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Abstract

Recent advances in the blockchain research have been made in two important directions. One

is refined resilience analysis utilizing game theory to study the consequences of selfish behavior of

users (miners), and the other is the extension from a linear (chain) structure to a non-linear (graph-

ical) structure for performance improvements, such as IOTA and Graphcoin. The first question

that comes to mind is what improvements that a blockchain system would see by leveraging these

new advances. In this paper, we consider three major properties for a blockchain system: α-partial

verification, scalability, and finality-duration. We establish a formal framework and prove that no

blockchain system can achieve α-partial verification for any fixed constant α , high scalability, and

low finality-duration simultaneously. We observe that classical blockchain systems like Bitcoin

achieves full verification (α = 1) and low finality-duration, Ethereum 2.0 Sharding achieves low

finality-duration and high scalability. We are interested in whether it is possible to partially satisfy

the three properties.

1 Introduction

Blockchain is a decentralized ledger that provides a system for self-interested parties to carry out trans-

actions without a fully trusted central system. As such, there is no centralized party who can compute

an optimal solution or a Nash equilibrium in advance and then tell each user to take certain actions, as

this will violate the foundations of blockchain systems. The basic idea behind this is that, instead of

having trust in a centralized system or any other specific participant, each participant chooses to trust

the majority of the participants and accepts the outcome achieved through consensus among them. [13]

One major reason that hinders the adoption of blockchain is scalability [29]. For example, Bitcoin

network can only process less than 10 transactions per second on average [8], while typical payment

systems like Visa can process thousands of transactions per second.

Recently, a variety of approaches are proposed to address the scalability issue. Most of them follow

the general framework of divide and conquer, e.g., Zilliqa [26], Harmony [25], and Ethereum 2.0 [24],

and use a sharding scheme that allows transactions to be processed by a subgroup of nodes (a sharding

committee). A sharding scheme usually has a critical issue in terms of resilience, as the correctness

of each transaction now solely depends on a subgroup of voters. Consequently, if common consensus

protocols like Proof-of-Work (PoW) or Byzantine Fault Tolerance (BFT) is used within subgroups, then

the fraction of malicious nodes within every subgroup cannot exceed 1/2 or 1/3, which is a significantly
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stronger assumption than that of a standard blockchain system. A typical blockchain system only re-

quires that the fraction of malicious nodes do not exceed 1/2 or 1/3 of all nodes. We remark that both

Harmony and Ethereum 2.0 claim that if subgroups are generated in a perfect randomized way, then the

percentage of honest nodes within each subgroup is almost the same as their percentage in the whole

group of nodes; however, this requires a perfect distributed random number generation as a separate

procedure, which brings an additional assumption on the security of this additional procedure.

To guarantee that every transaction is correctly executed by only relying on the standard assumption

that the majority of the nodes are honest, we must require every transaction to be verified by all the nodes.

Consequently, it is a straightforward question of whether scalability is achievable at all, as it appears

that any divide and conquer based solution would inevitably reduce the total number of verifications

received by a transaction. A ”non-linear” blockchain structure recently introduced by IOTA [15] and

Graphcoin [4], can neglect such limitations. The basic idea is to allow blocks to be connected as a

directed acyclic graph (DAG) instead of a chain. Such a non-linear structure implements a divide and

conquer approach implicitly by allowing multiple blocks to be appended simultaneously, as a general

graph can be extended in multiple directions. Meanwhile, if we treat different growing directions as soft

forks or branches, then it is possible (depending on system parameters) that they can “merge” again in

the future (see the following figure 2, where the sequences of blocks that follow block A and B meet

at block C). Therefore, a node that tries to append a new block is required to verify a few previous

blocks. So, there is a possibility that a block may still be verified by all the nodes, albeit the delay of

such verification.

On a high level, there are three crucial properties involved in a general blockchain system: verifi-

cation, scalability, and finality-duration. In a nutshell, α-partial verification requires every transaction

to be verified by at least α fraction of all the nodes (which thus ensures resilience under the standard

assumption that the majority of the nodes follow the protocol); scalability means the system throughput,

or the total number of transactions executed per unit of time, is proportional to the total number of par-

ticipating nodes; and finality-duration means the delay in reaching consensus on the correctness of the

execution of each transaction. We give a precise definition in Section 3.

Classical blockchain systems like Bitcoin achieves full verification and low finality-duration, but

not scalability. This is because Bitcoin requires every block, and hence the transactions within a block,

to be verified by all the nodes; meanwhile, it has a constant finality-duration because every block is

finalized after a constant number of blocks are appended afterward. However, it does not scale, as the

increase in the number of nodes does not allow the system to handle more transactions per unit of time,

which has been pointed out in many prior papers [27, 13, 20, 21].On the other hand, blockchain systems

like Harmony [25] and Ethereum 2.0 [24] achieve constant finality-duration and scalability, but not full

verification. For example, the sharding scheme used in Ethereum 2.0 allows a block to be verified within

a shard (which is a subset of nodes).

In this paper, we provide a view on the relationships between full verification (or more precisely,

α-partial verification for any constant α), low finality-duration, and scalability. More precisely:

Our contributions. We show that it is impossible to achieve full verification, low finality-duration and

scalability simultaneously.

Given the fact that: (i) Bitcoin achieves full verification and low (asymptotically constant) finality-

duration, but not scalability; and (ii) Ethereum 2.0 achieves low (constant) finality-duration and scalabil-

ity, but not full verification, it is natural to explore to what extent a blockchain system can be designed

considering the different trade-off scenarios. In particular, does there exist a blockchain system that

satisfies both full verification and scalability/finality-duration? Is it possible to have a system that par-

tially satisfies all of the three properties? We give an affirmative answer in this paper. In particular,

we prove that by adopting a non-linear blockchain system and employing a game-theoretical analy-

sis, we can construct a system which achieves full verification and a trade-off between scalability and

finality-duration. Informally speaking, the following properties hold simultaneously for the constructed
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blockchain system:

(i) O(s) new blocks are generated per unit of time on average;

(ii) after O(s logs) units of time, with a very high probability, each block will be verified by all users

in the systems.

