
ar
X

iv
:2

00
7.

02
53

3v
1

 [c
s.C

C
]

6
Ju

l 2
02

0

Computational Complexity Characterization of

Protecting Elections from Bribery ∗

Lin Chen1, Ahmed Sunny1 Lei Xu2, Shouhuai Xu3, Zhimin Gao4, Yang Lu5,
Weidong Shi5, and Nolan Shah6

1 Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
lin.chen@ttu.edu ahmed.sunny@ttu.edu

2 University of Texas Rio Grande Valley,1201 W University Dr, Edinburg, TX 78539,
USA xuleimath@gmail.com

3 University of Texas San Antonio,1 UTSA Circle, San Antonio, TX 78249, USA
shouhuai.xu@utsa.edu

4 Auburn University at Montgomery,7430 East Dr, Montgomery, AL 36117, USA
mtion@masn.com

5 University of Houston, 4800 Calhoun Rd, Houston, TX 77004, USA
ylu17@central.edu wshi3@uh.edu

6 Amazon Web Services, Seatle, USA nolan@0x9b.com

Abstract. The bribery problem in election has received considerable
attention in the literature, upon which various algorithmic and complex-
ity results have been obtained. It is thus natural to ask whether we can
protect an election from potential bribery. We assume that the protector
can protect a voter with some cost (e.g., by isolating the voter from po-
tential bribers). A protected voter cannot be bribed. Under this setting,
we consider the following bi-level decision problem: Is it possible for the
protector to protect a proper subset of voters such that no briber with
a fixed budget on bribery can alter the election result? The goal of this
paper is to give a full picture on the complexity of protection problems.
We give an extensive study on the protection problem and provide algo-
rithmic and complexity results. Comparing our results with that on the
bribery problems, we observe that the protection problem is in general
significantly harder. Indeed, it becomes Σ

p
2
-complete even for very re-

stricted special cases, while most bribery problems lie in NP. However,
it is not necessarily the case that the protection problem is always harder.
Some of the protection problems can still be solved in polynomial time,
while some of them remain as hard as the bribery problem under the
same setting.

Keywords: Voting, complexity, NP-hardness, Σp
2
-hardness

∗A 2 page extended abstract has been published at the Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’18)

http://arxiv.org/abs/2007.02533v1

1 Introduction

In an election, there are a set of candidates and a set of voters. Each voter has a
preference list of candidates. Given these preference lists, a winner is determined
based on some voting rule, examples of which will be elaborated later.

In the context of election, the bribery problem has received considerable at-
tention (see, for example, [1,7,8,12,14]). In this problem, there is an attacker who
attempts to manipulate the election by bribing some voters, who will then report
preference lists of the attacker’s choice (rather than the voters’ own preference
lists). Each voter has a price for being bribed, and the attacker has an attack
budget for bribing voters. There are two kinds of attackers: constructive vs. de-
structive. A constructive attacker attempts to make its designated candidate win
an election, whereas the designated candidate would not win the election should
there be no attacker. In contrast, a destructive attacker attempts to make its
designated candidate lose the election, whereas the designated candidate would
win the election should there be no attacker. The research question is: Given an
attack budget for bribing, whether or not a (constructive or destructive) attacker
can achieve its goal?

In this paper, we initiate the study of a new problem, called the protection
problem, which extends the bribery problem as follows. There are also a set
of candidates, a set of voters, and a bribery attacker. Each voter also has a
preference list of candidates. There is also a voting rule according to which a
winner is determined. Going beyond the bribery problem, the protection problem
further considers a defender, who aims to protect elections from bribery. More
specifically, the defender is given a defense budget and can use the defense budget
to award some of the voters so that they cannot be bribed by the attacker
anymore. This leads to an interesting problem: Given a defense budget, is it
possible to protect an election from an attacker with a given attack budget for
bribing voters (i.e., assuring that the attacker cannot achieve its goal)?

Our contributions. We introduce the problem of protecting elections from
bribery, namely the protection problem. Given a defense budget for rewarding
some of the voters and an attack budget for bribing some of the rest voters, the
protection problem asks whether or not the defender can protect the election.
We investigate the protection problem against the aforementioned two kinds of
bribery attackers: constructive vs. destructive.

We present a characterization on the computational complexity of the pro-
tection problem (summarized in Table 1 in Section 5). The characterization is
primarily concerning the voting rule of r-approval, which will be elaborated in
Section 2. At a high level, our results can be summarized as follows. (i) The pro-
tection problem is hard and might be much harder than the bribery problem. For
example, the protection problem is Σp

2 -complete in most cases, while the bribery
problem is in NP under the same settings. (ii) The destructive protection prob-
lem (i.e., protecting elections against a destructive attacker) is no harder than
the constructive protection problem (i.e., protecting elections against a construc-
tive attacker) in all of the settings we considered. In particular, the destructive

protection problem is Σp
2 -hard only when the voters are weighted and have ar-

bitrary prices, while the constructive protection problem is Σp
2 -hard even when

the voters are unweighted and have the unit price. (iii) Voter weights and prices
have completely different effects on the computational complexity of the protec-
tion problem. For example, the constructive protection problem is coNP-hard in
one case but is in P in another case.

Related Work. The problem of protecting elections from attacks seemingly
has not received the due attention. Very recently, Yin et al. [20] considered the
problem of defending elections against an attacker who can delete (groups of)
voters. That is, the investigation is in the context of the control problem, where
the attacker attempts to manipulate an election by adding or deleting some
voters. The control problem has been extensively investigated (see, for example,
[4,9,10,20]). Although the control problem is related to the bribery problem,
the means used by the attacker in the control problem (i.e., attacker adding
or deleting some voters) is different from the means used by the attacker in
the bribery problem (i.e., attacker changing the preference lists of the bribed
voters). We investigate the protection problem, which is defined in the context
of the bribery problem rather than the control problem. That is, the problem
we investigate is different from the problem investigated by Yin et al. [20].

The protection problem we study is inspired by the bribery problem. Fal-
iszewski et al. [8] gave the first characterization on the complexity of the bribery
problem, including some dichotomy theorems. In the bribery problem, the at-
tacker can pay a fixed, but voter-dependent, price to arbitrarily manipulate the
preference list of a bribed voter. The complexity of the bribery problem under
the scoring rule of r-approval or r-veto for small values of r was addressed later
by Lin [15] and Bredereck and Talmon [2]. There are also studies on measuring
the bribery price in different ways (see, e.g., [1,6,12]).

Technically, the protection problem is related to the bi-level optimization
problem, especially the bi-level knapsack problem ([3,5,17,18]). In the bi-level
knapsack problem, there is a leader and a follower. The leader makes a decision
first (e.g., packing a subset of items into the knapsack), and then the follower
solves an optimization problem given the leader’s decision (e.g., finding the most
profitable subset of items that have not been packed by the leader). The problem
asks for the decision of the leader such that a certain objective function is op-
timized (e.g., minimizing the profit of the follower). The protection problem we
study can be formulated as the bi-level problem by letting the defender award
some voters who therefore cannot be bribed by the attacker anymore, and then
the attacker bribes some of the remaining voters as an attempt to manipulate
the election.

2 Problem definition

Election model. Consider a set of m candidates C = {c1, c2, . . . , cm} and a
set of n voters V = {v1, v2, . . . , vn}. Each voter vj has a preference list of can-
didates, which is essentially a permutation of candidates, denoted as τj . The

preference of vj is denoted by (cτj(1), cτj(2), . . . , cτj(m)), meaning that vj prefers
candidate cτj(z) to cτj(z+1), where z = 1, 2, Since τj is a permutation over

{1, 2, . . . ,m}, we denote by τ−1
j the inverse of τj , meaning that τ−1

j (i) is the
position of candidate ci in vector (cτj(1), cτj(2), . . . , cτj(m)).

Voting rules. In this paper, we focus on the scoring rule (or scoring protocol)
that maps a preference list to a m-vector α = (α1, α2, . . . , αm), where αi ∈ N

is the score assigned to the i-th candidate on the preference list of voter vj and
α1 ≥ α2 ≥ . . . ≥ αm. Given that τj is the preference list of vj , candidate cτj(i)
receives a score of αi from vj . The total score of a candidate is the summation of
the scores it received from the voters. The winner is the candidate that receives
the highest total score. We focus on a single-winner election, meaning that only
one winner is selected. In the case of a tie, a random candidate with the highest
total score is selected. However, our results remain valid for all-natural variation
of selecting a single winner.

We say a scoring rule is non-trivial, if α1 > αm (i.e., not all scores are
the same). There are many (non-trivial) scoring rules, including the popular
r-approval, plurality, veto, Borda count and so on. In the case of r-approval,
α = (1, 1, . . . , 1

︸ ︷︷ ︸

r

, 0, 0, . . . , 0
︸ ︷︷ ︸

m−r

). In the case of plurality, α = (1, 0, . . . , 0). In the case

of veto, α = (1, 1, . . . , 1, 0). It is clear that plurality and veto are special cases of
the scoring rule of r-approval.

