has the same value ek . It holds s1 = 0 and sk = dk−1, for k ∈ {2, 3, . . . , K }. To
ensure that all jobs can be scheduled in the given time intervals, it must hold that dK ≥ C0

max ,
where C0

max denotes the minimum makespan independent of time-of-use tariffs, i.e., when
all time slots have utilization cost 0.

Regarding the input encoding, we remark that the cost function e is compactly specified
by the utilization cost ek for each of the K time intervals. In this paper we aim for algorithms
with a running time that is polynomial in the input encoding, that is, polynomial in n, the
number of jobs, and K , the number of intervals and possibly logarithmic in the values for
processing times, weights and cost. In general, it is not even clear that a schedule can be
encoded polynomially in the input. However, for our completion-time based minimization
objectives, it is easy to observe that if an algorithm utilizes p unit-size time slots in an interval
of equal cost, then it utilizes the first p slots within this interval, which simplifies the structure
and the output of an optimal solution in a crucial way.

Given a schedule S, let y(t) be a binary variable indicating if any processing is assigned
to time slot [t, t + 1). The utilization cost of S is E(S) = ∑

t e(t)y(t). That means, for any
time unit that is used in S we pay the full tariff, even if the unit is only partially used. While
the main focus of this paper is on single-machine scheduling, we extend our makespan result
also to a more general multiple machine model, where a time slot that is paid for can be used
by all machines. This models applications in which paying for a time unit on a resource gives
access to all units of the resource. As an example, consider the reservation of a server for a
certain time period, in which case all available processors on that server can be utilized.

The overall objective in scheduling with time-of-use tariffs is to find a schedule that
minimizes the scheduling objective,

∑
j∈J w jC j resp. Cmax, plus the utilization cost E .

We refer to the resulting problems as 1 | pmtn | ∑
w jC j + E and R | pmtn |Cmax + E . We

remark that the results in this paper also hold for the minimization of any convex combination
of the scheduling and utilization cost.
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1.2 Related work

Scheduling with time-of-use tariffs (a.k.a. variable time slot cost) has been studied explicitly
by Wan and Qi (2010), Kulkarni and Munagala (2013), Fang et al. (2016) and Chen and
Zhang (2019). In their seminal paper, Wan and Qi (2010) consider several non-preemptive
single machine problems, which are polynomial-time solvable in the classical setting, such
as minimizing the total completion time, lateness, and total tardiness, or maximizing the
weighted number of on-time jobs. These problems are shown to be strongly NP-hard when
taking general tariffs into account, while efficient algorithms exist for special monotone tariff
functions. In particular, the problem 1 | | ∑

C j + E is strongly NP-hard, and it is efficiently
solvable when the tariff function is increasing or convex non-increasing (Wan and Qi 2010).
Practical applications, however, often require non-monotone tariff functions, which lead to
wide open problems in the context of preemptive and non-preemptive scheduling. In this
paper, we answer complexity and approximability questions for fundamental preemptive
scheduling problems.

Kulkarni and Munagala (2013) focus on a related problem in an online setting, namely,
online flow-time minimization using resource augmentation. Their main result is a scal-
able algorithm that obtains a constant performance guarantee when the machine speed
is increased by a constant factor and there are only two distinct unit tariffs. They also
show that, in this online setting, for an arbitrary number of distinct unit tariffs there is
no constant speedup-factor that allows for a constant approximate solution. For the problem
considered in this paper, offline scheduling without release dates, Kulkarni and Munagala
(2013) observed a relation to universal sequencing on a machine of varying speed (Epstein
et al. 2012) which implies the following results: a pseudo-polynomial 4-approximation for
1 | pmtn | ∑

w jC j + E , which gives an optimal solution in case that all weights are equal,
and a constant approximation in quasi-polynomial time for a constant number of distinct
tariffs or when using a machine that processes jobs faster by a constant factor. In this paper,
we substantially improve on those results.

Fang et al. (2016) study scheduling on a single machine under time-of-use electricity
tariffs. They do not take the scheduling cost into account, but only the energy cost. In their
model the time horizon is divided into K regions, each of which has a cost ck per unit energy.
For processing jobs the dynamic variable speedmodel is used; that is, the energy consumption
is sα per time unit if jobs run at speed s, whence, within region k, the energy cost is sαck . The
objective is to minimize energy cost such that all jobs are scheduled within the K regions.
They prove that the non-preemptive case is NP-hard and give a non-constant approximation,
and for the preemptive case, they give a polynomial-time algorithm.

Chen and Zhang (2019) consider non-preemptive scheduling on a single machine so as
to minimize the total utilization cost under certain scheduling feasibility constraints such as
a common deadline for all jobs or a bound on the maximum lateness, maximum tardiness,
maximum flow-time, or sum of completion times. They define a valley to be a cost interval
Ik that has smaller cost than its neighboring intervals and show the following. General tariffs
lead to a strongly NP-hard problem for any of the just mentioned constraints, and even very
restricted tariff functions with more than one valley result in NP-hard problems that are
not approximable within any constant factor. The problem with a common deadline on the
job completion times is shown to admit a pseudo-polynomial-time algorithm when having
two valleys, a polynomial-time algorithm for tariff functions with at most one valley, and
an FPTAS if there are at most two valleys and maxk ek/mink ek is bounded. For the other
mentioned constraints, they also present polynomial-time algorithms when having no more
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than one valley, where the problem with a bound on the sum of completion times requires
the number of cost intervals, here K , to be fixed.

The general concept of taking into consideration additional (time-dependent) cost for
resource utilization when scheduling has been implemented differently in other models.
We mention the area of energy-aware scheduling, where energy consumption is taken into
account; see Albers (2010) for an overview. Further, the area of scheduling with gener-
alized non-decreasing (completion-) time dependent cost functions, such as minimizing∑

j w j f (C j ), e.g. Epstein et al. (2012), Megow and Verschae (2018), Höhn and Jacobs
(2015), or even more general job-individual cost functions

∑
j f j (C j ), e.g. Bansal and Pruhs

(2014), Höhn et al. (2018), Cheung and Shmoys (2011), Cheung et al. (2017) has received
quite some attention. Our model differs fundamentally from those models since our cost
function may decrease with time. In fact, delaying the processing in favor of cheaper time
slots may decrease the overall cost. This is not the case in the above-mentionedmodels. Thus,
in our framework we have the additional dimension in decision-making of selecting the time
slots that shall be utilized.

Finally, we point out some similarity between our model and scheduling on a machine of
varying speed, which (with

∑
j w jC j as objective function) is an equivalent statement of the

problem of minimizing
∑

j w j f (C j ) on a single machine with constant speed (Epstein et al.
2012; Megow and Verschae 2018; Höhn and Jacobs 2015). We do not see any mathematical
reduction from one problem to the other. However, it is noteworthy that the independently
studied problem of scheduling with non-availability periods, see e.g. the survey by Lee
(2004), is a special case of both the varying-speed and the time-varying tariff model. Indeed,
machine non/availability can be expressed either by a 0/1-speed or equivalently by an ∞/0
tariff. Results shown in this context imply that our problem1 | pmtn | ∑

w jC j+E is strongly
NP-hard, even if there are only two distinct tariffs (Wang et al. 2005).

1.3 Our contribution

We contribute optimal polynomial-time algorithms and best possible approximation algo-
rithms for the generalization of fundamental scheduling problems to a framework with
time-varying tariffs. We consider the problems of minimizing the makespan and minimizing
the sum of weighted completion times on a single machine, which are easy to solve in the
classical scheduling setting, and that become considerably more complex when time-of-use
tariffs must be considered.

In Sect. 2, we show that the unweighted problem 1 | pmtn | ∑
C j + E can be solved

optimally in polynomial time. The key is a polynomial-time algorithm that computes for any
given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used
for preemptively scheduling jobs according to the given sequence. This result is based on
dynamic programming, using a subtle analysis of the structure of optimal solutions and a
properly chosen potential function. This algorithm solves the unweighted problem optimally
in polynomial time when using the observation that the optimal scheduling order is the
shortest processing time order, independent of the decision which time slots are used.