Here s is a system parameter that can be set suitably at the genesis block. When s = 1, the non-linear

system degenerates to a linear system with a fixed block generation rate that is independent of the nodes

in the system, while the delay which is an indication of finality duration, is a constant. This coincides

with the classical Bitcoin system. Conversely, s can be as high as O(m) where m is the number of nodes.

In this case, the system is fully scalable, albeit that only a sufficiently long delay (O(s logs)) can ensure

full verification. However, if we set s to be O(m) to enforce scalability and meanwhile enforce the delay

to be some constant instead of O(s logs), then full verification cannot be guaranteed.

We remark that the big-O notation in our statements hides a constant which is roughly the average

time for a block to be generated, that is, we measure the delay in terms of the number of blocks; therefore,

Bitcoin is considered as low (asymptotically constant) finality-duration as the delay is constant blocks.

Our result does not conflict with prior researches that complain about the “high” finality-duration of

Bitcoin because of the long time it takes to generate a single block [15, 4]. The research that tries to

decrease such a block generation time is parallel to this paper. For example, if a lighter version of PoW

can be used in the existing Bitcoin system, then it can also be used directly in our non-linear blockchain

system, while our impossibility result, as well as the trade-off between finality-duration and scalability,

remain the same.

2 Related Work

The study of e-cash systems dates back to 1983 [5, 19]. However, all such systems require a cen-

trally or quasi-centrally controlling authority. A well-known exception, Bitcoin, was introduced by

Nakamoto [13] in 2008, which uses a public ledger known as a blockchain to record transactions carried

out between users. Following this line of research, various alternative blockchain-based transaction sys-

tems are proposed [27, 12, 20, 21], further improving the performance and security of Bitcoin as well

as extending the system to deal with applications beyond transactions (e.g., smart contracts). In [22],

Sompolinsky and Zohar have introduced an alternative to the longest chain that allows more transactions

to take place at a lower cost. Recently, Sompolinsky et al. [23] have shown faster block generation

by generalizing blockchain to a direct acyclic graph of blocks. Blockchain-based consensus protocols

Fantômette and Avalanche that rely on blockDAG were proposed in [2, 17]. We refer the readers to

several surveys on blockchain systems [28, 6, 10, 18, 1, 31, 11, 3, 9]. In particular, [28] provides a com-

prehensive introduction to the bitcoin network,[3, 9] focus on the systematized study of the blockchain

consensus protocols, [6, 10, 18] focus on the security and privacy results on blockchain, [1] focuses on

the applications of blockchain. The most relevant survey to this paper is [11], which summarizes recent

results on game-theoretical studies of blockchain. However, most of the existing game theoretical re-

search primarily focuses on the traditional linear blockchain system, only a very recent paper by Popov

et al. [16] gives the first game-theoretical analysis of IOTA. Their result, however, does not establish the

trade-off between scalability and finality-duration.

2.1 Classical and Non-linear Blockchain

Chain-structured blockchain. Most of the existing blockchain systems, e.g., Bitcoin, Ethereum, Hy-

perledger, follow the classical structure where blocks form a chain as illustrated by Fig 1.
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Figure 1: Chain-structured blockchain. The chain grows from left to right. White squares form the main

chain, and gray squares form the side chains that are discarded eventually.

Non-linear (graph-structured) blockchain. Popov introduced the concept of tangle [15] which allows

a blockchain to adopt a directed acyclic graph (DAG) architecture. We summarize the abstract model of

a non-linear blockchain in Section 3. We briefly review IOTA, which is the most well-known non-linear

blockchain system so far. On a high level, IOTA allows each transaction be an individual node linked in

the distributed ledger. We may interpret a transaction as a block in such a system. In the tangle, each

user needs to select one transaction from the pool as well as two previous blocks (transactions) in the

system. The user verifies these two transactions and mines a new block referring to them. Then this new

block (transaction) is broadcasted to the tangle network. Figure 2 gives a simple example of a non-linear

blockchain.

Figure 2: A non-linear blockchain. White squares are verified transactions/blocks.

3 The Abstract Model

We describe an abstract model of a non-linear blockchain which is general enough to incorporate existing

well-known non-linear blockchain systems like IOTA and Graphcoin.

A non-linear blockchain NLB is defined by a quadruple

NLB : (A ,C ,R,E ),where

• A defines the rules of building and adding a new block to the blockchain. Since we are consider-

ing non-linear blockchain, A allows multiple blocks to be added simultaneously.

• C defines the way to check a block, including validity verification, such as whether the block has

the correct format and whether transactions included in the block are valid, and whether the block

is finalized.

• R defines the way how the award is assigned to a user who adds a new block to the DAG. A NLB
needs to encourage users to participate in the construction of the blockchain by giving rewards to

those who add new blocks.
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• E defines the rules to eliminate conflicting blocks. Similar to a linear blockchain, it is possible

that multiple participants have different local copies of the blockchain, and E determines which

version should be kept.

Next, we provide formal definitions of the three metrics of a blockchain system that we mentioned

earlier.

Definition 1 (Partial verification). For any fixed α ∈ (0,1], a blockchain system satisfies the property
of α-partial verification if every block is verified by at least α fraction of the total nodes in the system
before it is finalized.

In particular, if α = 1, then each block is verified by all the nodes and we call it full verification. If a

blockchain system satisfies full verification, then resilience follows directly from standard assumptions

on the percentage of honest nodes among all nodes, e.g., if the blockchain uses PoW or BFT as the

consensus protocol, then it is resilient, once the majority or 2/3 of nodes follow the protocol. This is

also true for α-partial verification if the α-fraction of the nodes are randomly selected from all nodes.

