European Journal of Operational Research 291 (2021) 128-146

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

= -

EUROPEAN JOURNAL OF
OPERATIONAL " ESEARCH

Discrete Optimization

A combinatorial Benders decomposition algorithm for parallel @) |

machine scheduling with working-time restrictions

Check for
updates

Kan Fang?, Shijin Wang®*, Michael L. Pinedo¢, Lin Chen¢, Feng Chu®f

2 College of Management and Economics, Tianjin University, Tianjin 300072, China

b School of Economics and Management, Tongji University, Shanghai, NY 200092, China
¢Stern School of Business, New York University, New York 10012, USA

d Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA

¢ [BISC, Univvry, University of Paris-Saclay, Paris, France

fSchool of Economics and Management, Fuzhou University, Fuzhou 350000, China

ARTICLE INFO ABSTRACT

Article history:

Received 25 November 2019
Accepted 24 September 2020
Available online 3 October 2020

Keywords:

Scheduling

Parallel machine

Maximum consecutive working-time
Minimum break time

Combinatorial Benders decomposition

This paper addresses a parallel machine scheduling problem with restrictions on employees’ working-
times and break times. Tasks must be processed by employees nonpreemptively on unrelated parallel
machines with different thresholds that specify for each employee the maximum total and consecu-
tive working-time, and the minimum break time. The objective is to minimize the weighted sum of the
makespan, the machine depreciation costs, and the labor costs. To solve this problem, a mixed integer
linear programming model is formulated, and two different decomposition-based exact algorithms are
implemented as well as a list scheduling (LS)-based heuristic method. Extensive computational experi-
ments are performed on randomly generated instances, and the results demonstrate the efficiency of our
proposed combinatorial Benders decomposition approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With an increasing demand for better working conditions and
a growing concern with respect to workers’ health and safety, reg-
ulatory authorities in various countries have started to implement
stricter labor and employment laws regarding employees’ working
hours. As shown in the literature, long working hours, especially
“very extended” or “extremely extended” hours, could entail signif-
icant physiological and psychological risks to individual employees,
which may lead to fatigue and stress (e.g. Waersted & Westgaard,
1991). This has become a major public policy issue. To protect em-
ployees against such “adverse insecurities”, many regulatory sys-
tems have incorporated various upper limits on working-time du-
rations, such as maximum daily hours, maximum weekly hours,
and maximum permitted overtime hours (Lee, McCann, & Messen-
ger, 2007). As a result, the additional restrictions on working-time
durations make many employee scheduling problems more compli-
cated and difficult to solve, and present interesting modeling and
algorithmic challenges.

* Corresponding author.
E-mail addresses: kfang@tju.edu.cn (K. Fang), shijinwang@tongji.edu.cn (S.
Wang), mpinedo@stern.nyu.edu (M.L. Pinedo), Lin.Chen@ttu.edu (L. Chen),
feng.chu@univ-evry.fr (E. Chu).

https://doi.org/10.1016/j.ejor.2020.09.037
0377-2217/© 2020 Elsevier B.V. All rights reserved.

In the past decade, more and more researchers have started
to incorporate different working time regulations into various em-
ployee scheduling problems that arise in a variety of service in-
dustries, including the scheduling of nurses in hospitals, crew
members in transportation environments, and so on. To determine
a feasible timetable for each employee within a planning hori-
zon, the scheduler not only has to provide a suitable schedule
for the employees in order to satisfy service requirements, but
he/she also has to comply with working regulations and other
cost constraints. We give a few examples. Rodrigues, de Souza,
and Moura (2006) proposed a computational tool to solve an ur-
ban transportation problem to meet passenger demand and min-
imize operational costs, while satisfying a number of labor and
safety regulations concerning maximum working hours and rest
periods. Saddoune, Desaulniers, Elhallaoui, and Soumis (2011) in-
vestigated an integrated crew scheduling problem to determine
least cost schedules that cover all flights and meet various safety
and collective agreement rules regarding working time durations of
crew members. Braekers, Hartl, Parragh, and Tricoire (2016) con-
sidered a home care routing and scheduling problem, in which
each nurse can work overtime at a certain additional cost within
a given maximum working time, and the objective is to minimize
total costs as well as client inconvenience. Agrali, Taskin, and Unal
(2017) studied an employee scheduling problem with flexible em-

K. Fang, S. Wang, M.L. Pinedo et al.

ployee availability as well as flexible demand, under several leg-
islative constraints such as maximum total working time within
a week. For further pointers to the general employee (personnel)
scheduling problem, we refer the reader to the surveys by Ernst,
Jiang, Krishnamoorthy, and Sier (2004), Brucker, Qu, and Burke
(2011) and Van den Bergh, Belién, De Bruecker, Demeulemeester,
and De Boeck (2013).

It is noteworthy that the most recent research on employee
scheduling only imposes upper limits on the total working hours
within a day, a week or some other specified planning horizon.
However, consecutive working-time, that is, the total working time
of an employee without a break, also plays an important role in
employees’ fatigue and stress as well as in potential risks with re-
gard to health and safety. For example, the new regulations in the
European Union regarding drivers’ working hours (i.e. EC regula-
tion 561/2006) require that for each driver a break or a rest period
must be scheduled after an accumulated driving time of four-and-
a-half hours (Goel, 2009). Krempels and Panchenko (2006) consid-
ered an operating theatre scheduling problem in which each surgi-
cal team is restricted within a shift by the maximum working time
allowed without a break.

On the other hand, as we know, extended working hours
can also be found in a wide variety of manufacturing settings,
in which different products have to share machines, resources
and workers, due to the commonality or similarities of compo-
nents. Therefore, it may be of interest to integrate other decision
making such as resource (e.g., machine) scheduling into the em-
ployee scheduling problem, or vice versa. For example, Lodree Jr.,
Geiger, and Jiang (2009) established a framework to incorporate
human characteristics and behaviors into the machine scheduling
paradigm, and discussed potential interdisciplinary research oppor-
tunities in scheduling and human factors; Guyon, Lemaire, Pinson,
and Rivreau (2010) recommended that an appropriate employee
timetable has to be built up together with the production sched-
ule; Edis, Oguz, and Ozkarahan (2013) suggested that the machine
scheduling problem with additional resources, such as machine op-
erators, still remains an important area of research.

Given the intrinsic close interrelationships between employee
scheduling and machine scheduling, an increasing amount of work
has focused on how to assign the machines and their correspond-
ing operators to different tasks in order to achieve productiv-
ity and/or service goals. For example, Huq, Cutright, and Mar-
tin (2004) developed a mixed integer programming model to de-
termine the lot size that minimizes the makespan for a fixed
daily workload in a multi-processor flow shop. Artigues, Gendreau,
Rousseau, and Vergnaud (2009) studied an integrated employee
timetabling and job shop scheduling problem, and proposed var-
ious exact hybrid methods that are based on integer linear pro-
gramming and constraint programming. Guyon et al. (2010) devel-
oped two exact methods based on Benders decomposition and cut
generation to solve an integrated employee timetabling and pro-
duction scheduling problem, in which tasks can be interrupted and
processed by different operators, and with as objective to sched-
ule the jobs and to assign a work pattern to each operator that
satisfies the need for operators at minimum cost. In a follow-
up work, Guyon, Lemaire, Pinson, and Rivreau (2014) analyzed
a minimum-cost integrated employee timetabling and job-shop
scheduling problem, and proposed new exact methods based on
cut generation approaches. Agnetis, Murgia, and Sbrilli (2014) con-
sidered a job shop scheduling problem with human operators in
handicraft production to minimize the makespan, and proposed
two different heuristics for decomposing the problem. Ahmadi-
Javid and Hooshangi-Tabrizi (2017) studied a ternary-integration
job-shop scheduling problem with employee timetabling and het-
erogeneous transporters to minimize the makespan, and developed
an Anarchic Society Optimization algorithm to solve the problem.

129

European Journal of Operational Research 291 (2021) 128-146

Dolgui, Kovalev, Kovalyov, Malyutin, and Soukhal (2018) investi-
gated a workforce assignment problem in a paced assembly line to
minimize the maximum number of workers employed at any time,
subject to constraints regarding the cycle time of the line and the
number of workers assigned to each operation.

Although a great deal of research has been done on the in-
tegration of employee and machine scheduling, our literature re-
view suggests that research on incorporating restrictions with re-
gard to working-time durations into such problems still appears
to be rather sparse. The only exception we found is the work by
Fischetti, Martello, and Toth (1989), who considered a fixed job
schedule problem with working-time constraints, in which each of
the tasks requires processing without interruption within its time
window, and the objective is to perform all tasks with a minimum
number of processors, so that no processor (e.g., crew member in
a bus company) has to work longer than the given working time
limit.

Researchers have also studied various employee scheduling
problems that assume a heterogeneous workforce. In these prob-
lems, employees may either possess different skill sets or have
different skill levels and thus may perform tasks at different
speeds, and may therefore incur different labor costs. For exam-
ple, Valls, Pérez, and Quintanilla (2009) proposed a skilled work-
force scheduling problem at a service centre, in which a task may
have a duration that depends on the worker to whom it has
been assigned, and the goal is to minimize constraint violations
according to the preferences set by the decision-maker. Othman,
Bhuiyan, and Gouw (2012) studied a workforce planning problem
in a job shop environment and integrated workers’ differences into
the problem so as to minimize the total costs. Benavides, Ritt, and
Miralles (2014) considered a flow shop scheduling problem with
heterogeneous workers to minimize the makespan, in which work-
ers may be unable to operate a subset of the machines, or may
have different execution times for the same operation. For more
pointers to the literature on scheduling problems with workers
that have different skill sets, we refer the reader to the survey by
De Bruecker, Van den Bergh, Belién, and Demeulemeester (2015).

In this work, we consider an integrated employee and parallel
machine scheduling problem, in which a set of n jobs has to be
processed nonpreemptively on m machines by ¢ employees. Note
that in several types of scheduling environments, such as the oper-
ating room scheduling problem, a surgeon (employee) in an oper-
ating room (machine) cannot be interrupted before the completion
of the current surgery (job) (Freeman, H., & J., 2016). Therefore, it is
reasonable to assume that employees are not allowed to terminate
their shifts during the execution of a job.

Similar to previous studies in the literature, we also follow the
general regulations regarding employees’ working hours by impos-
ing an upper limit on each employee’s total working-time in or-
der to avoid highly unbalanced schedules or potential inequities
in workloads. In addition, because of the different skill levels of
the employees, the processing time of each job on a machine
may depend on the employee, and there may also be restrictions
with regard to maximum consecutive working-time and minimum
break time for each employee. The objective of our problem is to
minimize the weighted sum of the makespan-related costs plus
the machine depreciation and labor costs. For simplicity, we re-
fer to this problem as the integrated employee and parallel machine
scheduling problem with consecutive working-time constraints, or the
[EMSCW problem for short.

To solve the IEMSCW problem, we first propose in Section 2 a
mixed integer linear programming (MILP) formulation with time-
indexed variables. In Section 3, we develop a time-decomposition
method using a “divide-and-conquer” approach in our search for
optimal solutions. In order to find optimal solutions even for large-
scale instances, we design in Section 4 a combinatorial Benders

K. Fang, S. Wang, M.L. Pinedo et al.

decomposition method, followed in Section 5 by a list schedul-
ing (LS)-based heuristic method for generating feasible schedules.
Then, in Section 6 we conduct extensive computational experi-
ments. The results demonstrate the efficiency of the combinatorial
Benders decomposition approach. Finally, we conclude our research
and discuss possible future research directions in Section 7.

2. Mathematical description of the problem

As mentioned in the introduction, we refer to the problem
that we study as the integrated employee and parallel machine
scheduling problem with consecutive working-time constraints, or the
IEMSCW problem for short. In this problem, there is a set J =
{1,2,...,n} of jobs, a set M ={1,2,...,m} of machines, and a
set W={1,2,...,¢} of employees. We assume that each job je J
must be processed nonpreemptively, and can only be processed by
exactly one employee w € W on some machine i € M, with an as-
sociated processing time of p;;,, depending on both the employee’s
skill level and the machine setting. Employees cannot terminate
their shifts during the execution of a job. In addition, each machine
i e M incurs an associated depreciation cost f; per unit time when
it is processing a job and no cost when it is idle, and each em-
ployee w € W has an associated labor cost ¢, per unit time when
he/she is working and no cost when he/she is idle. There also is a
cost O per unit time related to the makespan Cpax.

Due to the labor and employment laws imposed by the reg-
ulatory authorities, we assume that an employee w €W cannot
process jobs consecutively without a break for more than d,, time
units. To guarantee sufficient rest for the workers, when employee
w starts to take a break after he/she has finished a job, we require
at least a minimum break time of by, time units. Moreover, there
is also an upper limit on the total working time of each employee
w, i.e., ¢y time units, so as to balance the workload of employees
and ensure work equity between them. The objective is to find a
feasible schedule that minimizes the weighted sum of all costs, in-
cluding the depreciation costs of machines, the labor costs of em-
ployees and the makespan-related costs. Without loss of generality,
we assume that under the above working-time restrictions, at least
one feasible assignment plan of jobs to machines and employees
exists for the IEMSCW problem.