This algorithm implies almost directly a polynomial-time (4+ε)-approximation algorithm
for the more general problem in which jobs have individual weights, 1 | pmtn | ∑

w jC j +
E . A 4-approximation was observed by Kulkarni and Munagala (2013) but it has pseudo-
polynomial running time. While pseudo-polynomial-time algorithms are relatively easy to
derive, it is quite remarkable that our DP’s running time is polynomial in the input, in
particular, independent of dK .
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Our main result in Sect. 3 is a polynomial-time approximation scheme (PTAS) for the
weighted problem 1 | pmtn | ∑

w jC j + E , that is, an algorithm that computes for any
fixed ε > 0 a (1 + ε)-approximate schedule. Our PTAS is the best possible approximation
we can hope for, unless P=NP, since the problem is strongly NP-hard, even if there are
only two different tariffs (Wang et al. 2005). Our approach is inspired by a recent PTAS
for scheduling on a machine of varying speed (Megow and Verschae 2018) and it uses
some of its properties. As discussed before, we do not see a formal mathematical relation
between these two seemingly related problems that allows us to apply the result fromMegow
and Verschae (2018) directly. The key is a dual view on scheduling: instead of directly
constructing a schedule in the time-dimension, we first construct a dual scheduling solution
in theweight-dimensionwhich has a one-to-one correspondence to a true schedule.We design
an exponential-time dynamic programming algorithm which can be trimmed to polynomial
time using techniques known for schedulingwith varying speed (Megow andVerschae 2018).

In Sect. 4 we consider the makespan minimization problem. We show a simple optimal
polynomial-time algorithm for the problem R | pmtn |Cmax+ E . We design a procedure that
selects the optimal time slots to be utilized, given that we know their optimal number. That
number can be determined by solving the scheduling problem without utilization cost, which
can be done in polynomial time by solving a linear program (Lawler and Labetoulle 1978).

Finally, we remark that job preemption is crucial for obtaining constant worst-case per-
formance ratios for the makespan and the min-sum problems considered in this paper. More
precisely, there is no bounded approximation factor possible for scheduling with tariffs,
unless P=NP, even if there are only two different tariffs, 0 and ∞. This can be shown by a
reduction similar to one by Yuan et al. (2007) for scheduling with fixed jobs; an observation
that has been mentioned also in Megow and Verschae (2009). It is due to the fact that it is
NP-hard to decide whether a set of jobs can be partitioned into two sets with equal total pro-
cessing time (2- Partition). To see the inapproximability, consider a set of non-preemptive
jobs and two equal-length time intervals of cost 0 of total length equal to the sum of all job
processing times and all other time slots with cost ∞. A polynomial-time algorithm with
a bounded worst-case ratio decides whether all jobs fit into cheap time slots, which would
solve 2- Partition in polynomial time.

2 An optimal algorithm for minimizing total completion time

In this section, we show how to solve the unweighted problem 1 | pmtn | ∑
C j + E to

optimality. Our main result is as follows.

Theorem 1 There is a polynomial-time algorithm for 1 | pmtn | ∑
C j + E.

An algorithm for the scheduling problem with time-of-use tariffs has to make essentially
two types of decisions: (i) which time slots to use and (ii) how to schedule the jobs in
these slots. It is not hard to see that these two decisions can be handled separately. In fact,
the following observation on the optimal sequencing of jobs holds independently of the
utilization decision and follows from a standard interchange argument.

Observation 1 In an optimal schedule S∗ for the problem 1 | pmtn | ∑
C j + E, jobs are

processed according to the Shortest Processing Time First (SPT) rule.

Thus, in the remainder of the section we can focus on determining which time slots to use.
We design an algorithm that computes, for any given (not necessarily optimal) scheduling
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sequence σ , an optimal utilization decision. In fact, we show this result even for the more
general problem in which jobs have arbitrary weights.

Theorem 2 Given an instance of 1 | pmtn | ∑
w jC j + E and an arbitrary processing

sequence of jobs σ , we can compute an optimal utilization decision for σ in polynomial
time.

Combining the optimal choice of time slots (Theorem 2) with the optimal processing order
SPT (Observation 1) immediately implies Theorem 1.

The remainder of the section is devoted to proving Theorem 2. Thus, we choose any (not
necessarily optimal) order of jobs, σ = (1, . . . , n), in which the jobs must be processed. We
want to characterize an optimal schedule S∗ for σ , that is, the optimal choice of time slots
for scheduling σ . Among all optimal schedules we shall consider an optimal solution S∗ that
minimizes the value

∑dK−1
t=0 t · y(t), where y(t) is a binary variable that indicates if time slot

[t, t + 1) is utilized or not.
We firstly identify structural properties of an optimal solution. Essentially, we give a full

characterizationwhichwe can compute efficiently by dynamic programming.More precisely,
we establish a closed form that characterizes the relationship between the tariff of a utilized
slot and job weights in an optimal solution. This relationship allows us to decompose an
optimal schedule into a series of sub-schedules. Our algorithm will first compute all possible
sub-schedules and then use a dynamic programming approach to select and concatenate
suitable sub-schedules.

In principle, an optimal schedule may preempt jobs at fractional time points. However,
since time slots must be paid for entirely, any reasonable schedule on a single machine uses
the utilized slots entirely as long as there are unprocessed jobs. It can be shown by a standard
interchange argument that this is also true if we omit the requirement that time slots must be
utilized entirely; for details, see Rischke (2016).

Lemma 1 There is an optimal schedule S∗ for 1 | pmtn | ∑
w jC j + E in which all utilized

time slots are entirely utilized and jobs are preempted only at integral points in time.

Next, we introduce the concept of split points. Intuitively, split points are relevant time
points for decomposing an optimal schedule into smaller sub-schedules. Our goal is to define
a polynomial number of such time points in such a way that we can compute an optimal
utilization decision for a given region between two consecutive split points when given a job
sequence to be processed in this region. This is the basis for our dynamic program.

The beginning of any cost interval sk is a natural candidate for such a relevant point.
However, for technical reasons, in particular, for volume shifting arguments, we include also
points sk + 1. Let P := ⋃K

k=1 {sk, sk + 1} ∪ {dK } denote the set of potential split points.

Definition 1 (Split Point) Consider an optimal schedule S∗ . For any job j , let S j and C j

denote the start time and completion time of j , respectively. A time point t ∈ P is a split
point for S∗ if all jobs that start before t also finish their processing not later than t , i.e., if{
j ∈ J : S j < t

} = {
j ∈ J : C j ≤ t

}
.

Given an optimal schedule S∗, let 0 = τ1 < τ2 < · · · < τ� = dK be the sequence of all
split points of S∗. Note that there might be consecutive split points with no job processed in
between. We denote the interval between two consecutive split points τx and τx+1 as region
RS∗
x := [

τx , τx+1), for x ∈ {1, . . . , � − 1}.
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Consider now any region RS∗
x for an optimal schedule S∗ with x ∈ {1, . . . , � − 1} and

let JS
∗

x :=
{
j ∈ J : S j ∈ RS∗

x

}
denote the set of jobs that start and finish within RS∗

x .

The set JS
∗

x might be empty.
We observe that any job j completing at the beginning of a cost interval Ik , i.e., C j =

sk ∈ RS∗
x or C j = sk + 1 ∈ RS∗

x , would make sk resp. sk + 1 a split point. Thus, no such job
j ∈ JS∗

x can exist.

Observation 2 There is no job j ∈ JS
∗

x with C j ∈ RS∗
x ∩ P .

In the following sequence of lemmas, we characterize which time slots are utilized in an
optimal schedule S∗.

Lemma 2 Consider a region RS∗
x with the corresponding job set JS

∗
x . For every job j ∈ JS

∗
x ,

except the last job in JS
∗

x (according to our fixed job sequence σ ), it holds that the time slots[
C j ,C j + 1

)
and

[
C j − 2,C j − 1

)
are utilized in S∗.

Proof The proof is by contradiction and uses the observation that an algorithm that utilizes p
unit-size time slots in an interval I of equal cost is best off if it utilizes the first p slots
within I , and so does S∗. Let j ′ be the last job in JS

∗
x according to σ .

