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a b s t r a c t 

This paper addresses a parallel machine scheduling problem with restrictions on employees’ working- 

times and break times. Tasks must be processed by employees nonpreemptively on unrelated parallel

machines with different thresholds that specify for each employee the maximum total and consecu- 

tive working-time, and the minimum break time. The objective is to minimize the weighted sum of the

makespan, the machine depreciation costs, and the labor costs. To solve this problem, a mixed integer

linear programming model is formulated, and two different decomposition-based exact algorithms are

implemented as well as a list scheduling (LS)-based heuristic method. Extensive computational experi- 

ments are performed on randomly generated instances, and the results demonstrate the efficiency of our

proposed combinatorial Benders decomposition approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With an increasing demand for better working conditions and 

a growing concern with respect to workers’ health and safety, reg- 

ulatory authorities in various countries have started to implement 

stricter labor and employment laws regarding employees’ working 

hours. As shown in the literature, long working hours, especially 

“very extended” or “extremely extended” hours, could entail signif- 

icant physiological and psychological risks to individual employees, 

which may lead to fatigue and stress (e.g. Waersted & Westgaard, 

1991 ). This has become a major public policy issue. To protect em- 

ployees against such “adverse insecurities”, many regulatory sys- 

tems have incorporated various upper limits on working-time du- 

rations, such as maximum daily hours, maximum weekly hours, 

and maximum permitted overtime hours ( Lee, McCann, & Messen- 

ger, 2007 ). As a result, the additional restrictions on working-time 

durations make many employee scheduling problems more compli- 

cated and difficult to solve, and present interesting modeling and 

algorithmic challenges. 
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Wang), mpinedo@stern.nyu.edu (M.L. Pinedo), Lin.Chen@ttu.edu (L. Chen),
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In the past decade, more and more researchers have started 

to incorporate different working time regulations into various em- 

ployee scheduling problems that arise in a variety of service in- 

dustries, including the scheduling of nurses in hospitals, crew 

members in transportation environments, and so on. To determine 

a feasible timetable for each employee within a planning hori- 

zon, the scheduler not only has to provide a suitable schedule 

for the employees in order to satisfy service requirements, but 

he/she also has to comply with working regulations and other 

cost constraints. We give a few examples. Rodrigues, de Souza, 

and Moura (2006) proposed a computational tool to solve an ur- 

ban transportation problem to meet passenger demand and min- 

imize operational costs, while satisfying a number of labor and 

safety regulations concerning maximum working hours and rest 

periods. Saddoune, Desaulniers, Elhallaoui, and Soumis (2011) in- 

vestigated an integrated crew scheduling problem to determine 

least cost schedules that cover all flights and meet various safety 

and collective agreement rules regarding working time durations of 

crew members. Braekers, Hartl, Parragh, and Tricoire (2016) con- 

sidered a home care routing and scheduling problem, in which 

each nurse can work overtime at a certain additional cost within 

a given maximum working time, and the objective is to minimize 

total costs as well as client inconvenience. A ̆gralı, Ta ̧s kın, and Ünal 

(2017) studied an employee scheduling problem with flexible em- 
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ployee availability as well as flexible demand, under several leg- 

islative constraints such as maximum total working time within 

a week. For further pointers to the general employee (personnel) 

scheduling problem, we refer the reader to the surveys by Ernst, 

Jiang, Krishnamoorthy, and Sier (2004) , Brucker, Qu, and Burke 

(2011) and Van den Bergh, Beliën, De Bruecker, Demeulemeester, 

and De Boeck (2013) . 

It is noteworthy that the most recent research on employee 

scheduling only imposes upper limits on the total working hours 

within a day, a week or some other specified planning horizon. 

However, consecutive working-time , that is, the total working time 

of an employee without a break, also plays an important role in 

employees’ fatigue and stress as well as in potential risks with re- 

gard to health and safety. For example, the new regulations in the 

European Union regarding drivers’ working hours (i.e. EC regula- 

tion 561/2006) require that for each driver a break or a rest period 

must be scheduled after an accumulated driving time of four-and- 

a-half hours ( Goel, 2009 ). Krempels and Panchenko (2006) consid- 

ered an operating theatre scheduling problem in which each surgi- 

cal team is restricted within a shift by the maximum working time 

allowed without a break. 

On the other hand, as we know, extended working hours 

can also be found in a wide variety of manufacturing settings, 

in which different products have to share machines, resources 

and workers, due to the commonality or similarities of compo- 

nents. Therefore, it may be of interest to integrate other decision 

making such as resource (e.g., machine) scheduling into the em- 

ployee scheduling problem, or vice versa. For example, Lodree Jr., 

Geiger, and Jiang (2009) established a framework to incorporate 

human characteristics and behaviors into the machine scheduling 

paradigm, and discussed potential interdisciplinary research oppor- 

tunities in scheduling and human factors; Guyon, Lemaire, Pinson, 

and Rivreau (2010) recommended that an appropriate employee 

timetable has to be built up together with the production sched- 

ule; Edis, Oguz, and Ozkarahan (2013) suggested that the machine 

scheduling problem with additional resources, such as machine op- 

erators, still remains an important area of research. 

Given the intrinsic close interrelationships between employee 

scheduling and machine scheduling, an increasing amount of work 

has focused on how to assign the machines and their correspond- 

ing operators to different tasks in order to achieve productiv- 

ity and/or service goals. For example, Huq, Cutright, and Mar- 

tin (2004) developed a mixed integer programming model to de- 

termine the lot size that minimizes the makespan for a fixed 

daily workload in a multi-processor flow shop. Artigues, Gendreau, 

Rousseau, and Vergnaud (2009) studied an integrated employee 

timetabling and job shop scheduling problem, and proposed var- 

ious exact hybrid methods that are based on integer linear pro- 

gramming and constraint programming. Guyon et al. (2010) devel- 

oped two exact methods based on Benders decomposition and cut 

generation to solve an integrated employee timetabling and pro- 

duction scheduling problem, in which tasks can be interrupted and 

processed by different operators, and with as objective to sched- 

ule the jobs and to assign a work pattern to each operator that 

satisfies the need for operators at minimum cost. In a follow- 

up work, Guyon, Lemaire, Pinson, and Rivreau (2014) analyzed 

a minimum-cost integrated employee timetabling and job-shop 

scheduling problem, and proposed new exact methods based on 

cut generation approaches. Agnetis, Murgia, and Sbrilli (2014) con- 

sidered a job shop scheduling problem with human operators in 

handicraft production to minimize the makespan, and proposed 

two different heuristics for decomposing the problem. Ahmadi- 

Javid and Hooshangi-Tabrizi (2017) studied a ternary-integration 

job-shop scheduling problem with employee timetabling and het- 

erogeneous transporters to minimize the makespan, and developed 

an Anarchic Society Optimization algorithm to solve the problem. 

Dolgui, Kovalev, Kovalyov, Malyutin, and Soukhal (2018) investi- 

gated a workforce assignment problem in a paced assembly line to 

minimize the maximum number of workers employed at any time, 

subject to constraints regarding the cycle time of the line and the 

number of workers assigned to each operation. 

Although a great deal of research has been done on the in- 

tegration of employee and machine scheduling, our literature re- 

view suggests that research on incorporating restrictions with re- 

gard to working-time durations into such problems still appears 

to be rather sparse. The only exception we found is the work by 

Fischetti, Martello, and Toth (1989) , who considered a fixed job 

schedule problem with working-time constraints, in which each of 

the tasks requires processing without interruption within its time 

window, and the objective is to perform all tasks with a minimum 

number of processors, so that no processor (e.g., crew member in 

a bus company) has to work longer than the given working time 

limit. 

Researchers have also studied various employee scheduling 

problems that assume a heterogeneous workforce. In these prob- 

lems, employees may either possess different skill sets or have 

different skill levels and thus may perform tasks at different 

speeds, and may therefore incur different labor costs. For exam- 

ple, Valls, Pérez, and Quintanilla (2009) proposed a skilled work- 

force scheduling problem at a service centre, in which a task may 

have a duration that depends on the worker to whom it has 

been assigned, and the goal is to minimize constraint violations 

according to the preferences set by the decision-maker. Othman, 

Bhuiyan, and Gouw (2012) studied a workforce planning problem 

in a job shop environment and integrated workers’ differences into 

the problem so as to minimize the total costs. Benavides, Ritt, and 

Miralles (2014) considered a flow shop scheduling problem with 

heterogeneous workers to minimize the makespan, in which work- 

ers may be unable to operate a subset of the machines, or may 

have different execution times for the same operation. For more 

pointers to the literature on scheduling problems with workers 

that have different skill sets, we refer the reader to the survey by 

De Bruecker, Van den Bergh, Beliën, and Demeulemeester (2015) . 

In this work, we consider an integrated employee and parallel 

machine scheduling problem, in which a set of n jobs has to be 

processed nonpreemptively on m machines by � employees. Note 

that in several types of scheduling environments, such as the oper- 

ating room scheduling problem, a surgeon (employee) in an oper- 

ating room (machine) cannot be interrupted before the completion 

of the current surgery (job) ( Freeman, H., & J., 2016 ). Therefore, it is 

reasonable to assume that employees are not allowed to terminate 

their shifts during the execution of a job. 

Similar to previous studies in the literature, we also follow the 

general regulations regarding employees’ working hours by impos- 

ing an upper limit on each employee’s total working-time in or- 

der to avoid highly unbalanced schedules or potential inequities 

in workloads. In addition, because of the different skill levels of 

the employees, the processing time of each job on a machine 

may depend on the employee, and there may also be restrictions 

with regard to maximum consecutive working-time and minimum 

break time for each employee. The objective of our problem is to 

minimize the weighted sum of the makespan-related costs plus 

the machine depreciation and labor costs. For simplicity, we re- 

fer to this problem as the integrated employee and parallel machine 

scheduling problem with consecutive working-time constraints , or the 

IEMSCW problem for short. 

To solve the IEMSCW problem, we first propose in Section 2 a 

mixed integer linear programming (MILP) formulation with time- 

indexed variables. In Section 3 , we develop a time-decomposition 

method using a “divide-and-conquer” approach in our search for 

optimal solutions. In order to find optimal solutions even for large- 

scale instances, we design in Section 4 a combinatorial Benders 
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decomposition method, followed in Section 5 by a list schedul- 

ing (LS)-based heuristic method for generating feasible schedules. 

Then, in Section 6 we conduct extensive computational experi- 

ments. The results demonstrate the efficiency of the combinatorial 

Benders decomposition approach. Finally, we conclude our research 

and discuss possible future research directions in Section 7 . 

2. Mathematical description of the problem 

As mentioned in the introduction, we refer to the problem 

that we study as the integrated employee and parallel machine 

scheduling problem with consecutive working-time constraints , or the 

IEMSCW problem for short. In this problem, there is a set J = 

{ 1 , 2 , . . . , n } of jobs, a set M = { 1 , 2 , . . . , m } of machines, and a 

set W = { 1 , 2 , . . . , � } of employees. We assume that each job j ∈ J 

must be processed nonpreemptively, and can only be processed by 

exactly one employee w ∈ W on some machine i ∈ M , with an as- 

sociated processing time of p i jw depending on both the employee’s 

skill level and the machine setting. Employees cannot terminate 

their shifts during the execution of a job. In addition, each machine 

i ∈ M incurs an associated depreciation cost f i per unit time when 

it is processing a job and no cost when it is idle, and each em- 

ployee w ∈ W has an associated labor cost c w per unit time when 

he/she is working and no cost when he/she is idle. There also is a 

cost θ per unit time related to the makespan C max . 