2.1. A time-indexed formulation of the IEMSCW problem

To begin with, we let T =Y, max) {pijw} be the length
of the planning horizon, and 7 ={0,1,2,...,T — 1} be the corre-
sponding set of time instances, that is, the planning horizon is di-
vided into T periods, and each period t begins at time instant t and
ends at time instant t + 1, for t € 7. In what follows, we propose a
mixed integer linear program for the [EMSCW problem. We define
the following decision variables:

e Xjjwt is equal to 1 if job j starts processing on machine i at time
t by employee w, and 0 otherwise;

e Bur is equal to 1 if employee w starts break at time instant t
after finishing some job, and 0 otherwise. Obviously, we have
IBWO =0.

e zyt is equal to 1 if employee w is working at time t, and O oth-
erwise;

e Cmax is the makespan of the schedule.

The IEMSCW problem can now be formulated as follows.

T—Dijw

T-1
minimize Z Z Z Z [iDijwXijwe + Z chzwt + 0Cmax

ieM jeg weW t=0 weWw t=0
(1a)

130

European Journal of Operational Research 291 (2021) 128-146

T_pijw
subjectto Y 3" > Xju=1 VjeJ; (1b)
ieMweWw t=0
t
ZZ Z Xijws <1 VieM,tef0,....,T—1} (1c)
WeW jeJ s=max{0,t—pjju+1}
t
> > Xjws <1 Ywew,tef0,....T -1}
ieM jeJ s=max{0,t—pjju,+1}
(1d)
t
ZWt:ZZ Z Xijws VWGW,I’E{O,...,T*]};
ieM jeJ s=max{0,t—pij,+1}
(le)
t+dy
lesfdw Ywew,tef{0,...,T —d, —1}; (1f)
s=t
ZZW[§¢W Yw e W; (1g)
teT
Zwt = Bwis1 Ywew, te{0,...,T -2} (1h)
Zm+ Pwe <1 Ywew,tel0,....,T -1} (1i)
Zwt — Zwes1 < Pwirt, YweW,tef0,..., T —2}; (1j)
t+by—1
> (1 —zws) =bwPwe Ywe W, te{l,....T—by}; (1K)
s=t
T—Dijw
Grax = D Y > (t+Diyjw)Xijwe Vi€ T; (1)
ieMweW t=0
Xijwes Bwes Zwe € {0,1} Vie M, je T, weW,teT; (1m)

The objective (1a) minimizes the total costs including machine
depreciation costs, labor costs, and makespan-related costs. Con-
straints (1b) ensure that each job starts its processing on ex-
actly one machine with exactly one employee and at exactly
one time instant. Constraints (1c) ensure that at most one job
can be processed at any time instant on any machine. Con-
straints (1d) ensure that at most one job can be processed at
any time instant by any employee. Constraints (1e) give the re-
lationship between zy: and X;j,,. Constraints (1f) ensure that the
consecutive working-time of each employee is not longer than
the given threshold d,,. Constraints (1g) impose an upper limit
on the total working time for each employee within the given
planning horizon. Constraints (1h)-(1j) define the relationship be-
tween zy: and By Constraints (1k) force the minimum dura-
tion of a break time of employee w to be at least by, after pro-
cessing some job. Constraints (11) define the makespan of the
schedule. Constraints (1m) present the ranges of the decision vari-
ables. For simplicity, we refer to the above model (1) as the

T—pji
MILP model, and denote D = }ic vy > jcs Swew g . JiPijwXijwes
L=Ywew X0 cwzwt, and M = OCax as the costs associated with
machine depreciation, labor, and makespan, respectively.

K. Fang, S. Wang, M.L. Pinedo et al.

Remark 1. It should be noted that there is a slight difference be-
tween the break time and the idle time of an employee. A break
time is invoked for an employee only if this employee just has fin-
ished some job, and does not start with the processing of another
job immediately; an idle time can be any non-working time, in-
cluding a break time. To be specific, within the time interval in
which an employee does not start processing his/her first job, this
employee is idle but not on a break. Such a difference matches our
intuition, since it is unreasonable to force employee w to take a
break (i.e., of at least by, time units) before he/she starts process-
ing his/her first job.

Remark 2. In addition to the discrete time model described above,
the IEMSCW problem can also be formulated as a continuous time
model by directly assigning jobs to positions, which is a gener-
alization of the original single machine formulation proposed by
Lasserre and Queyranne (1992). Such a formulation is usually re-
ferred to as an “assignment and positional formulation”. However,
according to our experimental study, such a formulation has a
much worse performance than the time-indexed formulation de-
scribed above. For more detail, please see Appendix A.

3. A time-decomposition based approach

It is easy to see that when we set £ = +oo, pjj = pj, fi =cw =
0, and 6 =1, the IEMSCW problem becomes the Pm||Cphax prob-
lem, which is already NP-hard in the ordinary sense with m>2
(Pinedo, 2016). Therefore, it is to be expected that the above MILP
model cannot solve the [IEMSCW problem efficiently within a rea-
sonable computation time for medium- and large-size instances.
In this section, we develop a time-decomposition based method,
which is based on a “divide-and-conquer” approach in its search
for optimal solutions to the IEMSCW problem.

As we can see, in the [EMSCW problem, we have to make the
following two types of decisions, namely (i) assignment decisions
that specify the associated machine and employee for the process-
ing of each job, and (ii) scheduling decisions that determine the
sequence and the start time of each job as well as the makespan
of the entire schedule. Therefore, one idea for solving the IEMSCW
problem is based on a decomposition into two subproblems: one
subproblem focuses on the minimization of the costs related to
machine and employee assignment, and the other focuses on the
minimization of the makespan Cnpax of the schedule.

Inspired by the above observation, within a given planning hori-
zon T, we first search for a feasible solution with minimum ma-
chine depreciation costs and labor costs by solving the following
model of (2):

puw

minimize DL=»"Y">" " fiDjuXijw + »_ chzwt (2a)

ieM jeg weW =0 weW t=0
subject to Constraints (1b) — (1k), and (1m). (2b)
Let DL be the corresponding optimal objective of

model (2) when T =T. Obviously, DL is a lower bound on
the sum of machine depreciation costs and labor costs. Then, we
calculate the corresponding makespan determined by the solutions
generated with model (2), and continue this process by iteratively
decreasing the length of the planning horizon T, as shown in
Algorithm 3.1, in which G (see Step 4) is the completion time of
job j within the planning horizon T. For simplicity, we refer to
Algorithm 3.1 as Algorithm TD.

4. A combinatorial Benders decomposition based approach

Given the structure of the IEMSCW problem, it seems that de-
composing this problem into two subproblems, i.e., the assignment

131

European Journal of Operational Research 291 (2021) 128-146

Algorithm 3.1 A time-decomposition based approach for the [EM-
SCW problem.

1: Initialize: T < T, © < @.

2: while model~(2) is feasible within the planning horizon T do

3: Solve model~(2) and determine its optimal solutions
th(T)and z (T). Denote associated machine deprecia-

tion costs asD(T), and labor costs as L(T).
4: Using qur(T) to calculate Cj(f), and set Cmax(T) <
max;{C; (T)} as the makespan.
Calculate the makespan-related costs M(T) « OCmaX(T)
0«0y {D(T) + L(T) + M(T)}
Update T < Cmax (T) - 1.
8: Calculate T* < argmin{O}.
9: Output the corresponding assignment and scheduling decisions
UW[(T*) and z, r(T*)

N 2w

and the scheduling subproblems, may be a possible approach to
obtain computational speedups. Benders decomposition is such a
kind of partitioning method applicable to MIPs (Benders, 1962). As
we know, Benders decomposition algorithms have demonstrated
its efficiency in solving a wide range of difficult problems, in-
cluding planning and scheduling problems (Canto, 2008; Hooker,
2007). In particular, as a variant of the classical Benders decom-
position method, the combinatorial Benders decomposition algo-
rithm, which was originally studied in the seminal work of Hooker
(2000), has extended itself to solve various mixed-integer pro-
gramming models with special structures (Chen, Lee, & Cao, 2012;
Codato & Fischetti, 2006). To enhance the performance of the Ben-
ders decomposition algorithm and speed up the search process,
instead of using information with respect to the dual to generate
cuts, the combinatorial Benders decomposition method iteratively
excludes the current solution of the master problem from further
consideration via combinatorial or feasibility cuts, and continues
such procedure until an optimal solution is identified (Rahmaniani,
Crainic, Gendreau, & Rei, 2017).

Until recently, there have been a number of successful applica-
tions of combinatorial Benders decomposition algorithms to vari-
ous optimization problems including the quayside operation prob-
lem at container terminals Chen et al. (2012), the problem of
decomposing intensity modulated radiation therapy fluency maps
using rectangular apertures Taskin and Cevik (2013), the lock

scheduling problem Verstichel, Kinable, De Causmaecker, and Van-

den Berghe (2015), and assembly line balancing problems with se-
tups Akpinar, Elmi, and Bektas (2017), among others. These papers
illustrate the potential of the combinatorial Benders decomposition
method.

In this paper, we propose a combinatorial Benders decomposi-
tion based approach to solve the IEMSCW problem. For simplicity,
we refer to the algorithm that implements this approach as Algo-
rithm CBD.

4.1. The master and slave problems of Algorithm CBD

We first present the master problem (i.e. model (3)) that deter-
mines the assignment of jobs. We define y;;,,=1 if job j is assigned
to machine i and processed by employee w, and 0 otherwise. For
simplicity, we also define

F = max max{z Zyuwpuvv} maX{ZZJ’UwPuw} ;

jeg wew ieM jeJ

that is, F is the maximal value of the total job processing time
on each machine and by each employee. The objective is to min-
imize the weighted sum of the corresponding machine deprecia-

K. Fang, S. Wang, M.L. Pinedo et al.

tion costs, labor costs and costs related to the value of F. Then, the
master problem can be formulated as follows:

[master] minimize fy =Y > > (fi+ cw)PijwYijw + OF:

ieM jeJ wew
(3a)
subjectto > > yjw=1 VjieJ: (3b)
ieM weWw
F> Z Z YijwDijw Yie M: (3¢)
Jjeg wew
F=> Z Zyijwpijw Yw e W; (3d)
ieM jeJg
F<T; (3e)
Z Zyijwpijw <¢y Ywew; (3f)
ieM jeJ
Yijw €{0,1} VieM,je T . weW. (3g)

Constraints (3b) ensure that each job can only be as-
signed to exactly one machine and one employee. Con-
straints (3c) and (3d) define the value of F. Constraints (3e) ensure
that the total processing times of jobs assigned to each machine
cannot be more than the length of the given planning horizon.
Constraints (3f) ensure that the maximum total working-time of
each employee is not greater than the given threshold. It is easy
to see that once variables y;;,, have been fixed, the value of F is
also determined.

Suppose a solution S = {y;*jw, F*} of the master problem as well
as its objective value fy; have been obtained. We now try to find
a feasible solution, if any, to the following slave problem (i.e.
model (4)). Model (4) is mainly used to test feasibility of the solu-
tion S = {y;}W,F*}, it does not matter what the objective function
is, hence we set the objective function as minimize O.

[slave] minimize 0 (4a)
T—pijw
subject to > Xijwe =Vjj, YieM,jeT weW; (4b)
t=0
(t+1Dzwe <Cnax YWeW, t e T; (4c)
Cmax < F*; (4d)
Constraints (1c¢) — (1k); (4e)
Xijwe: Zwt. Pwe € {0,1} VieM,je T, weW,teT. (4f)

Constraints (4b) establish the relationship between variable
Xjjwe and the value of Yiiw obtained from the master problem. Con-
straints (4c) and (4d) restrict the range of Cpax in the slave prob-
lem. Constraints (4e) ensure that if a solution to the slave problem
has been found, it must satisfy all the predefined restrictions re-
garding employees’ working hours.

Obviously, if the slave problem returns a feasible solution, then
the solution of {y;‘jw, F*} is also optimal to the master problem, and

132

European Journal of Operational Research 291 (2021) 128-146

thus we solve the original IEMSCW problem. Otherwise, the cur-
rent assignment plan of jobs, i.e., y;‘jw, should be forbidden over
the current time horizon with length F*.

Unfortunately, the problem of finding a feasible solution to
the slave problem is not polynomial-time solvable. To illustrate,
we consider the following problem (i.e. the slave(w) problem), in
which we only search for a feasible schedule of jobs for each indi-
vidual employee w e {1,2,...,¢}. Let Jw = {Jj Viw = 1}, and Uy =
{a, j, w)|y;‘jW = 1}. For each j € Jw, we define p; = Dijw ify;‘jW =1
Now the slave(w) problem becomes a search for a feasible sched-
ule of jobs in 7, with processing times {p}}, so that working hours
restrictions are satisfied, and the makespan is at most F*.

Theorem 1. The slave(w) problem is NP-hard in the strong sense.