Indeed, many recently developed blockchain systems that claim to achieve scalability, e.g., Ethereum

2.0 [24] implements such an idea by letting a subset of nodes (i.e., a Shard) compute and verify a smart

contract. The size of such a subset divided by the total number of nodes gives the percentage α .

Definition 2 (Scalability). The throughput of a blockchain system is the number of blocks nb that can
be added to the system in a fixed time. A blockchain system scales with the number of nodes m in the
system if nb → ∞ when m → ∞. Particularly, a blockchain system fully scales with the number of nodes
m if nb = Ω(m).

It should be clear that the definition of scalability or full scalability does not depend on the length of

the time period chosen for throughput. It captures the possibility of speeding up blockchain generation

with more participating nodes; consequently, classical blockchain systems like Bitcoin does not scale.

Definition 3 (Finality-duration). The finality-duration of a blockchain system is the time difference be-
tween the time point when a block is appended and the time point when a block receives full verification.

We say the finality-duration of a blockchain system is low (or constant) if the finality-duration is

independent of the nodes in the system; consequently, classical blockchain systems like Bitcoin has a

low (asymptotically constant) finality-duration because after a fixed number of blocks are appended, all

the nodes start following the main chain, thus blocks on the main chain will receive full verification.

4 Impossibility Result

Theorem 1. There does not exist a blockchain system that simultaneously satisfies (i) scalability; (ii) low
finality-duration; and (iii) α-partial verification for an arbitrary constant α ∈ (0,1].

The proof follows from a counting argument on the total number of verifications.

Proof. Suppose, on the contrary, that there exists such a block-chain. Then by definition, every block

or transaction will receive verifications from at least α fraction of the nodes within a constant delay.

Let c0 be the constant delay. Consider an arbitrary node x and let τx be the fixed time it takes for

node x to perform one verification. Let the throughput of the blockchain be nb, then by definition of

scalability, nb = nb(m)→ ∞ when m → ∞. Note that all the nb blocks generated shall be verified by at

least α fraction of nodes within the delay of c0, which means on average, every node should perform

αnb verifications within c0. However, node x can only perform c0/τx verifications, which is a constant.

Since nb → ∞, when m is sufficiently large, αnb > c0/τx for any fixed α . Therefore, it is impossible

for an arbitrary node x to complete all the verifications. Hence, the three properties, scalability, low

finality-duration and α-partial verifications, cannot be satisfied simultaneously.
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Remark. If α is not a constant, e.g., α = 10/N where N is the total number of nodes, then α → 0 and

it is indeed possible to guarantee scalability and low finality-duration simultaneously.

5 Satisfying Impossibility-Triangle in a Liquid Way

As we have mentioned before, Bitcoin achieves full verification and low finality-duration at the cost of

scalability, Ethereum 2.0 achieves scalability and low finality-duration, but cannot guarantee a constant

α for partial verification. These systems obey our impossibility triangle by conforming to two properties

and disregarding the third one. But what if we want all of them in partial? More precisely, can we have

a more fine-grained system that can can smoothly transform from one extreme to another by controlling

a simple system parameter? In this section, we construct a non-linear blockchain system, which builds

upon the basic structure of IOTA, and show that it achieves full verification, and meanwhile has a trade-

off between scalability and finality-duration. In particular, a larger scalability implies longer finality-

duration, and this can be controlled through a single system parameter Δ as we will define later.

5.1 Non-linear Blockchain (NLB) Construction

We first propose a concrete construction of NLB that achieves both security and scalability under the

agent model (Based on the agent model, every participant is an agent who tries to maximise his/her

profit). Without loss of generality, we assume that each block only includes one transaction. In the

following, we broaden the terms and use them interchangeably. We first define some concepts.

Definition 4 (Block distance, descendant, and ancestor). Given two blocks A and B, we define the dis-
tance between the two blocks as the length of the shortest directed path from A to B, which is de-
noted as d(A,B). If there is no such a directed path, we define d(A,B) = ∞. If 0 < d(A,B) < ∞,
we say B is a descendant of A, and A is an ancestor of B. For a block B and each 1 ≤ k ≤ �, let
Anc(B,k) = {X |d(X ,B) = k} and Des(B,k) = {d(B,X) = k}, where � is a given parameter.

The new NLB is constructed as follows:

• A . The new NLB assumes that there is a pool of new transactions from which a user can select

one to construct a new block, which refers to two previous blocks1. The user then does lightweight

mining to fix this information in the newly constructed block. Lightweight mining is a common

approach used in blockchain systems supporting lightweight users (see, e.g. [30]). It means that

the user needs shorter computation time, compared with the standard mining process, to find a

value for the block that makes it a valid block. This is usually done by a loose requirement on

the hash result of the block together with the mined value. Suppose that the newly built block is

B, the user also verifies blocks in Anc(B,k),1 ≤ k ≤ �, where � is a pre-defined system parameter

that determines how many previous blocks the producer of a new block should verify.

• C . To check a block B, the algorithm first checks whether the block format is correct, including

the verification of the mining outcome. The algorithm also checks whether B is finalized or not,

which is determined by

numAnc ← |∪�
k=1 Anc(B,k)|.

If numAnc is larger than the system pre-defined threshold, B is finalized.

• R. Each block has a reward value and the system imposes an upper bound on the maximal reward

offered by a transaction, so that the largest and smallest reward among transactions (and blocks)

1Our analysis in this paper also works if a new block refers to any fixed constant (greater than or equal to 2) number of

blocks. For ease of presentation, we take this number to be 2 throughout this paper.
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can differ by a factor at most Δ. The producer of the new block also receives rewards from previous

blocks. Specifically, each block is associated with a uniform verification cost vrf, which is divided

into � parts such that vrf1 < vrf2 < · · ·< vrf� and ∑�
k=1 vrfk = vrf. For each 1 ≤ k ≤ �, the producer

of block B gets reward vrfk/|Des(X ,k)| for each X ∈ Anc(B,k). This means that the verification

reward of vrfk from block X is evenly distributed among all descendants in Des(B,k). Note that

the reward is not uniformly divided and it will be only collected when the new block is finalized.