Suppose there is a job j ∈ JS
∗

x \ {
j ′
}
such that

[
C j ,C j + 1

)
is not utilized. Let Ik be the

interval in which job j completes, i.e.
[
C j − 1,C j

) ∈ Ik . By Observation 2 we know that
C j �= sk + 1, as otherwise C j = τx+1 and thus j = j ′. Moreover, since an unused time slot
cannot be followed by a utilized time slot in the same interval, it means that if [C j ,C j + 1)
is not utilized then no later time slot in Ik is utilized. Thus, j is the last job processed in Ik ,
hence dk = τx+1 is a split point and j = j ′.

Suppose now that there is a job j ∈ JS
∗

x \ {
j ′
}
such that

[
C j − 2,C j − 1

)
is not utilized.

As argued above, because we reserve the earliest time slots within any interval, we know that
[C j − 2,C j − 1) is not in Ik , whence [C j − 1,C j ) is the first time slot in Ik and therefore
C j = sk + 1, making sk + 1 = τx+1 and j = j ′. �


We say that interval Ik is partially utilized if at least one time slot in Ik is utilized, but
not all. The following lemma shows that we may assume that in an optimal schedule that
minimizes

∑dK−1
t=0 t · y(t), there is at most one interval per region partially utilized.

Lemma 3 There exists an optimal schedule S∗ in which for all x ∈ {1, 2, . . . , � − 1} at most
one interval in RS∗

x is partially utilized.

Proof For the sake of contradiction, suppose that there is more than one partially utilized
interval in RS∗

x . Consider any two such intervals Ih and Ih′ with h < h′, and all inter-
mediate intervals that are utilized entirely or not at all. Let [th, th + 1) and [th′ , th′ + 1)
be the last utilized time slot in Ih and Ih′ , respectively. If we utilize [th′ + 1, th′ + 2)
instead of [th, th + 1) and redistribute the processing volume accordingly without chang-
ing the processing order , then the difference in cost is δ1 := eh′ − eh + ∑

j∈J ′ w j with

J ′ :=
{
j ∈ J : C j ∈ ⋃h′

k=h+1 Ik
}
because all jobs in J ′ are delayed by exactly one time

unit. This is true by Lemma 2 and because by Observation 2 no job j ∈ J ′ finishes at
dk = sk+1 for any k. If we utilize [th + 1, th + 2) instead of [th′ , th′ + 1) and redistribute the
processing volume accordingly without changing the processing order , then the difference
in cost is δ2 := eh − eh′ − ∑

j∈J ′ w j , again using Lemma 2 and Observation 2 to assert that
no job j ∈ J ′ finishes at sk + 1 for any h+ 1 ≤ k ≤ h′. Since δ1 = −δ2 and S∗ is an optimal
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schedule, it must hold that δ1 = δ2 = 0. This, however, implies that there is another optimal
schedule with earlier used time slots which contradicts our assumption that S∗ minimizes
the value

∑dK−1
t=0 t · y(t). �


The next lemma characterizes the time slots that are used within a region. Let e jmax be the
maximum tariff spent for job j in S∗. Furthermore, let Δx := max j∈JS∗

x
(e jmax +∑

j ′< j w j ′)
and let jx be the last job (according to sequence σ ) that achievesΔx . Suppose there are b ≥ 0
jobs before and a ≥ 0 jobs after job jx in JS∗

x . The following lemma gives for every job
j ∈ JS∗

x \{ jx } an upper bound on the tariff spent in the interval
[
S j ,C j

)
.

Lemma 4 Consider an optimal schedule S∗ for a given job permutation σ . For any job
j ∈ JS

∗
x \{ jx } a slot [t, t + 1) ∈ [

S j ,C j
)
is utilized if and only if the tariff e(t) of [t, t + 1)

satisfies the following upper bound:

e(t) ≤ e jxmax +
jx−1∑

j ′= j

w j ′ , ∀ j : jx − b ≤ j < jx ,

e(t) < e jxmax −
j−1∑

j ′= jx

w j ′ , ∀ j : jx < j ≤ jx + a .

Proof Consider any job j := jx − � with 0 < � ≤ b. Suppose there is a job j for which
a slot is utilized with cost (tariff) e jmax > e jxmax + ∑ jx−1

j ′= j w j ′ . Then e jmax + ∑
j ′< j w j ′ >

e jxmax + ∑
j ′< jx w j ′ , which is a contradiction to the definition of job jx . Thus, e

j
max ≤ e jxmax +

∑ jx−1
j ′= j w j ′ .

Now suppose that there is a slot [t, t + 1) ∈ [
S j ,C j

)
with cost e(t) ≤ e jxmax + ∑ jx−1

j ′= j w j ′

that is not utilized. By definition of e jxmax, there must be a time slot
[
t ′, t ′ + 1

) ∈ [
S jx ,C jx

)

with cost exactly e jxmax. If we utilize slot [t, t + 1) instead of
[
t ′, t ′ + 1

)
and redistribute the

processing volume accordingly without changing the processing order , then the difference
in cost is at most e(t) − e(t ′) − ∑ jx−1

j ′= jx−�
w j ′ ≤ 0, because by Observation 2 and Lemma 2

the completion times of at least � jobs ( j = jx − �, . . . , jx − 1 and maybe also jx ) decrease
by one. This contradicts either the optimality of S∗ or our assumption that S∗ minimizes
∑dK−1

t=0 t · y(t).
The proof of the statement for any job jx + � with 0 < � ≤ a follows a similar argument,

but now using the fact that for every job j := jx + � we have e jmax < e jxmax − ∑ j−1
j ′= jx

w j ′ ,

because jx was the last job with e jmax + ∑
j ′< j w j ′ = Δx . �


Corollary 1 If the interval [S j ,C j ) for processing a job j ∈ JS
∗

x \{ jx } intersects interval Ik
but job j does not complete in Ik , i.e., C j > dk, then either all time slots in Ik are fully
utilized or no time slot in Ik is utilized.

To decide on an optimal utilization decision for the sub-schedule of the jobs in JS
∗

x of
region RS∗

x , we need the following two lemmas.

Lemma 5 If there is a partially utilized interval Ik in region RS∗
x , then (i) Ik is the last interval

of RS∗
x , or (ii) jx is the last job being processed in Ik and ek = e jxmax.
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Proof Suppose there exists a partially utilized interval Ik in region RS∗
x . Suppose j with

j �= jx is the last job that is processed in Ik , hence (ii) does not hold. Then either C j < dk ,
in which case dk = sk+1 is a split point and thus Ik is the last interval in the region, whence
(i) is true. Or, we are in the situation of Corollary 1 and have a contradiction, because then Ik
must be fully utilized.

Now suppose jx is the last job being processed in Ik . If C jx < dk , then again Ik is the

last interval in the region. Otherwise C jx /∈ Ik . If ek = e jxmax, then by the definition of jx
case (ii) of the lemma holds. If not, by definition of e jxmax we have ek < e jxmax. A simple
exchange argument suffices to show that optimality of S∗ implies that interval Ik comes
after the last utilized “expensive” interval with cost e jxmax. Hence, job jx is processed in an
expensive interval, then continued in Ik and is completed in yet a later interval. But then we
can utilize an extra time slot in Ik instead of a time slot in the expensive interval, without
increasing the completion time. This contradicts optimality, and, hence, ek = e jxmax, which
completes the proof. �

Lemma 6 There exists an optimal schedule S∗ for a given job permutation σ with the fol-
lowing property. If the last interval Ik of a region RS∗

x is only partially utilized then all time

slots in
[
S jx ,C jx

)
with cost at most e jxmax are utilized.

Proof Recall that jx + a is the last job being processed in the region, and hence, it is the last
job processed in the partially utilized interval Ik .

Suppose there is a time slot [t, t + 1) ∈ [
S jx ,C jx

)
with cost at most e jxmax that is not

utilized. If we utilize [t, t + 1) instead of the last utilized slot in Ik and redistribute the
processing volume accordingly without changing the processing order, then byObservation 2
and Lemma 2 the difference in cost is δ1 := e(t) − ek − ∑ jx+a

j= jx
w j . On the other hand, if

we utilize one additional time slot in Ik instead of a time slot in
[
S jx ,C jx

)
with cost e jxmax

and redistribute the processing volume accordingly without changing the processing order ,
then by Observation 2 and Lemma 2 the difference in cost is δ2 := ek − e jxmax + ∑ jx+a

j= jx
w j .