Proof. We reduce any instance of the 3-PARTITION problem, which
is strongly NP-hard (Garey & Johnson, 1979), to an instance of
the slave(w) problem. The 3-PARTITION problem is described
as follows: Given a set S={1,2,...,3m} and positive integers
..... A3, B such that B/4 <A;<BJ2 for all jeS and 3 sAj =
mB, does there exist a partition of S with m 3-element subsets
..... Sm such that 3 ;. q Aj=B for all i=1 m? Given any
instance Z; of 3-PARTITION, we construct an instance Z, of the
slave(w) problem as follows: The set of jobs is 7w = {1,2, ..., 3m},
the processing time of each job j € 7, is:

.....

p;:AJ fOl‘j:l,,..,3m,

and the value of F* is mB+ (m —1).

In addition, the maximum consecutive working-time and min-
imum break time for employee w are B and 1, respectively. Then
there exists a feasible schedule of jobs for employee w if and
only if this employee always achieves his/her maximum consec-
utive working-time B when he/she is working, and then only takes
the minimum break time, i.e., one unit time. This can be done if
and only if the 3-PARTITION problem has a solution, therefore the
theorem follows. O

Although the general slave(w) problem is strongly NP-hard, dur-
ing our implementation of Algorithm CBD, we can still solve the
following optimization model to check if the given assignment plan
is feasible for each specific employee w; € W within a fairly small
amount of computational time:

[slave(wy)] minimize 0 (5a)
T—Diju,
subject to Y Xijwe =Viw, YVie M, jeJ; (5b)
t=0
(t+1)zwe <Cnax VYteT; (5¢)
Cmax < F*; (5d)
Constraints (1c) — (1k) where w = wy; (5e)
Xijwytr Zwets Pwe € {0,1} Vie M, je T, teT. (5f)

4.2. Combinatorial Benders cuts: a heuristic generation method

For simplicity, we denote the optimal solution of the master
problem in the tth iteration as {yi(;zv,F ©}, and the correspond-

ing optimal objective as fn(,f). When an infeasible slave problem
is encountered, we know that the current assignment plan of

K. Fang, S. Wang, M.L. Pinedo et al.

jobs yfj?v should be forbidden over the time horizon with length
D, Let u® = {(i, jw) |yj(;3v =1, slave is infeasible] and 7" =

P (t)
{ (@ 1. W)Y
lowing combinatorial Benders cut into the master problem:

D Vit Y =y =1,

(. jwyea"” (A jwyeu®

=0, slave is infeasible}, then we can add the fol-

(6)

which can be used to prevent the above assignment plan to the
job schedule, that is, to make a schedule feasible for all employees,
we need to remove at least one element in ¢/ from the current
assignment plan, and replace it with some other element in .

In particular, when not only the slave problem is infeasible,
but also the slave(w,) problem is infeasible for some w, e W,
then we let Z,{v(flz {(i, Js wk)|yi(;v)vk
and add the following additional combinatorial Benders cuts into
the master problem:

2

(i.jwi) ety

=1, slave(wy) is infeasible},

(1 = Yijw,) = 1, (7)

which prevents the assignment plan of uv(flj to employee wy. That
is, to make a schedule feasible for employee w;, we need to re-
move at least one element from u‘gf,?

In addition, note that each employee has a consecutive
working-time restriction, if for some employee w, we have
Z(iyiwk)euv(f,f ygv)v,(pijwk > dw,, then this employee has to take

breaks for at least ’V(Z(ijwk)el/m y;;\z/kpijwk)/dwk - 1-‘ times. For
g)

simplicity, we define

E\(Ags = Z yg‘,)\,kpijwk /dwk -1 by

(j.wi)tty)

(t)
>V jw, Pijwy +

(. jwiethy)

K

(t)

Then, given the current assignment plan of jobs Yijw, the minimal

completion time by employee w;, is at least E‘(,\EIZ However, it may
be the case that F!) satisfies Constraints (3d) for employee w;. That

i (t)) . i (t) (t) ik
is, F\) > ZUJ-Wk)EUV(J,: YijwPijw: while F(©) < EWk also holds, which is

obviously an infeasible solution to employee wy. To avoid such in-
feasible assignment of jobs to employee w; with the solution of
{yi(;gvk, F®©O}, we can further add the following strenghthened com-
binatorial Benders cuts into the master problem:

Z Yijw, Pijw, [dw, —1 bw, = FO,

(. jw)elly)

Z Yijw, Pijw, +

(i.jwi)etlyy)
(8)
where () = {(i. . woly(, =1.F© <F{).

4.3. Lower and upper bounds on the F values

As we can see, the constraints on the value of F variable in the
initial master problem are quite loose. In fact, we can use some
auxiliary optimization models to generate tighter restrictions on
the range of F values.

Consider the following optimization model:

minimize Cpax

subject to Constraints (1b) — (1m).

133

European Journal of Operational Research 291 (2021) 128-146

Note that the above optimization model (9) is much easier to
solve than the [EMSCW problem. We let Cf,,, be the corresponding
optimal objective for model (9), then obviously the makespan of
any feasible schedule for the IEMSCW problem should be at least
Ciax- Therefore, we can obtain a lower bound on the F value as
follows:

F > CmaX' (10)
On the other hand, consider the following optimization

model:

minimize Cpax (11a)

subject to Constraints (4b) — (4c) and (4e) — (4f). (11b)

The above optimization model (11) calculates the minimum
makespan under the given assignment plan of jobs (i.e., y(t)). If

ijw
model (11) is feasible, we let c,gﬁ;x be the corresponding optimal
objective to model (11), and define

U = 9 —0F© yocl)..

(12)

In addition, if {x, z(, B0} is the corresponding feasible
solution to the optimization model (11), then the solution
{x© zO E(t)’ c;;gx} is obviously a feasible solution to the [EMSCW

problem, with objective value Uét), which is an upper bound on
the total cost for the IEMSCW problem.

Note that DL is a lower bound on the sum of machine depre-
ciation and labor costs (see Section 3), therefore the makespan re-

lated cost is at most Ué‘) — DL, which means that the maximum

makespan is at most Uét) — DL} /6. Therefore, we can obtain the
following upper bound on the F value:

F<|W-DL)/6b | (13)

s
Cmax

For simplicity, we define F = and F = L(Uét) —ﬂ)/GJ as the

lower and upper bounds on the F values, respectively. Then, by in-
corporating the above lower and upper bounds on the F values,
we can significantly shorten the length of the time horizon during
each iteration, and thus speed up the entire search process.

4.4. Monotonic search strategy: avoiding stagnation situations

It should be noted that all of the generated combinatorial Ben-
ders cuts in Section 4.2 remain valid only when the length of the
new time horizon in the (t + 1)th iteration does not increase, that
is, Ft+D < F©O_ Otherwise, if we obtained a new solution to the
master problem in the (t + 1)th iteration, by adding all the feasi-
bility cuts generated after the tth iteration, and have F(+1D ~ F©O
then the previous assignment plan of jobs (i.e., yl.(;‘fv) may actually

be feasible over the new time horizon with length F(¢+1) . There-
fore, each time when the value of F strictly increases, we have to
remove all the previously generated combinatorial Benders cuts,
and restart the search process for feasibility cuts with the new
value of F from scratch.

Meanwhile, it may be the case that the solution in the (t + 2)th
iteration (i.e., {yl.(ﬁz), F(t+2)1y satisfies F(t+2) < F(O < F+D That is,
in the new solution generated in the (t + 2)th iteration, the time
horizon is shortened with a lower makespan-related cost, at the
expense of higher machine depreciation costs and labor costs. As a
result, the search process may stagnate in local optima because of
the fluctuations in the values of F and the removal of combinatorial
Benders cuts when the value of F increases.

To avoid such situations, we implement the following mono-
tonic search strategy: We separately solve the master problem

K. Fang, S. Wang, M.L. Pinedo et al.

into two opposite directions. That is, during the implementation
of Algorithm CBD, we search for the optimal solutions in non-
decreasing and nonincreasing orders of the F values, respectively.
For simplicity, we call them the “master-upward” and “master-
downward” problems, and denote the corresponding slave prob-
lem in the upward and downward directions as “slave-upward”
and “slave-downward” problems, respectively.

In particular, during any two consecutive iterations in the
“master-upward” (resp. “master-downward”) problem, the value of
F in fact can only be increased (resp. decreased) by at most 1. The
reason is the following: suppose that we have obtained a solution
(yl(;v)v F®) by solving the “master-upward” problem in the tth it-
eration, and the corresponding slave problem is infeasible. Then,
we add all the combinatorial Benders cuts that are generated in
Section 4.2, and obtain a new solution (ylf;mtl), F®+D) for the mas-

ter problem. Now, if we have F+1D — F(® > 2 then since the value
of F increases monotonically in the “master-upward” problem, we
know that for any iteration t’ > t + 1, the value of F®) must be
greater than or equal to F*+1 which means that any solution
(¥}, F') that satisfies F® < F' < F&+D will be skipped. However,
it may be the case that the corresponding slave problem of solu-
tion (ylfjW,F’) is feasible, and the minimal total cost may be de-
rived from this solution. Similar arguments hold for search pro-
cesses in the “master-downward” problem.

Based on the above observation, starting from the value of K0,
which was obtained by solving the initial “master-upward” prob-
lem, we solve its associated “slave-upward” problem and check if
it is feasible. If not, we add valid combinatorial Benders cuts into
the master problem, and continue the above process until the slave
problem becomes feasible, or the master problem becomes infea-
sible. To be specific, suppose in iteration t, the corresponding slave
problem of solution (yf}JV,F“)) is feasible, we calculate the corre-
sponding objective value of the master problem, and set it as the
new upper bound Uét) on the total cost, with an updated value of
F. Then, in the next iteration, we update the value of F from F? to
F® 11 in the objective function of the master problem, and add
the following constraint to the master problem

fu<UP -1, (14)

so as to ensure that the total cost is at most Ulgt) —1 in the fol-
lowing iterations, and continue such process until the value of F
becomes larger than F. In the “master-downward” problem, we re-
peat similar process starting from the value of F© —1, and de-
crease the value of F by at most 1 during any two consecutive iter-
ations. This way, we can avoid any stagnation situations, and make
it possible to find an optimal solution of the [IEMSCW problem dur-
ing the search process.

4.5. The algorithmic outline of Algorithm CBD

The overall procedure of the combinatorial Benders decomposi-
tion based approach (i.e., Algorithm CBD) is summarized as follows
(see Algorithm 4.1).

5. An LS-based heuristic approach: scheduling incompatible
jobs on parallel dedicated machines with working-time
restrictions

From Section 4.1, we know that once we solved the initial mas-
ter problem, we can obtain an assignment plan of jobs to machines
and employees, with a minimal lower bound f,\(/?) on total costs. In
particular, if we can find a feasible schedule of jobs within the time
horizon [0, K9], then we immediately obtain an optimal schedule
for the IEMSCW problem. However, we expect that this may not al-
ways happen since the value of K% is obtained by scheduling jobs

134

European Journal of Operational Research 291 (2021) 128-146

Algorithm 4.1 The algorithmic outline of Algorithm CBD for the
[EMSCW problem.

1: Initialize: fy <0, O < ¢, and Uy is a sufficient large number.
2: Solve the optimization model~(9) to determine the value of F,
and add valid inequality~(10) to the initial master problem.

3: Solve the initial master problem (i.e., model~(3)), and calculate

SO = {fi yij FOL.
: Solve the optimization model~(11),and calculate the value of F
by inequality~(13).
5: while F© <F do
6: while the “slave-upward” problem is infeasible with the gen-
erated tth solution {yfj\}v F®©O} do

7: Add combinatorial Benders cuts~(6) to the “master-

upward” problem.

8: for each w € W, solve model~(5) do

9: if model~(5) is infeasible for w; then

10: Add combinatorial Benders cut~(7) to the “master-

upward” problem.

11 if FO < F{) then

12: Add combinatorial Benders cut~(8) to the “master-

upward” problem.

13: Fix FE+D — F®O in model~(3), and solve the “master-

upward” problem again.

14: Update US™™D < U,

15: if the “master-upward” problem is feasible then

16: Calculate an updated solution of {f,f,;“),y;;;])} with the
fixed value of F(t+1D,

17: else

18: FUD F®O 41,

19: Remove all the combinatorial Benders cuts from mod-
el~(3), and solve the “master-upward” problem again
with the fixed value of F(+1),

20: Break.

21: Record the solution of {x®,z(©) B®} when the slave prob-
lem becomes feasible.Update Uét”) <~ min{f,\(/;), Uét)} and
calculate the value of F by Inequation (13).

22 FtD FO 41,

23: Remove all the combinatorial Benders cuts frommodel~(3).

Add constraint~(14) intothe “master-upward” problem, and
solve it again with the fixed value ofF (t+1),

24: FO « FO) _1q,

: while F® > F do

26: Repeat similar procedures as in Steps 5-23 in the downward
direction, except thatwe decrease the value of F during each
iteration in a similar way.

27: Output the corresponding optimal assignment

decisions{y;‘jW,F*}, and its associated optimal objective value

S

on machines or by employees without any idleness, and usually
that may not satisfy the working-time restrictions.