• E . The constructed NLB adopts the largest-weighted descendants principle (LWD) to eliminate

disagreement, i.e., when there are blocks containing conflicting transactions, the one whose de-

scendants have a largest total weight will be selected. Note that this will not prevent multiple

non-conflict blocks from being added in parallel. Formally, for each block B, let Des(B) =
∪h≥1{X |d(B,X)}. If there are two conflicting blocks B, B′ and |Des(B)| > |Des(B′)|, then B
prevails, that is, users will abandon B′ together with all its descendants in the sense that a new

block will not refer to any of these blocks.

Note that when considering the private costs for the mining task of the agents, the only difference is

that the profit of each block is no longer its reward, instead, the new profit of each agent should be the

reward of each task subtracting the (agent-dependent) cost. All results in our paper still hold if the largest

profit and smallest profit differ by at most Δ times for all agents. In our paper, the blockchain system

is designed such that the largest and smallest reward can differ by at most Δ times. Incorporating costs

of agents, however, this cannot be ensured by system design. Specifically, if an agent has an excessive

private cost then the ratio can be unbounded. But in practice, it is plausible to assume that the private

cost is usually small compared with the reward of blocks.

5.2 Scalability and Finality-duration Analysis

We first give a high-level summary of the workflow of the proposed NLB system. Transactions are

generated over time and form a pool. Each transaction is associated with a distinct transaction reward and

a fixed verification reward vrf. Each time, a miner will select one transaction from the pool and append

a block, which refers to two previous blocks. Here the miner needs to decide two things: (i) which

transaction to include, and (ii) which two previous blocks to refer to. As we assume that miners are

rational players, they will strategically make their decisions to maximize their profits, and this section is

devoted to analyze the scalability and security of the system under an arbitrary Nash equilibrium.

We formalize the problem as follows. Let the pool consist of n transactions, with the transac-

tion reward being p1, p2, · · · , pn. Let m be the number of miners, with computational powers being

u1,u2, · · · ,um. As we mentioned, each miner will mine a new block by including one transaction from

the pool. If multiple miners say, miners in the subset of S, all choose the same transaction, then they

compete, and only one of them will succeed, and the probability that some miner i ∈ S succeeds is
ui

∑h∈S uh
. If, however, all miners choose different transactions, then each of them can append a new block.

In the following section, we will analyze the scalability and finality-duration of the constructed NLB

separately.

5.2.1 Scalability

For scalability, we are interested in how many different transactions from the pool can be selected by

the miners simultaneously. Note that the more different transactions are chosen, the higher scalability is.

When miners choose transactions simultaneously, we are considering the worst-case because if miners

are selecting transactions at different times, later ones may be able to avoid conflicts with earlier ones.

Let n be the number of available transactions and m be the number of miners, the following Theorem 2

implies that the system is scalable even in the worst case such that when there are sufficiently many
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transactions, the throughput will be O(m/Δ) where Δ is a system parameter part of R. By controlling

Δ, we can control the scalability of the system. In particular, when we set Δ to be a constant, the system

becomes fully scalable with the number of nodes. In the remainder of this section is devoted to proving

Theorem 2.

Theorem 2. With probability at least 1−max{e−Θ(m),e−Θ(n)}, the number of blocks mined by m miners
in an arbitrary Nash equilibrium is at least min{c1m/Δ,c2n} for some universal constants c1,c2.

Notice that a Nash equilibrium always exists by allowing mixed strategies [14]. Towards the proof,

we introduce some notations. For simplicity, let all the transaction rewards be p1 ≥ p2 ≥ ·· · ≥ pn. By

the design of our system we require that p1/pn ≤ Δ. Note that the strategy of a miner is to select one

transaction. We consider the general mixed strategy of a miner where he/she can specify a probability

for each transaction.

Consider an arbitrary Nash equilibrium and let π(i) = (π(i)
1 , π(i)

2 , · · · ,π(i)
n ) be the strategy of miner i in

the equilibrium, where π(i)
j is the probability that he chooses transaction j. It is obvious that ∑n

j=1 π(i)
j = 1

for any 1 ≤ i ≤ m. Let X (i)
j be the 0-1 random variable that indicates whether miner i chooses transaction

j. Then X (i)
j = 1 with probability π(i)

j and X (i)
j = 0 with probability 1−π(i)

j .

Consider the above Nash equilibrium. Intuitively, if only a small number of transactions are selected,

then miners must have devoted their probabilities to a few transactions. Therefore, to show that a suf-

ficient number of distinct transactions are selected in expectation, by miners, we need to show that the

miners are distributing their probabilities in a fair way among transactions, as is implied by the following

lemma.

Lemma 1. If there exists some transaction j1 such that ∑m
i=1 π(i)

j1 ≥ 12Δ, then for every transaction j, it

holds that ∑m
i=1 π(i)

j ≥ 1/2.

Proof. Suppose, on the contrary, the lemma is not true, that is, there exists some transactions j1 and j2
such that ∑m

i=1 π(i)
j1 ≥ 12Δ and ∑m

i=1 π(i)
j2 < 1/2. Consider the set of miners that choose transaction j1 with

positive probability. For simplicity, let these miners be miner 1,2, · · · ,k such that u1 ≥ u2 ≥ ·· · ≥ uk. We

show in the following that miner k can change his strategy to get a strictly higher profit, contradicting

the fact that this is a Nash equilibrium, and consequently, the lemma is proved. More precisely, we

argue that player k can get strictly larger profit (in expectation) by increasing his probability of choosing

transaction j2 and meanwhile decreasing his probability of choosing j1.