Due to the labor and employment laws imposed by the reg- 

ulatory authorities, we assume that an employee w ∈ W cannot 

process jobs consecutively without a break for more than d w time 

units. To guarantee sufficient rest for the workers, when employee 

w starts to take a break after he/she has finished a job, we require 

at least a minimum break time of b w time units. Moreover, there 

is also an upper limit on the total working time of each employee 

w, i.e., φw time units, so as to balance the workload of employees 

and ensure work equity between them. The objective is to find a 

feasible schedule that minimizes the weighted sum of all costs, in- 

cluding the depreciation costs of machines, the labor costs of em- 

ployees and the makespan-related costs. Without loss of generality, 

we assume that under the above working-time restrictions, at least 

one feasible assignment plan of jobs to machines and employees 

exists for the IEMSCW problem. 

2.1. A time-indexed formulation of the IEMSCW problem 

To begin with, we let T = 

∑ n 
j=1 max (i,w ) 

{
p i jw 

}
be the length 

of the planning horizon, and T = { 0 , 1 , 2 , . . . , T − 1 } be the corre- 
sponding set of time instances, that is, the planning horizon is di- 

vided into T periods, and each period t begins at time instant t and 

ends at time instant t + 1 , for t ∈ T . In what follows, we propose a 

mixed integer linear program for the IEMSCW problem. We define 

the following decision variables: 

• x i jwt is equal to 1 if job j starts processing on machine i at time 

t by employee w, and 0 otherwise; 
• βwt is equal to 1 if employee w starts break at time instant t 

after finishing some job, and 0 otherwise. Obviously, we have 

βw 0 = 0 . 
• z wt is equal to 1 if employee w is working at time t , and 0 oth- 

erwise; 
• C max is the makespan of the schedule. 

The IEMSCW problem can now be formulated as follows. 

minimize 
∑ 

i ∈M 

∑ 

j∈J 

∑ 

w ∈W 

T −p i jw ∑ 

t=0 

f i p i jw x i jwt + 

∑ 

w ∈W 

T −1 ∑ 

t=0 

c w z wt + θC max 

(1a) 

subject to 
∑ 

i ∈M 

∑ 

w ∈W 

T −p i jw ∑ 

t=0 

x i jwt = 1 ∀ j ∈ J ; (1b) 

∑ 

w ∈W 

∑ 

j∈J 

t ∑ 

s = max { 0 ,t−p i jw +1 } 
x i jws ≤ 1 ∀ i ∈ M , t ∈ { 0 , . . . , T − 1 }; (1c) 

∑ 

i ∈M 

∑ 

j∈J 

t ∑ 

s = max { 0 ,t−p i jw +1 } 
x i jws ≤ 1 ∀ w ∈ W, t ∈ { 0 , . . . , T − 1 };

(1d) 

z wt = 

∑ 

i ∈M 

∑ 

j∈J 

t ∑ 

s = max { 0 ,t−p i jw +1 } 
x i jws ∀ w ∈ W, t ∈ { 0 , . . . , T − 1 };

(1e) 

t+ d w ∑ 

s = t 
z ws ≤ d w ∀ w ∈ W, t ∈ { 0 , . . . , T − d w − 1 }; (1f) 

∑ 

t∈T 
z wt ≤ φw ∀ w ∈ W; (1g) 

z wt ≥ βw,t+1 ∀ w ∈ W, t ∈ { 0 , . . . , T − 2 }; (1h) 

z wt + βwt ≤ 1 ∀ w ∈ W, t ∈ { 0 , . . . , T − 1 }; (1i) 

z wt − z w,t+1 ≤ βw,t+1 , ∀ w ∈ W, t ∈ { 0 , . . . , T − 2 }; (1j) 

t+ b w −1 ∑ 

s = t 
(1 − z ws ) ≥ b w βwt ∀ w ∈ W, t ∈ { 1 , . . . , T − b w }; (1k) 

C max ≥
∑ 

i ∈M 

∑ 

w ∈W 

T −p i jw ∑ 

t=0 

(t + p i jw ) x i jwt ∀ j ∈ J ; (1l) 

x i jwt , βwt , z wt ∈ { 0 , 1 } ∀ i ∈ M , j ∈ J , w ∈ W, t ∈ T ; (1m) 

The objective (1a) minimizes the total costs including machine 

depreciation costs, labor costs, and makespan-related costs. Con- 

straints (1b) ensure that each job starts its processing on ex- 

actly one machine with exactly one employee and at exactly 

one time instant. Constraints (1c) ensure that at most one job 

can be processed at any time instant on any machine. Con- 

straints (1d) ensure that at most one job can be processed at 

any time instant by any employee. Constraints (1e) give the re- 

lationship between z wt and x i jwt . Constraints (1f) ensure that the 

consecutive working-time of each employee is not longer than 

the given threshold d w . Constraints (1g) impose an upper limit 

on the total working time for each employee within the given 

planning horizon. Constraints (1h) –(1j) define the relationship be- 

tween z wt and βwt . Constraints (1k) force the minimum dura- 

tion of a break time of employee w to be at least b w after pro- 

cessing some job. Constraints (1l) define the makespan of the 

schedule. Constraints (1m) present the ranges of the decision vari- 

ables. For simplicity, we refer to the above model (1) as the 

MILP model, and denote D = 

∑ 

i ∈M 

∑ 

j∈J 
∑ 

w ∈W 

∑ T −p i jw 
t=0 

f i p i jw x i jwt , 

L = 

∑ 

w ∈W 

∑ T −1 
t=0 c w z wt , and M = θC max as the costs associated with 

machine depreciation, labor, and makespan, respectively. 
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Remark 1. It should be noted that there is a slight difference be- 

tween the break time and the idle time of an employee. A break 

time is invoked for an employee only if this employee just has fin- 

ished some job, and does not start with the processing of another 

job immediately; an idle time can be any non-working time, in- 

cluding a break time. To be specific, within the time interval in 

which an employee does not start processing his/her first job, this 

employee is idle but not on a break. Such a difference matches our 

intuition, since it is unreasonable to force employee w to take a 

break (i.e., of at least b w time units) before he/she starts process- 

ing his/her first job. 

Remark 2. In addition to the discrete time model described above, 

the IEMSCW problem can also be formulated as a continuous time 

model by directly assigning jobs to positions, which is a gener- 

alization of the original single machine formulation proposed by 

Lasserre and Queyranne (1992) . Such a formulation is usually re- 

ferred to as an “assignment and positional formulation”. However, 

according to our experimental study, such a formulation has a 

much worse performance than the time-indexed formulation de- 

scribed above. For more detail, please see Appendix A . 

3. A time-decomposition based approach 

It is easy to see that when we set � = + ∞ , p i jw = p j , f i = c w = 

0 , and θ = 1 , the IEMSCW problem becomes the Pm || C max prob- 

lem, which is already NP-hard in the ordinary sense with m ≥2 

( Pinedo, 2016 ). Therefore, it is to be expected that the above MILP 

model cannot solve the IEMSCW problem efficiently within a rea- 

sonable computation time for medium- and large-size instances. 

In this section, we develop a time-decomposition based method, 

which is based on a “divide-and-conquer” approach in its search 

for optimal solutions to the IEMSCW problem. 

As we can see, in the IEMSCW problem, we have to make the 

following two types of decisions, namely (i) assignment decisions 

that specify the associated machine and employee for the process- 

ing of each job, and (ii) scheduling decisions that determine the 

sequence and the start time of each job as well as the makespan 

of the entire schedule. Therefore, one idea for solving the IEMSCW 

problem is based on a decomposition into two subproblems: one 

subproblem focuses on the minimization of the costs related to 

machine and employee assignment, and the other focuses on the 

minimization of the makespan C max of the schedule. 

Inspired by the above observation, within a given planning hori- 

zon ˜ T , we first search for a feasible solution with minimum ma- 

chine depreciation costs and labor costs by solving the following 

model of (2) : 

minimize DL = 

∑ 

i ∈M 

∑ 

j∈J 

∑ 

w ∈W 

˜ T −p i jw ∑ 

t=0 

f i p i jw x i jwt + 

∑ 

w ∈W 

˜ T −1 ∑ 

t=0 

c w z wt (2a) 

subject to Constraints (1 b) − (1 k ) , and (1 m ) . (2b) 

Let DL be the corresponding optimal objective of 

model (2) when ˜ T = T . Obviously, DL is a lower bound on 

the sum of machine depreciation costs and labor costs. Then, we 

calculate the corresponding makespan determined by the solutions 

generated with model (2) , and continue this process by iteratively 

decreasing the length of the planning horizon ˜ T , as shown in 

Algorithm 3.1 , in which C j (see Step 4) is the completion time of 

job j within the planning horizon ˜ T . For simplicity, we refer to 

Algorithm 3.1 as Algorithm TD. 

4. A combinatorial Benders decomposition based approach 

Given the structure of the IEMSCW problem, it seems that de- 

composing this problem into two subproblems, i.e., the assignment 

Algorithm 3.1 A time-decomposition based approach for the IEM- 

SCW problem. 

1: Initialize: ˜ T ← T , O ← ∅ . 
2: while model~(2) is feasible within the planning horizon ˜ T do 

3: Solve model~(2) and determine its optimal solutions 

x ∗
i jwt 

( ̃  T ) and z ∗wt ( ̃
 T ) . Denote associated machine deprecia- 

tion costs asD ( ̃  T ) , and labor costs as L ( ̃  T ) . 

4: Using x ∗
i jwt 

( ̃  T ) to calculate C j ( ̃
 T ) , and set C max ( ̃  T ) ← 

max j { C j ( ̃  T ) } as the makespan. 

5: Calculate the makespan-related costs M ( ̃  T ) ← θC max ( ̃  T ) . 

6: O ← O ∪ {D ( ̃  T ) + L ( ̃  T ) + M ( ̃  T ) }. 

7: Update ˜ T ← C max ( ̃  T ) − 1 . 

8: Calculate ˜ T ∗ ← arg min {O} . 
9: Output the corresponding assignment and scheduling decisions 

x ∗
i jwt 

( ̃  T ∗) and z ∗wt ( ̃
 T ∗) . 

and the scheduling subproblems, may be a possible approach to 

obtain computational speedups. Benders decomposition is such a 

kind of partitioning method applicable to MIPs ( Benders, 1962 ). As 

we know, Benders decomposition algorithms have demonstrated 

its efficiency in solving a wide range of difficult problems, in- 

cluding planning and scheduling problems ( Canto, 2008; Hooker, 

2007 ). In particular, as a variant of the classical Benders decom- 

position method, the combinatorial Benders decomposition algo- 

rithm, which was originally studied in the seminal work of Hooker 

(20 0 0) , has extended itself to solve various mixed-integer pro- 

gramming models with special structures ( Chen, Lee, & Cao, 2012; 

Codato & Fischetti, 2006 ). To enhance the performance of the Ben- 

ders decomposition algorithm and speed up the search process, 

instead of using information with respect to the dual to generate 

cuts, the combinatorial Benders decomposition method iteratively 

excludes the current solution of the master problem from further 

consideration via combinatorial or feasibility cuts, and continues 

such procedure until an optimal solution is identified ( Rahmaniani, 

Crainic, Gendreau, & Rei, 2017 ). 

Until recently, there have been a number of successful applica- 

tions of combinatorial Benders decomposition algorithms to vari- 

ous optimization problems including the quayside operation prob- 

lem at container terminals Chen et al. (2012) , the problem of 

decomposing intensity modulated radiation therapy fluency maps 

using rectangular apertures Ta ̧s kın and Cevik (2013) , the lock 

scheduling problem Verstichel, Kinable, De Causmaecker, and Van- 

den Berghe (2015) , and assembly line balancing problems with se- 

tups Akpinar, Elmi, and Bekta ̧s (2017) , among others. These papers 

illustrate the potential of the combinatorial Benders decomposition 

method. 