Inspired by the above observation, one natural question that
can be raised is the following: once we solved the initial master
problem and fixed the corresponding assignment of jobs to ma-
chines and employees, can we easily find a feasible schedule that
minimizes the makespan while satisfying the working-time restric-
tions, and then use such a schedule as an approximate solution to
the IEMSCW problem? Note that in the above problem, the jobs
to be processed on each machine are known in advance. That is,
the machines are parallel and dedicated. Meanwhile, the jobs that
are assigned to the same employee cannot be processed simulta-
neously, i.e., some of the jobs are incompatible, and only compat-
ible jobs can be processed in parallel. For simplicity, we refer to

K. Fang, S. Wang, M.L. Pinedo et al.

the above problem as the problem of scheduling incompatible jobs
on parallel dedicated machines with working-time restrictions. Us-
ing the standard three-field scheduling notation (Graham, Lawler,
Lenstra, & Kan, 1979), we denote this problem by PDm|incmp, con-
sec, break|Cmax.

There have been several studies of scheduling problems for par-
allel dedicated machines, in which jobs are subject to various types
of resource constraints or even have incompatibility relationships.
For example, Kellerer and Strusevich (2003) studied the problem
of scheduling jobs on parallel dedicated machines subject to a sin-
gle resource constraint to minimize the makespan. In a follow-up
work, Kellerer and Strusevich (2004) considered scheduling prob-
lems with parallel dedicated machines subject to multiple resource
constraints. Moreover, Kellerer and Strusevich (2008) further con-
sidered a problem of scheduling jobs on parallel dedicated ma-
chines to minimize the makespan, in which jobs may be assigned
an additional resource with reduced processing time, and no two
jobs are allowed to use the resource simultaneously. In all of the
above work, the authors investigated the complexity results for dif-
ferent variants of the problems, proposed different heuristic algo-
rithms and analyzed the worst-case behaviors of these algorithms.
In addition, Grigoriev, Sviridenko, and Uetz (2007) proposed ap-
proximation algorithms for an unrelated parallel dedicated ma-
chine scheduling problem, in which the processing time of jobs
can be reduced by utilizing a discrete renewable resource. More
recently, Lushchakova and Strusevich (2010) proposed a linear-time
algorithm for the problem of scheduling incompatible tasks on two
machines. However, according to our literature review, no work
has been done on scheduling problems with parallel dedicated ma-
chines subject to working-time constraints.

From Theorem 1, it is trivial to see that problem PD1|incmp,
consec, break|Cmax is strongly NP-hard. In fact, we can further show
that it is still NP-hard in the ordinary sense even when jobs can be
processed preemptively (see Appendix B for proof).

Theorem 2. Problem PD1|incmp, consec, break, pmtn|Cmax is NP-
hard in the ordinary sense.

Given the above complexity results, we know how difficult it
could be to find an optimal solution in polynomial time even for
the PDmlincmp, consec, break, pmtn|Cmnax problem, which provides
a lower bound on the makespan of the general PDm|incmp, con-
sec, break|Cmax problem. Then, one interesting question we may
ask is: does there exist any approximate algorithm such that the
makespan of the schedule generated is within the value of pF9),
where p>1 is a constant? If this condition holds, we let o be
the feasible schedule generated by the approximate algorithm,
and CJ,, be its corresponding makespan obtained, and we have
C%.x < pPF©. Obviously, the objective value of the algorithm is
fO _9F© 4 0cg,,. For simplicity, we define OPT as the optimal
objective value of the IEMSCW problem, and we have

fl\(/IO) —OF© + gcl%ax -
OPT

0
W = OF O + 0 _ G _
T f9_gF® 4 9F0 T FO =

5

that is, such algorithm will also have a performance ratio of p for
the IEMSCW problem.

Unfortunately, we have no clue how to answer the question
above. The reason is the following: when each employee has to
process at least one job on each machine, and if the minimum
break time of each employee is sufficiently long, while the total
processing time of jobs for each employee is less than this em-
ployee’s maximum consecutive working time, then the PDm|incmp,
consec, break|Cmax problem includes the problem of minimizing the
makespan for a no-wait open shop as a special case. Until recently,
the approximability of makespan minimization in no-wait open

135

European Journal of Operational Research 291 (2021) 128-146

shops remains a major open problem, and few theoretical results
have been obtained so far (Allahverdi, 2016).

As a result, we instead try to design some simple and intuitive
heuristics to search for a feasible schedule of the IEMSCW prob-
lem, and test its performance empirically. One typical idea is to
employ a so called list scheduling heuristic, which has been often
implemented in searches for feasible solutions to various parallel
machine scheduling problems (e.g. Mokotoff, Jimeno, & Gutiérrez,
2001). In this work, we propose the following greedy list schedul-
ing algorithm (Algorithm 5.1) for the IEMSCW problem, in which

Algorithm 5.1 The list scheduling based heuristic algorithm for
the IEMSCW problem.

1: Solve the initial master problem, and determine the corre-
sponding assignment plan of jobs to machines and employees
according to the values of yfﬁ;.

2: Generate a list of the employees in an arbitrary order.

3: Define Jyw={jeJ|qieM,jeJ, st yi(fvz =1} be theset of
jobs that are assigned to employee we W, andM,, ={ie
M|3Tj e Jw, st yffw)/ =1} be the set of machines that are used
toprocess the jobs in Jy.

4: Initialize: ty < 0 for w e W.

5: for Each employee w according to the employee list do

6

7

while 7, is not empty do

- Check if some yet unscheduled job j’ € 7, can bestarted
at time t,, on an idle machine i’ € M,, without violating
theconsecutive working-time restriction. If yes, schedule
job j’ to start attime t,, on machine i’; ties are broken ar-
bitrarily. Update7,, < Jw\{j’} and the associated machine
set Mw, update tw < tw + Py jiy-

8: - If no job can be scheduled on any of the machines in M,
at time t,, update t,, to the next machine available time.

we first generate a list of the employees by sorting them in an ar-
bitrary order, and then process the jobs according to the order of
employees. That is, we will not consider processing the jobs that
belong to an employee until all the jobs of the previous employee
on the list have been scheduled. In addition, all the jobs belong-
ing to the same employee will be processed with no inserted idle
time according to their machines’ available times, while taking the
working-time restrictions into account. This way, we aim to ensure
that each employee can process jobs as much as possible consecu-
tively. For simplicity, we refer to this algorithm as Algorithm LS.

6. Experimental study
6.1. Computational environment

To test the performance of the MILP model and the three al-
gorithms we proposed, i.e., Algorithms TD, CBD and LS, we em-
pirically conducted computational experiments on randomly gen-
erated instances. We considered instances in which the number of
jobs n was 15, 20, 30 and 50, and the number of employees ¢ and
machines m were chosen from the following combinations:

(e,m) € {(3,3),(3,6), (6,3). (5.5), (5,10), (10, 5)}.

To better evaluate the performance of these algorithms, we consid-
ered two different manufacturing environments: the stable (Case I)
and unstable (Case II) environments. For each of the above combi-
nations and manufacturing environments, we randomly generated
5 instances, for a total of 4 x 6 x 2 x 5 = 240 instances. We also
randomly generated the corresponding parameter inputs, i.e. the
values of Dijw- bw,dw, and ¢y as follows, in which we assume that
1 < by <dw < ¢w. as this matches typical manufacturing environ-
ments.

K. Fang, S. Wang, M.L. Pinedo et al. European Journal of Operational Research 291 (2021) 128-146

Table 1
Comparison of computational results by MILP-E, Algorithms TD, CBD and LS with n = 15.
3 m # Casel Case Il
CPU running time (s) Objective value CPU running time (s) Objective value
MILP-E AlgTD Alg CBD OPT Alg LS MILP-E AlgTD Alg CBD OPT Alg LS

3 3 1 8 19 6 153 164 58 61 67 196 199
2 288 24 6 140 143 88 41 21 185 189
3 4 22 5 145 155 10 52 10 184 188
4 3 16 5 147 152 13 41 22 179 186
5 4 12 3 94 94 9 45 9 263 278

3 6 1 11 12 4 110 116 17 45 20 129 138
2 6 27 24 107 111 13 61 12 119 119
3 6 23 4 102 102 18 49 11 110 110
4 10 11 5 81 84 14 73 7 120 120
5 29 16 8 103 103 19 45 14 116 116

6 3 1 7 37 10 78 83 15 82 12 112 118
2 6 34 15 148 151 13 68 11 81 81
3 7 23 6 110 110 13 66 15 154 154
4 7 22 5 96 99 14 108 13 131 134
5 6 29 6 102 105 12 87 12 176 185

5 5 1 15 35 8 70 73 17 60 24 108 108
2 10 31 7 75 81 19 119 12 105 108
3 14 109 47 86 87 16 155 18 111 120
4 9 45 9 75 75 16 75 16 120 129
5 15 27 10 100 100 20 163 16 94 97

5 10 1 19 71 15 56 59 54 472 52 79 82
2 31 71 28 78 78 42 181 35 96 99
3 18 47 16 89 95 38 364 46 117 117
4 19 79 20 90 93 47 221 42 103 109
5 23 50 22 89 92 44 181 48 102 102

10 5 1 227 82 24 80 87 61 522 52 73 79
2 29 126 27 82 82 39 597 47 94 100
3 15 137 23 55 55 32 224 48 84 90
4 128 236 24 103 103 31 357 54 114 114
5 144 239 25 89 89 36 382 45 82 88

Avg CPU time 37.3 57.1 13.9 / / 27.9 166.6 27.0 / /

solved 30 30 30 / / 30 30 30 / /

o Stable environment (Case I): The processing times of jobs
pijw were randomly generated from the uniform distribution
on {1,...,6}, by from the uniform distribution on {1, 2}, and
dy from the uniform distribution on {4,...,10}. It should be
noted that the values of ¢, should be appropriately determined
within a reasonable range, otherwise Constraints (1g) may be
too loose to take effect on generating the solutions or be too
strict which results in no feasible solutions. Through some ex-
amination, we decided to randomly generate the values of ¢y
from the uniform distribution on {[3n/¢]1—3....,[3n/¢] +3}.
This way, the average value of the total processing time of jobs
assigned to each employee will keep at a similar level as the
average value of the maximum total working-time of employ-
ees. To check if the instance we generated is feasible, we can
simply solve the MILP model (1), in which the objective func-
tion is set as 0. If the corresponding instance is infeasible, then
we repeat the above procedure to generate a new one.

« Unstable environment (Case II): The processing times of jobs
pijw were randomly generated from the uniform distribution on
{1,...,10}, by from the uniform distribution on {1, 2, 3}, and
dy from the uniform distribution on {6, ..., 15}. In addition, the
values of ¢, were randomly generated from the uniform dis-
tribution on {[5n/¢] —5,..., [5n/¢] + 5}. If the corresponding
instance is infeasible, then we repeat the above procedure to
generate a new one.

For both of the above two cases, we randomly generated
the cost coefficients ¢y, and f; from the uniform distribution on
{1,...,6} and the value of # was given as 3, i.e. the mean value
of cw and f;, so as to provide a similar weight for the makespan-
related costs compared with the other two types of the costs.

To perform these experiments, we used Gurobi Optimizer 9.0.2
to solve the MILP model and the Python programming language
to implement Algorithms TD, CBD and LS on a computer with a
2.8GHz Intel Core i7 processor and 16 GB of RAM running the OS
X 10.14 operating system. According to our experimental study, we
found that most of the instances with n <30 can be solved opti-
mally by at least one of the proposed solution approaches (i.e., Al-
gorithms TD and CBD) within 30 minutes. To make a better com-
parison on the performance of the MILP model and the two exact
algorithms with similar computational time, we set a 1800 sec-
onds time limit on each instance. For each instance, if it cannot
be solved optimally within the given time limit, we recorded the
corresponding optimality gap.

In particular, as we can see, the variable z,; in the MILP
model (1) is merely used for convenience and can be eliminated
by replacing it with an equivalent term as per Constraints (1e).
For simplicity, we denote the corresponding MILP model that elim-
inates the variable z,; as the MILP-E model. By comparing the per-
formance of these two models over all the instances, we found
that in general the MILP-E model outperforms the original MILP
model, as fewer variables and constraints are included in the MILP-
E model. Therefore, in what follows, we only recorded the compu-
tational results obtained by the MILP-E model, and compared its
performance with the other algorithms.