The expected profit that miner k can get from transaction j1 and j2 using his current strategy is equal

to

p j1E[Γ1]+ p j2E[Γ2],

where for h = 1,2, we have

Γh =

⎧⎪⎨
⎪⎩

0, if ∑n
i=1 uiX

(i)
jh = 0

ukX (k)
jh

∑m
i=1 uiX

(i)
jh

, Otherwise.

If k changes his strategy by choosing j1 with the probability of 0 and choosing j2 with the probability

of π(k)
j1 +π(k)

j2 , then the expected profit he can get from j1 and j2 is equal to p j2E[Γ̃2], where

Γ̃2 =

⎧⎪⎨
⎪⎩

0, if ∑i 	=k uiX
(i)
j2 +ukX̃ (k)

j2 = 0

ukX̃ (k)
j2

∑i 	=k uiX
(i)
j2
+ukX̃ (k)

j2

, Otherwise.

and X̃ (k)
j2 is the 0-1 random variable that takes the value 1 with the probability of π(k)

j1 + π(k)
j2 . In the

following we show that

p j2E[Γ̃2 −Γ2]> p j1E[Γ1],
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which implies the correctness of the lemma. We prove the following two claims.

Claim 1. E[Γ1]<
π(k)

j1
2Δ .

Proof. Let X = ∑i 	=k X (i)
j1 and μ = E[X ]≥ 5Δ/θ −E[X (k)

j1 ] = 6Δ/θ −π(k)
j1 . For any δ ∈ (0,1), we have

E[Γ1] = E[Γ1|X > (1−δ )μ]Pr(X > (1−δ )μ)
+E[Γ1|X ≤ (1−δ )μ]Pr(X ≤ (1−δ )μ)

Given that Γ1 ≤ 1, we know that

E[Γ1|X ≤ (1−δ )μ]

= E[Γ1|X ≤ (1−δ )μ,X (k)
j1 = 1]Pr(X (k)

j1 = 1)

+E[Γ1|X ≤ (1−δ )μ,X (k)
j1 = 0]Pr(X (k)

j1 = 0)

= π(k)
j1 ·E[Γ1|X ≤ (1−δ )μ,X (k)

j1 = 1]≤ π(k)
j1 .

Meanwhile, by u1 ≥ u2 ≥ ·· · ≥ uk, we have

Γ1 ≤
X (k)

j1

∑k
i=1 X (i)

j1

.

According to Chernoff bound, we know that

Pr(X ≤ (1−δ )μ)≤ e
−δ2μ

2 .

Therefore,

E[Γ1] = E[Γ1|X > (1−δ )μ]Pr(X > (1−δ )μ)
+E[Γ1|X ≤ (1−δ )μ]Pr(X ≤ (1−δ )μ)

≤ E[
X (k)

j1

(1−δ )μ +X (k)
j1

]+ e
−δ2μ

2 ·π(k)
j1

Consider the function ϕ(x) = x
(1−δ )μ+x , it is easy to verify that −ϕ(x) is convex in x∈ (0,+∞), therefore,

by Jensen’s inequality

E[X (k)
j1 ]

(1−δ )μ +E[X (k)
j1 ]

= ϕ(E[X (k)
j1 ]) ≥ E[ϕ(X)]

= E[
X (k)

j1

(1−δ )μ +X (k)
j1

].

Now consider the function xe−x. It is easy to verify that the function decreases when x ≥ 1, therefore

e−x ≤ 1
ex for x ≥ 1, hence, for

δ 2μ
2

≥ 1, we have

E[Γ1] ≤ E[X (k)
j1 ]

(1−δ )μ +E[X (k)
j1 ]

+ e
−δ2μ

2 ·π(k)
j1

≤ π(k)
j1

(1−δ )μ +π(k)
j1

+
2

eδ 2μ
·π(k)

j1 .

9



Using μ ≥ 12Δ−π(k)
j1 ≥ 11Δ and taking δ = 1/2, we have

E[Γ1]≤
π(k)

j1

6Δ
+

2π(k)
j1

e ·1/4 ·11Δ
<

π(k)
j1

2Δ
.

Claim 2. E[Γ̃2 −Γ2]≥ π(k)
j1 /2.

Proof. Let Y = ∑i	=k X (i)
j2 . Then

Pr(Y = 0) = Pr(X (i)
j2 = 0,∀i 	= k) = ∏

i 	=k
(1−π i

j2)

≥ 1−∑
i 	=k

π(i)
j2

≥ 1− (1/2−π(k)
j2 )

= 1/2+π(k)
j2 .

Note that X (k)
j2 and Y are independent, hence we have the following,

E[Γ̃2 −Γ2]

≥ E[Γ̃2 −Γ2|Y = 0, X̃ (k)
j2 > 0]Pr(Y = 0, X̃ (k)

j2 > 0)

≥ (π(k)
j1 +π(k)

j2 )(1/2+π(k)
j2 ) ·E[Γ̃2 −Γ2|Y = 0, X̃ (k)

j2 > 0].

Further notice that X̃ (k)
j2 and X (k)

j2 are independent, thus

E[Γ̃2 −Γ2|Y = 0, X̃ (k)
j2 > 0]

= E[Γ̃2 −Γ2|Y = 0, X̃ (k)
j2 > 0,X (k)

j2 = 0]

·Pr(X (k)
j2 = 0|Y = 0, X̃ (k)

j2 > 0)

+E[Γ̃2 −Γ2|Y = 0, X̃ (k)
j2 > 0,X (k)

j2 > 0]

·Pr(X (k)
j2 > 0|Y = 0, X̃ (k)

j2 > 0)

= E[
ukX̃ (k)

j2

Y +ukX̃ (k)
j2

|Y = 0, X̃ (k)
j2 > 0,X (k)

j2 = 0] ·Pr(X (k)
j2 = 0)

+E[
ukX̃ (k)

j2

Y +ukX̃ (k)
j2

− ukX (k)
j2

Y +ukX (k)
j2

|Y = 0, X̃ (k)
j2 > 0,X (k)

j2 > 0]

·Pr(X (k)
j2 > 0)

= 1−π(k)
j2

Now we have

E[Γ̃2 −Γ2]≥ (π(k)
j1 +π(k)

j2 )(1/2+π(k)
j2 )(1−π(k)

j2 )

For simplicity, let τ = π(k)
j1 +π(k)

j2 ∈ [0,1] and x = π(k)
j2 , we have

f (x) = E[Γ̃2 −Γ2]−1/2 ·π(k)
j1 = τ(1/2+ x)(1− x)−1/2 · (τ − x).