We consider an optimal schedule S∗, thus δ1 ≥ 0 and δ2 ≥ 0 which implies that δ1 + δ2 =
e(t) − e jxmax ≥ 0. This is a contradiction if e(t) < e jxmax. If e(t) = e jxmax, then δ1 = −δ2 = 0,
because we consider an optimal schedule S∗. This, however, contradicts our assumption
that S∗ minimizes the value

∑dK−1
t=0 t · y(t). �


We now show how to construct an optimal partial schedule for a given ordered job set in
a given region in polynomial time.

Lemma 7 Given a region Rx and an ordered job set Jx , we can find in polynomial time an
optimal utilization decision for scheduling Jx within the region Rx , which does not contain
any other split points than τx and τx+1, the boundaries of Rx .

Proof Given Rx and Jx , we guess the optimal combination
(
jx , e

jx
max

)
, i.e., we enumerate

over all O(nK ) combinations and choose eventually the best solution.
We firstly assume that a partially utilized interval exists and it is the last one in Rx (case (i)

in Lemma 5). Based on the characterization in Lemma 4 we find in polynomial time the slots
to be utilized for the jobs jx − b, . . . , jx − 1. This defines C jx−b, . . . ,C jx−1. Then starting
job jx at time C jx−1, we check intervals in the order given and utilize as much as needed

of each next interval Ih if and only if eh ≤ e jxmax, until a total of p jx time slots have been
utilized for processing jx . Lemma 6 justifies to do that. This yields a completion time C jx .
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Starting at C jx , we use again Lemma 4 to find in polynomial time the slots to be utilized for
processing the jobs jx + 1, . . . , jx + a. This gives C jx+1, . . . ,C jx+a .

Nowwe assume that there is no partially utilized interval or we are in case (ii) of Lemma 5.
Similar to the case above, we find in polynomial time the slots that S∗ utilizes for the jobs
jx −b, . . . , jx −1 based on Lemma 4. This defines C jx−b, . . . ,C jx−1. To find the slots to be
utilized for the jobs jx +1, . . . , jx +a, in this case, we start at the end of Rx and go backwards
in time. We can start at the end of Rx because in this case the last interval of Rx is fully
utilized. This gives C jx+1, . . . ,C jx+a . Job jx is thus to be scheduled in

[
C jx−1, S jx+1

)
. In

order to find the right slots for jx we solve amakespan problem in the interval
[
C jx−1, S jx+1

)
,

which can be done in polynomial time (Theorem 4) and gives a solution that cannot be worse
than what an optimal schedule S∗ does.

If anywhere in both cases the utilized intervals can not be made sufficient for processing
the job(s) for which they are intended, or if scheduling the jobs in the utilized intervals

creates any intermediate split point,then this
(
jx , e

jx
max

)
-combination is rejected. Hence, we

have computed the optimal schedules over all O(nK ) combinations of
(
jx , e

jx
max

)
and over

both cases of Lemma 5 concerning the position of the partially utilized interval.We choose
the schedule with minimum total cost and return it with its value.This completes the proof. �


Now we are ready to prove our main theorem.

Proof (of Theorem 2) We give a dynamic program. Assume jobs are indexed according to the
order given by σ . We define a state ( j, t), where t is a potential split point t ∈ P and j is
a job from the job set J , and a dummy job 0. The value of a state, Z( j, t), is the optimal
scheduling cost plus utilization cost for completing jobs 1, . . . , j by time t ∈ P . We apply
the following recursion:

Z( j, t) = min

{

Z( j ′, t ′) + z
({

j ′+ 1, . . . , j
}
, [t ′, t)) | t ′ ∈ P, t ′ < t, j ′ ∈ J , j ′ ≤ j

}

,

Z(0, t) = 0, for anyt ∈ P,

Z( j, s1) = ∞, for any j > 0,

where z
({

j ′ + 1, . . . , j
}
, [t ′, t)) denotes the value of an optimal partial schedule for job set

{ j ′+1, j ′+2, . . . , j
}
in the region [t ′, t), or∞ if no such schedule exists. In case j = j ′ there

is no job to be scheduled in the interval [t ′, t), whence we set z({ j ′ + 1, . . . , j
}
, [t ′, t)) = 0.

This models the option of leaving regions empty.
An optimal partial schedule can be computed in time polynomial in n and K as we have

shown in Lemma 7. Hence, we compute Z( j, t) for all O(nK ) states in polynomial time,
which concludes the proof. �

Remark It is worth mentioning that the characterization of an optimal utilization decision
above (Theorem 2) can be used to obtain a simple (4 + ε)-approximation for the weighted
problem 1 | pmtn | ∑

w jC j + E . For the weighted problem, there may not exist a job
sequence that is universally optimal forallutilizationdecisions (Epstein et al. 2012).However,
there is a polynomial-time algorithm that computes a universal (4+ε)-approximation (Epstein
et al. 2012). More precisely, the algorithm constructs a sequence of jobs which approximates
the scheduling cost for any utilization decision within a factor at most 4 + ε.

We can use this universal sequence for weighted jobs as the input for the algorithm in
this section for computing the optimal utilization decision. Given an instance of problem
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1 | pmtn | ∑
w jC j + E , we compute a universal (4 + ε)-approximate sequence σ by the

algorithm by Epstein et al. (2012). Then, we determine the optimal utilization decision for σ

by the algorithm presented in this section (Theorem 2) and obtain a schedule S.
We argue that the schedule S has cost within a factor 4 + ε of the cost of an optimal

schedule S∗. Let S ′ denote the schedule which we obtain by changing the utilization decision
of S to the utilization in an optimal schedule S∗ (but keeping the scheduling sequence σ ).
The schedule S ′ has total cost no less than the original cost of S. Furthermore, given the
utilization decision in the optimal solution S∗, the sequence σ approximates the scheduling
cost of S∗ within a factor of 4+ ε. Let C j (X) and E(X) denote the completion time of job j
and the total utilization cost in schedule X , respectively. Then the total cost of schedule S is

∑

j

w jC j (S) + E(S) ≤
∑

j

w jC j (S ′) + E(S ′) ≤ (4 + ε)
∑

j

w jC j (S∗) + E(S∗)

≤ (4 + ε)

( ∑

j

w jC j (S∗) + E(S∗)
)

.

We conclude with the following corollary.

Corollary 2 There is a (4 + ε)-approximation algorithm for the scheduling problem
1 | pmtn | ∑

w jC j + E.

While this corollary for weighted jobs follows directly from the main result in this section
on unweighted jobs (Theorem 2) and known results by Epstein et al. (2012), it improves sub-
stantially on the exponentially slower algorithm byKulkarni andMunagala (2013). However,
we present a best-possible approximation algorithm for the weighted setting in the following
section.

3 A PTAS for minimizing the total weighted completion time

The main result of this section is a polynomial-time approximation scheme (PTAS) for
minimizing the total weighted completion time with time-varying utilization cost. Unless
P=NP, our PTAS is a best possible approximation algorithm since the problem is strongly
NP-hard, even if there are only two tariffs (Wang et al. 2005).

Theorem 3 There is a polynomial-time approximation scheme for the scheduling problem
1 | pmtn | ∑

w jC j + E.

The roadmap to prove the theorem is as follows. We firstly describe a well-known two-
dimensional representation of schedules in a 2D-Gantt chart and introduce some notation and
preliminaries in Sect. 3.1. In Sect. 3.2, we present a dynamic programming (DP) algorithm
with exponential running time. It draws inspiration from a known DP for scheduling on a
machine of varying speed (Megow and Verschae 2018). As we mentioned earlier, a direct
application of their DP does not seem possible. However, we can exploit methods developed
by Megow and Verschae (2018) to reduce the number of states of our DP and, thus, reduce
the running time to be polynomial in the input. This is explained in Sect. 3.3.
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(a) 2D-Gantt chart of a schedule with 5 jobs
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(b) Same figure as (a), additionally depicting
the weight schedule and the used notation.