6.2. Comparison between Algorithms TD, CBD, LS and the MILP-E
model

We first focused on small size instances, i.e.,, n =15, to com-
pare the performance of the MILP-E model and our proposed al-
gorithms. Table 1 shows the CPU running time and the objective

136

K. Fang, S. Wang, M.L. Pinedo et al.

European Journal of Operational Research 291 (2021) 128-146

Table 2
Comparison of computational results by MILP-E, Algorithms TD, and CBD with n = 20.
14 m # Casel Case Il
MILP-E Alg TD Alg CBD OPT MILP-E Alg TD Alg CBD OPT
Time (s) Best LB Gap Time (s) Time (s) Time (s) Best LB Gap Time (s) Time (s)

3 3 1 28 186 186 0 37 31 186 534 204 204 0 83 94 204
2 - 189 181 4.2% 46 12 189 28 197 197 0 156 127 197
3 7 232 232 0 25 4 232 — 203 191 59% 93 32 203
4 22 173 173 0 29 120 173 34 248 248 0 85 18 248
5 - 172 171 0.6% 32 39 172 — 265 257 3.0% 138 149 265

3 6 1 34 133 133 0 68 123 133 31 158 158 0 123 40 158
2 580 147 147 0 59 71 147 28 221 221 0 127 21 221
3 29 138 138 0 96 268 138 31 171 171 0 148 42 171
4 18 150 150 0 83 190 150 25 184 184 0 220 38 184
5 66 181 181 0 129 32 181 82 194 194 0 134 24 194

6 3 1 13 155 155 0 55 8 155 26 212 212 0 428 27 212
2 316 127 127 0 62 11 127 77 181 181 0 494 30 181
3 457 123 123 0 67 15 123 36 173 173 0 225 26 173
4 73 155 155 0 78 9 155 34 130 130 0 182 25 130
5 62 93 93 0 57 20 93 22 132 132 0 306 44 132

5 5 1 31 133 133 0 119 73 133 76 124 124 0 360 90 124
2 91 102 102 0 68 20 102 39 119 119 0 274 40 119
3 20 127 127 0 101 23 127 34 140 140 0 242 29 140
4 - 177 175 1.1% 209 38 177 40 145 145 0 309 37 145
5 24 133 133 0 62 16 133 39 114 114 0 523 49 114

5 10 1 417 147 147 0 252 95 147 70 86 86 0 465 62 86
2 631 111 111 0 144 423 111 68 109 109 0 428 56 109
3 54 87 87 0 138 36 87 59 80 80 0 857 92 80
4 240 100 100 0 96 29 100 60 123 123 0 821 61 123
5 59 123 123 0 162 86 123 88 120 120 0 387 60 120

10 5 1 120 97 97 0 448 47 97 71 90 90 0 1487 125 90
2 46 97 97 0 469 54 97 - 124 119 4.0% 777 143 124
3 - 108 105 2.8% 507 233 108 — 107 106 09% 1283 145 107
4 32 82 82 0 433 46 82 240 104 104 0 1414 128 104
5 201 135 135 0 189 43 135 72 127 127 0 752 84 127

Avg value >362.2 / / 0.3% 143.2 73.8 / >304.8 / / 0.5% 444.0 64.6 /

solved 26 30 30 / 26 30 30 /

—: for these instances, the optimal solutions cannot be obtained within 1800 seconds.

values obtained by solving the MILP-E model and by implement-
ing Algorithms TD (denoted by “Alg TD” in the table), CBD (de-
noted by “Alg CBD” in the table), and LS (denoted by “Alg LS” in
the table). In addition, we also denote “OPT” as the optimal ob-
jective value, which is obtained by at least one of the above three
solution approaches within the time limit.

From this table, we can see that when n = 15, all the instances
can be solved optimally either by the MILP-E model or by Algo-
rithms TD and CBD. In particular, the CPU running time of Algo-
rithm CBD is comparatively smaller than the ones by Algorithm TD
and by the MILP-E model. In addition, we can see that the CPU
running times of Algorithms TD and CBD for most of the instances
in Case I (stable environment) are generally smaller than the ones
in Case II (unstable environment). This is to be expected, since the
length of the planning horizon in Case II is much longer, and more
alternative solutions can be found during the search process. As a
result, more iterations may be required to obtain optimal solutions.

On the other hand, for the above instances that we generated,
we found that the LS-based heuristic approach can obtain near-
optimal objective values, which illustrates that Algorithm LS could
be a promising alternative to solve the IEMSCW problem when we
only have very limited computational time. Since the main focus
of our paper is to investigate the exact approaches to the [IEMSCW
problem, we will not further compare Algorithm LS with other al-
gorithms in the remaining of this paper.

When the number of jobs increases, i.e., n=20 and n = 30,
Tables 2 and 3 show the corresponding computational results. In
the tables, we denote “Time (s)” as the computation time in CPU
seconds. If an instance cannot be solved optimally within the time
limit, then we used 1,800 as the computation time for the instance

137

to compute the average value (denoted by “Avg value”) of com-
putation time, and then added a “>" sign before the calculated
value. From these two tables, we can see that the performance of
Algorithm CBD is generally better than the ones of Algorithm TD
and the MILP-E model since it can solve most of the instances op-
timally, and its average CPU running time is smaller than those
of the other two methods. Even for the instances that cannot be
solved optimally by Algorithm CBD, it can still obtain near-optimal
solutions with comparatively small optimality gaps. The only ex-
ceptions are the instances in Case I with n =30, for which Algo-
rithm CBD can only solve 16 out of 30 instances optimally, while
the other two methods have larger numbers of solved instances.

It should be noted that when n>20, Algorithm CBD seems to
have a better performance on the instances in Case II than the ones
in Case L. The reason for such phenomenon may be that: due to
our proposed instance generation method, we know that the vari-
ation of the input data in Case II is higher than that in Case L
Therefore, when the size of instances increases, the valid combi-
natorial Benders cuts that we generated could be much tighter for
the instances in Case II than the ones in Case I, since more pos-
sible infeasible solutions could be excluded by adding such cuts.
Meanwhile, the performance of Algorithm CBD on instances with
(¢, m)e{(6, 3), (10, 5)} is generally better than the one on instances
with (¢, m)e{(3, 6), (5, 10)}. This is reasonable, since the instances
in the first set have larger numbers of employees, and as a result,
fewer jobs may be assigned to each employee.

In addition, from all of these three tables, it seems that we
cannot simply claim either Algorithm TD outperforms the MILP-E
model, or vice versa. On one hand, we can see that even for small
size instances, say n = 15, the average CPU running times of Al-

European Journal of Operational Research 291 (2021) 128-146

.L. Pinedo et al.

K. Fang, S. Wang,

‘'Spu03s QO8] UIYIIM paurelqo aq jouued suonnjos [ewndo ayj ‘sadueIsul asay) 10y :—

/ 9z 0z 9l / 91 0¢ 31 PaA[OS #
[%50 / | 616h< %58€l / | §0911< %6'€ / | 86801< [%61 / | vsLe< 0Z0F %8¢ / | L866< anfea Say
S6L 0 G61 S6L 991 %788 G61 TS6 - 0 S6L S6L 877 681 0 681 681 L1L 8zL 0 681 681 (AR
L61 0 L6l L6l 8hy %T19¢ 961 Y06 — L0l 9L1L L6l - Ikl %€ ehl 8L - 8L6 0 Lbl Lbl 9IL ¥
791 0 791 79l 6VL %LYSY 191 €68 72 A B = 2 R 41] - o€l 0 o0zl O¢fl 06 199 0 o€l O€L 857 ¢
LSL 0 LSL LS 8Ly %TELy LSL 006 - %T0L 1Pl LSl A4 0 Lbl bl SLL SS9 %6TL 8Tl Lyl -z
191 0 191 191 117 %l'vby 191 9L8 - %l 651 191 - 9l 0 9vl 9vl 16 6€01 0 9v1 9vl 951 1 G o0l
vSlL 0 ¥SL ¥SL 1Ll %6'6LE PSL 6EL - 0 ¥SL ¥SL 6L LLL 0 LLL LLL S 10S 0 LLL LLL 18 S
e %y Sl vae - %I'Ske SIT LS6 - 0 TTT we LOLL TLL %9€ 691 SLL - 629 %0L 091 TLL - v
a4l 0 €vl evl 1zl %0857 €¥l TIS - 0 €vl €bl b6 9vl %Ev vl Lbl - 6V9 %96 TEL 9l - ¢
651 0 651 6SL L8€ %8'16Y 8SL S€6 - %L0L €bl 6SL - 11z %6T L0T €lT - oL 0 11z 11T vhvlL €
- %y el 6Pl — %0865 €¥l 1¥6 - %6 1€l Syl - 8LL %L1 9Ll BLL - ¥8L %06 T9L 8LL - 1 o S
zee 0 <TTz T vLEL 0 Tz T STslL 0 Tz Tee 691 8Vl %Tv ¥pl 0SL - Lz€ 0 8vl svl €Sz S
[X44 0 €T €T 901 0 €Tz €T 1921 0 €Tz €T 0z 1€l %96 STl LEL - €62 0 1€l lgl R
651 0 661 6SL G8 0 651 6SL 686 %88 Skl 6SI - 0SL %T¥ vkl 0SL - 90€ 0 0SL 0SL LS €
¥6¢ 0 ¥6T ¥6C ¥S01 0 ¥6C V6T L8E1L 0 ¥6C V6T 98 STl %6¥ <l 8Tl - €L %TIL 1Ll szl -z
LT 0 LT LT LEL 0 1L LT 098 %8 6k LLT - €T %LT 6lT STt - 9LL %€L 0TT €TT - 1 S S
vic 0 ¥lz Vit (34 0 Vlz vt LG8 0 Vviz vt €98 LIT 0 Ll LIT 9¢ 14 0 Llz LIT ¥8SL S
59z 0 S9T S92 €6 0 69T S9¢ 6LLL %ES 1ST S9C - 16T 0 L6T L6C 42 £0¢ 0 16T L6C 6 ¥
0zz 0 o0zz 0zC 3% 0 0Zz o0ze vi6 0 0z o0zC 601 661 0 66l 661 8S1 GET %91l 9L1 661 - ¢
€Tt 0 €T €T 79¢ 0 €z €TC VLS %9L L0T bTT - pel %Ly 6Tl SEL - 12z %b'el 91l bEL -z
LET 0 LET L£T L9 0 L£T LET 1671 0 L£T LET 0L 9pL 0 9vL 9pl Ly ebz %LEL 971 9vl - 1 € 9
LTz 0 LTz LTT 681 0 LTT LTT 889 0 LTT LTT 91§ zeT 0 T€T Tee 908 SLL 0 7€T TeT 09 S
(434 0 T€T Tee 101 0 TeT TeT X4 0 TeT TeT €0L €bT 0 €vT €be LLL 6¥1L 0 €hT ve 65 ¥
0Lz 0 0Lz 0Lz 619 0 o0LC 0LT £v01 0 o0LT 0LT GZ0L €0T %0'c 86l $0OT - 66€ 0 €0z €0C 9¢6 ¢
8ve %L1 vbE 0GE - 0 8be 8be 919 0 8be 8be ¥8 881 %6% €8l 61 - L€ %L11 991 88l -z
iz ¥¥v 90T SIT - 0 clz e 86L wL'El €8l TIT - 8l¢ 0 8lE 8l¢ LIL 6€C 0 8le 8IE 61 1 9 ¢
10 0 10V 10¥ zs 0 10V 10b 887 0 10V 10b 666 6T 0 ¥6C ¥6C o1 10l %L €LT ¥6T - S
AL 0 LlE Ll€ 9el 0 Ll1E LlE lee %87l €LT €le 14 0 Slz Sit 0LT 48! 0 S1z sliz & ¥
8ee 0 8ge 8E€ 8¢ 0 8ge 8ee Sly 0 8¢ 8ee 0S 6l %61 8l e - 291 0 6lE 6lE ve ¢
vie 0 ¥lE plE o114 0 ¥l PlE 99¢ %I'S 867 PblE - ST 0 SLT SLT 1811 601 0 SLZ SLT 801 ¢
Led 0 1eb led L9 0 1ev Lk Ive %9C 0Tv lEv - 68C 0 687 68C SLL SIL %8% SLZ 68C - 1 £ ¢
den g1 Ised (s)awil den a1 Ised (s)awiL den a1 Ised (s)awiL den g1 Ised (s)awil (s) awiIL den a1 Ised (s) awiL
1dO aao sy axw sy I-dTIN 1O agsiy AL sy -dTIN
11 958D [ase) # w 7

‘0€ = U YIIM gD pue ‘gl swyiLosy ‘G-dTIA Aq synsal jeuoneindwod jo uostiedwo)

€ JlqeL

138

European Journal of Operational Research 291 (2021) 128-146

.L. Pinedo et al.