Weights of voters. Voters can have different weights. Let wj ∈ N be the weight
of voter vj . In a weighted election, the total score of a candidate is the weighted
sum of the scores a candidate receives from the voters. For example, candidate
ci receives a score wj · ατ−1

j
(i) from voter vj .

By re-indexing all of the candidates, we can set, without loss of generality,
cm as the winner in the absence of bribery.

Adversarial models. We consider an attacker that does not belong to C ∪ V
but attempts to manipulate the election by bribing some voters. Suppose voter
vj has a bribing price pbj , meaning that vj , upon receiving a bribery of amount pbj
from the attacker, will change its preference list to the list given by the attacker.
The attacker has a total budget B. As in the bribery problem, we also consider
two kinds of attackers:

– Constructive attacker: This attacker attempts to make a designated candi-
date win the election, meaning that the designated candidate is the only
candidate who gets the highest score.

– Destructive attacker: This attacker attempts to make a designated candidate
lose the election, meaning that there is another candidate that gets a strictly
higher score than the designated candidate does.

Protection. In the protection problem, voter vj , upon receiving an award of
amount paj (or awarding price) from the defender, will always report its pref-
erence list faithfully and cannot be bribed. Note that paj may have multiple
interpretations, such as monetary award, economic incentives or the cost of iso-

lating voters from bribery. We say a voter vj is awarded if vj receives an award
of paj .

Problem statement. We formalize our problem as follows.

The constructive protection problem (i.e., protecting elections
against constructive attackers):
Input: A set C of m candidates. A set V of n voters, each with a weight wj ∈
Z>0, a preference list τj , an awarding price of paj ∈ Z>0 and a bribing price of

pbj ∈ Z>0. A scoring rule for selecting a single winner. A defender with a defense
budget F ∈ Z≥0. An attacker with an attack budget B ∈ Z≥0 attempting to
make candidate cm win the election.
Output: Decide whether there exists a VF ⊆ V such that

–
∑

j:vj∈VF
paj ≤ F ; and

– for any subset VB ⊆ V \ VF with
∑

j:vj∈VB
pbj ≤ B, cm does not get a

strictly higher score than any other candidate despite the attacker bribing
the voters belonging to VB (i.e., bribing VB).

The destructive protection problem (i.e., protecting elections against
destructive attackers):
Input: A set C of m candidates. A set V of n voters, each with a weight wj ∈
Z>0, a preference list τj , an awarding price of paj ∈ Z>0 and a bribing price of

pbj ∈ Z>0. A scoring rule for selecting a single winner. Suppose cm is the winner
if no voter is bribed. A defender with a defense budget F ∈ Z≥0. An attacker
with an attack budget B ∈ Z≥0 attempting to make cm lose the election by
making c ∈ C \ {cm} get a strictly higher score than cm does.
Output: Decide if there exists a VF ⊆ V such that

–
∑

j:vj∈VF
paj ≤ F ; and

– for any subset VB ⊆ V \ VF such that
∑

j:vj∈VB
pbj ≤ B, no candidate

c ∈ C \ {cm} can get a strictly higher score than cm does despite the
attacker bribing VB.

Further terminology and notations. We denote by W (ci) the total score
obtained by candidate ci in the absence of bribery (i.e., no voter is bribed). If
the defender can select VF such that no constructive or destructive attacker can
succeed, we say the defender succeeds. We call our problem as the (constructive
or destructive) weighted-$-protection problem, where “weighted” indicates that
the voters are weighted and “$” indicates that arbitrary awarding and bribing
prices are involved. In addition to investigating the general weighted-$-protection
problem, we also investigate the following special cases of it:

– the $-protection problem with wj = 1 for each j (i.e., the voters are not
weighted);

– the weighted-protection problem with paj = pbj = 1 for each j (i.e., voters are
associated with the unit awarding price and the unit bribing price);

– the unit-protection problem with wj = paj = pbj = 1 for each j (i.e., voters
are not weighted, and are associated with the unit awarding price and the
unit bribing price).

– the symmetric protection problem with paj = pbj for each j (i.e., the awarding
price and the bribing price are always the same), while noting that different
voters may have different prices.

3 The Case of Constantly Many Candidates

3.1 The Weighted-$-Protection Problem

The goal of this subsection is to prove the following theorem.

Theorem 1. For any non-trivial scoring rule, both the constructive and de-
structive weighted-$-protection problem, is Σp

2 -complete.

The theorem follows from Lemma 1 and Lemma 2 below, which shows the Σp
2

membership and Σp
2 -hardness, respectively.

Lemma 1. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are in Σp

2 .

Lemma 2. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are both Σp

2 -hard even if there are only m = 2
candidates.

Proof sketch. The proof of Lemma 2 follows from De-Negre (DNeg) variant of
bi-level knapsack problem, which is proved to be Σp

2 -hard by Caprara et al. [3].
We give a brief explanation. In this De-Negre variant, there are an adversary
and a packer. The adversary has a reserving budget F̄ and the packer has a
packing budget B̄. There is a set of n items, each having a price p̄aj to the

adversary, a price p̄bj to the packer, and a weight w̄j = p̄bj to both the adversary
and the packer. The adversary first reserves a subset of items whose total price
is no more than F̄ . Then the packer solves the knapsack problem with respect
to the remaining items that are not reserved; i.e., the packer will select a subset
of the remaining items whose total price is no more than B̄ but their total
weight is maximized. The De-Negre variant asks if the adversary can reserve a
proper subset of items such that the total weight of the unreserved items that
are selected by the packer is no more than some parameter W . The De-Negre
variant is similar to the weighted-$-protection protection problem, because we
can view the defender and attacker in the protection problem respectively as
the adversary and packer in the bi-level knapsack problem. In the case of a
single-winner election with m = 2 candidates, the goal of the defender is to
assure that the constructive attacker cannot make the loser get a strictly higher
score than the winner by bribing. This is essentially the same as ensuring that
the constructive attacker cannot bribe a subset of non-awarded voters whose
total weight is higher than a certain threshold, which is the same as the bi-level
knapsack problem. ⊓⊔

3.2 The Weighted-Protection Problem

This is a special case of the weighted-$-protection problem when paj = pbj = 1.
The following theorem used by Faliszewski et al. [8] was originally proved

for another problem. In our context, F = 0 and thus VF = ∅, it is NP-hard to
decide if the constructive attacker can succeed or, equivalently, if the defender
cannot succeed. Hence, it is coNP-hard to decide if the defender can succeed and
Theorem 2 follows.

Theorem 2. (By Faliszewski et al. [8]) If m is a constant, the constructive
weighted-protection problem is coNP-hard for any scoring rule that α2, α3, . . . , αm

are not all equal (i.e., it does not hold that α2 = α3 = . . . = αm).

In contrast, the destructive version is easy. Using the fact that m, the number of
candidates, is a constant, we can prove the following Theorem 3 through suitable
enumerations.

Theorem 3. If m is a constant, then the destructive weighted-protection prob-
lem is in P for any scoring rule.

3.3 The $-Protection Problem

This is the special case of the protection problem with wj = 1 for every j. The
following two theorems illustrate the significant difference (in terms of complex-
ity) between the general problem and its special case with symmetricity (i.e.,
paj = pbj).

Theorem 4. For constant m and any non-trivial scoring rule, both the con-
structive and destructive $-protection problems are NP-complete.

Theorem 5. For constant m, both destructive and constructive symmetric $-
protection problems are in P for any scoring rule.

4 The Case of Arbitrarily Many Candidates

4.1 The Case of Constructive Attacker

The following Theorem 6 shows Σp
2 -hardness for the most special cases of the

constructive weighted-$-protection problem, namely wj = paj = pbj = 1 (unit-
protection). It thus implies readily the Σp

2 -hardness for the more general con-
structive $-protection and constructive weighted-protection.

Theorem 6. For arbitrary m, the r-approval constructive unit-protection prob-
lem is Σp

2 -complete.

Membership in Σp
2 follows directly from Lemma 1. To prove Theorem 6, it

suffices to show the following.

Lemma 3. For arbitrary m, the r-approval constructive unit-protection problem
is Σp

2 -hard even if r = 4.

To prove Lemma 3, we reduce from a variant of the ∃∀ 3 dimensional matching
problem (or ∃∀3DM), which is called ∃∀3DM′ and defined below. The classical
∃∀ 3DM is Σp

2 -hard proved by Mcloughlin [16]. By leveraging the proof by
Mcloughlin [16], we can show the Σp

2 -hardness of the ∃∀3DM′ problem.

∃∀3DM′: Given a parameter t, three disjoint sets of elements W , X , Y of the
same cardinality, and two disjoint subsets M1 and M2 of W × X × Y such
that M1 contains each element of W ∪X ∪ Y at most once. Does there exist
a subset U1 ⊆ M1 such that |U1| = t and for any U2 ⊆ M2, U1 ∪ U2 is not a
perfect matching (where a perfect matching is a subset of triples in which every
element of W ∪X ∪ Y appears exactly once)?

Proof (Proof of Lemma 3). Given an arbitrary instance of ∃∀ 3DM′, we construct
an instance of the constructive unit-protection problem in r-approval election as
follows. Recall that r = 4 and thus every voter votes for 4 candidates.