In this paper, we propose a combinatorial Benders decomposi- 

tion based approach to solve the IEMSCW problem. For simplicity, 

we refer to the algorithm that implements this approach as Algo- 

rithm CBD. 

4.1. The master and slave problems of Algorithm CBD 

We first present the master problem (i.e. model (3) ) that deter- 

mines the assignment of jobs. We define y i jw = 1 if job j is assigned 

to machine i and processed by employee w, and 0 otherwise. For 

simplicity, we also define 

F = max 

{ 

max 
i ∈M 

{ ∑ 

j∈J 

∑ 

w ∈W 

y i jw p i jw 

} 

, max 
w ∈W 

{ ∑ 

i ∈M 

∑ 

j∈J 
y i jw p i jw 

} 

} 

, 

that is, F is the maximal value of the total job processing time 

on each machine and by each employee. The objective is to min- 

imize the weighted sum of the corresponding machine deprecia- 

131 



K. Fang, S. Wang, M.L. Pinedo et al. European Journal of Operational Research 291 (2021) 128–146 

tion costs, labor costs and costs related to the value of F . Then, the 

master problem can be formulated as follows: 

[ master ] minimize f M = 

∑ 

i ∈M 

∑ 

j∈J 

∑ 

w ∈W 

( f i + c w ) p i jw y i jw + θF ;

(3a) 

subject to 
∑ 

i ∈M 

∑ 

w ∈W 

y i jw = 1 ∀ j ∈ J ; (3b) 

F ≥
∑ 

j∈J 

∑ 

w ∈W 

y i jw p i jw ∀ i ∈ M; (3c) 

F ≥
∑ 

i ∈M 

∑ 

j∈J 
y i jw p i jw ∀ w ∈ W; (3d) 

F ≤ T ; (3e) 

∑ 

i ∈M 

∑ 

j∈J 
y i jw p i jw ≤ φw ∀ w ∈ W; (3f) 

y i jw ∈ { 0 , 1 } ∀ i ∈ M , j ∈ J , w ∈ W. (3g) 

Constraints (3b) ensure that each job can only be as- 

signed to exactly one machine and one employee. Con- 

straints (3c) and (3d) define the value of F . Constraints (3e) ensure 

that the total processing times of jobs assigned to each machine 

cannot be more than the length of the given planning horizon. 

Constraints (3f) ensure that the maximum total working-time of 

each employee is not greater than the given threshold. It is easy 

to see that once variables y i jw have been fixed, the value of F is 

also determined. 

Suppose a solution S = { y ∗
i jw 

, F ∗} of the master problem as well 

as its objective value f ∗
M 

have been obtained. We now try to find 

a feasible solution, if any, to the following slave problem (i.e. 

model (4) ). Model (4) is mainly used to test feasibility of the solu- 

tion S = { y ∗
i jw 

, F ∗} , it does not matter what the objective function 

is, hence we set the objective function as minimize 0. 

[ slave ] minimize 0 (4a) 

subject to 

T −p i jw ∑ 

t=0 

x i jwt = y ∗i jw ∀ i ∈ M , j ∈ J , w ∈ W; (4b) 

(t + 1) z wt ≤ C max ∀ w ∈ W, t ∈ T ; (4c) 

C max ≤ F ∗; (4d) 

Constraints (1 c) − (1 k ) ; (4e) 

x i jwt , z wt , βwt ∈ { 0 , 1 } ∀ i ∈ M , j ∈ J , w ∈ W, t ∈ T . (4f) 

Constraints (4b) establish the relationship between variable 

x i jwt and the value of y 
∗
i jw 

obtained from the master problem. Con- 

straints (4c) and (4d) restrict the range of C max in the slave prob- 

lem. Constraints (4e) ensure that if a solution to the slave problem 

has been found, it must satisfy all the predefined restrictions re- 

garding employees’ working hours. 

Obviously, if the slave problem returns a feasible solution, then 

the solution of { y ∗
i jw 

, F ∗} is also optimal to the master problem, and 

thus we solve the original IEMSCW problem. Otherwise, the cur- 

rent assignment plan of jobs, i.e., y ∗
i jw 

, should be forbidden over 

the current time horizon with length F ∗. 
Unfortunately, the problem of finding a feasible solution to 

the slave problem is not polynomial-time solvable. To illustrate, 

we consider the following problem (i.e. the slave( w ) problem), in 

which we only search for a feasible schedule of jobs for each indi- 

vidual employee w ∈ { 1 , 2 , . . . , � } . Let J w = { j : y ∗
i jw 

= 1 } , and U w = 

{ (i, j, w ) | y ∗
i jw 

= 1 } . For each j ∈ J w , we define p ′ 
j 
= p i jw if y 

∗
i jw 

= 1 . 

Now the slave( w ) problem becomes a search for a feasible sched- 

ule of jobs in J w with processing times { p ′ 
j 
} , so that working hours 

restrictions are satisfied, and the makespan is at most F ∗. 

Theorem 1. The slave( w ) problem is NP-hard in the strong sense. 

Proof. We reduce any instance of the 3-PARTITION problem, which 

is strongly NP-hard ( Garey & Johnson, 1979 ), to an instance of 

the slave( w ) problem. The 3-PARTITION problem is described 

as follows: Given a set S = { 1 , 2 , . . . , 3 m } and positive integers 
A 1 , . . . , A 3 m 

, B such that B /4 < A j < B /2 for all j ∈ S and 
∑ 

j∈S A j = 

mB, does there exist a partition of S with m 3-element subsets 

S 1 , . . . , S m such that 
∑ 

j∈S i A j = B for all i = 1 , . . . , m ? Given any 

instance I 1 of 3-PARTITION, we construct an instance I 2 of the 
slave( w ) problem as follows: The set of jobs is J w = { 1 , 2 , . . . , 3 m } , 
the processing time of each job j ∈ J w is: 

p ′ j = A j for j = 1 , . . . , 3 m, 

and the value of F ∗ is mB + (m − 1) . 

In addition, the maximum consecutive working-time and min- 

imum break time for employee w are B and 1, respectively. Then 

there exists a feasible schedule of jobs for employee w if and 

only if this employee always achieves his/her maximum consec- 

utive working-time B when he/she is working, and then only takes 

the minimum break time, i.e., one unit time. This can be done if 

and only if the 3-PARTITION problem has a solution, therefore the 

theorem follows. �

Although the general slave( w ) problem is strongly NP-hard, dur- 

ing our implementation of Algorithm CBD, we can still solve the 

following optimization model to check if the given assignment plan 

is feasible for each specific employee w k ∈ W within a fairly small 

amount of computational time: 

[ slave (w k )] minimize 0 (5a) 

subject to 

T −p i jw k ∑ 

t=0 

x i jw k t = y ∗i jw k ∀ i ∈ M , j ∈ J ; (5b) 

(t + 1) z w k t ≤ C max ∀ t ∈ T ; (5c) 

C max ≤ F ∗; (5d) 

Constraints (1 c) − (1 k ) where w = w k ; (5e) 

x i jw k t , z w k t , βw k t ∈ { 0 , 1 } ∀ i ∈ M , j ∈ J , t ∈ T . (5f) 

4.2. Combinatorial Benders cuts: a heuristic generation method 

For simplicity, we denote the optimal solution of the master 

problem in the t th iteration as { y (t) 
i jw 

, F (t) } , and the correspond- 
ing optimal objective as f (t) 

M 
. When an infeasible slave problem 

is encountered, we know that the current assignment plan of 
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jobs y (t) 
i jw 

should be forbidden over the time horizon with length 

F ( t ) . Let U (t) = 

{ 

(i, j, w ) | y (t) 
i jw 

= 1 , slave is infeasible 

} 

and U (t) = { 

(i, j, w ) | y (t) 
i jw 

= 0 , slave is infeasible 

} 

, then we can add the fol- 

lowing combinatorial Benders cut into the master problem: ∑ 

(i, j,w ) ∈ U (t) 
y i jw + 

∑ 

(i, j,w ) ∈U (t) 
(1 − y i jw ) ≥ 1 , (6) 

which can be used to prevent the above assignment plan to the 

job schedule, that is, to make a schedule feasible for all employees, 

we need to remove at least one element in U (t) from the current 

assignment plan, and replace it with some other element in U (t) . 
In particular, when not only the slave problem is infeasible, 

but also the slave( w k ) problem is infeasible for some w k ∈ W, 

then we let U (t) w k 
= 

{ 

(i, j, w k ) | y (t) i jw k 
= 1 , slave (w k ) is infeasible 

} 

, 

and add the following additional combinatorial Benders cuts into 

the master problem: ∑ 

(i, j,w k ) ∈U (t) w k 

(1 − y i jw k ) ≥ 1 , (7) 

which prevents the assignment plan of U (t) w k 
to employee w k . That 

is, to make a schedule feasible for employee w k , we need to re- 

move at least one element from U (t) w k 
. 

In addition, note that each employee has a consecutive 

working-time restriction, if for some employee w k , we have ∑ 

(i, j,w k ) ∈U (t) w k 

y (t) 
i jw k 

p i jw k > d w k , then this employee has to take 

breaks for at least 

⌈
( 
∑ 

(i, j,w k ) ∈U (t) w k 

y (t) 
i jw k 

p i jw k ) /d w k − 1 

⌉
times. For 

simplicity, we define 

F (t) w k 
= 

∑ 

(i, j,w k ) ∈U (t) w k 

y (t) 
i jw k 

p i jw k + 

⎛ ⎝ 

⎡ ⎢ ⎢ ⎢ 

⎛ ⎝ 

∑ 

(i, j,w k ) ∈U (t) w k 

y (t) 
i jw k 

p i jw k 

⎞ ⎠ /d w k − 1 

⎤ ⎥ ⎥ ⎥ 

⎞ ⎠ b w k . 

Then, given the current assignment plan of jobs y (t) 
i jw k 

, the minimal 

completion time by employee w k is at least F 
(t) 
w k 

. However, it may 

be the case that F ( t ) satisfies Constraints (3d) for employee w k . That 

is, F (t) ≥ ∑ 

(i, j,w k ) ∈U (t) w k 

y (t) 
i jw 

p i jw , while F (t) < F (t) w k 
also holds, which is 

obviously an infeasible solution to employee w k . To avoid such in- 

feasible assignment of jobs to employee w k with the solution of 

{ y (t) 
i jw k 

, F (t) } , we can further add the following strenghthened com- 

binatorial Benders cuts into the master problem: 

∑ 

(i, j,w k ) ∈ ̃ U (t) w k 

y i jw k p i jw k + 

⎛ ⎝ 

⎡ ⎢ ⎢ ⎢ 

⎛ ⎝ 

∑ 

(i, j,w k ) ∈ ̃ U (t) w k 

y i jw k p i jw k 

⎞ ⎠ /d w k − 1 

⎤ ⎥ ⎥ ⎥ 

⎞ ⎠ b w k ≤ F (t) , 

(8) 

where ˜ U (t) w k 
= { (i, j, w k ) | y (t) i jw k 

= 1 , F (t) < F (t) w k 
} . 

4.3. Lower and upper bounds on the F values 

As we can see, the constraints on the value of F variable in the 

initial master problem are quite loose. In fact, we can use some 

auxiliary optimization models to generate tighter restrictions on 

the range of F values. 