K. Fang, S. Wang,

‘'SPU03s QO8] UIYIIM paurelqo aq jouued suonnjos [ewndo ayj ‘sadueisul asayy 10y :—

L 0 € 4] i4 € paA[os #
%L'CT / | 68961 < %0°8bE / /| 008l< %68 / | 8969L< %0°€ / | €T87l< %T¥SL / [LSILL< %001 / [RATARS anfea 3ay
%€ 01T 61T — %L9L9 01T 1€91 - %€11l 681 €IT - 0 IbE LbE - 29¥bT I¥E SLIL - 0 Sbe Sbe L691 S
%L1 EVE 6VE - %6VIF €bE 99L1 - %l'9 TTe €ve - 0 0Se 0Se TCS %L'61T 0SE 6LLL - %901 €l€ 0S€ 4
%0'C 00€ 90€ — %L'69% 00 60LL - 0 coe ot Sh6 0 LST LST 695 %0VlE LST 901 - %L'0L 1€T LST - ¢
0 bze Pee Sh9 %90ev bTe 6ILL - %06 S6T Ve - 0 8%z 8bT LEy %0°€CE 8%T 6V01 - %€11 07T 8T -z
0 8le 8IE 06l %L6EY L1E LLLL - %01 S8T 8lE - %9Y €97 SLT — %L'S0E €9 L901 - %901 SvT VLT - 1L S ol
%L'C 88T V6T — %1'98F 88T 8891 - %€€l SST V6T - %601l 02T ¥he — %9'€9¢ 0T 0201 - %091 ¥61 €T - S
%0 L6T 60€ - %S6LF L6T 1TLL - %6'8 SLT T0E - %I'v 16T €0¢€ — %09SC 16T 9¢€01 — %601 19T €6C - ¥
0 LSE LSE b6 %900 9S€ 78LL - 0 LSE LSE 9LL %86 €81 10T - %T0Tk €8l TS6 - %SVl <9l €61 - ¢
%61 91€ TTe - %T9vF 91E 9TLL - %06 €6C TTE - %I'S ¥eT 9T - %9967 VeT 876 - %6'S1 90T ST -z
%€ 79T 1LT - LTYS T9T ¥891 — %501 8£T 99T - %¥'e 59T LT — %5'S6T S9T 8%01L - %5T1 6£T €LT - 1L 0L §
%L1 9ve TSE - %80y 9bE 6SLL - %€9 97e 8bE - %Lt T6V 01S — %L9S1 T6¥ €971 - %Vl 16V 86b - S
%0CT Ovy 6vb - %SL1E Oby LE€81 - %¥'S 61y ebb - %6V LVT 65T — %TEO0L L¥T T0S - %€V¥1L 91T 1ST - ¥
%0 S9¢ L9¢ — %L'6LE S9E 1GLL — %6L 8£e L9E - %L'T 69¢ 6LE — LLEL 69 LL8 - %0l LgE LLE - ¢
0 8LV 8LV 8LT1 %¥'T8T 9LV 0T8L - %0% 6Sv 8Lb - %I'S SIv 9tb - %06L Sl¥ EbL - %08 06¢ Vb - T
%1'€ T6T 10€ — %8'L9% T6T 8S9l - %TEL 79T o€ - %0'¢ 10€ O0l¢ — %5'8¢l 10€ 8IL - %66 TLT T0E -1 s s
0 S9v S9v 8bC %S'L8T S9v 708l - %L leb S9b - 0 viv viv €07 %Sz vy 61§ - %€Vl SSE vIb - S
%0'1 885 ¥6S — %0°67C 885 1161 - %¥9 €SS 165 - 0 6S€ 6SE 6€C %SELL 6SE 186 - %TT 1S€ 6SE - ¥
%91 9LE T8¢ - %b'Tse 9L 10L1 - %T8 8be 6LE - 0 68T 68T 91l %9%8 68T 97§ — %61l 1ST S8C - ¢
%L1 €9€ 69¢ — %b'e9e €9¢ 7891 - %501 STE €9¢ - 0 7w v S0EL %S611 LlF 206 - %L T8¢ TV - T
0 ¥IS ¥IS 681 %V'€9T ¥IS 8981 - 0 ¥IS ¥IS 78S 0 1IbE IbE S %105 6EE 60S - %8 11€ I¥E -1 € 9
%1 svb vSh — %L'€8T 8y 6ILL - %86 LOV ISb - %lI'8 TTT 0OvT - 0 ST Ss€T 121l %0°LL S6L GET - S
%9'T 6LS %65 — %€'€TT €8S G881 - %€9 GSSS T6S - %TL 1ST 69T - 0 19T 19T 8I¥L %T¥L 6TC L9T - ¥
%L'9 10V 8Ty — %T8TE 10V LLILL — %9%L 89¢ ltb - %TS 16T 90¢ - %86 16T L9S — %8Sl 19T 0l¢ - ¢
%8S 89 S6b - %¥1LT 89F 8ELL - €€l 6TF S6b - %9 €re 1ve - %6'1E €Te 9T¥ - 0 Gee Geg (AR
%89 00V LT¥ — %5'T€E 00F OELL - Tl 69¢ 1Tk — %€t 69¢ 18¢ - %9%81 69¢ 0S01 - %T6 ¥bE 6LE -1 9 ¢
0 789 789 656 %L'0SL 699 €91 - %86 €79 169 - 0 TSS TSsS €S %568 7SS veol - 0 1TSS TSS 667 S
%€l 0TS LTS — %T961 0TS ObSI - %061 ¥Sb bES - 0 L¥S LS GGSI %9'€9 ¥PS 068 - %T8 T0S L¥S - ¥
%81 1S9 €99 - %€TEL 1S9 TISI - %¥'SL 0LS L9 - 0 Lty LTb STl %1'8S LTy SL9 - %TSL 79 LT¥ - €
%19 L79 S99 — %9861 L£9 T061 - %611 €85 799 - %0T L6E SOF - 0 v Tob L6 %6 €98 0V -z
%10 079 S79 — %0881 €79 ¥6LI — %791 675 1€9 - 0 LOV LOV 6L 0 LOV LOV 0911 %96 89¢ LOV - 1 € €
den g1 3sag (s)awil den g1 1s9g (s)auwnl den g1 3sag (s)ewip den g7 3s9g (s)awil deo g1 3s9g (s)awnl den g1 3sag (S) awiL
ago sy air 8y -dTIN aso sy air sy q-dTIN
11 aseD [osed) # w g

‘06 = U YIIM gD pue ‘gL swyiLos|y ‘Ppouw I-dTIA Y3 Aq synsal jeuoneindwod jo uostiedwo)

¥ d1qeL

139

K. Fang, S. Wang, M.L. Pinedo et al.

total cost
736

A

271

European Journal of Operational Research 291 (2021) 128-146

71 iterations

Fig. 1. The search process of Algorithm TD.

Table 5
Comparison of computational times between Algorithms CBD-O and CBD-M with n = 15 and n = 20.
14 m # n=15 n=20
Case | Case Il Case 1 Case Il
Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M Alg CBD-O Alg CBD-M

3 3 1 6 11 67 90 31 61 94 113
2 6 3 21 27 12 8 127 67
3 5 7 10 7 4 5 32 56
4 5 9 22 20 120 113 18 32
5 3 4 9 8 39 143 149 412

3 6 1 4 5 20 28 123 207 40 94
2 24 15 12 12 71 198 21 20
3 4 4 11 11 268 716 42 69
4 5 5 7 7 190 276 38 45
5 8 11 14 10 32 72 24 34

6 3 1 10 13 12 14 8 16 27 31
2 15 13 11 12 11 13 30 34
3 6 8 15 20 15 13 26 32
4 5 6 13 18 9 11 25 23
5 6 7 12 14 20 40 44 57

5 5 1 8 15 24 24 73 147 90 177
2 7 7 12 18 20 23 40 61
3 47 31 18 20 23 29 29 35
4 9 7 16 17 38 18 37 35
5 10 11 16 19 16 14 49 59

5 10 1 15 16 52 56 95 68 62 59
2 28 31 35 32 423 911 56 61
3 16 14 46 45 36 79 92 97
4 20 20 42 37 29 59 61 66
5 22 16 48 51 86 618 60 65

10 5 1 24 25 52 50 47 151 125 161
2 27 29 47 42 54 125 143 175
3 23 23 48 53 233 425 145 205
4 24 24 54 51 46 89 128 153
5 25 21 45 46 43 61 84 91

Avg CPU time 13.9 13.7 27 28.6 73.8 157.0 64.6 87.3

gorithm TD for Case I and Case II are 57.1 and 166.6 seconds, re-
spectively, which are comparatively larger than the ones by solv-
ing the MILP-E model. One reason for such results may be that:
when the size of instances is small, model (1) itself can be solved
efficiently within a fairly small CPU running time, therefore, the
speedup factor of model (2) becomes less significant since simi-
lar computational time may be required to solve model (2) as the
one by solving the MILP-E model directly. Considering that multi-
ple iterations will be always required during the implementation
of Algorithm TD, as a result, the overall CPU running time of Algo-
rithm TD could be larger than the one by using the MILP-E model.

On the other hand, when n increases, for all the instances with
n =20, and the stable instances with n = 30, we found that some
of the instances cannot be solved optimally by the MILP-E model,
while Algorithm TD can still solve these instances optimally. Mean-
while, among all the instances that can be solved optimally by

140

both methods, we find that there exists considerable amount of
them for which the corresponding CPU running time of the MILP-
E model are comparatively much smaller than the ones of Algo-
rithm TD.

Moreover, for the instances in Case Il with n =30, we can
see that some of them cannot be solved optimally by Algorithm
TD. For simplicity, we let Vp be the current best objective value
among all the generated feasible solutions by Algorithm TD, and
Vig = min{fl\(/?),@}, and we define the optimality gap of Algorithm
TD as follows:

Vrp — Vip
1B

Optimality gap of Algorithm TD = x 100%.

Note that Algorithm TD searches feasible solutions starting from
the end of the time horizon. Therefore, the initial total cost gen-
erated by this algorithm is very high. If Algorithm TD fails to sig-

K. Fang, S. Wang, M.L. Pinedo et al.

European Journal of Operational Research 291 (2021) 128-146

Table 6
Comparison of CPU running times between Algorithms CBD-O and CBD-S with n = 15 and n = 20.
14 m # n=15 n=20
Case 1 Case Il Case 1 Case Il
Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S Alg CBD-O Alg CBD-S
3 3 1 6 6 67 90 94 121
2 21 21 127 88
3 5 5
4 120 122
5 149 930
3 6 1 123 145
2 71 68
5 32 20
6 3 2 15 16
5 5 1 73 265
3 47 37

nificantly reduce the value of T during the search process within
the time limit, then its optimality gap can be extremely large
(e.g., 558.0% for the first instance of the combination (¢, m,n) =
(5,10, 30)). For more detail, please see Fig. 1 in Section 6.3.3 for a
graphical view of the search process of Algorithm TD for an illus-
trative example.

To further test the performance of Algorithm CBD, we also con-
ducted our computational experiments on the instances with n =
50. Table 4 shows the corresponding computational results. From
this table, we can see that when the size of instances continuously
increases, Algorithm TD could consume prohibitive CPU running
time to calculate the optimal solutions, and the optimality gaps
are extremely large for most of the test instances. On the other
hand, Algorithm CBD still outperforms the MILP-E model in terms
of both the number of solved instances and the average optimality
gap, which indicates the efficiency of our proposed combinatorial
Benders decomposition based approach in finding the optimal so-
lutions or near-optimal solutions to the IEMSCW problem.

6.3. Evaluation of components in Algorithm CBD

As we have observed from Section 6.2, the combinatorial Ben-
ders decomposition algorithm we proposed could be quite effec-
tive in finding optimal solutions or near-optimal solutions to the
IEMSCW problem. It should be noticed that all of the components
in Algorithm CBD contribute to its good performance. In what fol-
lows, we conducted several experiments on Algorithm CBD to fur-
ther identify the impact of each component.

6.3.1. Combinatorial Benders cuts: heuristic generation method vs.
minimal infeasible subset

From Section 4.2, we know that the combinatorial Benders cut
for each employee is generated by some straightforward heuris-
tic methods, that is, we simply check if the obtained assignment
plan of jobs is feasible to the corresponding employee. If not, we
then add several combinatorial Benders cuts into the master prob-
lem. In fact, we can further find out the minimal infeasible subset
of assignment plan to each employee, using a similar idea as in
the work of Verstichel et al. (2015) (see Section 4.4 in their pa-
per). To be specific, when an assignment plan 4, is not feasible
to employee w, we enumerate each subset /" of i4,, in nonincreas-
ing order of the subset size, and check if the corresponding sub-
set is still infeasible. If so, then we generate a new combinatorial
Benders cut associated with ¢/, and remove all the cuts associated
with any superset that includes ¢/, until no further action can be
made. For simplicity, we call the corresponding combinatorial Ben-
ders decomposition algorithm with the above procedure to search
for minimal infeasible subsets as Algorithm CBD-M, and call the
original one as Algorithm CBD-O. Table 5 shows the corresponding

141

computational results of CPU running times for the instances with
n =15 and n = 20.

From this table, it seems that incorporating such procedure to
obtain minimal infeasible subset cannot improve the performance
of Algorithm CBD for the IEMSCW problem. The reason may be
that: the infeasible assignment plan 4, is already tight enough to
each employee, and therefore is hard or even impossible to find
a proper infeasible subset for it. As a result, when the size of in-
stances increases, the way of enumeratively searching for any in-
feasible subset of ¢4, which includes a considerable amount of it-
erations, just becomes a waste of time.

6.3.2. Impact of the valid cuts generated by different types of
constraints

As we can see from Section 4.2, we have proposed three
different types of combinatorial Benders cuts, i.e., Con-
straints (6), (7) and (8). Through some examination, we found
that when Algorithm CBD only includes the valid cuts generated
by Constraint (6), then most of the instances with n =15 cannot
be solved optimally within the time limit, which indicates that
such valid cuts are very loose. To further test the performance of
the valid cuts that are generated by different types of constraints,
we considered two variants of Algorithm CBD and compared
their computational performance as follows: The first one is
the original Algorithm CBD-O, which includes all types of the
valid cuts proposed in Section 4.2, and the second one is the
corresponding algorithm that only uses valid cuts generated by
Constraints (6) and (7), and we call it Algorithm CBD-S for the
sake of simplicity. It should be noticed that the combinatorial
Benders cut can be generated by Constraint (8) only when the
condition of F®© < E.(,ﬁi is satisfied. Therefore, we only recorded the
computational results for the instances that the above condition is
satisfied during some iteration. Table 6 shows the corresponding
computational results, in which the blank part means that the
corresponding instance has no such valid cuts. From this table, we
can see that by adding Constraint (8) into the master problem,
Algorithm CBD could significantly reduce the computational time
to calculate the optimal solutions for some of the instances.