10



Notice that f is a quadratic function in x whose quadratic term has negative coefficient, therefore if

f (0) ≥ 0 and f (1) ≥ 0, then for any x ∈ [0,1] we have f (x) ≥ 0. It is easy to see that f (0) = 0, and

f (1) = 1/2 · (1− τ)≥ 0, hence, the claim is proved.

Given the two claims and the fact that p j2 ≤ Δp j1 , p j2E[Γ̃2 −Γ2]> p j1E[Γ1] follows and the lemma

is proved. The proof of the two claims is quite involved.

Lemma 1 shows that: Either no transaction has received a total amount of probability that is larger

than 12Δ, or every transaction receives a total amount of probability at least 1/2. Note that the two

cases are not mutually exclusive. Nevertheless, we show in the following that in both cases, miners will

select sufficiently many transactions with very high probability. The proofs of the following lemmas are

mathematically involved.

Lemma 2. If ∑m
i=1 π(i)

j < 12Δ holds for every transaction j, and Δ ≤ m/12, then the probability that
only k ≤ m

12eΔ = Θ(m/Δ) different transactions are selected by m miners is at most (1/e)Θ(m).

Towards the proof of Lemma 2, we need the following Lemma 3.

Lemma 3. Let k,1/δ ∈ N+ such that kδ = ζ ∈ (0,1). Let a1,a2, · · · ,an be n numbers such that ai ∈
[0,δ ], ∑n

i=1 ai = 1. Let A = {S|S ⊆ {1,2, · · · ,n}, |S|= k}. Then we have

∑
S∈A

(∑
j∈S

a j)
m ≤ ekζ m−k.

Proof. Without loss of generality we assume that a1 ≥ a2 ≥ ·· ·an. We define

f (a1,a2, · · · ,an) = ∑
S∈A

(∑
j∈S

a j)
m.

For arbitrary i < j and some small ε ≥ 0 such that ai−1 ≥ ai+ε , a j−ε ≥ a j+1, we prove in the following

that

f (· · · ,ai−1,ai + ε,ai+1, · · · ,a j−1,a j − ε,a j+1, · · ·)≥ f (a1,a2, · · · ,an)

For simplicity we write f (a1,a2, · · · ,an) = fi, j(ai,a j). We have

fi, j(ai + ε,a j − ε)
= ∑

S:S∈A
i, j 	∈S

(∑
h∈S

ah)
m + ∑

S:S∈A
i∈S, j 	∈S

(ai + ε + ∑
h∈S,h	=i

ah)
m

+ ∑
S:S∈A
i	∈S, j∈S

(a j − ε + ∑
h∈S,h	= j

ah)
m + ∑

S:S∈A
i, j∈S

(∑
h∈S

ah)
m

Consider the function g(x) = xm. Due to its convexity, for x+ ε > x > y > y− ε , we have

g(x+ ε)+g(y− ε)≥ g(x)+g(y).

Hence, let A ′ = {S|S ⊆ {1,2, · · · ,n}\{i, j}, |S|= k−1}, then for any S′ ∈ A ′, we have

(∑
h∈S′

ah +ai + ε)m +(∑
h∈S′

ah +a j − ε)m

≥ (∑
h∈S′

ah +ai)
m +(∑

h∈S′
ah +a j)

m,

therefore, fi, j(ai+ε,a j−ε)≥ fi, j(ai,a j). Now we can iteratively change a1,a2, · · · ,an into a′1,a
′
2, · · · ,a′n

such that a′i = δ for 1 ≤ i ≤ 1/δ , and a′i = 0 otherwise, and get

f (a1,a2, · · · ,an)≤ f (a′1,a
′
2, · · · ,a′n).

11



It is not difficult to compute that

f (a′1,a
′
2, · · · ,a′n) =

(
1/δ

k

)
(kδ )m ≤ (1/δ )k

k!
·ζ m ≤ (

e
ζ
)kζ m,

where for the last inequality we make use of the Stirling’s approximation that k! ≥ (k/e)k. Hence, the

lemma is proved.

Now we come to the proof of Lemma 2.

Proof. Consider the event that at most k different transactions are chosen by m miners. Let A = {S|S ⊆
{1,2, · · · ,n}|, |S| = k} be the superset of all subsets of cardinality k. For any S ∈ A , let σS be any

mapping that maps {1,2, · · · ,m} to S, and ΩS be the set of all such mappings. Consider the event

that miner i selects transaction σS(i), we know that the event happens with the probability Pr(σS) =

∏m
i=1 π(i)

σS(i)
. Taking summation over all possible mappings, the event that only transactions in S are

selected is at most

∑
σS∈ΩS

Pr(σS) = ∑
σS∈ΩS

m

∏
i=1

π(i)
σS(i)

=
m

∏
i=1

∑
j∈S

π(i)
j .

The last equality follows as when we expand ∏m
i=1 ∑ j∈S π(i)

j , any summand corresponds to ∏m
i=1 π(i)

σ(i) for

some mapping σ . Using the the inequality of arithmetic and geometric means, we have

∑
σS∈ΩS

Pr(σS) =
m

∏
i=1

∑
j∈S

π(i)
j ≤ (

∑m
i=1 ∑ j∈S π(i)

j

m
)m = (∑

j∈S

∑m
i=1 π(i)

j

m
)m.