Fig. 1 2D-Gantt chart (figure from Megow and Verschae (2018))

3.1 Preliminaries and scheduling in the weight-dimension

Consider a schedule S with completion times C j (S) for jobs j ∈ J . For any time t ,
let WS(t) = ∑

j :C j>t w j denote the total weight of all jobs that complete in S strictly
after t .

Notice that, by definition, WS(t) is right-continuous, i. e., if C j (S) = t , the weight of j
does not contribute to the remaining weight WS(t). The scheduling cost for any schedule S
can now be expressed equivalently in terms of completion times and the remaining weight
function: ∫ ∞

0
WS(t) dt =

∑

j∈J

w jC j (S) . (1)

This connection can be seen well in the natural representation of a schedule in a classical
2D-Gantt chart using a time-dimension and a weight-dimension. It was shown originally
by Eastman et al. (1964) and further used, e.g., in Goemans and Williamson (2000) and
Megow and Verschae (2018).

In the following we elaborate more on this connection and introduce further notation.
Here we follow closely the notation introduced by Megow and Verschae (2018) and use in
Fig. 1 one of the visualizations from their paper. Figure 1a depicts a typical schedule with
five jobs horizontally aligned along the time axis (we say, in the time-dimension); we refer to
this standard schedule as time-schedule. Above it, we show the two-dimensional Gantt chart
representation where each job j is represented by a rectangle with a length corresponding
to the processing time p j and a height corresponding to the job weight w j . The function in
bold is the remaining weight functionW (·) of the schedule. The total scheduling cost equals
the area under the remaining weight function, as also stated in Eq. (1).

Following the idea of Megow and Verschae (2018), we implicitly describe the completion
time of a job j by the value of the function WS at the time that j completes. We refer to
this value as the starting weight Sw

j of job j . For a visualization consider Fig. 1b. It shows
the same 5-job instance with the same time-schedule as Fig. 1a. In addition, it shows on the
vertical axis (we say, in theweight dimension) a dual schedulewhich is obtained by projecting
the 2D-Gantt chart to the vertical axis. In this schedule, which we call weight-schedule, each
job has a length corresponding to its original weight w j . The scheduling order, from bottom
to top, is the reverse order of the time-schedule. In analogy to the time-dimension, the value
Cw

j := Sw
j + w j is called completion weight of job j . Observe that in Fig. 1b we have

Sw
5 = 0,Cw

5 = Sw
4 = w5,Cw

4 = Sw
3 = w5 + w4, etc.
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Other terminologies, such as feasibility and idle time, also translate from the time-
dimension to the weight-dimension. A weight-schedule is called feasible if no two jobs
overlap and the machine is called idle in weight-dimension if there exists a point w in the
weight-dimension with w /∈ [Sw

j ,Cw
j ] for all jobs j ∈ J .

A weight-schedule together with a utilization decision can be translated into a time-
schedule by ordering the jobs in decreasing order of completion weights and scheduling them
in this order in the time-dimension in the utilized time slots. For a given utilization decision,
consider a weight-schedule S with completion weights Cw

1 > · · · > Cw
n > Cw

n+1 := 0 and
the corresponding completion times 0 =: C0 < C1 < · · · < Cn for the jobs j = 1, . . . , n.
We define the (scheduling) cost of a weight-schedule S as

∑n
j=1(C

w
j −Cw

j+1)C j . This value

equals
∑n

j=1 πS
j C

w
j , where πS

j := C j − S j , if and only if there is no idle weight. If there is
idle weight, then the cost of a weight-schedule can only be greater, and we can safely remove
idle weight without increasing the scheduling cost (Megow and Verschae 2018).

In summary, a time-schedule implies a corresponding weight-schedule of the same cost.
On the other hand, a weight-schedule plus a utilization decision imply a time-schedule with
a possibly smaller cost.

3.2 Dynamic programming algorithm

Let ε > 0. Firstly, we scale the input parameters so that all job weightsw j , j = 1, . . . , n, and
all tariffs ek , k = 1, . . . , K , are non-negative integers. Then, we apply standard geometric
rounding to the weights to gainmore structure on the input, i.e, we round up the weights to the
next integer power of (1+ε), losing atmost a factor (1+ε) in the objective value. Furthermore,
we discretize the weight-space into intervals of exponentially increasing size: we define
intervals WIu := [(1 + ε)u−1 , (1 + ε)u) for u = 1, . . . , ν with ν := �log1+ε

∑
j∈J w j�.

Consider a subset of jobs J ′ ⊆ J and a partial weight-schedule of J ′. In the dynamic
program, the set J ′ represents the set of jobs at the beginning of a corresponding weight-
schedule, i.e., if j ∈ J ′ and k ∈ J\J ′, then Cw

j < Cw
k . However, the jobs in J ′ are scheduled

at the end in a corresponding time-schedule. As discussed in Sect. 3.1, a partial weight-
schedule S for the jobs in J\J ′ together with a utilization decision for these jobs can be
translated into a time-schedule.

Let Fu := {Ju ⊆ J : ∑
j∈Ju w j ≤ (1 + ε)u} for u = 1, . . . , ν. The set Fu contains all

the possible job sets Ju that can be scheduled in WIu or before. Additionally, we define F0

to be the set that contains only the set of all zero-weight jobs J0 := { j ∈ J : w j = 0}. The
following straightforward observation allows us to restrict to simplified completion weights.

Observation 3 Consider an optimal weight-schedule in which the set of jobs with completion
weight in WIu, u ∈ {1, . . . , ν}, is exactly Ju\Ju−1 for some Ju ∈ Fu and Ju−1 ∈ Fu−1. By
losing at most a factor (1+ε) in the objective value, we can assume that for all u ∈ {1, . . . , ν}
the completion weight of the jobs in Ju\Ju−1 is exactly (1 + ε)u.

The following observation follows from a simple interchange argument.

Observation 4 There is an optimal time-schedule in which J0 is scheduled completely after
all jobs in J\J0.

The dynamic program recursively constructs states Z = [Ju, b, avg] and computes for
every state a time point t(Z) with the following meaning. A state Z = [Ju, b, avg] with
time point t(Z) expresses that there is a feasible partial time-schedule S for the jobs in J\Ju
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with Ju ∈ Fu together with a utilization decision for the time interval [0, t(Z)) with total
utilization cost at most b and for which the average scheduling cost is at most avg , i.e.,

1

t(Z)
·
∫ t(Z)

0
WS(t) dt ≤ avg.

We remark that even if partial schedule S only contains jobs in J\Ju , the remain-
ing weight function WS still considers jobs in Ju with WS(t(Z)) = ∑

j∈Ju w j . Further,
S implies a weight-schedule for jobs in J\Ju with completion weights in the interval
[∑ j∈Ju w j ,

∑
j∈J w j ]. Note that avg · t(Z) is an upper bound on the total scheduling cost

of S and that the average scheduling cost is non-increasing in time, because the remaining
weight function WS(t) is non-increasing in time.

In the iteration for u, we only consider states [Ju, b, avg] with Ju ∈ Fu . The states in
the iteration for u are created based on the states from the iteration for u + 1. Initially, we
only have the state Zν = [J , 0, 0] with t(Zν) := 0. We start the dynamic program with
u = ν − 1, iteratively reduce u by one, and stop the process after the iteration for u = 0. In
the iteration for u, the states together with their time points are constructed in the following
way. Consider candidate sets Ju+1 ∈ Fu+1 and Ju ∈ Fu with Ju ⊆ Ju+1, a partial time-
schedule S of J\Ju , in which the set of jobs with completion weight (in the corresponding
weight-schedule) inWIu+1 is exactly Ju+1\Ju and the set of jobs later thanWIu+1 is exactly
J\Ju+1, two budgets b1, b2 with b1 ≤ b2, and two bounds on the average scheduling cost
avg1, avg2. Let Z1 = [Ju+1, b1, avg1] and Z2 = [Ju, b2, avg2] be the corresponding states.
We know that there is a feasible partial schedule for the job set J\Ju+1 up to time t(Z1)

having average scheduling cost at most avg1 and utilization cost at most b1. By augmenting
this schedule, we want to compute a minimum time point t(Z1, Z2) that we associate with
the link between Z1 and Z2 so that there is a feasible partial schedule for J\Ju that processes
the jobs from Ju+1\Ju in the interval [t(Z1), t(Z1, Z2)), has average scheduling cost at most
avg2, and utilization cost at most b2. That is, t(Z1, Z2) is the minimum makespan if we start
with Z1 and want to arrive at Z2. For the computation of t(Z1, Z2), we use the following
subroutine.