Consider the following optimization model: 

minimize C max (9a) 

subject to Constraints (1 b) − (1 m ) . (9b) 

Note that the above optimization model (9) is much easier to 

solve than the IEMSCW problem. We let C ∗max be the corresponding 

optimal objective for model (9) , then obviously the makespan of 

any feasible schedule for the IEMSCW problem should be at least 

C ∗max . Therefore, we can obtain a lower bound on the F value as 

follows: 

F ≥ C ∗max . (10) 

On the other hand, consider the following optimization 

model: 

minimize C max (11a) 

subject to Constraints (4 b) − (4 c) and (4 e ) − (4 f ) . (11b) 

The above optimization model (11) calculates the minimum 

makespan under the given assignment plan of jobs (i.e., y (t) 
i jw 

). If 

model (11) is feasible, we let C (t) max be the corresponding optimal 

objective to model (11) , and define 

U 

(t) 
B 

= f (t) 
M 

− θF (t) + θC (t) max . (12) 

In addition, if { x ( t ) , z ( t ) , β ( t ) } is the corresponding feasible 

solution to the optimization model (11) , then the solution 

{ x (t) , z (t) , β(t) 
, C (t) max } is obviously a feasible solution to the IEMSCW 

problem, with objective value U 
(t) 
B 

, which is an upper bound on 

the total cost for the IEMSCW problem. 

Note that DL is a lower bound on the sum of machine depre- 

ciation and labor costs (see Section 3 ), therefore the makespan re- 

lated cost is at most U 
(t) 
B 

− DL , which means that the maximum 

makespan is at most 

(
U 

(t) 
B 

− DL 

)
/θ . Therefore, we can obtain the 

following upper bound on the F value: 

F ≤
⌊
(U 

(t) 
B 

− DL ) /θ
⌋
. (13) 

For simplicity, we define F = C ∗max and F = 

⌊ 

(U 
(t) 
B 

− DL ) /θ
⌋ 

as the 

lower and upper bounds on the F values, respectively. Then, by in- 

corporating the above lower and upper bounds on the F values, 

we can significantly shorten the length of the time horizon during 

each iteration, and thus speed up the entire search process. 

4.4. Monotonic search strategy: avoiding stagnation situations 

It should be noted that all of the generated combinatorial Ben- 

ders cuts in Section 4.2 remain valid only when the length of the 

new time horizon in the (t + 1) th iteration does not increase, that 

is, F (t+1) ≤ F (t) . Otherwise, if we obtained a new solution to the 

master problem in the (t + 1) th iteration, by adding all the feasi- 

bility cuts generated after the t th iteration, and have F (t+1) > F (t) , 

then the previous assignment plan of jobs (i.e., y (t) 
i jw 

) may actually 

be feasible over the new time horizon with length F (t+1) . There- 

fore, each time when the value of F strictly increases, we have to 

remove all the previously generated combinatorial Benders cuts, 

and restart the search process for feasibility cuts with the new 

value of F from scratch. 

Meanwhile, it may be the case that the solution in the (t + 2) th 

iteration (i.e., { y (t+2) 
i jw 

, F (t+2) } ) satisfies F (t+2) < F (t) < F (t+1) . That is, 

in the new solution generated in the (t + 2) th iteration, the time 

horizon is shortened with a lower makespan-related cost, at the 

expense of higher machine depreciation costs and labor costs. As a 

result, the search process may stagnate in local optima because of 

the fluctuations in the values of F and the removal of combinatorial 

Benders cuts when the value of F increases. 

To avoid such situations, we implement the following mono- 

tonic search strategy: We separately solve the master problem 
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into two opposite directions. That is, during the implementation 

of Algorithm CBD, we search for the optimal solutions in non- 

decreasing and nonincreasing orders of the F values, respectively. 

For simplicity, we call them the “master-upward” and “master- 

downward” problems, and denote the corresponding slave prob- 

lem in the upward and downward directions as “slave-upward”

and “slave-downward” problems, respectively. 

In particular, during any two consecutive iterations in the 

“master-upward” (resp. “master-downward”) problem, the value of 

F in fact can only be increased (resp. decreased) by at most 1. The 

reason is the following: suppose that we have obtained a solution 

(y (t) 
i jw 

, F (t) ) by solving the “master-upward” problem in the t th it- 

eration, and the corresponding slave problem is infeasible. Then, 

we add all the combinatorial Benders cuts that are generated in 

Section 4.2 , and obtain a new solution (y (t+1) 
i jw 

, F (t+1) ) for the mas- 

ter problem. Now, if we have F (t+1) − F (t) ≥ 2 , then since the value 

of F increases monotonically in the “master-upward” problem, we 

know that for any iteration t ′ > t + 1 , the value of F (t 
′ ) must be 

greater than or equal to F (t+1) , which means that any solution 

(y ′ 
i jw 

, F ′ ) that satisfies F (t) < F ′ < F (t+1) will be skipped. However, 

it may be the case that the corresponding slave problem of solu- 

tion (y ′ 
i jw 

, F ′ ) is feasible, and the minimal total cost may be de- 

rived from this solution. Similar arguments hold for search pro- 

cesses in the “master-downward” problem. 

Based on the above observation, starting from the value of F (0) , 

which was obtained by solving the initial “master-upward” prob- 

lem, we solve its associated “slave-upward” problem and check if 

it is feasible. If not, we add valid combinatorial Benders cuts into 

the master problem, and continue the above process until the slave 

problem becomes feasible, or the master problem becomes infea- 

sible. To be specific, suppose in iteration t , the corresponding slave 

problem of solution (y (t) 
i jw 

, F (t) ) is feasible, we calculate the corre- 

sponding objective value of the master problem, and set it as the 

new upper bound U 
(t) 
B 

on the total cost, with an updated value of 

F . Then, in the next iteration, we update the value of F from F ( t ) to 

F (t) + 1 in the objective function of the master problem, and add 

the following constraint to the master problem 

f M ≤ U 

(t) 
B 

− 1 , (14) 

so as to ensure that the total cost is at most U 
(t) 
B 

− 1 in the fol- 

lowing iterations, and continue such process until the value of F 

becomes larger than F . In the “master-downward” problem, we re- 

peat similar process starting from the value of F (0) − 1 , and de- 

crease the value of F by at most 1 during any two consecutive iter- 

ations. This way, we can avoid any stagnation situations, and make 

it possible to find an optimal solution of the IEMSCW problem dur- 

ing the search process. 

4.5. The algorithmic outline of Algorithm CBD 

The overall procedure of the combinatorial Benders decomposi- 

tion based approach (i.e., Algorithm CBD) is summarized as follows 

(see Algorithm 4.1 ). 

5. An LS-based heuristic approach: scheduling incompatible 

jobs on parallel dedicated machines with working-time 

restrictions 

From Section 4.1 , we know that once we solved the initial mas- 

ter problem, we can obtain an assignment plan of jobs to machines 

and employees, with a minimal lower bound f (0) 
M 

on total costs. In 

particular, if we can find a feasible schedule of jobs within the time 

horizon [0, F (0) ], then we immediately obtain an optimal schedule 

for the IEMSCW problem. However, we expect that this may not al- 

ways happen since the value of F (0) is obtained by scheduling jobs 

Algorithm 4.1 The algorithmic outline of Algorithm CBD for the 

IEMSCW problem. 

1: Initialize: f ∗
M 

← 0 , O ← ∅ , and U B is a sufficient large number. 

2: Solve the optimization model~(9) to determine the value of F , 

and add valid inequality~(10) to the initial master problem. 

3: Solve the initial master problem (i.e., model~(3)), and calculate 

S (0) = { f (0) 
M 

, y (0) 
i jw 

, F (0) } . 
4: Solve the optimization model~(11),and calculate the value of F 

by inequality~(13). 

5: while F (t) ≤ F do 

6: while the “slave-upward” problem is infeasible with the gen- 

erated tth solution { y (t) 
i jw 

, F (t) } do 
7: Add combinatorial Benders cuts~(6) to the “master- 

upward” problem. 

8: for each w ∈ W , solve model~(5) do 

9: if model~(5) is infeasible for w k then 

10: Add combinatorial Benders cut~(7) to the “master- 

upward” problem. 

11: if F (t) < F (t) w then 

12: Add combinatorial Benders cut~(8) to the “master- 

upward” problem. 

13: Fix F (t+1) ← F (t) in model~(3), and solve the “master- 

upward” problem again. 

14: Update U 
(t+1) 
B 

← U 
(t) 
B 

. 

15: if the “master-upward” problem is feasible then 

16: Calculate an updated solution of { f (t+1) 
M 

, y (t+1) 
i jw 

} with the 

fixed value of F (t+1) . 

17: else 

18: F (t+1) ← F (t) + 1 . 

19: Remove all the combinatorial Benders cuts from mod- 

el~(3), and solve the “master-upward” problem again 

with the fixed value of F (t+1) . 

20: Break. 

21: Record the solution of { x (t) , z (t) , β(t) } when the slave prob- 

lem becomes feasible.Update U 
(t+1) 
B 

← min { f (t) 
M 

, U 
(t) 
B 

} and 

calculate the value of F by Inequation (13). 

22: F (t+1) ← F (t) + 1 . 

23: Remove all the combinatorial Benders cuts frommodel~(3). 

Add constraint~(14) intothe “master-upward” problem, and 

solve it again with the fixed value of F (t+1) . 

24: F (t) ← F (0) − 1 . 

25: while F (t) ≥ F do 

26: Repeat similar procedures as in Steps 5–23 in the downward 

direction, except thatwe decrease the value of F during each 

iteration in a similar way. 

27: Output the corresponding optimal assignment 

decisions { y ∗
i jw 

, F ∗} , and its associated optimal objective value 

f ∗
M 
. 

on machines or by employees without any idleness, and usually 

that may not satisfy the working-time restrictions. 

Inspired by the above observation, one natural question that 

can be raised is the following: once we solved the initial master 

problem and fixed the corresponding assignment of jobs to ma- 

chines and employees, can we easily find a feasible schedule that 

minimizes the makespan while satisfying the working-time restric- 

tions, and then use such a schedule as an approximate solution to 

the IEMSCW problem? Note that in the above problem, the jobs 

to be processed on each machine are known in advance. That is, 

the machines are parallel and dedicated . Meanwhile, the jobs that 

are assigned to the same employee cannot be processed simulta- 

neously, i.e., some of the jobs are incompatible , and only compat- 

ible jobs can be processed in parallel. For simplicity, we refer to 
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the above problem as the problem of scheduling incompatible jobs 

on parallel dedicated machines with working-time restrictions . Us- 

ing the standard three-field scheduling notation ( Graham, Lawler, 

Lenstra, & Kan, 1979 ), we denote this problem by PDm | incmp , con- 

sec , break | C max . 

There have been several studies of scheduling problems for par- 

allel dedicated machines, in which jobs are subject to various types 

of resource constraints or even have incompatibility relationships. 

For example, Kellerer and Strusevich (2003) studied the problem 

of scheduling jobs on parallel dedicated machines subject to a sin- 

gle resource constraint to minimize the makespan. In a follow-up 

work, Kellerer and Strusevich (2004) considered scheduling prob- 

lems with parallel dedicated machines subject to multiple resource 

constraints. Moreover, Kellerer and Strusevich (2008) further con- 

sidered a problem of scheduling jobs on parallel dedicated ma- 

chines to minimize the makespan, in which jobs may be assigned 

an additional resource with reduced processing time, and no two 

jobs are allowed to use the resource simultaneously. In all of the 

above work, the authors investigated the complexity results for dif- 

ferent variants of the problems, proposed different heuristic algo- 

rithms and analyzed the worst-case behaviors of these algorithms. 

In addition, Grigoriev, Sviridenko, and Uetz (2007) proposed ap- 

proximation algorithms for an unrelated parallel dedicated ma- 

chine scheduling problem, in which the processing time of jobs 

can be reduced by utilizing a discrete renewable resource. More 

recently, Lushchakova and Strusevich (2010) proposed a linear-time 

algorithm for the problem of scheduling incompatible tasks on two 

machines. However, according to our literature review, no work 

has been done on scheduling problems with parallel dedicated ma- 

chines subject to working-time constraints. 