Taking summation over all possible S ∈ A , the event that at most k transactions are selected is at most

∑
S∈A

∑
σS∈ΩS

Pr(σS)≤ ∑
S∈A

(∑
j∈S

∑m
i=1 π(i)

j

m
)m.

Now let a j =
∑m

i=1 π(i)
j

m . It is easy to see that ∑n
j=1 a j = 1. Furthermore, since ∑m

i=1 π(i)
j < 12Δ, we have

a j ≤ 12Δ/m. We apply Lemma 3 by taking δ = 1
�m/(12Δ)
 ≤ 12Δ/(m+ 12Δ), ζ = kδ ≤ e−1, we know

that

∑
S∈A

∑
σS∈ΩS

Pr(σS)≤ ekζ m−k ≤ e−m/2.

Hence, the lemma is proved.

Note that if Δ > m/12, m
12eΔ < 1. As miners complete at least 1 transaction, the lemma is trivially

true.Now we consider the other case and have the following.

Lemma 4. If ∑m
i=1 π(i)

j ≥ 1/2 holds for every transaction j, then the probability that no more than n/e2

transactions are selected is at most (1/e)Θ(n).

Proof. Consider the event that at most θn transactions are selected by m miners for some θ ∈ (0,1). Note

that in this case m=∑n
j=1 ∑m

i=1 π(i)
j ≥ n/2, hence n≤ 2m. Again we define A = {S|S⊆{1,2, · · · ,n}|, |S|=

(1− θ)n} as the superset of all the subsets of cardinality (1− θn). The probability that miner i does

not select any transaction in some S ∈ A is 1−∑ j∈S π(i)
j . Given that miners select transactions indepen-

dently, the probability that all miners do not select transactions in S is

m

∏
i=1

(1− ∑
j∈S

p(i)j ) ≤ (
m−∑ j∈S ∑m

i=1 π(i)
j

m
)m

≤ (
m− (1−θ)n

2

m
)m ≤ e−

(1−θ)n
2 ,
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where the first inequality follows by inequality of arithmetic and geometric means, the second inequality

follows by the fact that ∑m
i=1 π(i)

j ≥ 1/2, and the third inequality follows by (1−1/x)x ≤ e−1 for x ≥ 1.

Taking the summation over all possible S ∈ A , the probability that at most θn transactions are selected

is at most

∑
S∈A

m

∏
i=1

(1− ∑
j∈S

p(i)j ) ≤
(

n
θn

)
e−

(1−θ)n
2

≤ nθn

(θn)!
· e− (1−θ)n

2

≤ (
e
θ
)θn · e− (1−θ)n

2 .

Taking θ = e−2, simple calculation shows that the right side of the inequality above is ecn for c ≤−0.02,

and the lemma is proved.

Given Lemma 2 and Lemma 4, Theorem 2 follows directly.

5.2.2 Finality-duration

For ease of presentation, we let s = min{c1m/Δ,c2n} (recall Theorem 2). We will characterize finality-

duration in terms of s. Recall that a miner needs to make two decisions: (i) which transaction to include

in the new block, and (ii) which two previous blocks to refer to. The two decisions are independent. In

the previous subsection we have discussed (i), and in this subsection we focus on (ii), as this affects how

the DAG grows.

It should be clear that since the verification reward of a transaction (block) is evenly distributed

among miners who append a block of the same distance to it, a miner always prefers a block with no

descendants. At any particular time t, we call a block without descendants as a leaf at t, and denote by Lt

the set of leaves. We are interested in the size of Lt . Notice that in the classical blockchain system, |Lt |
is 1 since it is a chain. However, in a non-linear model, |Lt | is not necessarily 1. Principally, |Lt | could

grow arbitrarily large, but what we will show in this section is that, |Lt | is always bounded when miners

are using their equilibrium strategies. In this case, although we are considering a non-linear model, it

is “almost linear”, as implied by Theorem 3. Based on this result, we further leverage the techniques

from random walk to prove that, for every block, after a delay of O(s logs) units of time, all blocks will

be its descendant (Theorem 4), consequently, if we set � = Θ(s logs) in our design, every block will be

verified by all users, and security follows.

As we mentioned before, each new block will refer to two leaves in Lt . As every block offers the

same total amount of verification reward, every leaf appears the same to the miners (unless they are in

conflict with previous blocks and then miners will be biased based on the LWD rule). Therefore, a new

block will randomly select two leaves to refer to. Assuming leaves are not conflicting with previous

blocks, we show that |Lt | will be O(s) in the long run with an extremely high probability. First, it is easy

to see that if |Lt | ≤ s, then Lt+1 ≥ s as the s new blocks will be leaves at t + 1. The following lemma

shows that if |Lt | is sufficiently large, then with very high probability it will reduce to O(s) after enough

time.

Lemma 5. Let ε be an arbitary small constant. If |Lt | ≥ 1/ε3 and |Lt | ≥ 4s, then with sufficiently high
probability (at least 1−O(ε)), |Lt+1|= |Lt |−X + s ≤ |Lt |− (1−3ε)s

2
, i.e., Lt decreases by at least Ω(s).

Proof. Consider an arbitrary Lt . For any τi ∈ Lt and any new block b, the probability that b refers to τi is

2/|Lt |, hence, the probability that none of the s new blocks refer to τi is (1−2/|Lt |)s, i.e., the probability

that an arbitrary τi has descendant(s) at t + 1 is θ = 1− (1− 2/|Lt |)s. Let a random variable Xi denote

whether the event that τi has descendant(s) at t +1, then Pr(Xi = 1) = θ and Pr(Xi = 0) = 1−θ . Denote

13



by X = ∑|Lt |
i=1 Xi the total number of leaves in Lt that has descendant(s) at t + 1. According to Chernoff

bound, with the probability of at least 1− 2e−ε2|EX |/3, (1− ε)EX ≤ X ≤ (1+ ε)EX . Now we estimate

EX by verifying

2s− 2s(s−1)

|Lt | ≤ EX = |Lt |− |Lt |(1− 2

|Lt |)
s ≤ 2s.