UsingObservation 3,we approximate the area under the remainingweight functionWS(t)
for the jobs in Ju+1\Ju by (1 + ε)u+1 · (t(Z1, Z2) − t(Z1)), where t(Z1, Z2) is the time
point that we want to compute. Approximating this area gives us the flexibility to schedule
the jobs in Ju+1\Ju in any order. However, we need that avg2 · t(Z1, Z2) is an upper bound
on the integral of the remaining weight function by time t(Z1, Z2). That is, we want that

avg2 · t(Z1, Z2) ≥ (1 + ε)u+1 · t(Z1, Z2) + t(Z1) · (avg1 − (1 + ε)u+1).

Both the left-hand side and the right-hand side of this inequality are linear functions in
t(Z1, Z2). So, we can compute a smallest time point t LB such that the right-hand side is
greater or equal to the left-hand side for all t(Z1, Z2) ≥ t LB . If there is no such t LB , then
we set t(Z1, Z2) to infinity and stop the subroutine. Otherwise, we know that our average
scheduling cost at t LB or later is at most avg2. Let E(p, [t1, t2)) denote the total cost of the p
cheapest slots in the time-interval [t1, t2).We compute the earliest time point t(Z1, Z2) ≥ t LB

such that the set of jobs Ju+1\Ju can be feasibly scheduled in [t(Z1), t(Z1, Z2)) having
utilization cost not more than b2 − b1. That is, we set

t(Z1, Z2) = min
{
t ≥ max{t(Z1), t

LB} : E(p(Ju+1\Ju), [t(Z1), t)) ≤ b2 − b1
}

,
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Fig. 2 Dynamic program. Illustration of an iteration for u

where p(J ′) := ∑
j∈J ′ p j . The time point t(Z1, Z2) can be computed in polynomial time

by applying binary search in the interval [max{t(Z1), t LB}, dK ), since E(p, [t1, t2)) is a
monotone function in t2.

Given all possible states [Ju+1, b1, avg1] of the iteration for u + 1, the dynamic program
enumerates all possible links for all these states to states [Ju, b2, avg2] from the iteration for u
fulfilling the above requirement on the candidate sets Ju+1 and Ju , on the budgets b1 and b2,
and on the average scheduling costs avg1 and avg2. For any such possible link (Z1, Z2)

between states from the iteration for u+1 and u, we apply the above subroutine and associate
the time point t(Z1, Z2)with this link. Thus, the dynamic program associates several possible
time points with a state Z2 = [Ju, b2, avg2] from the iteration for u. However, we only keep
the link with the smallest associated time point t(Z1, Z2) (ties are broken arbitrarily) and this
defines the time point t(Z2) that we associate with the state Z2. That is, for a state Z2 from the
iteration for u we define t(Z2) := min{t(Z1, Z2) | Z1 is a state from the iteration for u + 1}.
Figure 2 gives an illustration of the described iteration for u.

Let Emax be an upper bound on the total utilization cost in an optimal solution, e.g., the
total cost of the first p(J ) finite-cost time slots. The dynamic program does not enumerate all
possible budgets but only a polynomial number of them, namely budgets with integer powers
of (1 + η1) with η1 > 0 determined later. That is, for the budget on the utilization cost, the
dynamic program enumerates all values in

B := {0, 1, (1 + η1), (1 + η1)
2, . . . , (1 + η1)

ω1} with ω1 = �log1+η1
Emax�.

The value η1 will be chosen so that (1 + η1)
ω1 ≤ (1 + ε) and ω1 is polynomial (see

proof of Lemma 8 for the exact definition). Similarly, we observe that (1 + ε)ν is an upper
bound on the average scheduling cost. The dynamic program does also only enumerate a
polynomial number of possible average scheduling costs, namely integer powers of (1+ η2)

with η2 > 0 also determined later. This means, for the average scheduling cost, the dynamic
program enumerates all values in the set

AVG := {0, 1, (1 + η2), (1 + η2)
2, . . . , (1 + η2)

ω2} with ω2 = �ν log1+η2
(1 + ε)�.

As before, the value η2 will be chosen so that (1+ η2)
ω2 ≤ (1+ ε) and ω2 is polynomial.

The dynamic program stops after the iteration for u = 0. Now, only the set of zero-weight
jobs is not scheduled yet. For any state Z = [J0, b, avg] constructed in the iteration for
u = 0, we append the zero-weight jobs starting at time t(Z) and utilizing the cheapest slots,
which is justified by Observation 4. We add the additional utilization cost to b. After this, we
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return the state Z = [J0, b, avg] and its corresponding schedule, which can be computed by
backtracking and following the established links, with minimum total cost b + avg · t(Z).
With this, we obtain the following result.

Lemma 8 The dynamic program computes a (1 + O(ε))-approximate solution.

Proof Consider an arbitrary iteration for u of the dynamic program and let i = ν − u. We
consider states Z = [Ju, b, avg] with Ju ∈ Fu , b ∈ B, and avg ∈ AVG for which we
construct the time points t(Z). Let Z∗

1 = [J ∗
u+1, b

∗
1, avg∗

1 ] and Z∗
2 = [J ∗

u , b∗
2, avg∗

2 ] with
J ∗
u+1 ∈ Fu+1 and J ∗

u ∈ Fu be the states that represent an optimal solution S∗ for which the
set of jobs with completion weight in WIu+1 is exactly J ∗

u+1\J ∗
u . Using Observation 3, at a

loss of at most (1 + ε), also in S∗ we can approximate the area under the remaining weight
function WS∗

(t) for the jobs in J ∗
u+1\J ∗

u by (1 + ε)u+1 · (t(Z∗
2) − t(Z∗

1)). We claim the
following invariant . The dynamic program constructs in iteration i a state Z = [Ju, b, avg]
with Ju ∈ Fu , b ∈ B, and avg ∈ AVG such that

(i) Ju = J ∗
u ,

(ii) b ≤ (1 + η1)
i · b∗

2,
(iii) avg ≤ (1 + η2)

i · avg∗
2 , and

(iv) t(Z) ≤ t(Z∗
2).

We prove this statement by induction on i ∈ {1, . . . , ν}. Consider the first iteration of
the dynamic program, in which we consider states with job sets from Fν−1. Let Z∗ =
[J ∗

ν−1, b
∗, avg∗] be the state that corresponds to the optimal solution S∗. The dynamic pro-

gram also considers the job set J ∗
ν−1. Suppose we utilize the same slots that S∗ utilizes for

the jobs in J\J ∗
ν−1 in the interval [0, t(Z∗)). Let b be the resulting utilization cost after

rounding b∗ up to the next value in B. With this, we know that b ≤ (1 + η1) · b∗. Further-
more, by our assumption, we know that the average scheduling cost of S∗ up to time t(Z∗)
is (1 + ε)ν . Let avg be (1 + ε)ν rounded up to the next value in AVG. Then we know that
avg ≤ (1 + η2) · avg∗. The dynamic program also considers the state Z = [J ∗

ν−1, b, avg].
However, the dynamic program computes the minimum time point t(Zν, Z) ≥ t LB so that
the set of jobs J\J ∗

ν−1 can be feasibly scheduled in [0, t(Zν, Z)) having utilization cost not
more than b. This implies that t(Zν, Z) ≤ t(Z∗), which implies that t(Z) ≤ t(Z∗). Note
that t LB = 0 for the specified values in Z .