Suppose |W | = |X | = |Y | = n, |M1| = m1, |M2| = m2.
There are 3n+ 2 key candidates, including:

– 3n key candidates, each corresponding to one distinct element of W ∪X ∪Y
and we call them element candidates. The score of every element candidate
is n+ ξ;

– one key candidate called leading candidate, whose total score is n+ t+ ξ−1;
– one key candidate called designated candidate, whose total score is ξ.

Here ξ is some sufficiently large integer, e.g., we can choose ξ = (m1 + m2)n.
Besides key candidates, there are also many dummy candidates, each of score
either 1 or m1 − t + 1. The number of dummy candidates will be determined
later.

There are m1 +m2(m1 − t+ 1) key voters, including:
– m1 key voters, each corresponding to a distinct triple in M1 and we call

them M1-voters. For each (wi, xj , yk) ∈ M1, the corresponding voter votes
for the 3 candidates corresponding to elements wi, xj , yk together with the
leading candidate;

– m2 · (m1− t+1) key voters, each distinct triple in M2 corresponds to exactly
m1−t+1 voters and we call themM2-voters. For every (wi, xj , yk) ∈ M2, each
of its m1−t+1 corresponding voters vote for the 3 candidates corresponding
to elements wi, xj , yk together with one distinct dummy candidate. Since
the m1 − t+ 1 voters are identical, we can view them as m1 − t+ 1 copies,
i.e., every M2-voter has m1 − t+ 1 copies.

Besides key voters, there are also sufficiently many dummy voters. Each dummy
voter votes for exactly one key candidate and 3 distinct dummy candidates.
Dummy voters and dummy candidates are used to make sure that the score
of key candidates are exactly as we have described. More precisely, if we only
count the scores of key candidates contributed by key voters, then the element
candidate corresponding to z ∈ W ∪X ∪ Y has a score of d(z) = d1(z) + (m1 −

t+1)d2(z) where di(z) is the number of occurrences of z in the triple set Mi for
i = 1, 2, and the leading candidate has a score of m1. Hence, there are exactly
n+ ξ− d(z) dummy voters who vote for the element candidate corresponding to
z, and n+ t+ ξ − 1−m1 dummy voters who vote for the leading candidate.

Overall, we create
∑

z∈W∪X∪Y (n + ξ − d(z)) + n + t + ξ −m1 − 1 dummy
voters, and 3

∑

z∈W∪X∪Y (n + ξ − d(z)) + 3(n + t + ξ −m1 − 1) +m2 dummy
candidates.

As the leading candidate is the current winner, the constructive unit-protection
problem asks whether the election can be protected against an attacker attempt-
ing to make the designated candidate win. The defense budget is F = m1−t and
the attack budget is B = n. In the following we show that the defender succeeds
if and only if the given ∃∀ 3DM′ instance admits a feasible solution U1.

“Yes” Instance of ∃∀ 3DM′ → “Yes” Instance of Constructive Unit-
Protection. Suppose the instance of ∃∀ 3DM′ admits a feasible solution U1, we
show that the answer for constructive unit-protection problem is “Yes”.

Recall that each M1-voter corresponds to a distinct triple (wi, xj , yk) in M1

and votes for 4 candidates – the leading candidate and the three candidates
corresponding to wi, xj , yk. We do not award M1-voters corresponding to the
triples in U1, but award all of the remaining M1-voters. The resulting cost is
exactly F = m1 − t. In what follows we show that after awarding voters this
way, the attacker cannot make the designated candidate win.

Suppose on the contrary, the attacker can make the designated candidate
win by bribing α ≤ t voters among the M1-voters, β ≤ m2 voters among the
M2-voters, and γ dummy voters. We claim that the following inequalities hold:

α+ β + γ ≤ n (1a)

4α+ 3β + γ ≥ 3n+ t (1b)

Inequality (1a) follows from the fact that the attack budget is n and the attacker
can bribe at most n voters. Inequality (1b) holds because of the following. Given
that a candidate can get at most one score from each voter and that the attacker
can bribe at most n voters, bribing voters can make the designated candidate
obtain a score at most n+ ξ. Hence, the score of each key candidate other than
the designated one should be at most n + ξ − 1. Recall that without bribery,
each of the 3n element candidate has a score of n+ ξ and the leading candidate
has a score of n+ t+ ξ − 1. Hence, the attacker should decrease at least 1 score
from each element candidate and t scores from the leading candidate, leading
to a total score of 3n + t. Note that an M1-voter contributes 1 score to 4 key
candidates, therefore it contributes in total a score of 4 to the key candidates.
Similarly an M2-voter contributes a score of 3, and a dummy voter contributes
a score of 1 to the key candidates. Therefore, by bribing (for example) an M1-
voter, the total score of all the element candidates and the leading candidate
can decrease by at most 4. Thus, inequality (1b) holds.

In the following we derive a contradiction based on Inequalities (1a) and (1b).
By plugging γ ≤ n−α−β into Inequality (1b), we have 3α+2β ≥ 2n+ t. Since
β ≤ n−α, we have 3α+2β ≤ α+2n ≤ 2n+ t. Hence, 3α+2β = α+2n = 2n+ t,

and we have α = t and β = n− t. Note that the defender has awarded every M1-
voter except the ones corresponding to U1, where |U1| = t. Hence, every voter
corresponding to the triples in U1 is bribed. Furthermore, as Inequality (1b)
is tight, bribing voters makes the designated candidate have a score of n + ξ,
while making each of the other key candidates have a score of n + ξ − 1. This
means that the score of each element candidate decreases exactly by 1. Hence,
the attacker has selected a subset of M2-voters such that together with the M1-
voters corresponding to triples in U1, these voters contribute exactly a score of
1 to every element candidate. Let U2 be the set of triples to which the bribed
M2-voters correspond, then U1 ∪U2 forms a 3-dimensional matching, which is a
contradiction to the fact that U1 is a feasible solution to the ∃∀ 3DM′ instance.
Thus, the attacker cannot make the designated candidate win and the answer
for the constructive unit-protection problem is “Yes”.

“No” Instance of ∃∀ 3DM′ → “No” Instance of Constructive Unit-
Protection. Suppose for any U1 ⊆ M1, |U1| = t there exists U2 ∈ M2 such that
U1∪U2 is a perfect matching, we show that the answer to the constructive unit-
protection problem is “No”. Consider an arbitrary set of voters awarded by the
defender. Among the awarded voters, let H be the set of triples that corresponds
to the awarded M1-voters. As |H | ≤ m1− t, |M1 \H | ≥ t. We select an arbitrary
subset H1 ⊆ M1 \H such that |H1| = t. There exists some H2 ⊆ M2 such that
H1 ∪ H2 is a perfect matching, and we let the attacker bribe the set of voters
corresponding to triples in H1 ∪ H2. Note that this is always possible as every
M2-voter has m1 − t+ 1 copies, so no matter which M2-voters are awarded the
briber can always select one M2-voter corresponding to each triple in H2. It is
easy to see that by bribing these voters, the score of every element candidate
decreases by 1, and the score of the leading voter decreases by t. Meanwhile, let
each bribed voter vote for the designated candidate and three distinct dummy
candidates, then the designated candidate has a score of n + ξ and becomes a
winner, i.e., the answer to the constructive unit-protection problem is “No”. ⊓⊔

Remark. The proof of Lemma 3 can be easily modified to prove the Σp
2 -hardness

of r-approval constructive unit-protection problem for any fixed r ≥ 4. Specif-
ically, we can make the same reduction, and add dummy candidates such that
every voter additionally votes for exactly r − 4 distinct dummy candidates.

4.2 The Case of Destructive Attacker

Theorem 7. Both r-approval destructive weighted-protection and r-approval (sym-
metric) $-protection problems are NP-complete.

The proof of Theorem 7 is based on a crucial observation of the equivalence be-
tween the destructive weighted-$-protection problem (under an arbitrary scoring
rule) and the minmax vector addition problem we introduce (see Appendix 7.1).
The full proof of Theorem 7 can be found in Appendix 7.6.

5 Summary of Results

The preceding characterization of the computational complexity of the protec-
tion problem in various settings is summarized in Table 1.