6.3.3. An illustrative example

To further illustrate the search processes of Algorithms CBD and
TD, we also conducted some experiments on an illustrative in-
stance, in which there are 30 jobs, 3 employees and 6 machines,
with the following coefficient parameters: ¢, = {2,6,4}, dy =
{6,4,7}, by ={1,2,1}, ¢w ={12,15,18}, f; ={1,4,5,6,4,3},0 =
3, and the processing times (ie., pj,) of jobs are given in
Table C.8 (see Appendix C).

By implementing Algorithm CBD, we can obtain an optimal so-
lution within a CPU running time of 40 seconds, with an optimal

K. Fang, S. Wang, M.L. Pinedo et al.

objective value of 271. During the search process, the number of
iterations searched in the upward directions is 4, and a feasible
solution to the slave problem was found. Meanwhile, no iteration
is conducted in the downward direction since we have F(® =F for
this example.

This instance can also be solved optimally by Algorithm TD
within a CPU running time of 203 seconds, while the MILP-E
model cannot solve it within the time limit, with an optimality
gap of 0.36%. It should be noticed that although the objective val-
ues obtained by these approaches are the same, their optimal so-
lutions can be different. In addition, the number of iterations in
Algorithm TD is 71. Fig. 1 shows the corresponding search process
of Algorithm TD, from which we can see that at the very beginning
of the search process, the total cost of the initial solution obtained
by Algorithm TD is very high, and then gradually decreases dur-
ing the search process. This observation may help explain why the
optimality gap of Algorithm TD is extremely large for most of the
instances with large sizes (see Tables 3 and 4).

7. Conclusions

In this paper, we studied an integrated employee and parallel
machine scheduling problem with maximum consecutive working-
time and minimum break time restrictions. The objective is to
minimize the weighted sum of the makespan, the machine depre-
ciation costs and the labor costs. To solve this problem, we pro-
posed a mixed integer linear programming formulation, two differ-
ent decomposition based exact solution methods, i.e., Algorithms
TD and CBD, and an LS-based heuristic algorithm, i.e., Algorithm
LS. To test the efficiency of our proposed solution approaches, we
conducted extensive computational experiments on randomly gen-
erated instances. The computational results show that the combi-
natorial Benders decomposition based approach could be quite ef-
fective in finding optimal or near-optimal solutions to the [IEMSCW
problem within comparatively smaller CPU running times.

This work could be extended in several directions. First of all,
this work considered the sum of the total costs related to job as-
signments and the weighted makespan as a single objective. This
can be easily extended to a bi-objective problem with Pareto opti-
mization to consider the tradeoff between the costs and machine
utilization simultaneously. Second, it would also be interesting to
see if any other stronger combinatorial Benders cuts could be gen-
erated by further investigating the structural properties of the op-
timal solutions to the IEMSCW problem. Third, employees’ pref-
erences with regard to the jobs’ processing may also be included
in the model to further reflect the priorities of the employees. Fi-
nally, as for alternative solution methods, column generation based
methods may possibly be developed for the time-indexed formu-
lation we proposed in this study, since column generation based
methods have already been successfully implemented in many par-
allel machine scheduling problems, in which the problem could be
reformulated as a set partitioning problem and a schedule for an
individual employee may serve as a pricing problem.

Acknowledgment

The authors would like to thank the anonymous referees for
their constructive comments which contributed to improve the
quality of this paper. This work was supported by the National Nat-
ural Science Foundation of China (NSFC) under Grants 71701144,
71571135, 71971155 and 91646118. The work was also supported
by the Fundamental Research Funds for the Central Universities,
and the Science & Technology Pillar Key Program of Tianjin Key
Research and Development Plan (20YFZCGX00640).

142

European Journal of Operational Research 291 (2021) 128-146

Appendix A. An assignment and positional formulation for the
IEMSCW problem

As we mentioned in Section 2.1, the IEMSCW problem can also
be described by a continuous time formulation by directly as-
signing jobs to positions, which is a generalization of the original
single machine formulation proposed by Lasserre and Queyranne
(1992), and we call such formulation the assignment and positional
formulation, or the AP formulation for short. Note that each em-
ployee has restrictions on his/her maximum consecutive working-
time, minimum break time, and total working-time, so it is natural
to define assignment and positional variables based on employees,
but not on machines.

Meanwhile, we also need to ensure that at any time instant ¢,
each machine cannot process any two jobs simultaneously. Fig. A.1
gives an example of a feasible schedule, in which job j is the kth
job processed by employee w, job h is the ¢th job processed by
employee u, and these two jobs are running concurrently during
time period [ty, ty), then we can obtain that jobs j and h must be
processed on different machines, otherwise it becomes an infeasi-
ble schedule.

In order to keep track of which jobs are running concurrently
at any time instant, we introduce binary variables to compare the
relationship between the start and completion times of any two
jobs that are assigned to different positions of employees. To be
specific, we introduce the following variables:

* Sijwk is equal to 1 if job j is processed on machine i, and is the
kth job that was processed by employee w, and 0 otherwise;

e Sk is the start time of the kth job that was processed by em-
ployee w;

e C,y is the completion time of the kth job that was processed by

employee w;

Xwiue 1S €qual to 1 if the start time of the kth job processed by

employee w is less than or equal to the start time of the ¢th

job processed by employee u (in other words, S, < Sy/), and 0

otherwise;

* Yurue 15 equal to 1 if the completion time of the kth job pro-

cessed by employee w is greater than the start time of the ¢th

job processed by employee u (in other words, C,; > Sy), and 0

otherwise;

Zywiue 1S €qual to 1 if the start time of the ¢th job processed by

employee w occurs during the processing of the kth job pro-

cessed by employee w (in other words, S, < Sur < Cy), and 0

otherwise;

oy is equal to 1 if G,y =Sy, 1,1, and O otherwise;

* Nk is equal to 1if oy =0y g1 =~ =0w1 for k<¢, and 0

otherwise;

Cmax is the makespan of the schedule.

Then, the IEMSCW problem can be formulated as follows:
minimize Y "> > "> " (f; + cw) PijwSijwk + 0Cmax

ieM jeJ WeW ke T

(Aa)

<d,
F _]Ob_] = 1
Pl s
employee w | - | P ki I k+1 |-
emplopyee u | I | [e+1]-
fl t sz wa
job h

Fig. A.1. Concurrent jobs in a feasible schedule.

K. Fang, S. Wang, M.L. Pinedo et al.

subjectto Y>> =1 VjeJ:

ieM weW ke

ZZ(Sijwk <1 YweW,keJ;

ieM jeJ

(A1b)

(Alc)

Zz&jwk > ZZ&'}'W’RJA VWEW,I(E {1,2,..,,“—]};

ieM jeJ ieM jeJ

Cnax > Gk YW e W, ke J;

G > Z Zpijw(sijwl Yw e W;

ieM jeJ

Gk = Cwi1 + Z Z Pijwlijwe YW e W, k e {2,....n}

ieM jeJ

Cok = Swi + Z Zpijwsijwk Ywe W, ke J;
ieM jeJ

Sue — Swk < MXye — 1 YW,ueW,k, t e J;
Swk = Sue <M = Xppe) YW, ueW, k, t e J;
Cok — Sue < Myyrwe YW, ue W,k L € J;
Sue = Coe <M1 = Yohwe) =1 YW, ue W, k, € € J;
Xplwe + Ywiwe = 1+ Zugwe YW, u e W, k, L € T;
Yw,ue W, k,t e J;

Zwkue = Xwkue

Yw,uew,k,t e J;

Zwkue = Ywkue

(A1d)

(Ale)

(A1f)

(Alg)

(A1h)

(A1i)

(A1j)

(A1K)

(A1)

(A.1m)

(An)

(Alo)

European Journal of Operational Research 291 (2021) 128-146

Sijwk + Sijue + Zwhue <2 Vie M, jj e T, wueW,k teJ;

(Alp)
Swiks1 —Cuk <M —0u) YweWw, kefl,...,.n—1}; (Alq)
Cuk — Swis1 <Moy, —by YweWw, kefl,....,n—1}; (Ar)
-1
> o= =)y YWeW. ke T k<t (Als)
h—k
-1
T+) Oyn <t—k+ e YweW, k. ted k<t (At)
h=k

4
Z Z ZpijWSijWh < dw-‘rM(l — T}sz) Yw e W, k,Z eJ: k<g
h=kieM jeJ
(A1u)

(Alv)

Z Zzpijwsijwk =< ¢w Yw e W;

ieM jeJ keJ

aijwk:kaul’ywkulvzwku/zv Owk> Nwke € {0,]} Vie M, j ke T wueWw.

(Adw)

The objective (A.1a) minimizes the total costs including the ma-
chine depreciation costs, the labor costs, and the makespan-related
costs. Constraints (A.1b) ensure that each job can only be processed
on exactly one machine and by exactly one employee in exactly
one position. Constraints (A.1c) ensure that each position by each
employee contains at most one job processed on some machine.
Constraints (A.1d) ensure that a job can be assigned to the k + 1th
position by employee w only if the kth position by employee w
has been occupied. Constraints (A.1e) define the makespan. Con-
straints (A.1f)-(A.1h) ensure that the start and completion times
are consistent with a parallel machine scheduling environment.
Constraints (A.1i)-(A.10) ensure that the positional variables x, y
and z take their intended values. Constraints (A.1p) ensure that at
any time instant any machine cannot process more than one jobs
simultaneously. Constraints (A.1q) and (A.1r) define variable o, and

Table A.7
Comparison of computational results by the TI and the AP formulations with n = 15.
13 m # Casel Case Il
TI formulation AP formulation TI formulation AP formulation
Time (s) OPT Time (s) Best LB Gap Time (s) OPT Time (s) Best LB Gap

3 3 1 8 153 - 161 141 12.4% 58 196 1066 196 196 0
2 288 140 — 140 131 6.4% 88 185 — 185 182 1.62%
3 4 145 — 149 139 6.7% 10 184 1015 184 184 0
4 3 147 514 147 147 0 13 179 - 571 177 69%
5 4 94 108 94 94 0 9 263 933 263 263 0

3 6 1 11 110 1091 110 110 0 17 129 596 129 129 0
2 6 107 536 107 107 0 13 19 - * 118 NA
3 6 102 704 102 102 0 18 110 716 110 110 O
4 10 81 129 81 81 0 14 120 - * 119 NA
5 29 103 266 103 103 0 19 116 588 116 116 0

6 3 1 7 78 - * 69 NA 15 112 - * 103 NA
2 6 148 — * 146 NA 13 81 — * 74 NA
3 7 110 - * 107 NA 13 154 — * 143 NA
4 7 96 - * 84 NA 14 131 — * 121 NA
5 6 102 — * 92 NA 12 176 — * 176 NA

—: for these instances, the optimal solutions cannot be obtained within 1800 seconds. *: for these instances, even a feasible solution
cannot be obtained within 1800 seconds. NA: for these instances, the optimality gap cannot be obtained within 1800 seconds.

143

K. Fang, S. Wang, M.L. Pinedo et al.

ensure that once an employee w takes a break, the break time
should be at least by. Constraints (A.1s) and (A.1t) establish the
relationship between o and #. Constraints (A.1u) ensure that the
maximum consecutive time of employee w should be less than dy,.
Constraints (A.1v) provide the upper bound of total working time
for each employee.

In addition, we can also add the following valid inequalities
into the above model, which can considerably reduce the compu-
tational times to calculate the optimal solutions for some of the
instances:

Swie1 —Cuk MDD Sijwkns YweW, ke {l,....n—1}.
ieM jeg
(A1x)

For simplicity, we call the corresponding time-indexed formu-
lation that eliminates the variable z,; (i.e., the MILP-E model) the
TI formulation. To evaluate the performance of the TI and AP for-
mulations, we conducted experiments on the same small instances
with n =15, and (¢, m)e{(3, 3), (3, 6), (6, 3)}. Table A.7 shows the
computational results obtained from these two formulations.

From this table, we can see that even for the small instances
with n =15, and (¢, m)e{(3, 3), (3, 6), (6, 3)}, the performance of
the AP formulation is much worse than the one of the TI formu-
lation both from the CPU running time and the ability of finding
optimal or even feasible solutions within the given time limit. The
reason may be that: due to the huge number of Big-M constraints,
the AP formulation probably has a looser relaxation bound on the
objective function than the TI formulation, and thus the computa-
tional time for obtaining optimal solutions increases. Based on the
above observations, we believe that the AP formulation is not an
appealing approach to formulate the IEMSCW problem.