Suppose, the statement is true for the iterations 1, 2, . . . , i − 1. We prove that it is also
true for iteration i , in which we consider job sets from Fu . Again, let Z∗

1 = [J ∗
u+1, b

∗
1, avg∗

1 ]
and Z∗

2 = [J ∗
u , b∗

2, avg∗
2 ] with J ∗

u+1 ∈ Fu+1 and J ∗
u ∈ Fu be the states that represent S∗. By

our hypothesis, we know that the dynamic program constructs a state Z1 = [Ju+1, b1, avg1]
with

(i) Ju+1 = J ∗
u+1,

(ii) b1 ≤ (1 + η1)
i−1 · b∗

1,
(iii) avg1 ≤ (1 + η2)

i−1 · avg∗
1 , and

(iv) t(Z1) ≤ t(Z∗
1).

We augment this schedule in the following way. Suppose, we utilize the same slots that S∗
utilizes for the jobs in J ∗

u+1\J ∗
u in the interval [t(Z∗

1), t(Z
∗
2)). Let b2 be the resulting total

utilization cost after rounding up to the next value in B. Thus, there is a feasible schedule for
J\J ∗

u having utilization cost of at most

b2 ≤ (1 + η1) · (b1 + b∗
2 − b∗

1)

≤ (1 + η1)
i · (b∗

1 + b∗
2 − b∗

1)
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= (1 + η1)
i · b∗

2 .

Thenewaverage scheduling cost after rounding to the next value in AVG is by construction
of the schedule

avg2 ≤ (1 + η2) · avg1 · t(Z1) + (1 + ε)u+1 · (
t(Z∗

2) − t(Z1)
)

t(Z∗
2)

≤ (1 + η2)
i · avg∗

1 · t(Z1) + (1 + ε)u+1 · (
t(Z∗

2) − t(Z1)
)

t(Z∗
2)

, (2)

where the second inequality follows from applying the induction hypothesis (iii). Further, we
use induction hypothesis (iv), namely, t(Z∗

1) − t(Z1) ≥ 0, to derive an upper bound on the
enumerator of the right-hand side in Inequality (2). We use the fact that avg∗

1 ≥ (1 + ε)u+1

andmultiply both sides of the inequality with (t(Z∗
1)−t(Z1)) and then add t(Z∗

2)·(1+ε)u+1.
Rearranging terms implies

avg∗
1 · t(Z1) + (1 + ε)u+1 · (

t(Z∗
2) − t(Z1)

)

≤ avg∗
1 · t(Z∗

1) + (1 + ε)u+1 · (
t(Z∗

2) − t(Z∗
1)

)
.

Applying this inequality to (2) yields

avg2 ≤ (1 + η2)
i · avg∗

1 · t(Z∗
1) + (1 + ε)u+1 · (

t(Z∗
2) − t(Z∗

1)
)

t(Z∗
2)

= (1 + η2)
i · avg∗

2 .

Here, the equality follows from the definitions of an optimal schedule and avg∗
2 , and from

Observation 3.
The dynamic program also considers the link between the state Z1 and Z2 :=

[J ∗
u , b2, avg2]. We first observe that t LB ≤ t(Z∗

2), since

avg2 · t(Z∗
2) ≥ avg1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2) − t(Z1))

by construction of avg2. Furthermore, we observe that b2 − b1 ≥ b∗
2 − b∗

1 by construction
of b2. These two facts together with t(Z1) ≤ t(Z∗

1) imply that t(Z1, Z2) ≤ t(Z∗
2), which

implies that t(Z2) ≤ t(Z∗
2).

To complete the proof, we need to specify the parameters η1 and η2. We want that (1 +
ηi )

ν ≤ (1+ε) for i = 1, 2.We claim that for a given ν ≥ 1 there exists an η̄ > 0 such that for
all η ∈ (0, η̄]we have (1+η)ν ≤ 1+2νη. Consider the function f (η) := (1+η)ν −1−2νη.
We have that f (0) = 0 and f ′(η) < 0 for η ∈ [0, 21/(ν−1)−1). This shows the claim. Hence,
we choose ηi = min{ ε

2ν , 21/(ν−1) − 1} for i = 1, 2. This shows the statement of the lemma
and that the size of B as well as the size of AVG are bounded by a polynomial in the size of
the input. �


We remark that the given DP works for more general utilization cost functions e : N →
Q≥0 than considered here in the paper. As argued in the proof, it is sufficient for the DP
that there is a function E(p, [t1, t2)) that outputs in polynomial time for a given time inter-
val [t1, t2) and a given p ∈ Z≥0 the total cost of the p cheapest slots in [t1, t2).

We also remark that the running time of the presented DP is exponential, because the size
of the sets Fu are exponential in the size of the input. However, in the next section we show
that we can trim the sets Fu down to ones of polynomial size at an arbitrarily small loss in
the performance guarantee.
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3.3 Trimming the state space

The set Fu , containing all possible job sets Ju , is of exponential size, and so is the DP
state space. In the context of scheduling with variable machine speed, it has been shown
in Megow and Verschae (2018) how to reduce the setFu for a similar DP (without utilization
decision, though) to a set F̃u of polynomial size at only a small loss in the objective value. In
general, such a procedure is not necessarily applicable to our setting because of the different
objective involving additional utilization cost and the different decision space. However,
the compactification in Megow and Verschae (2018) holds independently of the speed of
the machine and, thus, independently of the utilization decision of the DP (by interpreting
nonutilization as speed 0 and utilization as speed 1 ). Hence, we can apply it to our cost-aware
scheduling framework and obtain a PTAS. We explain in the following, why the building
blocks for the trimming procedure by Megow and Verschae (2018) can be applied to our DP
for obtaining the set F̃u of polynomial size.

Light Jobs The first building block for the trimming procedure is a classification of the jobs
based on their weights.

Definition 2 Given a weight schedule and a job j ∈ J with starting weight Sw
j ∈ WIu , we

call job j light if w j ≤ ε2|WIu |, otherwise j is called heavy.

This classification enables us to structure near-optimal solutions. To impose structure on
the set of light jobs, Megow and Verschae (2018) describe the following routine for a given
weight schedule S. First, remove all light jobs from S and move the remaining jobs within
each intervalWIu so that the idle weight inWIu is consecutive. Then, schedule the light jobs
according to the reverse Smith’s rule, that is, for each u = 1, . . . , ν and each idle weight
w ∈ WIu , process at w a light job j that maximizes p j/w j . Eventually, shift the processing
of each interval WIu to WIu+1, which delays the completion of every job by at most a factor
of (1+ ε)2. This delay allows us to completely process every light job in the weight interval
where it starts processing. It can be shown that the cost of the resulting schedule is at most
a factor of 1 + O (ε) greater than the cost of S, which brings us to the following structural
statement.

Lemma 9 (Megow and Verschae 2018) At a loss of a factor of 1 + O (ε) in the scheduling
cost, we can assume the following. For a given interval WIu, consider any pair of light jobs
j, k. If both jobs start in WIu or later and pk/wk ≤ p j/w j , then Cw

j ≤ Cw
k .

We remark, that Lemma 9 holds independently of the speed of the machine, as pointed
out in Megow and Verschae (2018). This means that at a loss of a factor of 1 + O (ε) in the
scheduling cost we can assume also for our problem that light jobs are scheduled according
to reverse Smith’s rule in the weight-dimension, which holds independently of our actual
utilization decision.

Localization We now localize jobs in the weight-dimension to gain more structure. That
is, we determine for every job j ∈ J two values rw

j and dw
j such that, independently of

our actual utilization decision, j is scheduled in the weight-dimension completely within[
rw
j , dw

j

)
in some (1+O (ε))-approximate weight-schedule (in terms of the scheduling cost

in weight-dimension ). We call rw
j and dw

j the release-weight and the deadline-weight of
job j , respectively.

Lemma 10 (MegowandVerschae2018)Wecancompute in polynomial time valuesrw
j anddw

j
for each j ∈ J such that:
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(i) there exists a (1 + O (ε))-approximate weight-schedule (in terms of the scheduling cost)
that processes each job j within [rw

j , dw
j ),

(ii) there exists a constant s ∈ O (log (1/ε) /ε) such that dw
j ≤ rw

j · (1 + ε)s ,
(iii) rw

j and dw
j are integer powers of (1 + ε), and

(iv) the values rw
j an dw

j are independent of the speed of the machine.