Table 1. Summary of results for single-winner election under the r-approval scoring
rule: “Symmetric” means paj = pbj for every j and “asymmetric” means otherwise;
hardness results that are proved for the case with only two candidates (i.e., m = 2)
are marked with a “⋄” (Note that when m = 2, the 1-approval rule is the same as the
plurality, veto or Borda scoring rule. It can be shown that with a slight modification,
the hardness results hold for any non-trivial scoring rule); algorithmic results (marked
with a “P”) hold for arbitrary scoring rules; the complexity of the protection problem
against a destructive attacker with wj = paj = pbj = 1 remains open; for most variants of
the protection problem against a constructive attacker, we only provide hardness results
and we do not know yet whether or not they belong to the class of coNP-complete or
Σ

p
2
-complete proble.

of candidates Model parameters Destructive attacker Constructive attacker

constant

Weighted, Priced, Asymmetric Σ
p
2
-complete ⋄ (Thm 1) Σ

p
2
-complete ⋄ (Thm 1)

Weighted, paj = pbj = 1 P (Thm 3) coNP-hard (Thm 2)
wj = 1, Priced, Asymmetric NP-complete ⋄ (Thm 4) NP-complete ⋄ (Thm 4)
wj = 1, Priced, Symmetric P (Thm 5) P (Thm 5)

wj = 1, paj = pbj = 1 P (Thm 5) P (Thm 5)

arbitrary

Weighted, Priced, Asymmetric Σ
p
2
-complete ⋄ (Thm 1) Σ

p
2
-complete ⋄ (Thm 1)

Weighted, paj = pbj = 1 NP-complete (Thm 7) Σ
p
2
-hard (Thm 6)

wj = 1, Priced, Asymmetric NP-complete (Thm 7) Σ
p
2
-hard (Thm 6)

wj = 1, Priced, Symmetric NP-complete (Thm 7) Σ
p
2
-hard (Thm 6)

wj = 1, paj = pbj = 1 ? Σ
p
2
-hard (Thm 6)

We remark three natural open problems for future research. One is the com-
plexity of the destructive protection problem with wj = paj = pbj = 1. It is not
clear whether the problem is in P or is NP-complete. Another is the constructive
protection problem with paj = pbj = 1 and arbitrary voter weights. We only show
its coNP-hardness, it is not clear whether or not this problem is coNP-complete.
The third problem is the complexity of r-approval constructive unit-protection
problem when r = {1, 2, 3} as our hardness proof only holds when r ≥ 4.

6 Conclusion

We introduced the protection problem and characterized its computational com-
plexity. We showed that the problem, in general, is Σp

2 -complete, and identified
settings in which the problem becomes easier. Moreover, we showed the protec-
tion problem in some parameter settings is polynomial-time solvable, suggesting
that these parameter settings can be used for real-work election applications.

In addition to the open problems mentioned in Section 5, the following are
also worth investigating. First, our hardness results would motivate the study of
approximation or FPT (fixed parameter tractable) algorithms for the protection
problem. Note that even polynomial time approximation schemes can exist for
Σp

2 -hard problems (see, e.g., By Caparara et al. [3]). It is thus desirable that
a similar result can be obtained for some variants of the protection problem.
Second, how effective is this approach when applied towards the problem of
defending against other types of attackers that can, e.g., add or delete votes?
Third, much research remains to be done in extending the protection problem
to accommodate other scoring rules such as Borda and Copeland.

7 Appendix

7.1 Destructive Weighted-Protection – an Equivalent Formulation

We provide an equivalent formulation of the destructive weighted-protection
problem under any scoring rule α = (α1, · · · , αm), which will be very useful for
several proofs throughout this paper.

The minmax vector addition problem:
Input: A vector Λ = (Λ(c1), Λ(c2), . . . , Λ(cm−1)) where Λ(ci) is the score of ci
in the absence of bribery. An (m − 1)-vector ∆j = (∆1j , ∆2j , . . . , ∆(m−1),j)
for each voter vj where ∆ij = α1−ατ

−1

j
(i)+ατ

−1

j
(m)−αm. Awarding price paj

and bribing price pbj for voter vj , j = 1, 2, . . . , n. Defense budget F and attack
budget B.
Output: Decide if there exists a subset VF ⊆ V such that

–
∑

j:vj∈∈VF
paj ≤ F ; and

– For any subset VB ⊆ V \ VF with
∑

j:vj∈VB
pbj ≤ B, it holds that

∥
∥
∥
∥
∥
∥

Λ+
∑

j:vj∈VB

wj∆j

∥
∥
∥
∥
∥
∥
∞

≤ Λ(cm),

where ‖·‖∞ is the infinity norm (i.e., the maximal absolute value among
the m− 1 coordinates).

Lemma 4. The answer to the destructive weighted-$-protection problem is “Yes”
if and only if the answer to the corresponding minmax vector addition problem
is “Yes”.

Proof. A “Yes” Instance of Minmax Vector Addition → A “Yes” In-
stance of Destructive Weighted-$-Protection. Suppose the answer to the
minmax vector addition problem is “Yes.” Then, there exists some V∗

F ⊆ V such
that for any VB ⊆ V \ V∗

F with
∑

j:vj∈VB
pbj ≤ B, it holds that

∥
∥
∥
∥
∥
∥

Λ+
∑

j:vj∈VB

wj∆j

∥
∥
∥
∥
∥
∥
∞

≤ Λ(cm). (2)

For showing a contradiction, suppose the answer for the destructive weighted-$-
protection problem is “No”. In this case, even if the defender awards the voters
in V∗

F , the attacker can still make cm lose by bribing some subset V∗
B of voters.

Note that if cm does not win, there must exist some other candidate, say, ci, who
gets a strictly higher score than cm after the attacker bribes some voters. Let us
compare their scores before and after bribing voters. Before bribing voters, the
scores of ci and cm are Λ(ci) and Λ(cm), respectively. Recall that a candidate ck
is at the position of τ−1

j (k) on the preference list of vj , therefore any vj ∈ V∗
B

contributes a score of ατ
−1

j
(i) to Λ(ci), and contributes a score of ατ

−1

j
(m) to

Λ(cm). After bribing voters, the preference list of vj is changed, but regardless
of the change, vj contributes at least αm to cm and at most α1 to ci. Let the
scores of ci and cm after bribing voters be Λ′(ci) and Λ′(cm), respectively. Then,
it follows that

Λ′(ci) ≤ Λ(ci) +
∑

j:vj∈V∗

B

wj(α1 − ατ
−1

j
(i))

Λ′(cm) ≥ Λ(cm) +
∑

j:vj∈V∗

B

wj(αm − ατ
−1

j
(m)).

Since Λ′(ci) > Λ′(cm), we have

Λ(ci) +
∑

j:vj∈V∗

B

wj(α1 − ατ
−1

j
(i)) > Λ(cm) +

∑

j:vj∈V∗

B

wj(αm − ατ
−1

j
(m)),

that is,

Λ(ci) +
∑

j:vj∈V∗

B

wj∆ij > Λ(cm),

which contradicts Eq. (2). Thus, the answer to the destructive weighted-$-
protection problem is “Yes”.

A “Yes” Instance of Destructive Weighted-$-Protection → A “Yes”
Instance of Minmax Vector Addition. Suppose the answer to the destruc-
tive weighted-$-protection problem is “Yes” by awarding the voters in V∗

F . We
show that the answer to the corresponding instance of minmax vector addition
problem is “Yes”. Suppose on the contrary the answer is “No.” Then, for V∗

F

there exists some V∗
B ⊆ V \ V∗

F such that

∥
∥
∥
∥
∥
∥

Λ+
∑

j:vj∈V∗

B

wj∆j

∥
∥
∥
∥
∥
∥
∞

> Λ(cm).

Consequently, there must exist some 1 ≤ i ≤ m−1 such that Λ(ci)+
∑

j:vj∈V∗

B
∆ij >

Λ(cm). By plugging in ∆ij , we have

Λ(ci) +
∑

j:vj∈V∗

B

wj(α1 − ατ
−1

j
(i)) > Λ(cm) +

∑

j:vj∈V∗

B

wj(αm − ατ
−1

j
(m)).

This means that if the defender awards the voters in V∗
F , then the attacker can

bribe the voters in V∗
B to change their preference lists such that for any vj ∈ V∗

B,
candidate ci is on top of the list and cm is at bottom of the list. By doing this,
ci gets a strictly higher score than cm. This contradicts the fact that the answer
to the destructive weighted-$-protection problem is “Yes”. Hence, the answer to
the minmax vector addition problem is “Yes”. ⊓⊔

7.2 Voter Dominance and Preliminary Observations

Let Sm be the set of permutations over {c1, c2, . . . , cm}. Each element of Sm can
be a preference list. Let Vh ⊆ V be the set of voters whose preference list is the
h-th element of Sm.

For two voters vj and vj′ , we say vj dominates vj′ (or vj′ is dominated by
vj), denoted by vj′ ≺ vj , if any of the following two conditions hold: (i) The
following holds and at least one of the inequalities is strict:

(τj = τj′) ∧ (wj ≥ wj′) ∧ (paj ≤ paj′) ∧ (pbj ≤ pbj′).

(ii) The following holds:

(τj = τj′) ∧ (wj = wj′) ∧ (paj = paj′) ∧ (pbj = pbj′) ∧ (j′ < j).

Note that the domination relation is only defined between the voters who have
the same preference. Intuitively, if vj′ ≺ vj , then vj is more “important” than
vj′ because vj has a greater weight but is “cheaper” to bribe or award (i.e., more
valuable to both the attacker and the defender).

We have the following lemmas.

Lemma 5. Consider the destructive weighted-$-protection problem with VF ⊆ V
being the set of awarded voters. Suppose the attacker can succeed by bribing a
subset VB ⊆ V \VF of voters. If vj′ ≺ vj, vj′ ∈ VB and vj 6∈ (VF ∪VB), then the
attacker can succeed by bribing (VB \ {vj′}) ∪ {vj}.