From Theorem 1 , it is trivial to see that problem PD 1| incmp , 

consec , break | C max is strongly NP-hard. In fact, we can further show 

that it is still NP-hard in the ordinary sense even when jobs can be 

processed preemptively (see Appendix B for proof). 

Theorem 2. Problem PD 1| incmp , consec , break , pmtn | C max is NP- 

hard in the ordinary sense. 

Given the above complexity results, we know how difficult it 

could be to find an optimal solution in polynomial time even for 

the PDm | incmp , consec , break , pmtn | C max problem, which provides 

a lower bound on the makespan of the general PDm | incmp , con- 

sec , break | C max problem. Then, one interesting question we may 

ask is: does there exist any approximate algorithm such that the 

makespan of the schedule generated is within the value of ρF (0) , 

where ρ > 1 is a constant? If this condition holds, we let σ be 

the feasible schedule generated by the approximate algorithm, 

and C σmax be its corresponding makespan obtained, and we have 

C σmax ≤ ρF (0) . Obviously, the objective value of the algorithm is 

f (0) 
M 

− θF (0) + θC σmax . For simplicity, we define OPT as the optimal 

objective value of the IEMSCW problem, and we have 

f (0) 
M 

− θF (0) + θC σmax 

OP T 
≤ f (0) 

M 
− θF (0) + θC σmax 

f (0) 
M 

− θF (0) + θF (0) 
≤ C σmax 

F (0) 
≤ ρ, 

that is, such algorithm will also have a performance ratio of ρ for 

the IEMSCW problem. 

Unfortunately, we have no clue how to answer the question 

above. The reason is the following: when each employee has to 

process at least one job on each machine, and if the minimum 

break time of each employee is sufficiently long, while the total 

processing time of jobs for each employee is less than this em- 

ployee’s maximum consecutive working time, then the PDm | incmp , 

consec , break | C max problem includes the problem of minimizing the 

makespan for a no-wait open shop as a special case. Until recently, 

the approximability of makespan minimization in no-wait open 

shops remains a major open problem, and few theoretical results 

have been obtained so far ( Allahverdi, 2016 ). 

As a result, we instead try to design some simple and intuitive 

heuristics to search for a feasible schedule of the IEMSCW prob- 

lem, and test its performance empirically. One typical idea is to 

employ a so called list scheduling heuristic, which has been often 

implemented in searches for feasible solutions to various parallel 

machine scheduling problems (e.g. Mokotoff, Jimeno, & Gutiérrez, 

2001 ). In this work, we propose the following greedy list schedul- 

ing algorithm ( Algorithm 5.1 ) for the IEMSCW problem, in which 

Algorithm 5.1 The list scheduling based heuristic algorithm for 

the IEMSCW problem. 

1: Solve the initial master problem, and determine the corre- 

sponding assignment plan of jobs to machines and employees 

according to the values of y (0) 
i jw 

. 

2: Generate a list of the employees in an arbitrary order. 

3: Define J w = { j ∈ J |∃ i ∈ M , j ∈ J , s.t. y (0) 
i jw 

= 1 } be theset of 
jobs that are assigned to employee w ∈ W , and M w = { i ∈ 

M|∃ j ∈ J w , s.t. y 
(0) 
i jw 

= 1 } be the set of machines that are used 

toprocess the jobs in J w . 

4: Initialize: t w ← 0 for w ∈ W . 

5: for Each employee w according to the employee list do 

6: while J w is not empty do 

7: – Check if some yet unscheduled job j ′ ∈ J w can bestarted 

at time t w on an idle machine i ′ ∈ M w without violating 

theconsecutive working-time restriction. If yes, schedule 

job j ′ to start attime t w on machine i ′ ; ties are broken ar- 
bitrarily. Update J w ← J w \{ j ′ } and the associated machine 

set M w , update t w ← t w + p i ′ j ′ w . 
8: – If no job can be scheduled on any of the machines in M w 

at time t w , update t w to the next machine available time. 

we first generate a list of the employees by sorting them in an ar- 

bitrary order, and then process the jobs according to the order of 

employees. That is, we will not consider processing the jobs that 

belong to an employee until all the jobs of the previous employee 

on the list have been scheduled. In addition, all the jobs belong- 

ing to the same employee will be processed with no inserted idle 

time according to their machines’ available times, while taking the 

working-time restrictions into account. This way, we aim to ensure 

that each employee can process jobs as much as possible consecu- 

tively. For simplicity, we refer to this algorithm as Algorithm LS. 

6. Experimental study 

6.1. Computational environment 

To test the performance of the MILP model and the three al- 

gorithms we proposed, i.e., Algorithms TD, CBD and LS, we em- 

pirically conducted computational experiments on randomly gen- 

erated instances. We considered instances in which the number of 

jobs n was 15, 20, 30 and 50, and the number of employees � and 

machines m were chosen from the following combinations: 

(�, m ) ∈ { (3 , 3) , (3 , 6) , (6 , 3) , (5 , 5) , (5 , 10) , (10 , 5) } . 
To better evaluate the performance of these algorithms, we consid- 

ered two different manufacturing environments: the stable (Case I) 

and unstable (Case II) environments. For each of the above combi- 

nations and manufacturing environments, we randomly generated 

5 instances, for a total of 4 × 6 × 2 × 5 = 240 instances. We also 

randomly generated the corresponding parameter inputs, i.e. the 

values of p i jw , b w , d w , and φw as follows, in which we assume that 

1 ≤ b w ≤ d w ≤ φw , as this matches typical manufacturing environ- 

ments. 
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Table 1 

Comparison of computational results by MILP-E, Algorithms TD, CBD and LS with n = 15 . 

� m # Case I Case II 

CPU running time (s) Objective value CPU running time (s) Objective value 

MILP-E Alg TD Alg CBD OPT Alg LS MILP-E Alg TD Alg CBD OPT Alg LS 

3 3 1 8 19 6 153 164 58 61 67 196 199 

2 288 24 6 140 143 88 41 21 185 189 

3 4 22 5 145 155 10 52 10 184 188 

4 3 16 5 147 152 13 41 22 179 186 

5 4 12 3 94 94 9 45 9 263 278 

3 6 1 11 12 4 110 116 17 45 20 129 138 

2 6 27 24 107 111 13 61 12 119 119 

3 6 23 4 102 102 18 49 11 110 110 

4 10 11 5 81 84 14 73 7 120 120 

5 29 16 8 103 103 19 45 14 116 116 

6 3 1 7 37 10 78 83 15 82 12 112 118 

2 6 34 15 148 151 13 68 11 81 81 

3 7 23 6 110 110 13 66 15 154 154 

4 7 22 5 96 99 14 108 13 131 134 

5 6 29 6 102 105 12 87 12 176 185 

5 5 1 15 35 8 70 73 17 60 24 108 108 

2 10 31 7 75 81 19 119 12 105 108 

3 14 109 47 86 87 16 155 18 111 120 

4 9 45 9 75 75 16 75 16 120 129 

5 15 27 10 100 100 20 163 16 94 97 

5 10 1 19 71 15 56 59 54 472 52 79 82 

2 31 71 28 78 78 42 181 35 96 99 

3 18 47 16 89 95 38 364 46 117 117 

4 19 79 20 90 93 47 221 42 103 109 

5 23 50 22 89 92 44 181 48 102 102 

10 5 1 227 82 24 80 87 61 522 52 73 79 

2 29 126 27 82 82 39 597 47 94 100 

3 15 137 23 55 55 32 224 48 84 90 

4 128 236 24 103 103 31 357 54 114 114 

5 144 239 25 89 89 36 382 45 82 88 

Avg CPU time 37.3 57.1 13.9 / / 27.9 166.6 27.0 / / 

# solved 30 30 30 / / 30 30 30 / / 

• Stable environment (Case I): The processing times of jobs 

p i jw were randomly generated from the uniform distribution 

on { 1 , . . . , 6 } , b w from the uniform distribution on {1, 2}, and 

d w from the uniform distribution on { 4 , . . . , 10 } . It should be 
noted that the values of φw should be appropriately determined 

within a reasonable range, otherwise Constraints (1g) may be 

too loose to take effect on generating the solutions or be too 

strict which results in no feasible solutions. Through some ex- 

amination, we decided to randomly generate the values of φw 

from the uniform distribution on {
 3 n/� � − 3 , . . . , 
 3 n/� � + 3 } . 
This way, the average value of the total processing time of jobs 

assigned to each employee will keep at a similar level as the 

average value of the maximum total working-time of employ- 

ees. To check if the instance we generated is feasible, we can 

simply solve the MILP model (1) , in which the objective func- 

tion is set as 0. If the corresponding instance is infeasible, then 

we repeat the above procedure to generate a new one. 
• Unstable environment (Case II): The processing times of jobs 

p i jw were randomly generated from the uniform distribution on 

{ 1 , . . . , 10 } , b w from the uniform distribution on {1, 2, 3}, and 

d w from the uniform distribution on { 6 , . . . , 15 } . In addition, the 
values of φw were randomly generated from the uniform dis- 

tribution on {
 5 n/� � − 5 , . . . , 
 5 n/� � + 5 } . If the corresponding 
instance is infeasible, then we repeat the above procedure to 

generate a new one. 

For both of the above two cases, we randomly generated 

the cost coefficients c w and f i from the uniform distribution on 

{ 1 , . . . , 6 } and the value of θ was given as 3, i.e. the mean value 

of c w and f i , so as to provide a similar weight for the makespan- 

related costs compared with the other two types of the costs. 

To perform these experiments, we used Gurobi Optimizer 9.0.2 

to solve the MILP model and the Python programming language 

to implement Algorithms TD, CBD and LS on a computer with a 

2.8GHz Intel Core i7 processor and 16 GB of RAM running the OS 

X 10.14 operating system. According to our experimental study, we 

found that most of the instances with n ≤30 can be solved opti- 

mally by at least one of the proposed solution approaches (i.e., Al- 

gorithms TD and CBD) within 30 minutes. To make a better com- 

parison on the performance of the MILP model and the two exact 

algorithms with similar computational time, we set a 1800 sec- 

onds time limit on each instance. For each instance, if it cannot 

be solved optimally within the given time limit, we recorded the 

corresponding optimality gap. 

In particular, as we can see, the variable z wt in the MILP 

model (1) is merely used for convenience and can be eliminated 

by replacing it with an equivalent term as per Constraints (1e) . 

For simplicity, we denote the corresponding MILP model that elim- 

inates the variable z wt as the MILP-E model. By comparing the per- 

formance of these two models over all the instances, we found 

that in general the MILP-E model outperforms the original MILP 

model, as fewer variables and constraints are included in the MILP- 

E model. Therefore, in what follows, we only recorded the compu- 

tational results obtained by the MILP-E model, and compared its 

performance with the other algorithms. 

6.2. Comparison between Algorithms TD, CBD, LS and the MILP-E 

model 

We first focused on small size instances, i.e., n = 15 , to com- 

pare the performance of the MILP-E model and our proposed al- 

gorithms. Table 1 shows the CPU running time and the objective 

136 



K. Fang, S. Wang, M.L. Pinedo et al. European Journal of Operational Research 291 (2021) 128–146 

Table 2 

Comparison of computational results by MILP-E, Algorithms TD, and CBD with n = 20 . 