Hence, if |Lt | ≥ 1/ε3 and |Lt | ≥ 4s, then (at least 1−2e−1/(3ε) = 1−O(ε)), X ≥ (1−ε)EX ≥ 3/2 · (1−
ε)s, consequently,

|Lt+1|= |Lt |−X + s ≤ |Lt |− (1−3ε)s
2

.

The above lemma shows that if |Lt | is large, then with high probability |Lt | shall decrease, however,

what we are interested in is the probability that |Lt | ≤ O(s) for all t ≥ 0. Towards this, we need to cast

the problem as a random walk. Lemma 5 shows that with the probability of (1−O(ε))3 = 1−O(ε),
|Lt | can decrease by

3(1−3ε)s
2

≥ s, while with probability of at most O(ε), |Lt | can increase by at most

s. This can be interpreted as a random walk which walks right (increase) by s steps with the probability

of 1−O(ε), and walks left (decrease) by s steps with the probability of O(ε). The following lemma is

proved for a general random walk.

Lemma 6 ([7], pp.272). Consider a random walk starting at RW0 = 0, Pr(RWi+1 − RWi = s) = p,
Pr(RWi+1 −RWi =−s) = q where p+q = 1 and s ∈ Z>0. If p > q, then

lim
n→∞

Pr(RWi ≥ 0, ∀1 ≤ i ≤ n) =
p−q

p
.

If p < q, the above limit is 0.

Now we are ready to prove the following theorem.

Theorem 3. Let ε be a small constant such that s > 1/ε3. With very high probability (at least 1−O(ε)),
|Lt | ≤ 5s for all t ≥ 0.

Proof. Recall that |L0| = 0. Let t∗ be the smallest time where |Lt∗ | ≥ 4s, then |Lt∗ | ≤ 5s. Now we take

t∗ as a starting time, |Lt∗ | as a starting point and take the random walk interpretation. Using Lemma 6,

we have that

lim
n→∞

Pr(|Lt | ≤ |Lt∗ |,∀1 ≤ t ≤ n) ≤ 1−O(ε)−O(ε)
1−O(ε)

= 1−O(ε).

Therefore, the probability that |Lt | is bounded by 5s for all t ≥ 0 is at least 1−O(ε).

Lemma 7. Let ε be a small constant such that s > 1/ε3. For any transaction at t that is not in conflict
with prior transactions, with sufficiently high probability (at least 1−O(ε)) every block appended at or
after t +O(s logs) will be its descendant.

Proof. According to Theorem 3, we focus on the event that |Lt | ≤ 5s for all t ≥ 0, which happens with

1−O(ε) probability.

For h ≥ t, let Ψh be the subset of blocks in Lh which has a directed path from some fixed block

τ0 ∈ Lt , which is a random subset. Let ψh = E(|Ψh|). Consider Lh+1. For any block τi ∈ Lh+1, let Xi be
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a binary random variable indicating whether τi refers to some block in Ψh, and hence admits a directed

path from τ0. Then we know

Pr(Xi = 1) =

(|Ψh|
2

)
+ |Ψh|(|Lh|− |Ψh|)(|Lh|

2

)
=

|Ψh|(2|Lh|− |Ψh|−1)

|Lh|(|Lh|−1)
.

We consider |Ψh+1|. It is obvious that if |Ψh| = |Lh|, then every block in Lh+1 refers to some

block in Ψh and thus admits a directed path from τ0, hence, |Lh+1| = |Ψh+1|, and similarly we have

|Lh+ j|= |Ψh+ j| for all j ≥ 1. Otherwise, we assume 1 ≤ |Ψh| ≤ |Lh|−1. Then 2|Lh|− |Ψh|−1 ≥ |Lh|,
and we have

E(Xi) = E

( |Ψh|(2|Lh|− |Ψh|−1)

|Lh|(|Lh|−1)

)
≥ ψh

|Lh|−1
.

Note that |Ψh+1|= ∑i Xi. It is easy to calculate that

ψh+1 = E(|Ψh+1|)≥ ψh

(
1+

1

|Lh|−1

)
.

This means, starting from ψt = 1, for each ψh where h ≥ t, either ψh = |Lh| and thus ψh′ = |Lh′ | for

all h′ ≥ h, or ψh+1 ≥
(

1+ 1
|Lh|−1

)
ψh. Since |Lh| ≤ 5s, ψh increases sufficiently close to |Lh| ≤ 5s when

h ≥ t +O(s logs), and the theorem is proved.

Given the above lemma, if we set �, the verification depth to be � ≥ O(s logs), then any transaction

at t will be verified by all the users after O(s logs) units of time with high probability. The following

theorem is thus true.

Theorem 4. If s > 1/ε3 and � ≥ O(s logs), then with probability of at least 1−O(ε), any transaction
at t will be verified by all the users after O(s logs) units of time.

Remark. Recall that the scalability of the system increases as Δ increases, while s = min{c1m/Δ,c2n},

and hence the finality-duration O(s logs) decreases as Δ increases. Theorem 4 shows trade-off between

the scalability and finality-duration.

6 Conclusion

We provide the first systematic analysis on blockchain systems with respect to three major parame-

ters, verification, scalability, and finality-duration. We establish an impossibility result showing no

blockchain system can simultaneously achieve the three properties. We complement the existing blockchain

systems by establishing the first NLB that achieves both full verification and scalability. We also reveal,

for the first time, the trade-off between scalability and finality-duration in NLB. It is not clear whether a

better trade-off exists or not.
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