Towards the proof, we need Lemma 4, which states that the destructive
weighted-$-protection problem is equivalent to another problem called minmax
vector addition. The reader may refer to Section 4.2 for the definition of this
problem. The following observation follows directly from the definition of ∆ij

which is included in the definition of minmax vector addition.

Observation 1 If vj′ ≺ vj, then ∆ij′ ≤ ∆ij for 1 ≤ i ≤ m− 1.

Assuming Lemma 4, we can prove Lemma 5 as follows.

Proof (Proof of Lemma 5). We prove the lemma by applying an exchange ar-
gument to the minmax vector addition problem, which is equivalent to the de-
structive weighted-$-protection by Lemma 4. Suppose by bribing voters in VB

the destructive attacker can make cm lose. Then, it follows that
∑

j:vj∈VB
pbj ≤ B

and

||Λ+
∑

j:j∈VB

wj∆j ||∞ > Λ(cm).

As vj dominates vj′ , ∆ij ≥ ∆ij′ and wj ≤ wj′ . Hence,

∑

j:j∈(VB\{vj′})∪{vj}

pbj ≤ B

and

||Λ+
∑

j:j∈(VB\{vj′})∪{vj}

wj∆j ||∞ > Λ(cm).

That is, the briber can also win by bribing voters in (VB \ {vj′}) ∪ {vj}. ⊓⊔

Lemma 6. Consider the destructive weighted-$-protection problem. Suppose the
defender succeeds by awarding a subset VF ⊆ V of voters. If vj′ ≺ vj , vj′ ∈ VF

and vj 6∈ VF , then the defender can succeed by awarding (VF \ {vj′}) ∪ {vj}.

Proof. We again use an exchange argument to the minmax vector addition prob-
lem. Let VA = VF \{vj′}. Suppose on the contrary that the defender cannot win
by fixing voters in VA ∪ {vj}, then there exists some VB ⊆ V \ (VA ∪ {vj}) such
that

∑

j:vj∈VB
pbj ≤ B and

||Λ+
∑

j:j∈VB

wj∆j ||∞ > Λ(cm).

We argue that the defender cannot win either by fixing voters in VA∪{vj′}, which
is a contradiction. Suppose the defender fixes voters in VA∪{vj′}. There are two
possibilities. If vj′ 6∈ VB, then we let the briber bribe voters in VB. It is obvious
that the briber can win. Otherwise, vj′ ∈ VB, then we let the briber bribe voters
in (VB \{vj′})∪{vj}. Since vj dominates vj′ , we have

∑

j:vj∈(VB\{vj′})∪{vj}
pbj ≤

B and

||Λ+
∑

j:j∈(VB\{vj′})∪{vj}

wj∆j ||∞ > Λ(cm).

Hence, the lemma is true. ⊓⊔

We say V̄ ⊆ V is maximal (with respect to V) if for any v̄ ∈ V̄ , there is no
v ∈ V \ V̄ that can dominate v̄. That is, V̄ contains the most important voters.
The following corollary follows directly from the preceding two lemmas.

Corollary 1 Consider the destructive weighted-$-protection problem. Without
loss of generality, we can assume that VF is maximal with respect to V and VB

is maximal with respect to V \ VF .

Unfortunately, Corollary 1 does not hold for the constructive weighted-$-
protection problem, which is significantly different from the destructive version
of the protection problem in terms of computational complexity. Nevertheless,
similar results hold for the unweighted constructive problem.

Lemma 7. Given VF ⊆ V as the set of fixed voters in the constructive $-bribery-
protection problem, suppose a briber can make ci win by bribing a subset VB ⊆
V \ VF of voters. If vj′ ≺ vj, vj′ ∈ VB and vj 6∈ (VF ∪ VB), then the briber can
also win by bribing voters in (VB \ {vj′}) ∪ {vj}.

Proof. Again, we prove by an exchange argument. Suppose by bribing voters
in VB the constructive briber can make ci win. Now we consider the following
procedure: we change the preference list of vj into the same one as that of
vj′ , and meanwhile, restore the preference list of vj′ to the original one. As
voters have the same weight, this procedure does not change the total score of
every candidate, and ci is thus still the winner. Furthermore, this procedure is
equivalent as we bribe (VB \ {vj′})∪ {vj}. Since vj dominates vj′ , the total cost
of bribing (VB \ {vj′}) ∪ {vj} is no more than that of bribing VB. Hence, the
lemma is true. ⊓⊔

Lemma 8. In the constructive $-bribery-protection problem, suppose the de-
fender can win by fixing a subset VF ⊆ V of voters. If vj′ ≺ vj , vj′ ∈ VF and
vj 6∈ VF , then the defender can also win by fixing voters in (VF \ {vj′}) ∪ {vj}.

Proof. Suppose on the contrary that the defender cannot win by fixing voters in
V ′
F = (VF \{vj′})∪{vj}. Then the constructive briber can win by bribing voters

in some subset VB ⊆ V \ V ′
F . There are two possibilities. If vj′ 6∈ VB, then even

if the defender fixes VF the briber can still bribe VB and make ci win, which is
a contradiction. Otherwise vj′ ∈ VB. If the defender fixes VF , we let the briber
bribe (VB \{vj′})∪{vj}. According to Lemma 7, if the briber can win by bribing
VB, he/she can also win by bribing (VB \ {vj′}) ∪ {vj}, again contradicting the
fact that the defender can succeed by awarding VF . ⊓⊔

The above Lemmas implies the following.

Corollary 2 Without loss of generality, we can assume that VF is maximal
with respect to V, and VB is maximal with respect to V \ VF in the constructive
$-bribery-protection problem.

7.3 Proofs Omitted in Section 3.1

Recall that our goal is to prove Theorem 1.

Theorem 1. For any non-trivial scoring rule, both the constructive and de-
structive weighted-$-protection problem, is Σp

2 -complete.

We first show Σp
2 -membership.

Lemma 1. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are in Σp

2 .

For ease of proof, we use the following definition of Σp
2 from [19] (see Theorem

3 therein).

Definition 1 (By Wrathall [19]) Let Γ be a finite set of symbols (alphabet) and
Γ+ be the set of strings of symbols in Γ . Let L ⊆ Γ+ be a language. L ∈ Σp

2 if
and only if there exists polynomials φ1, φ2 and a language L′ ∈ P = Σp

0 such
that for all x ∈ Γ+,

x ∈ L if and only if (∃y1)φ1
(∀y2)φ2

[(x, y1, y2) ∈ L′],

where (∃y1)φ1
(∀y2)φ2

[(x, y1, y2) ∈ L′] denotes

(∃y1)(∀y2)[|y1| ≤ φ1(|x|) and if |y2| ≤ φ2(|x|), (x, y1, y2) ∈ L′].

Proof (Proof of Lemma 1). Given an instance I of the constructive or destructive
weighted-$-protection problem, we want to know if there exists a subset VF such
that

∑

j:vj∈VF
paj ≤ F and for any subset VB ⊆ V\VF with

∑

j:vj∈VB
pbj ≤ B and

any preference list τ̂j for vj ∈ VB, the following property R(I,VF ,VB ∪ {τ̂j |vj ∈
VB}) is true: By bribing voter in VB and change the preference list of each vj ∈
VB to τ̂j , a constructive attacker cannot make candidate ci win, or a destructive
attacker cannot make cm lose. It is easy to see that the property R(I,VF ,VB ∪
{τ̂j |vj ∈ VB}) can be verified in polynomial time, therefore Lemma 1 is proved.

⊓⊔

Now we prove the Σp
2 -hardness.

Lemma 2. For any non-trivial scoring rule, both the constructive and destruc-
tive weighted-$-protection problems are both Σp

2 -hard even if there are only m = 2
candidates.

Note that in case of m = 2, destructive weighted-$-bribery-protection is
equivalent to constructive weighted-$-bribery-protection.We prove the Lemma 2
for the protection problem under plurality. With slight modification the proof
works for any non-trivial scoring protocol for two candidates.

We reduce from the De-Negre (DNeg) variant of bi-level knapsack problem,
which is proved to be Σp

2 -hard by Caprara et al. [3]. Before we describe the
bi-level knapsack problem, we first introduce the classical knapsack problem,
which is closely related. In the knapsack problem, given is some fixed budget
B̄ together with a set S of items, each having a price p̄aj and a weight w̄j . The
goal is to select a subset of items whose total price is no more than the given
budget and the total weight is maximized. We denote by KP (S, B̄) the optimal
objective value of the knapsack problem.

In the De-Negre (DNeg) variant of bi-level knapsack problem, there is an
adversary and a packer. The adversary has a reserving budget F̄ and the packer
has a packing budget B̄. There is a set of n items, each having a price p̄aj to the

adversary, p̄bj to the packer and a weight w̄j = p̄bj (to both the adversary and
the packer). The adversary first reserves a subset of items whose total prices is
no more than F̄ . Then the packer solves the knapsack problem with respect to
the remaining items that are not reserved, i.e., the packer will select a subset
of remaining items whose total price is no more than B̄ such that their total
weight is maximized. The DNeg variant of the bi-level knapsack problem asks
for a proper subset of items reserved by the adversary such that the total weight
of items selected by the packer is minimized. More precisely, the problem can be
formulated as a bi-level integer programming as follows.