This lemma enables us to localize all jobs in J in polynomial time and independent of our
actual utilization decision, as guaranteed by property (iv).

Compact search space Based on the localization of jobs in weight space, we can cut the
number of different possibilities for a candidate set Ju in iteration u of our DP down to a
polynomial number. That is, we replace the setFu by a polynomially-sized set F̃u . Instead of
describing all sets S ∈ F̃u explicitly, we give all possible complements R = J\S and collect
them in a set Du , where a set R ∈ Du represents a possible set of jobs having completion
weights in WIu+1 or later. Obviously, a set R ∈ Du must contain all jobs j ∈ J having a
release weight rw

j ≥ (1+ ε)u . Furthermore, we know that dw
j ≥ (1+ ε)u+1 is necessary for

job j to be in a set R ∈ Du . Following property (ii) in Lemma 10, we thus only need to decide
about the jobs having a release weight rw

j = (1 + ε)i with i ∈ {u + 1 − s, . . . , u − 1}. An
enumeration over basically all possible job sets for each i ∈ {u + 1 − s, . . . , u − 1} gives
the following desired result.

Lemma 11 (Megow and Verschae 2018) For each u, we can construct in polynomial time a
set F̃u that satisfies the following:

(i) there exists a (1+ O (ε))-approximate weight-schedule (in terms of the scheduling cost)
in which the set of jobs with completion weight at most (1 + ε)u belongs to F̃u,

(ii) the set F̃u has cardinality at most 2O
(
log3(1/ε)/ε2

)

, and
(iii) the set F̃u is completely independent of the speed of the machine.

Again, Property (iii) implies that we can construct the set F̃u independently of our uti-
lization decision.

To complete the proof of Theorem 3 it remains to determine the running time of the DP.
The DP has ν iterations, where in each iteration for at most 2O

(
log3(1/ε)/ε2

)

· |B| · |AVG|
previous states at most 2O

(
log3(1/ε)/ε2

)

· |B| · |AVG| many links to new states are considered.
Therefore, the running time complexity of our DP is ν · (2O

(
log3(1/ε)/ε2

)

· |B| · |AVG|)2,
which is bounded by a polynomial in the size of the input.

4 Minimizing themakespan on unrelatedmachines

Finally we derive positive results for the problem of minimizing makespan with utiliza-
tion cost on unrelated machines. The standard scheduling problem without utilization cost
R | pmtn |Cmax can be solved optimally in polynomial time by solving a linear program as
was shown by Lawler and Labetoulle (1978). We show that the problem complexity does not
increase significantly when taking into account time-varying utilization cost.

Consider the preemptive makespan minimization problem with utilization cost. Recall
that by our problem definition we can use every machine in a utilized time slot and pay only
once. Thus, it is sufficient to find an optimal utilization decision for solving this problem,
because we can use the polynomial-time algorithm in Lawler and Labetoulle (1978) to find
the optimal schedule within these slots.
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Observation 5 Given the set of time slots utilized in an optimal solution, we can compute an
optimal schedule in polynomial time.

Given an instance of our problem, let Z be the optimal makespanwhen schedulingwithout
utilization cost. Notice that Z is not necessarily integral. To determine an optimal utilization
decision, we use the following observation.

Observation 6 Given an optimal makespan C∗
max for R | pmtn |Cmax+E, an optimal sched-

ule utilizes the �Z� cheapest slots before �C∗
max�.

Note that we must pay full tariff for a used time slot, no matter how much it is utilized,
and so does an optimal solution. In particular, this holds for the last utilized slot. Hence, it
remains to compute an optimal value C∗ := �C∗

max�.
To do so, we restrict our attention to relevant intervals Ik = [sk, dk), k ∈ {1, . . . , K }, with

sk ≥ �Z� and compute for each such interval an optimal point in time for C∗ assuming that
C∗ ∈ Ik .

Consider a relevant interval Ik . If we knew the precise value of C∗ in Ik , then we would
utilize the �Z� cheapest time slots before C∗, which is optimal by Observation 6. We cannot
afford to enumerate all time points in Ik to determineC∗. However,we canmake the following
observation.

Observation 7 Consider a feasible schedule with latest completion time C ∈ Ik that utilizes
the �Z� cheapest time slots before C. Any utilized time slot of cost e with e > ek + 1 can be
replaced by a time slot from Ik (if available) leading to a solution of less total cost.

To determine the optimal makespan within Ik , we let C∗ = sk and determine the schedule
utilizing the �Z� cheapest time slots before C∗. If there is no utilized time slot of cost e with
e > ek + 1, then C∗ is optimal in Ik . If there is such a time slot then do the following. LetU
be the set of utilized time points in intervals of cost e with e > ek +1, and let a := dk − sk be
the number of available time slots in interval Ik . Select the u = min{a, |U |} most expensive
slots from the set U , unutilize them and utilize all time slots in [sk, . . . , sk + u) instead,
whence C∗ is sk + u.

Theorem 4 The scheduling problem R | pmtn |Cmax + E can be solved in polynomial time
in the order of O(K 2) plus the running time for solving R | pmtn |Cmax without utilization
cost (Lawler and Labetoulle 1978).

Proof The algorithm computes Z , the optimal makespanwhen scheduling without utilization
cost, using the algorithm by Lawler and Labetoulle (1978). Then it determines for each
interval Ik , k ∈ {1, 2, . . . , K } the best possible makespan within Ik as described above and
chooses the one of minimum total cost, i.e., makespan plus utilization cost. The procedure
takes at most O(K ) operations per interval, hence in total O(K 2).

It remains to argue that for each interval Ik , the choice of C∗ is optimal. For C∗ = sk this
is obviously true, since all utilized time slots have cost at most ek + 1 and, thus, no change
in the utilization decision can decrease the total cost.

Now suppose that C∗ > sk and suppose for contradiction that this is not the optimal
choice for the makespan in interval Ik . If the optimal makespan in Ik is C∗ − x for some
appropriate x > 0, then, by the way we have determined C∗, there must exist a utilized time
slot with cost larger than ek + 1. Replacing it will give a schedule with less total cost, by
Observation 7, contradicting optimality. If the optimal makespan in Ik is C∗+ x , for some
appropriate x > 0, then in the optimal solution x time slots must be utilized in the interval
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Ik , which our algorithm did not utilize. Our algorithm used instead time slots of cost at
most ek + 1. Thus, our algorithm has total cost not larger than the optimal schedule since its
makespan is less by x and its utilization cost larger by not more than x . This completes the
proof. �


5 Conclusion

We investigate basic scheduling problems within the framework of time-varying costs or
tariffs, where the processing of jobs causes some time-dependent cost in addition to the usual
quality-of-service measure. We presented optimal algorithms and best possible approxi-
mation algorithms for the scheduling objectives of minimizing the makespan on unrelated
machines and the sum of (weighted) completion times on a single machine.

While our work closes the problems under consideration from an approximation point of
view, it leaves open the approximability of multi-machine settings for the min-sum objective.
Further researchmay also ask for the complexity statuswhen assuming that jobs have different
release dates and for other natural objective functions such as average and maximum flow-
time.

Our unrelated machine model is time-slot based, that is, a utilization decision is made for
a time slot and then all machines in this time slot are available. No less relevant appears to
be the model with machine-individual tariffs, that is, a utilization decision is made for a time
slot on each machine individually. It is not difficult to see that a standard LP can be adapted
for optimally solving R | pmtn, r j |Cmax with fractional utilization cost. However, if time
slots can be utilized only integrally then the integrality gap for the simple LP is unbounded
and the problem seems much harder.

Time-varying costs or tariffs appear in many applications in practice but they have hardly
been investigated from a theoretical perspective. With our work we settle the complexity
status and approximability status for very classical scheduling problems. We hope to foster
further research on this framework of time-varying costs or tariffs. We emphasize that the
framework is clearly not restricted to cost-aware scheduling problems. Virtually any problem
in which scarce resources are to be rented from some provider lends itself to be modelled in
this way, with (vehicle) routing problems as a directly appealing example.
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