� m # Case I Case II 

MILP-E Alg TD Alg CBD OPT MILP-E Alg TD Alg CBD OPT 

Time (s) Best LB Gap Time (s) Time (s) Time (s) Best LB Gap Time (s) Time (s) 

3 3 1 28 186 186 0 37 31 186 534 204 204 0 83 94 204 

2 — 189 181 4.2% 46 12 189 28 197 197 0 156 127 197 

3 7 232 232 0 25 4 232 — 203 191 5.9% 93 32 203 

4 22 173 173 0 29 120 173 34 248 248 0 85 18 248 

5 — 172 171 0.6% 32 39 172 — 265 257 3.0% 138 149 265 

3 6 1 34 133 133 0 68 123 133 31 158 158 0 123 40 158 

2 580 147 147 0 59 71 147 28 221 221 0 127 21 221 

3 29 138 138 0 96 268 138 31 171 171 0 148 42 171 

4 18 150 150 0 83 190 150 25 184 184 0 220 38 184 

5 66 181 181 0 129 32 181 82 194 194 0 134 24 194 

6 3 1 13 155 155 0 55 8 155 26 212 212 0 428 27 212 

2 316 127 127 0 62 11 127 77 181 181 0 494 30 181 

3 457 123 123 0 67 15 123 36 173 173 0 225 26 173 

4 73 155 155 0 78 9 155 34 130 130 0 182 25 130 

5 62 93 93 0 57 20 93 22 132 132 0 306 44 132 

5 5 1 31 133 133 0 119 73 133 76 124 124 0 360 90 124 

2 91 102 102 0 68 20 102 39 119 119 0 274 40 119 

3 20 127 127 0 101 23 127 34 140 140 0 242 29 140 

4 — 177 175 1.1% 209 38 177 40 145 145 0 309 37 145 

5 24 133 133 0 62 16 133 39 114 114 0 523 49 114 

5 10 1 417 147 147 0 252 95 147 70 86 86 0 465 62 86 

2 631 111 111 0 144 423 111 68 109 109 0 428 56 109 

3 54 87 87 0 138 36 87 59 80 80 0 857 92 80 

4 240 100 100 0 96 29 100 60 123 123 0 821 61 123 

5 59 123 123 0 162 86 123 88 120 120 0 387 60 120 

10 5 1 120 97 97 0 448 47 97 71 90 90 0 1487 125 90 

2 46 97 97 0 469 54 97 — 124 119 4.0% 777 143 124 

3 — 108 105 2.8% 507 233 108 — 107 106 0.9% 1283 145 107 

4 32 82 82 0 433 46 82 240 104 104 0 1414 128 104 

5 201 135 135 0 189 43 135 72 127 127 0 752 84 127 

Avg value > 362.2 / / 0.3% 143.2 73.8 / > 304.8 / / 0.5% 444.0 64.6 / 

# solved 26 30 30 / 26 30 30 / 

—: for these instances, the optimal solutions cannot be obtained within 1800 seconds. 

values obtained by solving the MILP-E model and by implement- 

ing Algorithms TD (denoted by “Alg TD” in the table), CBD (de- 

noted by “Alg CBD” in the table), and LS (denoted by “Alg LS” in 

the table). In addition, we also denote “OPT” as the optimal ob- 

jective value, which is obtained by at least one of the above three 

solution approaches within the time limit. 

From this table, we can see that when n = 15 , all the instances 

can be solved optimally either by the MILP-E model or by Algo- 

rithms TD and CBD. In particular, the CPU running time of Algo- 

rithm CBD is comparatively smaller than the ones by Algorithm TD 

and by the MILP-E model. In addition, we can see that the CPU 

running times of Algorithms TD and CBD for most of the instances 

in Case I (stable environment) are generally smaller than the ones 

in Case II (unstable environment). This is to be expected, since the 

length of the planning horizon in Case II is much longer, and more 

alternative solutions can be found during the search process. As a 

result, more iterations may be required to obtain optimal solutions. 

On the other hand, for the above instances that we generated, 

we found that the LS-based heuristic approach can obtain near- 

optimal objective values, which illustrates that Algorithm LS could 

be a promising alternative to solve the IEMSCW problem when we 

only have very limited computational time. Since the main focus 

of our paper is to investigate the exact approaches to the IEMSCW 

problem, we will not further compare Algorithm LS with other al- 

gorithms in the remaining of this paper. 

When the number of jobs increases, i.e., n = 20 and n = 30 , 

Tables 2 and 3 show the corresponding computational results. In 

the tables, we denote “Time (s)” as the computation time in CPU 

seconds. If an instance cannot be solved optimally within the time 

limit, then we used 1,800 as the computation time for the instance 

to compute the average value (denoted by “Avg value”) of com- 

putation time, and then added a “> ” sign before the calculated 

value. From these two tables, we can see that the performance of 

Algorithm CBD is generally better than the ones of Algorithm TD 

and the MILP-E model since it can solve most of the instances op- 

timally, and its average CPU running time is smaller than those 

of the other two methods. Even for the instances that cannot be 

solved optimally by Algorithm CBD, it can still obtain near-optimal 

solutions with comparatively small optimality gaps. The only ex- 

ceptions are the instances in Case I with n = 30 , for which Algo- 

rithm CBD can only solve 16 out of 30 instances optimally, while 

the other two methods have larger numbers of solved instances. 

It should be noted that when n ≥20, Algorithm CBD seems to 

have a better performance on the instances in Case II than the ones 

in Case I. The reason for such phenomenon may be that: due to 

our proposed instance generation method, we know that the vari- 

ation of the input data in Case II is higher than that in Case I. 

Therefore, when the size of instances increases, the valid combi- 

natorial Benders cuts that we generated could be much tighter for 

the instances in Case II than the ones in Case I, since more pos- 

sible infeasible solutions could be excluded by adding such cuts. 

Meanwhile, the performance of Algorithm CBD on instances with 

( � , m ) ∈ {(6, 3), (10, 5)} is generally better than the one on instances 

with ( � , m ) ∈ {(3, 6), (5, 10)}. This is reasonable, since the instances 

in the first set have larger numbers of employees, and as a result, 

fewer jobs may be assigned to each employee. 

In addition, from all of these three tables, it seems that we 

cannot simply claim either Algorithm TD outperforms the MILP-E 

model, or vice versa. On one hand, we can see that even for small 

size instances, say n = 15 , the average CPU running times of Al- 
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Fig. 1. The search process of Algorithm TD. 

Table 5 

Comparison of computational times between Algorithms CBD-O and CBD-M with n = 15 and n = 20 . 

� m # n = 15 n = 20 

Case I Case II Case I Case II 

Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M 

3 3 1 6 11 67 90 31 61 94 113 

2 6 3 21 27 12 8 127 67 

3 5 7 10 7 4 5 32 56 

4 5 9 22 20 120 113 18 32 

5 3 4 9 8 39 143 149 412 

3 6 1 4 5 20 28 123 207 40 94 

2 24 15 12 12 71 198 21 20 

3 4 4 11 11 268 716 42 69 

4 5 5 7 7 190 276 38 45 

5 8 11 14 10 32 72 24 34 

6 3 1 10 13 12 14 8 16 27 31 

2 15 13 11 12 11 13 30 34 

3 6 8 15 20 15 13 26 32 

4 5 6 13 18 9 11 25 23 

5 6 7 12 14 20 40 44 57 

5 5 1 8 15 24 24 73 147 90 177 

2 7 7 12 18 20 23 40 61 

3 47 31 18 20 23 29 29 35 

4 9 7 16 17 38 18 37 35 

5 10 11 16 19 16 14 49 59 

5 10 1 15 16 52 56 95 68 62 59 

2 28 31 35 32 423 911 56 61 

3 16 14 46 45 36 79 92 97 

4 20 20 42 37 29 59 61 66 

5 22 16 48 51 86 618 60 65 

10 5 1 24 25 52 50 47 151 125 161 

2 27 29 47 42 54 125 143 175 

3 23 23 48 53 233 425 145 205 

4 24 24 54 51 46 89 128 153 

5 25 21 45 46 43 61 84 91 

Avg CPU time 13.9 13.7 27 28.6 73.8 157.0 64.6 87.3 

gorithm TD for Case I and Case II are 57.1 and 166.6 seconds, re- 

spectively, which are comparatively larger than the ones by solv- 

ing the MILP-E model. One reason for such results may be that: 

when the size of instances is small, model (1) itself can be solved 

efficiently within a fairly small CPU running time, therefore, the 

speedup factor of model (2) becomes less significant since simi- 

lar computational time may be required to solve model (2) as the 

one by solving the MILP-E model directly. Considering that multi- 

ple iterations will be always required during the implementation 

of Algorithm TD, as a result, the overall CPU running time of Algo- 

rithm TD could be larger than the one by using the MILP-E model. 

On the other hand, when n increases, for all the instances with 

n = 20 , and the stable instances with n = 30 , we found that some 

of the instances cannot be solved optimally by the MILP-E model, 

while Algorithm TD can still solve these instances optimally. Mean- 

while, among all the instances that can be solved optimally by 

both methods, we find that there exists considerable amount of 

them for which the corresponding CPU running time of the MILP- 

E model are comparatively much smaller than the ones of Algo- 

rithm TD. 

Moreover, for the instances in Case II with n = 30 , we can 

see that some of them cannot be solved optimally by Algorithm 

TD. For simplicity, we let V TD be the current best objective value 

among all the generated feasible solutions by Algorithm TD, and 

V LB = min { f (0) 
M 

, DL } , and we define the optimality gap of Algorithm 

TD as follows: 

Optimality gap of Algorithm TD = 

V T D −V LB 
V LB 

× 100% . 

Note that Algorithm TD searches feasible solutions starting from 

the end of the time horizon. Therefore, the initial total cost gen- 

erated by this algorithm is very high. If Algorithm TD fails to sig- 
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Table 6 

Comparison of CPU running times between Algorithms CBD-O and CBD-S with n = 15 and n = 20 . 

� m # n = 15 n = 20 

Case I Case II Case I Case II 

Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S 

3 3 1 6 6 67 90 94 121 

2 21 21 127 88 

3 5 5 

4 120 122 

5 149 930 

3 6 1 123 145 

2 71 68 

5 32 20 

6 3 2 15 16 

5 5 1 73 265 

3 47 37 

nificantly reduce the value of T during the search process within 

the time limit, then its optimality gap can be extremely large 

(e.g., 558.0% for the first instance of the combination (�, m, n ) = 

(5 , 10 , 30) ). For more detail, please see Fig. 1 in Section 6.3.3 for a 

graphical view of the search process of Algorithm TD for an illus- 

trative example. 

To further test the performance of Algorithm CBD, we also con- 

ducted our computational experiments on the instances with n = 

50 . Table 4 shows the corresponding computational results. From 

this table, we can see that when the size of instances continuously 

increases, Algorithm TD could consume prohibitive CPU running 

time to calculate the optimal solutions, and the optimality gaps 

are extremely large for most of the test instances. On the other 

hand, Algorithm CBD still outperforms the MILP-E model in terms 

of both the number of solved instances and the average optimality 

gap, which indicates the efficiency of our proposed combinatorial 

Benders decomposition based approach in finding the optimal so- 

lutions or near-optimal solutions to the IEMSCW problem. 

6.3. Evaluation of components in Algorithm CBD 

As we have observed from Section 6.2 , the combinatorial Ben- 

ders decomposition algorithm we proposed could be quite effec- 

tive in finding optimal solutions or near-optimal solutions to the 

IEMSCW problem. It should be noticed that all of the components 

in Algorithm CBD contribute to its good performance. In what fol- 

lows, we conducted several experiments on Algorithm CBD to fur- 

ther identify the impact of each component. 