The DNeg variant of bi-level knapsack problem:

Minimize

n∑

j=1

p̄bjyj

s.t.

n∑

j=1

p̄ajxj ≤ F̄

where y1, y2, · · · , yn solves the following:

Maximize
n∑

j=1

p̄bjyj

s.t.

n∑

j=1

p̄bjyj ≤ B̄

xj + yj ≤ 1 1 ≤ j ≤ n

xj , yj ∈ {0, 1} 1 ≤ j ≤ n

The decision version of the DNeg variant of bi-level knapsack problem asks
whether there exists a feasible solution with the objective value at most W . The
following lemma is due to Caprara et al. [3].

Lemma 9 (By Caprara et al. [3]). The decision version of the DNeg variant
of bi-level knapsack problem is Σp

2 -complete.

Based on the above lemma, we are able to prove Lemma 2.

Proof (Proof of Lemma 2). Given an arbitrary instance of the (decision version
of) DNeg variant of bi-level knapsack problem, we construct an election instance
as follows. There are m = 2 candidates. The defense and attack budgets are
F = F̄ and B = B̄, respectively. There are n+ 2 voters:

– n key voters v1, v2, · · · , vn who vote for c2, each having an awarding price
paj = p̄aj , a bribing price pbj = p̄bj , and a weight wj = p̄bj.

– one dummy voter vn+1 who votes for c2 whose weight is 2W , awarding price
is F + 1 and bribing price is B + 1.

– one dummy voter vn+2 who votes for c1 whose weight is
∑n

j=1 p̄
b
j , awarding

price is F + 1 and bribing price is B + 1.

Obviously c2 is the original winner. We show in the following that the con-
structed election instance is secure if and only if the DNeg variant of bi-level
knapsack problem admits a feasible solution with an objective value at most W .

Suppose the DNeg variant of bi-level knapsack problem admits a feasible
solution with an objective value at most W , and let x∗

i be such a solution. As
∑n

j=1 p̄
a
jx

∗
j =

∑n
j=1 p

a
jx

∗
j ≤ F̄ = F , we let the defender award all the voters such

that x∗
j = 1, i.e., let VF = {vj|x∗

j = 1}. According to the fact that the objective
value of the bi-level knapsack problem is at most W , and the fact that the two

dummy voters can never be bribed, it follows that the optimal objective value
of the following knapsack problem is at most W :

Maximize
∑

j:vj∈V\VF

pbjyj

s.t.
∑

j∈V\VF

pbjyj ≤ B

Thus, with a budget of B the the briber can never bribe key voters whose total
weight is more than W . Note that originally the total weight of voters voting for
c2 is 2W +

∑n
j=1 p

b
j , and the total weight of voters voting for c1 is

∑n
j=1 p

b
j , the

briber cannot succeed and the election is thus secure.
Suppose the election is secure. Then there exists some VF such that we

can say
∑

j:vj∈VF
paj ≤ F and if voters in VF are fixed, no briber can succeed.

Note that the two dummy voters can never be protected nor bribed, whereas
VF ⊆ {v1, v2, · · · , vn}. Thus, among voters in {v1, v2, · · · , vn} \ VF , within a
budget of B the briber cannot bribe voters whose total weight is more than W .
This is equivalent as saying that by setting xj = 1 for vj ∈ VF and xj = 0
otherwise, the knapsack problem for yj does not admit a feasible solution with
an objective value more than W . Hence, the objective value of the given DNeg
variant of bi-level knapsack problem is at most W . ⊓⊔

7.4 Proofs Omitted in Section 3.2

Theorem 3. If m is a constant, then the destructive weighted-protection prob-
lem is in P for any scoring rule.

Proof. The theorem is proved by trying all different possible VF and check
whether the attacker can succeed for each of them. By Corollary 1, for vot-
ers having the same preference, VF contains voters of the largest weights. Hence
to determine VF , it suffices to know the number of voters having each preference
in VF . There are at most m! different preferences, and consequently at most nm!

different kinds of VF , which is polynomial when m is constant. For each possible
choice of VF , we check whether the attacker can succeed by trying all possible
VB and all possible ways of changing their preferences. Firstly, by Corollary 1,
for voters in V \ VF that have the same preference list, VB contains the ones of
the largest weights, hence using a similar argument we know there are at most
nm! different kinds of VB. Given VF and VB, it remains to determine how the
preference lists of voters in VB should be changed. Note that we do not need
to specify how the preference list is changed for each vj ∈ VB. Instead, we only
need to determine the number of voters in VB that are changed to each prefer-
ence list, which gives rise to at most nm! possibilities. Therefore, overall there
are at most n3m! different possibilities regarding VF , VB and how to alter the
preference lists of voters in VB, which can be enumerated efficiently when m is
a constant. ⊓⊔

We remark that an argument similar to the one we used to prove Theorem 3
was used by Faliszewsk et al. [8].

7.5 Proofs omitted in Section 3.3

Theorem 4. For any non-trivial scoring rule, both the constructive and destruc-
tive $-protection problems are NP-complete.

To prove Theorem 4, we first show the problem belongs to NP in Lemma 10
and then show its NP-hardness in Lemma 11.

Lemma 10. For any scoring rule and arbitrary constant m, both the construc-
tive and destructive $-protection problems are in NP.

Proof. Note that to show the membership in NP, it suffices to show that given
VF , we can determine in polynomial time whether the constructive/destructive
attacker can succeed. Note that among voters of the same preference list in
V \ VF , VB always contains the ones with the smallest bribing prices. Hence,
similarly as the proof of Theorem 3, there are at most nm! different kinds of
VB. Given VB, a similar argument as that of Theorem 3 shows that there are
nm! different ways of altering the preference lists of voters in VB. Hence in n2m!

time we can determine the whether the constructive/destructive attacker can
succeed, which is polynomial if m is a constant. ⊓⊔

Lemma 11. For any non-trivial scoring rule, both the constructive and destruc-
tive $-protection problems are NP-hard even if there are only 2 candidates.

Again, in case of two candidates, the constructive and destructive variants are
identical and it suffices to prove the theorem under the scoring rule of plurality.

Towards the proof, we need the following intermediate problems.
Balanced Partition: Given a set of positive integers {a1, a2, · · · , a2n} where

a1 ≤ a2 ≤ · · · ≤ a2n and an integer q such that
∑2n

j=1 aj = 2q. Determine
whether there exists a subset S of n integers such that

∑

i:ai∈S ai = q.
The balanced partition problem is a variant of the partition problem (in

which S is not required to contain exactly n integers). The NP-completeness of
the balanced partition problem is a folklore result, which follows from a slight
modification on NP-completeness proof for the partition problem given by Garey
and Johnson[11].

Using the balanced partition problem, we are able to show the NP-hardness
of the following problem in Lemma 12.

Balanced partition′: Given a set of positive integers {a1, a2, · · · , a2n} where

a1 ≤ a2 ≤ · · · ≤ a2n and an integer q such that
∑2n

j=1 aj = 2q, an + an+1 + · · ·+
a2n−1 ≥ q+1. Determine whether there exists a subset S of n integers such that
∑

i:ai∈S ai = q.

Lemma 12. Balanced partition′ is NP-complete.

Proof. Membership in NP is straightforward. We show balanced partition′ is
NP-hard in the following via reduction from balanced partition.

Given an instance of the balanced partition problem where the integers are
a1 ≤ a2 ≤ · · · ≤ a2n and q = 1/2 ·

∑2n
j=1 aj , we construct an instance of the

balanced partition′ problem by adding 4n integers, each of value 3q.

We first show that the constructed instance is a feasible instance. Obviously
every additional integer is larger than any aj where j ≤ 2n. Let the additional
integers be a2n+1, a2n+2, · · · , a6n. In the constructed instance there are 2n′ = 6n
elements, with the summation of all integers being 2q + 12nq. Let q′ = q + 6nq.
Obviously an′+1 + an′+2 + · · · + a2n′−1 = 9nq > q′ + 1. Thus, the constructed
instance is a feasible instance of the balanced partition′ problem.

We show that the constructed instance admits a feasible partition if and only
if the given balanced partition instance admits a feasible solution.

If the given balanced partition instance admits a feasible solution, then ob-
viously the constructed balanced partition′ problem admits a feasible solution
(by adding 2n of the additional integers to both sides).

Suppose the constructed balanced partition′ instance admits a feasible so-
lution. We claim that among the 4n additional integers, there are exactly 2n
of them in S. Otherwise S contains either at most 2n − 1 of them or at least
2n + 1 of them. By symmetry we assume without loss of generality that S
contains at most 2n − 1 of them, then all integers in S add up to at most
(2n − 1) · 3q + 2q < q′ = q + 6nq, which is a contradiction. Thus, S contains
exactly 2n additional integers, implying that the remaining n integers adding up
to q, i.e., the given balanced partition instance admits a feasible solution. ⊓⊔

Proof (Proof of Lemma 11). We will prove the NP-hardness for an election with
only two candidates under 1-approval (plurality). Recall that in this case the
constructive and destructive protection problem are the same.