Appendix B. Proof of Theorem 2

Proof. We reduce any instance of the PARTITION problem, which
is NP-hard in the ordinary sense (Garey & Johnson, 1979), to an
instance of problem PD1|incmp, consec, break, pmtn|Cpax. PARTI-
TION can be described as follows: Given a set S={1,2,..., m}
and positive integers Ay, ...,An with) ;_sA; = 2B, does there ex-
ist a partition of S into two disjoint subsets S; and S, such that
Yies, Ai = Yies, Ai=B? For simplicity, we also define Ay = B. Given
any instance Z; of PARTITION problem, we construct an instance
T, of problem PD1|incmp, consec, break, pmtn|Cpax as follows:

The set of employees is W = {wg, wy, ..., wn}. Employee wq
needs to process 5 jobs with processing time Ay =B, each em-
ployee w; needs to process two identical jobs with processing time
A; fori=1,..., m. The maximum consecutive working-time of em-
ployee w; e W is A; for i =0,...,m. The minimum break time of
employee wy is B, and the minimum break time of employee w;

European Journal of Operational Research 291 (2021) 128-146

is 3B for i =1, ..., m. Given the above set of jobs, we can see that
the total processing time of jobs is 9B.

Now if there exists a schedule with a makespan of 9B,
then obviously employee wgy must process his/her jobs non-
preemptively during intervals [2kB, (2k + 1)B] for k=0,1,2, 3,4,
otherwise the makespan exceeds 9B. As a result, each em-
ployee w; can only process his/her jobs within blocks 1 to 4,
..... m. (Fig. B.1)

Note that each employee w; has to process two identical jobs,
each with a processing time of A;. Now if some employee w; pro-
cesses part of his/her first job in block 1, then this employee must
process his/her first job entirely in block 1. If not, then the re-
maining part of this job has to be processed after at least 3B time,
which means that the remaining part of the first job has to lie in
block 3 or block 4. Although the remaining part of this job can be
processed together with employee w;’s second job, given A; as em-
ployee w;’s maximum consecutive working-time, at least part of
the second job cannot be finished and has to be processed again
after at least 3B time. This, however, implies that the remaining
part of the second job cannot be processed in block 3 or block 4.
Thus the makespan exceeds 9B. Similarly, if some other employee
w; processes part of his/her first job in block 2, he/she must pro-
cess this job entirely.

In addition, we also claim that employee w; must process
his/her second job entirely in block 3. Otherwise, suppose em-
ployee w; processes part of his/her second job in block 4, note that
because of the minimum break time restriction, an employee can-
not process jobs in both blocks 3 and 4, as a result, employee w;
must process his/her second job entirely in block 4, and block 4
was occupied by a job with length A;. Then, it is easy to see that
the total processing time in block 2 cannot be greater than B — A;,
since for any employee, if he/she processes the first job in block 2,
then the corresponding second job can only be processed in block
4. However, to derive a makespan of 9B, we know that the total
processing time of block 2 must be equal to B, which is a contra-
diction. Therefore, employee w; must process his/her second job in
block 3. This means that the set of employees assigned to block 1
is exactly the same as to block 3, and the employees assigned to
block 2 is exactly the same as to block 4, in which each job must
be processed nonpreemptively, and each of these blocks achieves
a length of B. That is, there exists a feasible schedule for the con-
structed instance 7, with a makespan 9B if and only if there is a
solution to instance Z; of the PARTITION problem, and the theorem
follows. O

Appendix C. Processing times of jobs for the illustrative
example in Section 6.3.3

block 1 block 2

Ag

block 3 block 4

B B B

B

B B

Fig. B.1. Schematic for proof of Theorem 2.

144

K. Fang, S. Wang, M.L. Pinedo et al.

Table C.8

The processing times of jobs on machines by different employees.

European Journal of Operational Research 291 (2021) 128-146

Job Employee 1 Employee 2

Employee 3

=
=
s
=
S
S
=
=

g

=
N
=
=
=
=
S
S
H

ONO U A WN =

MO NDNWNUUUA=SNNOW=LBAMOAONWOOULWW~ALDNW=O—
A = OAONWANWNDWRAN_,UNWOOUOWADSBANDDONS
S WO WUNOWUNON=O =0 UUuN=NA R OGRS
D=, WA WOHOWWNOAWUON= —~NWNWNUDBRNDWE=N=DN
ABANBANRLRNNONNOO=,ORAGADN=U = WU = =2N0WNNSDN
S NN WOOWRAWOARAANWANS=UTW=—=0OWW=5nD5D0N
MWANANORARANUVUAOANNNARNOOADON DWWV W.EADN
OAONOWA LU AL, DMNDMNOI,ORARUTWWOIOANUNNNNNWNDO

OO OAONNWUANDNMDMNOOARL, WUOUWULAOAN~=LDOOULADDDODN

AU WWNUNDMWLWO=L, = DMNwWhAhaaMobANDWULWWDN
AU wW=NNNUOORAOODA—L,ONWU R, == 0OUuhbhuou—=0—=hWw
AN DMAMWOWNOORU == =2N=2 A2 0000Wwwww=5haohbhs~won
WU, MU WAOUNA—LDNDANNNNNBANNDDWO
WAANMNDM—_OBADMWDDDRMWL, UL, AN, WO DN
—_ W= AL NUORL, WAL=, UOONNWDR= DM~ WNDWWW
NW= = U UuNWR == DNWOOANADIRAR WL OWU
W= UM BANNN—_,UOOUW—_L,OO0NOMDIRDIRADDA— OO0
AROU—=,WUWWUOOOO—~, AU UOOARANDMUUNUIINLADU —OD

References

Agnetis, A., Murgia, G., & Sbrilli, S. (2014). A job shop scheduling problem with hu-
man operators in handicraft production. International Journal of Production Re-
search, 52(13), 3820-3831.

Agrali, S., Tagkin, Z. C., & Unal, A. T. (2017). Employee scheduling in service indus-
tries with flexible employee availability and demand. Omega, 66, 159-169.
Ahmadi-Javid, A., & Hooshangi-Tabrizi, P. (2017). Integrating employee timetabling
with scheduling of machines and transporters in a job-shop environment: A
mathematical formulation and an anarchic society optimization algorithm. Com-

puters & Operations Research, 84, 73-91.

Akpinar, S., Elmi, A., & Bektas, T. (2017). Combinatorial benders cuts for assembly
line balancing problems with setups. European Journal of Operational Research,
259(2), 527-537.

Allahverdi, A. (2016). A survey of scheduling problems with no-wait in process. Eu-
ropean Journal of Operational Research, 255(3), 665-686.

Artigues, C., Gendreau, M., Rousseau, L.-M., & Vergnaud, A. (2009). Solving an in-
tegrated employee timetabling and job-shop scheduling problem via hybrid
branch-and-bound. Computers & Operations Research, 36(8), 2330-2340.

Benavides, A.], Ritt, M., & Miralles, C. (2014). Flow shop scheduling with heteroge-
neous workers. European Journal of Operational Research, 237(2), 713-720.

Benders, J. F. (1962). Partitioning procedures for solving mixed variables program-
ming problems. Numerische Mathematik, 4(1), 238-252.

Van den Bergh,], Belién,], De Bruecker, P, Demeulemeester, E., & De
Boeck, L. (2013). Personnel scheduling: A literature review. European Journal of
Operational Research, 226(3), 367-385.

Braekers, K., Hartl, R. F, Parragh, S. N., & Tricoire, F. (2016). A bi-objective home care
scheduling problem: Analyzing the trade-off between costs and client inconve-
nience. European Journal of Operational Research, 248(2), 428-443.

Brucker, P, Qu, R., & Burke, E. (2011). Personnel scheduling: Models and complexity.
European Journal of Operational Research, 210(3), 467-473.

Canto, S. P. (2008). Application of Benders’ decomposition to power plant preven-
tive maintenance scheduling. European Journal of Operational Research, 184(2),
759-777.

Chen, J. H,, Lee, D. H., & Cao, J. X. (2012). A combinatorial Benders’ cuts algorithm for
the quayside operation problem at container terminals. Transportation Research
Part E, 48(1), 266-275.

Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer
linear programming. Operations Research, 54(4), 756-766.

De Bruecker, P, Van den Bergh, J., Belién,]., & Demeulemeester, E. (2015). Workforce
planning incorporating skills: State of the art. European Journal of Operational
Research, 243(1), 1-16.

Dolgui, A., Kovalev, S., Kovalyov, M. Y., Malyutin, S., & Soukhal, A. (2018). Optimal
workforce assignment to operations of a paced assembly line. European Journal
of Operational Research, 264(1), 200-211.

145

Edis, E. B., Oguz, C., & Ozkarahan, 1. (2013). Parallel machine scheduling with ad-
ditional resources: Notation, classification, models and solution methods. Euro-
pean Journal of Operational Research, 230(3), 449-463.

Ernst, A. T, Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 153(1), 3-27.

Fischetti, M., Martello, S., & Toth, P. (1989). The fixed job schedule problem with
working-time constraints. Operations Research, 37(3), 395-403.

Freeman, N. K,, H., M. S., & J. , M. (2016). A scenario-based approach for operating
theater scheduling under uncertainty. Manufacturing & Service Operations Man-
agement, 18(2), 245-261.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York: W.H. Freeman.

Goel, A. (2009). Vehicle scheduling and routing with drivers’ working hours. Trans-
portation Science, 43(1), 17-26.

Graham, R. L, Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Dis-
crete Mathematics, 5, 287-326.

Grigoriev, A., Sviridenko, M., & Uetz, M. (2007). Machine scheduling with resource
dependent processing times. Mathematical Programming, 110(1), 209-228.

Guyon, O., Lemaire, P, Pinson, E., & Rivreau, D. (2010). Cut generation for an in-
tegrated employee timetabling and production scheduling problem. European
Journal of Operational Research, 201(2), 557-567.

Guyon, O., Lemaire, P, Pinson, E., & Rivreau, D. (2014). Solving an integrated
job-shop problem with human resource constraints. Annals of Operations Re-
search, 213(1), 147-171.

Hooker, J. N. (2000). Logic-based methods for optimization: Combining optimization
and constraint satisfaction. John Wiley and Sons, New York.

Hooker, J. N. (2007). Planning and scheduling by logic-based Benders decomposi-
tion. Operations Research, 55(3), 588-602.

Hugq, F, Cutright, K., & Martin, C. (2004). Employee scheduling and makespan min-
imization in a flow shop with multi-processor work stations: A case study.
Omega, 32(2), 121-129.

Kellerer, H., & Strusevich, V. A. (2003). Scheduling parallel dedicated machines
under a single non-shared resource. European Journal of Operational Research,
147(2), 345-364.

Kellerer, H., & Strusevich, V. A. (2004). Scheduling problems for parallel dedicated
machines under multiple resource constraints. Discrete Applied Mathematics,
133(1-3), 45-68.

Kellerer, H., & Strusevich, V. A. (2008). Scheduling parallel dedicated machines with
the speeding-up resource. Naval Research Logistics, 55(5), 377-389.

Krempels, K.-H., & Panchenko, A. (2006). An approach for automated surgery
scheduling. In Proceedings of the 6th international conference on the practice and
theory of automated timetabling (pp. 209-233).

K. Fang, S. Wang, M.L. Pinedo et al.

Lasserre,], & Queyranne, M. (1992). Generic scheduling polyhedral and a new
mixed-integer formulation for single-machine scheduling. In Proceedings of the
2nd ipco conference (pp. 136-149).

Lee, S., McCann, D., & Messenger,]. C. (2007). Working time around the world: Trends
in working hours, laws, and policies in a global comparative perspective. Routledge.

Lodree Jr., E.], Geiger, C. D., & Jiang, X. (2009). Taxonomy for integrating schedul-
ing theory and human factors: Review and research opportunities. International
Journal of Industrial Ergonomics, 39(1), 39-51.

Lushchakova, 1. N., & Strusevich, V. A. (2010). Scheduling incompatible tasks on two
machines. European Journal of Operational Research, 200(2), 334-346.

Mokotoff, E., Jimeno, J. L., & Gutiérrez, A. . (2001). List scheduling algorithms to
minimize the makespan on identical parallel machines. Top, 9(2), 243-269.
Othman, M., Bhuiyan, N., & Gouw, G.]. (2012). Integrating workersdifferences into

workforce planning. Computers & Industrial Engineering, 63(4), 1096-1106.

Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems. Springer.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decom-
position algorithm: A literature review. European Journal of Operational Research,
259(3), 801-817.

146

European Journal of Operational Research 291 (2021) 128-146

Rodrigues, M. M., de Souza, C. C, & Moura, A. V. (2006). Vehicle and crew
scheduling for urban bus lines. European Journal of Operational Research, 170(3),
844-862.

Saddoune, M., Desaulniers, G., Elhallaoui, I, & Soumis, F. (2011). Integrated airline
crew scheduling: A bi-dynamic constraint aggregation method using neighbor-
hoods. European Journal of Operational Research, 212(3), 445-454.

Taskin, Z. C., & Cevik, M. (2013). Combinatorial Benders cuts for decomposing IMRT
fluence maps using rectangular apertures. Computers & Operations Research,
40(9), 2178-2186.

Valls, V., Pérez, A., & Quintanilla, S. (2009). Skilled workforce scheduling in service
centres. European Journal of Operational Research, 193(3), 791-804.

Verstichel, J., Kinable, J., De Causmaecker, P, & Vanden Berghe, G. (2015). A combi-
natorial Benders’ decomposition for the lock scheduling problem. Computers &
Operations Research, 54, 117-128.

Waersted, M., & Westgaard, R. H. (1991). Working hours as a risk factor in the de-
velopment of musculoskeletal complaints. Ergonomics, 34(3), 265-276.