6.3.1. Combinatorial Benders cuts: heuristic generation method vs. 

minimal infeasible subset 

From Section 4.2 , we know that the combinatorial Benders cut 

for each employee is generated by some straightforward heuris- 

tic methods, that is, we simply check if the obtained assignment 

plan of jobs is feasible to the corresponding employee. If not, we 

then add several combinatorial Benders cuts into the master prob- 

lem. In fact, we can further find out the minimal infeasible subset 

of assignment plan to each employee, using a similar idea as in 

the work of Verstichel et al. (2015) (see Section 4.4 in their pa- 

per). To be specific, when an assignment plan U w is not feasible 
to employee w, we enumerate each subset U ′ of U w in nonincreas- 
ing order of the subset size, and check if the corresponding sub- 

set is still infeasible. If so, then we generate a new combinatorial 

Benders cut associated with U ′ , and remove all the cuts associated 

with any superset that includes U ′ , until no further action can be 
made. For simplicity, we call the corresponding combinatorial Ben- 

ders decomposition algorithm with the above procedure to search 

for minimal infeasible subsets as Algorithm CBD-M, and call the 

original one as Algorithm CBD-O. Table 5 shows the corresponding 

computational results of CPU running times for the instances with 

n = 15 and n = 20 . 

From this table, it seems that incorporating such procedure to 

obtain minimal infeasible subset cannot improve the performance 

of Algorithm CBD for the IEMSCW problem. The reason may be 

that: the infeasible assignment plan U w is already tight enough to 
each employee, and therefore is hard or even impossible to find 

a proper infeasible subset for it. As a result, when the size of in- 

stances increases, the way of enumeratively searching for any in- 

feasible subset of U w , which includes a considerable amount of it- 

erations, just becomes a waste of time. 

6.3.2. Impact of the valid cuts generated by different types of 

constraints 

As we can see from Section 4.2 , we have proposed three 

different types of combinatorial Benders cuts, i.e., Con- 

straints (6) , (7) and (8) . Through some examination, we found 

that when Algorithm CBD only includes the valid cuts generated 

by Constraint (6) , then most of the instances with n = 15 cannot 

be solved optimally within the time limit, which indicates that 

such valid cuts are very loose. To further test the performance of 

the valid cuts that are generated by different types of constraints, 

we considered two variants of Algorithm CBD and compared 

their computational performance as follows: The first one is 

the original Algorithm CBD-O, which includes all types of the 

valid cuts proposed in Section 4.2 , and the second one is the 

corresponding algorithm that only uses valid cuts generated by 

Constraints (6) and (7) , and we call it Algorithm CBD-S for the 

sake of simplicity. It should be noticed that the combinatorial 

Benders cut can be generated by Constraint (8) only when the 

condition of F (t) < F (t) w k 
is satisfied. Therefore, we only recorded the 

computational results for the instances that the above condition is 

satisfied during some iteration. Table 6 shows the corresponding 

computational results, in which the blank part means that the 

corresponding instance has no such valid cuts. From this table, we 

can see that by adding Constraint (8) into the master problem, 

Algorithm CBD could significantly reduce the computational time 

to calculate the optimal solutions for some of the instances. 

6.3.3. An illustrative example 

To further illustrate the search processes of Algorithms CBD and 

TD, we also conducted some experiments on an illustrative in- 

stance, in which there are 30 jobs, 3 employees and 6 machines, 

with the following coefficient parameters: c w = { 2 , 6 , 4 } , d w = 

{ 6 , 4 , 7 } , b w = { 1 , 2 , 1 } , φw = { 12 , 15 , 18 } , f i = { 1 , 4 , 5 , 6 , 4 , 3 } , θ = 

3 , and the processing times (i.e., p i jw ) of jobs are given in 

Table C.8 (see Appendix C ). 

By implementing Algorithm CBD, we can obtain an optimal so- 

lution within a CPU running time of 40 seconds, with an optimal 
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objective value of 271. During the search process, the number of 

iterations searched in the upward directions is 4, and a feasible 

solution to the slave problem was found. Meanwhile, no iteration 

is conducted in the downward direction since we have F (0) = F for 

this example. 

This instance can also be solved optimally by Algorithm TD 

within a CPU running time of 203 seconds, while the MILP-E 

model cannot solve it within the time limit, with an optimality 

gap of 0.36%. It should be noticed that although the objective val- 

ues obtained by these approaches are the same, their optimal so- 

lutions can be different. In addition, the number of iterations in 

Algorithm TD is 71. Fig. 1 shows the corresponding search process 

of Algorithm TD, from which we can see that at the very beginning 

of the search process, the total cost of the initial solution obtained 

by Algorithm TD is very high, and then gradually decreases dur- 

ing the search process. This observation may help explain why the 

optimality gap of Algorithm TD is extremely large for most of the 

instances with large sizes (see Tables 3 and 4 ). 

7. Conclusions 

In this paper, we studied an integrated employee and parallel 

machine scheduling problem with maximum consecutive working- 

time and minimum break time restrictions. The objective is to 

minimize the weighted sum of the makespan, the machine depre- 

ciation costs and the labor costs. To solve this problem, we pro- 

posed a mixed integer linear programming formulation, two differ- 

ent decomposition based exact solution methods, i.e., Algorithms 

TD and CBD, and an LS-based heuristic algorithm, i.e., Algorithm 

LS. To test the efficiency of our proposed solution approaches, we 

conducted extensive computational experiments on randomly gen- 

erated instances. The computational results show that the combi- 

natorial Benders decomposition based approach could be quite ef- 

fective in finding optimal or near-optimal solutions to the IEMSCW 

problem within comparatively smaller CPU running times. 

This work could be extended in several directions. First of all, 

this work considered the sum of the total costs related to job as- 

signments and the weighted makespan as a single objective. This 

can be easily extended to a bi-objective problem with Pareto opti- 

mization to consider the tradeoff between the costs and machine 

utilization simultaneously. Second, it would also be interesting to 

see if any other stronger combinatorial Benders cuts could be gen- 

erated by further investigating the structural properties of the op- 

timal solutions to the IEMSCW problem. Third, employees’ pref- 

erences with regard to the jobs’ processing may also be included 

in the model to further reflect the priorities of the employees. Fi- 

nally, as for alternative solution methods, column generation based 

methods may possibly be developed for the time-indexed formu- 

lation we proposed in this study, since column generation based 

methods have already been successfully implemented in many par- 

allel machine scheduling problems, in which the problem could be 

reformulated as a set partitioning problem and a schedule for an 

individual employee may serve as a pricing problem. 
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Appendix A. An assignment and positional formulation for the 

IEMSCW problem 

As we mentioned in Section 2.1 , the IEMSCW problem can also 

be described by a continuous time formulation by directly as- 

signing jobs to positions, which is a generalization of the original 

single machine formulation proposed by Lasserre and Queyranne 

(1992) , and we call such formulation the assignment and positional 

formulation , or the AP formulation for short. Note that each em- 

ployee has restrictions on his/her maximum consecutive working- 

time, minimum break time, and total working-time, so it is natural 

to define assignment and positional variables based on employees, 

but not on machines. 

Meanwhile, we also need to ensure that at any time instant t , 

each machine cannot process any two jobs simultaneously. Fig. A.1 

gives an example of a feasible schedule, in which job j is the k th 

job processed by employee w, job h is the � th job processed by 

employee u , and these two jobs are running concurrently during 

time period [ t 1 , t 2 ), then we can obtain that jobs j and h must be 

processed on different machines, otherwise it becomes an infeasi- 

ble schedule. 

In order to keep track of which jobs are running concurrently 

at any time instant, we introduce binary variables to compare the 

relationship between the start and completion times of any two 

jobs that are assigned to different positions of employees. To be 

specific, we introduce the following variables: 

• δi jwk is equal to 1 if job j is processed on machine i , and is the 

k th job that was processed by employee w, and 0 otherwise; 
• S wk is the start time of the k th job that was processed by em- 

ployee w ; 
• C wk is the completion time of the k th job that was processed by 

employee w ; 
• x wku� is equal to 1 if the start time of the k th job processed by 

employee w is less than or equal to the start time of the � th 

job processed by employee u (in other words, S wk ≤ S u� ), and 0 

otherwise; 
• y wku� is equal to 1 if the completion time of the k th job pro- 

cessed by employee w is greater than the start time of the � th 

job processed by employee u (in other words, C wk > S u� ), and 0 

otherwise; 
• z wku� is equal to 1 if the start time of the � th job processed by 

employee w occurs during the processing of the k th job pro- 

cessed by employee w (in other words, S wk ≤ S u� < C wk ), and 0 

otherwise; 
• σwk is equal to 1 if C wk = S w,k +1 , and 0 otherwise; 
• ηwk� is equal to 1 if σwk = σw,k +1 = · · · = σw,� −1 for k < � , and 0 

otherwise; 
• C max is the makespan of the schedule. 

Then, the IEMSCW problem can be formulated as follows: 

minimize 
∑ 

i ∈M 

∑ 

j∈J 

∑ 

w ∈W 

∑ 

k ∈J 
( f i + c w ) p i jw δi jwk + θC max (A.1a) 

Fig. A.1. Concurrent jobs in a feasible schedule. 
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subject to 
∑ 

i ∈M 

∑ 

w ∈W 

∑ 

k ∈J 
δi jwk = 1 ∀ j ∈ J ; (A.1b) 

∑ 

i ∈M 

∑ 

j∈J 
δi jwk ≤ 1 ∀ w ∈ W, k ∈ J ; (A.1c) 

∑ 

i ∈M 

∑ 

j∈J 
δi jwk ≥

∑ 

i ∈M 

∑ 

j∈J 
δi jw,k +1 ∀ w ∈ W, k ∈ { 1 , 2 , . . . , n − 1 };

(A.1d) 

C max ≥ C wk ∀ w ∈ W, k ∈ J ; (A.1e) 

C w 1 ≥
∑ 

i ∈M 

∑ 

j∈J 
p i jw δi jw 1 ∀ w ∈ W; (A.1f) 

C wk ≥ C w,k −1 + 

∑ 

i ∈M 

∑ 

j∈J 
p i jw δi jwk ∀ w ∈ W, k ∈ { 2 , . . . , n }; (A.1g) 

C wk = S wk + 

∑ 

i ∈M 

∑ 

j∈J 
p i jw δi jwk ∀ w ∈ W, k ∈ J ; (A.1h) 

S u� − S wk ≤ Mx wku� − 1 ∀ w, u ∈ W, k, � ∈ J ; (A.1i) 

S wk − S u� ≤ M(1 − x wku� ) ∀ w, u ∈ W, k, � ∈ J ; (A.1j) 

C wk − S u� ≤ My wku� ∀ w, u ∈ W, k, � ∈ J ; (A.1k) 

S u� −C wk ≤ M(1 − y wku� ) − 1 ∀ w, u ∈ W, k, � ∈ J ; (A.1l) 

x wku� + y wku� = 1 + z wku� ∀ w, u ∈ W, k, � ∈ J ; (A.1m) 

z wku� ≤ x wku� ∀ w, u ∈ W, k, � ∈ J ; (A.1n) 

z wku� ≤ y wku� ∀ w, u ∈ W, k, � ∈ J ; (A.1o) 

δi jwk + δi j ′ u� + z wku� ≤ 2 ∀ i ∈ M , j, j ′ ∈ J , w, u ∈ W, k, � ∈ J ;
(A.1p) 

S w,k +1 −C wk ≤ M(1 − σwk ) ∀ w ∈ W, k ∈ { 1 , . . . , n − 1 }; (A.1q) 

C wk − S w,k +1 ≤ Mσwk − b w ∀ w ∈ W, k ∈ { 1 , . . . , n − 1 }; (A.1r) 

� −1 ∑ 

h = k 
σwh ≥ (� − k ) ηwk� ∀ w ∈ W, k, � ∈ J : k < � ; (A.1s) 

1 + 

� −1 ∑ 

h = k 
σwh ≤ � − k + ηwk� ∀ w ∈ W, k, � ∈ J : k < � ; (A.1t) 

� ∑ 

h = k 

∑ 

i ∈M 

∑ 

j∈J 
p i jw δi jwh ≤ d w + M(1 − ηwk� ) ∀ w ∈ W, k, � ∈ J : k < � ;

(A.1u) 

∑ 

i ∈M 

∑ 

j∈J 

∑ 

k ∈J 
p i jw δi jwk ≤ φw ∀ w ∈ W; (A.1v) 

δi jwk , x wku� , y wku� , z wku� , σwk , ηwk� ∈ { 0 , 1 } ∀ i ∈ M , j, k, � ∈ J , w, u ∈ W. 