We reduce from the balanced partition′ problem. Given an arbitrary instance
of the balanced partition′ problem, we construct an instance of the $-bribery-
protection problem such that the answer to the problem is “Yes” if and only the
balanced partition′ instance admits a feasible solution.

We construct the $-bribery-protection instance as follows. There are m = 2
candidates. c1 is the designated candidate. Let F = 4qn+ q, B = (4n− 1)q− 1.
There are 6n−1 voters, each of unit weight and can be divided into three groups:

– 2n key voters voting for c2, whose awarding prices are 4q+a1, 4q+a2, · · · , 4q+
a2n and bribing prices are 4q − a1, 4q − a2, · · · , 4q − a2n, respectively.

– 2n− 1 dummy voters voting for c2, whose awarding prices are all F +1 and
bribing prices are all B + 1.

– 2n dummy voters voting for c1, whose awarding and bribing prices are all 1.

Let V∗ = {v1, v2, · · · , vn} be the set of key voters.
Obviously c2 is the original winner. We show that the answer to the con-

structed $-bribery-protection instance is “Yes” if and only if the balanced partition′

problem admits a feasible solution.
Suppose the given balanced partition′ instance admits a feasible solution S.

Now we let the defender fix the n key voters whose awarding price is 4q + aj
where aj ∈ S. It is easy to verify that the total awarding price is 4nq + q = F ,
which stays within the defense budget. We argue that, no briber can alter the
election result with a budget of B. Let VF be the set of fixed voters. Suppose on
the contrary there is a briber who can make c1 win. Given that the total attack

budget is B, the briber can only bribe key voters. Furthermore, the briber has to
bribe at least n voters. As |VF | = n, the briber has to bribe all voters in V∗ \VF .
However,

∑

j:vj∈V∗\VF

pbj = (4n− 1)q > B,

which is a contradiction. Thus, the answer to the constructed $-bribery-protection
instance is “Yes”.

Suppose the answer to the constructed $-bribery-protection instance is “Yes”.
Note that in total there are 4n− 1 voters voting for c2 and 2n voters voting for
c1. Thus any briber who wants to alter the election result has to bribe at least
n voters who originally vote for c2. Since the 2n − 1 dummy jobs voting for c2
can never be protected nor bribed, we can fix a subset VF ⊆ V∗ such that no
briber can bribe n or more voters from V∗ \VF with a budget of B. We have the
following claim.

Claim. |VF | = n.

Proof (Proof of Claim 7.5). We first show that |VF | ≤ n. Suppose on the contrary
that |VF | ≥ n + 1. Note that any key voter has an awarding price of at least
4q, thus the total awarding price is at least 4(n+ 1)q. However, F = 4qn+ q <
4(n+ 1)q, which is a contradiction.

We now show that |VF | ≥ n. Suppose on the contrary that |VF | ≤ n − 1.
Then there are at least n + 1 key voters that can be bribed and we bribe the
cheapest n voters. As pb1 ≥ pb2 ≥ · · · ≥ pb2n, the total bribing price of the cheapest
n voters among any n + 1 voters is at most pbn + pbn+1 + · · · + pb2n−1 = 4qn −
(an + an+1 + · · · + a2n−1) ≤ 4qn− (q + 1) = B, whereas the briber can always
bribe the cheapest n voters and let c2 win, which contradicts the fact that the
answer to the $-bribery-protection instance is “Yes”. Hence |VF | ≥ n. ⊓⊔

Now the following inequalities hold simultaneously:

∑

j:vj∈VF

paj ≤ F = 4qn+ q (5a)

∑

j:vi∈V∗\VF

pbj ≥ B + 1 = 4(n− 1/2)q + q (5b)

Note that

∑

j:vi∈V∗\VF
pbj =

∑2n
j=1 p

b
j −

∑

j:vj∈VF
pbj

= 4(2n− 1/2)q −
∑

j:vj∈VF
(4q − aj),

by (5a) we have
∑

j:vj∈VF

(4q − aj) ≤ 4qn− q.

Using the fact that |VF | = n, we have

∑

j:vj∈VF

aj ≥ q.

From (5b), we have
∑

j:vj∈VF

aj ≤ q.

Thus,
∑

j:vj∈VF

aj = q,

i.e., the given balanced partition′ instance admits a feasible solution. ⊓⊔

The symmetric $-protection problem (i.e., paj = pbj), however, is significantly
easier, as shown by Theorem 5.

Theorem 5. For constant m, both destructive and constructive symmetric $-
protection problems are in P for any scoring rule.

Proof. The proof idea is the same as that of Theorem 3, namely by trying all
different possible VF . For each VF , we try all possible VB’s and all possible ways
of altering the preference of voters in VB. Note that every voter has the same
weight and satisfies that paj = pbj . Therefore, a voter with a smaller (awarding and
bribing) price always dominates a voter with a larger price. By Corollary 1 and
Corollary 2, for the voters having the same preference, VF contains the voters
that have the smallest prices. Therefore, in order to determine VF , it suffices to
know the number of voters that have the same preference, implying that there
are at most nm! different kinds of VF ’s. Similarly, given a VF , there are at most
nm! different kinds of VB’s. Using the same argument as that of Theorem 3, for
every VF and VB, there are at most nm! ways of altering the preferences of the
voters in VB. Therefore, there are n3m! different possibilities in total, which can
be enumerated efficiently when m is a constant. ⊓⊔

7.6 Proofs Omitted in Section 4.2

The goal is to prove Theorem 7.

Theorem 7. Both r-approval destructive weighted-protection and r-approval (sym-
metric) $-protection problems are NP-complete.

Towards the proof, we first show the NP-hardness.

Lemma 13. The r-approval destructive weighted-protection problem is NP-hard
for any r ≥ 3.

Proof. We prove the lemma for r = 3. The case of r > 3 can be proved by
introducing dummy candidates and letting each voter vote for r − 3 distinct
dummy candidate.

We reduce from a variant of 3-dimensional matching in which every element
occurs at most d = O(1) times in the given triples, which is also known to be NP-
hard stated by Kann [13]. Given a 3DM instance with 3ζ = |W ∪X∪Y | elements
and η = |M | triples such that every element appears at most d = O(1) times
in M , we construct an instance of the destructive weighted bribery-protection
problem as follows. Here we further require that η ≥ ζ + 2d. The assumption is
without loss of generality since if η ≤ ζ + 2d − 1, then there are at most O(1)
triples outside a perfect matching, and the existence of a perfect matching can
be determined by brute-forcing within ζO(1) time, which is polynomial.

For ease of description, we re-index all elements of W ∪X ∪ Y arbitrarily as
z1, z2, · · · , z3ζ .

Let Q = 2η+1. There are 3ζ+1 key candidates, including the following two
kinds of candidates (the function f will be defined later):

– 3ζ key candidates c1 to c3ζ , with ci corresponding to zi ∈ W ∪ X ∪ Y and
has a score of Q · f(zi). We call them element candidates;

– one key candidate c3ζ+1 called leading candidate, which is the original winner
and has a score of Q · f(z3ζ+1).

Besides key candidates, there are also sufficiently many dummy candidates ci
for i > 3ζ + 1, each having a score of 1. The number of dummy candidates will
be determined later.

There are η key voters v1 to vη, each of weight Q. Each key voter corresponds
to a distinct triple in (zi, zj, zk) ∈ M , and votes for the three candidates that
correspond to zi, zj, zk, respectively.

Besides key voters, there are also sufficiently many dummy voters vj for
j > η. A dummy vote has a unit weight, and votes for one key candidate and
two distinct dummy candidates.

Now we determine the number of dummy voters and dummy candidates
together with all the parameters. If we only consider key voters of weight Q,
then every element candidate corresponding to some zi gets a score of Q · d(zi)
where d(zi) is the number of occurrences of z in M . Adopting the viewpoint of
the minmax vector addition problem, for every 1 ≤ j ≤ η we have

∆ij =







0, if vj votes for ci and does not vote for c3ζ+1

1, if vj votes for c3ζ+1 and does not votes for ci,

or vj votes for both ci and c3ζ+1

2, if vj votes for c3ζ+1 and does not vote for ci

Let

∆max = max
1≤i≤3ζ

ζ
∑

j=1

∆ij , dmax = max
1≤i≤3ζ

d(zi).

We define

f(zi) = 2η + dmax +∆max −

η
∑

j=1

∆ij , 1 ≤ i ≤ 3ζ

That means, candidate ci, 1 ≤ i ≤ 3ζ will get a score of Q ·d(zi) from key voters,
and additionally Q · [f(zi)−d(zi)] ≥ 0 score from dummy voters. Hence, for each
ci we need to create Q · [f(zi)− d(zi)] dummy voters.

We define

f(z3ζ+1) = 2η + dmax +∆max − ζ + 1.

Note that
∑η

j=1 ∆ij ≥ η − d > ζ as every element appears at most d times in
triples, hence f(z3ζ+1) > f(zi) for 1 ≤ i ≤ 3ζ and c3ζ+1 is indeed the original
winner.

Overall, dummy voters should contribute Q · [f(zi)−d(zi)] to each ci, 1 ≤ i ≤

3ζ and (ζ+1)f(z3ζ+1) to c3ζ+1. We create in total Q · [
∑3ζ+1

i=1 f(zi)−
∑3ζ

i=1 d(zi)]

dummy voters, and 2Q · [
∑3ζ+1

i=1 f(zi)−
∑3ζ

i=1 d(zi)] dummy candidates.
Let the defense budget be F = ζ and the attack budget be B = η − ζ.

“Yes” Instance of 3DM → “Yes” Instance of Destructive Weighted-
Bribery-Protection. Suppose the given 3DM instance admits a feasible solu-
tion, we show that the answer to destructive weighted-bribery-protection prob-
lem is “Yes”. Let T ⊆ M be the perfect matching. Then |T | = ζ and we let the
defender protect voters corresponding to the triples in T . Taking the viewpoint
of the minmax vector addition problem. If the attacker bribes all the key voters,
then W (ci) increases by exactly Q ·

∑η
j=1 ∆ij for 1 ≤ i ≤ 3ζ. First it is easy

to see that no dummy candidate can be a winner as Q ·
∑η

j=1 ∆ij ≤ 2ηQ while
Q · f(z3ζ+1) ≥ (2η + 1)Q. Meanwhile, for each key candidate ci, 1 ≤ i ≤ 3ζ,
his/her total score becomes exactly Q · [f(z3ζ+1)+ ζ− 1]. As the defender fixes a
subset of key voters, we should subtract the contribution of these key voters. As
the triple corresponding to these voters form a perfect matching, these voters
contribute a score of exactly Q(ζ − 1) to each ci, hence after bribery every key
candidate has a score at most Q · f(z3ζ+1), implying that the answer to the
Destructive Weighted-Bribery-Protection problem is “Yes”.

“No” Instance of 3DM → “No” Instance of Destructive Weighted-
Bribery-Protection. Suppose the given 3DM instance does not admit a perfect
matching, we show that the answer to the constructed instance of the destructive
weighted-bribery-protection problem is “No”. Consider an arbitrary set of voters
fixed by the defender and let U be the subset of key voters that are fixed.
Obviously |U | ≤ ζ. If |U | < ζ, we add arbitrary key voters into U such that its
cardinality becomes ζ. Let U ′ be the set of these ζ key voters and let the attacker
bribe the remaining ζ−η key voters. Again we take the viewpoint of the minmax
vector addition problem. If the attacker bribes every key voter, then the total
score of every key candidate ci, 1 ≤ i ≤ 3ζ, becomes exactly Q · [f(z3ζ+1)+ζ−1].
As key voters in U are not bribed, we subtract their contribution from each ci.
Note that triples corresponding to voters in U do not form a perfect matching,
thus there exists some element which appears at least twice in these triples. Let

zk be such element and we consider ck. It is clear that ∆kj = 0 if vj votes for
ck and ∆kj = 1 if vj does not vote for ck (note that key voters never vote for
c3ζ+1). Hence

∑

j:vj∈U ∆kj ≤ ζ− 2. By subtracting the contribution of voters in

U , ck has a score at least Q · [f(z3ζ+1 + 1)], implying that after bribery ck will
get a higher score than c3ζ+1. Thus, the answer to the Destructive Weighted-
Bribery-Protection problem is “No”. ⊓⊔

Note that in the preceding reduction, we only construct voters of two different
weights, Q for the key voters and 1 for the dummy voters. Recall that Q is set
to be large enough to assure that only the key voters will be considered by the
defender or the attacker. Once VF and VB are restricted to be subsets of the key
voters, the concrete value of Q does not matter. Moreover, we can also prove
the NP-hardness of the destructive (symmetric) $-bribery-protection problem
by using essentially the same proof, except that we set key voters of price 1 and
dummy voters of price exceeding budgets F and B, say, max{F,B} + 1. This
leads to the following lemma.

Lemma 14. The r-approval destructive (symmetric) $-bribery-protection prob-
lem is NP-hard for any r ≥ 3.

Having showed the NP-hardness of the destructive weighted-protection prob-
lem, we show the problem is polynomial-time verifiable and is therefore NP-
complete.

Lemma 15. The destructive weighted-protection problem can be verified in poly-
nomial time under any scoring rule.

Proof. We leverage the minmax vector addition problem. In the case of unit
price, given VF , the decision version of the verification problem becomes: does
there exist a subset VB ⊆ V \ VF such that the following is true

∥
∥
∥
∥
∥
∥

Λ+
∑

j:vj∈VB

∆j

∥
∥
∥
∥
∥
∥

> Λ(cm).

To answer this decision problem, it suffices to do the following for every 1 ≤ i ≤
m− 1: pick B voters from V \ VF whose i-th coordinate ∆ij is the largest, add
them to Λ(ci), and check if it is greater than Λ(cm). ⊓⊔

It is, however, not clear if the destructive $-protection problem is NP-complete
for arbitrary scoring rules. However, we show in the following that for any scor-
ing rule which only assigns a constant number of different scores to a preference
list, i.e., the αi’s only take O(1) distinct values, the $-protection problem can be
verified in polynomial-time. As in the case of the r-approval rule, the αi’s only
take values of 1 or 0, the destructive $-protection problem is NP-complete for
the r-approval rule.

Lemma 16. The destructive (symmetric) $-protection problem can be verified
in polynomial-time in n under any scoring rule in which the αi’s only take a
constant number of distinct values.

Proof. Consider the minmax vector addition problem. We observe that in the
case of unit weight and that the αi’s take O(1) distinct values, ∆ij only takes
O(1) distinct values. For each coordinate i, we can check if it is possible for
Λ(ci) and ∆ij ’s to add up to some value strictly greater than Λ(cm). Note that
by adding every ∆ij , we need to pay a price of pbj, hence it is essentially the
knapsack problem with items having arbitrary prices but only O(1) distinct
weights. Such a knapsack problem can be solved in polynomial-time, e.g., by
simply guessing the number of items of the same weight. Among the items of
the same weight, the optimal solution should take the ones with the cheapest
price. ⊓⊔

References

1. Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices
matter for the parameterized complexity of shift bribery. Inf. Comput. 251, 140–
164 (2016)

2. Bredereck, R., Talmon, N.: Np-hardness of two edge cover generalizations with
applications to control and bribery for approval voting. Inf. Process. Lett. 116(2),
147–152 (2016)

3. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computa-
tional complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838
(2014)

4. Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Elections with few voters:
Candidate control can be easy. J. Artif. Intell. Res. 60, 937–1002 (2017)

5. Chen, L., Zhang, G.: Approximation algorithms for a bi-level knapsack problem.
Theor. Comput. Sci. 497, 1–12 (2013)

6. Dey, P., Misra, N., Narahari, Y.: Frugal bribery in voting. Theor. Comput. Sci.
676, 15–32 (2017)

7. Erdélyi, G., Reger, C., Yang, Y.: The complexity of bribery and control in group
identification. Auton. Agents Multi Agent Syst. 34(1), 8 (2020)

8. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

9. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Weighted electoral con-
trol. J. Artif. Intell. Res. 52, 507–542 (2015)

10. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social
Choice, pp. 146–168. Cambridge University Press (2016)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

12. Kaczmarczyk, A., Faliszewski, P.: Algorithms for destructive shift bribery. Auton.
Agents Multi Agent Syst. 33(3), 275–297 (2019)

13. Kann, V.: Maximum bounded 3-dimensional matching is max snp-complete. Inf.
Process. Lett. 37(1), 27–35 (1991)

14. Knop, D., Koutecký, M., Mnich, M.: Voting and bribing in single-exponential time.
In: Vollmer, H., Vallée, B. (eds.) 34th STACS, STACS 2017, March 8-11, 2017,
Hannover, Germany. LIPIcs, vol. 66, pp. 46:1–46:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017)

15. Lin, A.: The complexity of manipulating k-approval elections. In: Filipe, J., Fred,
A.L.N. (eds.) ICAART 2011 - Proceedings of the 3rd ICAART, Volume 2 - Agents,
Rome, Italy, January 28-30, 2011. pp. 212–218. SciTePress (2011)

16. McLoughlin, A.M.: The complexity of computing the covering radius of a code.
IEEE Trans. Inf. Theory 30(6), 800–804 (1984)

17. Qiu, X., Kern, W.: Improved approximation algorithms for a bilevel knapsack
problem. Theor. Comput. Sci. 595, 120–129 (2015)

18. Wang, Z., Xing, W., Fang, S.: Two-group knapsack game. Theor. Comput. Sci.
411(7-9), 1094–1103 (2010)

19. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput.
Sci. 3(1), 23–33 (1976)

20. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In:
Kambhampati, S. (ed.) Proceedings of the 25th IJCAI, IJCAI 2016, New York,
NY, USA, 9-15 July 2016. pp. 538–545. IJCAI/AAAI Press (2016)

	Computational Complexity Characterization of Protecting Elections from Bribery A 2 page extended abstract has been published at the Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS'18)