(A.1w) 

The objective (A.1a) minimizes the total costs including the ma- 

chine depreciation costs, the labor costs, and the makespan-related 

costs. Constraints (A.1b) ensure that each job can only be processed 

on exactly one machine and by exactly one employee in exactly 

one position. Constraints (A.1c) ensure that each position by each 

employee contains at most one job processed on some machine. 

Constraints (A.1d) ensure that a job can be assigned to the k + 1 th 

position by employee w only if the k th position by employee w 

has been occupied. Constraints (A.1e) define the makespan. Con- 

straints (A .1f) –(A .1h) ensure that the start and completion times 

are consistent with a parallel machine scheduling environment. 

Constraints (A .1i) –(A .1o) ensure that the positional variables x , y 

and z take their intended values. Constraints (A.1p) ensure that at 

any time instant any machine cannot process more than one jobs 

simultaneously. Constraints (A.1q) and (A.1r) define variable σ , and 

Table A.7 

Comparison of computational results by the TI and the AP formulations with n = 15 . 

� m # Case I Case II 

TI formulation AP formulation TI formulation AP formulation 

Time (s) OPT Time (s) Best LB Gap Time (s) OPT Time (s) Best LB Gap 

3 3 1 8 153 — 161 141 12.4% 58 196 1066 196 196 0 

2 288 140 — 140 131 6.4% 88 185 — 185 182 1.62% 

3 4 145 — 149 139 6.7% 10 184 1015 184 184 0 

4 3 147 514 147 147 0 13 179 — 571 177 69% 

5 4 94 108 94 94 0 9 263 933 263 263 0 

3 6 1 11 110 1091 110 110 0 17 129 596 129 129 0 

2 6 107 536 107 107 0 13 119 — ∗ 118 NA 

3 6 102 704 102 102 0 18 110 716 110 110 0 

4 10 81 129 81 81 0 14 120 — ∗ 119 NA 

5 29 103 266 103 103 0 19 116 588 116 116 0 

6 3 1 7 78 — ∗ 69 NA 15 112 — ∗ 103 NA 

2 6 148 — ∗ 146 NA 13 81 — ∗ 74 NA 

3 7 110 — ∗ 107 NA 13 154 — ∗ 143 NA 

4 7 96 — ∗ 84 NA 14 131 — ∗ 121 NA 

5 6 102 — ∗ 92 NA 12 176 — ∗ 176 NA 

—: for these instances, the optimal solutions cannot be obtained within 1800 seconds. ∗: for these instances, even a feasible solution 
cannot be obtained within 1800 seconds. NA: for these instances, the optimality gap cannot be obtained within 1800 seconds. 
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ensure that once an employee w takes a break, the break time 

should be at least b w . Constraints (A.1s) and (A.1t) establish the 

relationship between σ and η. Constraints (A.1u) ensure that the 
maximum consecutive time of employee w should be less than d w . 

Constraints (A.1v) provide the upper bound of total working time 

for each employee. 

In addition, we can also add the following valid inequalities 

into the above model, which can considerably reduce the compu- 

tational times to calculate the optimal solutions for some of the 

instances: 

S w,k +1 −C wk ≤ M 

∑ 

i ∈M 

∑ 

j∈J 
δi jw,k +1 ∀ w ∈ W, k ∈ { 1 , . . . , n − 1 } . 

(A.1x) 

For simplicity, we call the corresponding time-indexed formu- 

lation that eliminates the variable z wt (i.e., the MILP-E model) the 

TI formulation . To evaluate the performance of the TI and AP for- 

mulations, we conducted experiments on the same small instances 

with n = 15 , and ( � , m ) ∈ {(3, 3), (3, 6), (6, 3)}. Table A.7 shows the 

computational results obtained from these two formulations. 

From this table, we can see that even for the small instances 

with n = 15 , and ( � , m ) ∈ {(3, 3), (3, 6), (6, 3)}, the performance of 

the AP formulation is much worse than the one of the TI formu- 

lation both from the CPU running time and the ability of finding 

optimal or even feasible solutions within the given time limit. The 

reason may be that: due to the huge number of Big-M constraints, 

the AP formulation probably has a looser relaxation bound on the 

objective function than the TI formulation, and thus the computa- 

tional time for obtaining optimal solutions increases. Based on the 

above observations, we believe that the AP formulation is not an 

appealing approach to formulate the IEMSCW problem. 

Appendix B. Proof of Theorem 2 

Proof. We reduce any instance of the PARTITION problem, which 

is NP-hard in the ordinary sense ( Garey & Johnson, 1979 ), to an 

instance of problem PD 1| incmp , consec , break , pmtn | C max . PARTI- 

TION can be described as follows: Given a set S = { 1 , 2 , . . . , m } 
and positive integers A 1 , . . . , A m with 

∑ 

i ∈S A i = 2 B, does there ex- 

ist a partition of S into two disjoint subsets S 1 and S 2 such that ∑ 

i ∈S 1 A i = 

∑ 

i ∈S 2 A i = B? For simplicity, we also define A 0 = B . Given 

any instance I 1 of PARTITION problem, we construct an instance 

I 2 of problem PD 1| incmp , consec , break , pmtn | C max as follows: 

The set of employees is W = { w 0 , w 1 , . . . , w m } . Employee w 0 

needs to process 5 jobs with processing time A 0 = B, each em- 

ployee w i needs to process two identical jobs with processing time 

A i for i = 1 , . . . , m . The maximum consecutive working-time of em- 

ployee w i ∈ W is A i for i = 0 , . . . , m . The minimum break time of 

employee w 0 is B , and the minimum break time of employee w i 

is 3 B for i = 1 , . . . , m . Given the above set of jobs, we can see that 

the total processing time of jobs is 9 B . 

Now if there exists a schedule with a makespan of 9 B , 

then obviously employee w 0 must process his/her jobs non- 

preemptively during intervals [2 kB, (2 k + 1) B ] for k = 0 , 1 , 2 , 3 , 4 , 

otherwise the makespan exceeds 9 B . As a result, each em- 

ployee w i can only process his/her jobs within blocks 1 to 4, 

for i = 1 , . . . , m . ( Fig. B.1 ) 

Note that each employee w i has to process two identical jobs, 

each with a processing time of A i . Now if some employee w i pro- 

cesses part of his/her first job in block 1, then this employee must 

process his/her first job entirely in block 1. If not, then the re- 

maining part of this job has to be processed after at least 3 B time, 

which means that the remaining part of the first job has to lie in 

block 3 or block 4. Although the remaining part of this job can be 

processed together with employee w i ’s second job, given A i as em- 

ployee w i ’s maximum consecutive working-time, at least part of 

the second job cannot be finished and has to be processed again 

after at least 3 B time. This, however, implies that the remaining 

part of the second job cannot be processed in block 3 or block 4. 

Thus the makespan exceeds 9 B . Similarly, if some other employee 

w j processes part of his/her first job in block 2, he/she must pro- 

cess this job entirely. 

In addition, we also claim that employee w i must process 

his/her second job entirely in block 3. Otherwise, suppose em- 

ployee w i processes part of his/her second job in block 4, note that 

because of the minimum break time restriction, an employee can- 

not process jobs in both blocks 3 and 4, as a result, employee w i 

must process his/her second job entirely in block 4, and block 4 

was occupied by a job with length A i . Then, it is easy to see that 

the total processing time in block 2 cannot be greater than B − A i , 

since for any employee, if he/she processes the first job in block 2, 

then the corresponding second job can only be processed in block 

4. However, to derive a makespan of 9 B , we know that the total 

processing time of block 2 must be equal to B , which is a contra- 

diction. Therefore, employee w i must process his/her second job in 

block 3. This means that the set of employees assigned to block 1 

is exactly the same as to block 3, and the employees assigned to 

block 2 is exactly the same as to block 4, in which each job must 

be processed nonpreemptively, and each of these blocks achieves 

a length of B . That is, there exists a feasible schedule for the con- 

structed instance I 2 with a makespan 9 B if and only if there is a 

solution to instance I 1 of the PARTITION problem, and the theorem 

follows. �

Appendix C. Processing times of jobs for the illustrative 

example in Section 6.3.3 

Fig. B.1. Schematic for proof of Theorem 2 . 
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Table C.8 

The processing times of jobs on machines by different employees. 

Job Employee 1 Employee 2 Employee 3 

M 1 M 2 M 3 M 4 M 5 M 6 M 1 M 2 M 3 M 4 M 5 M 6 M 1 M 2 M 3 M 4 M 5 M 6 

1 1 4 4 2 4 4 4 5 2 2 3 6 5 4 3 5 6 6 

2 6 2 2 1 4 4 4 2 6 3 4 3 3 6 3 6 6 1 

3 1 6 1 2 2 4 3 3 6 3 1 4 4 6 3 6 1 5 

4 3 4 4 1 3 1 5 2 6 5 6 4 2 3 2 5 4 6 

5 2 2 5 4 2 3 6 2 4 3 1 6 2 6 3 3 6 4 

6 1 4 4 3 1 3 3 2 5 2 5 4 4 5 4 4 4 2 

7 3 4 5 2 1 6 6 2 6 4 6 1 2 4 5 6 6 6 

8 3 4 4 4 5 1 4 2 4 6 5 3 2 5 4 4 4 5 

9 5 3 2 5 3 1 2 5 1 4 4 3 2 4 4 2 6 2 

10 6 6 1 2 1 3 6 2 2 4 5 3 3 5 1 4 4 5 

11 3 5 2 3 5 5 4 6 6 6 6 3 4 6 4 6 5 4 

12 2 6 5 2 1 1 6 6 5 4 1 6 4 1 3 3 2 2 

13 6 3 5 3 4 1 2 3 3 3 1 6 1 2 2 4 6 4 

14 4 2 6 2 4 2 1 3 5 4 1 1 4 4 2 4 6 6 

15 1 5 6 1 5 4 4 5 5 1 5 4 5 1 5 4 6 5 

16 3 1 1 1 4 3 2 4 3 1 3 1 5 5 1 6 1 5 

17 5 2 6 2 6 2 2 6 1 5 2 2 4 1 5 5 3 6 

18 2 1 1 6 1 4 2 1 4 3 6 1 3 3 1 1 5 4 

19 2 3 2 5 6 4 6 6 6 3 1 1 5 4 4 1 6 1 

20 1 4 6 3 2 6 5 4 4 4 4 1 5 4 3 1 5 6 

21 4 2 2 6 2 3 2 4 4 2 6 5 6 3 5 3 1 6 

22 5 3 5 2 6 4 4 1 2 5 4 1 4 4 1 2 2 5 

23 5 2 3 3 2 3 4 4 4 2 6 6 2 4 5 5 2 3 

24 5 4 6 3 2 6 6 5 5 3 5 2 5 5 2 5 2 3 

25 2 3 2 6 1 6 2 1 3 3 2 3 1 1 1 5 4 5 

26 3 2 5 3 2 3 4 4 2 2 2 4 4 4 4 5 4 3 

27 2 6 3 4 4 5 2 3 2 5 1 4 6 2 1 1 5 1 

28 5 1 6 3 2 2 5 6 6 6 3 1 2 4 6 1 1 5 

29 6 4 3 1 4 2 3 2 6 5 5 2 5 4 3 3 3 6 

30 5 5 1 6 4 1 5 6 5 4 4 4 3 3 1 2 5 4 
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