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There have been extensive investigations on identifying sensitive data flows in Android apps for detect-
ing malicious behaviors. Typical real world apps have a large number of sensitive flows and sinks. Thus,
security analysts need to prioritize these flows and data sinks according to their risks, i.e., flow ranking
and sink ranking. In this paper, we present an efficient graph-algorithm based risk metric for prioritizing
risky flows and sinks in Android grayware apps. The new risk metric is quantitative and can differentiate
the sensitivities of flows and sinks in an app. In the experiments, our risk prioritization produces order-
ings that are highly consistent with manual inspection. To enable post-detection security enforcement of
sensitive sinks, we also present an automatic rewriting framework that utilizes the above prioritization
technique. Our rewriting strategies are more feasible than the state-of-art solutions by supporting flow-
and sink-based rewriting. We implement our prototype as ReDroid. ReDroid is designed for security ana-
lysts who manage organizational app repositories and customize third-party apps to satisfy organization
imposed security requirements. We use ReDroid to rewrite both benchmark apps and real world gray-

ware.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The research on mobile app security has been consistently fo-
cused on the problem of how to differentiate malicious apps from
benign apps. Static data-flow analysis has been widely used for
screening Android apps for malicious code or behavioral patterns
(e.g., Elish et al., 2015; Gibler et al., 2012; Gordon et al., 2015; Lu
et al.,, 2012). In addition, the use of machine-learning methods en-
ables automatic malware recognition based on multiple data-flow
features (e.g., Arp et al.,, 2014; Tian et al., 2016).

These solutions are useful for security analysts who manage
public app marketplaces or organizational app repositories. An or-
ganizational app repository is a private app sharing platform within
an organization, the security of apps on which is regulated and
approved by the organization based on its security policies and
restrictions. For example, the organization may be a government
agency where employees with certain security clearance levels are
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required to install apps from the specified repository to their work
phones. The organization may also be a company, where employ-
ees possessing highly sensitive proprietary information and trade
secrets are required to install apps compliant with the company’s
IT security policies.

In these scenarios, a security analyst is often faced with a
new type of apps, besides malware and benign apps. These apps
are mostly benign, but with undesirable behaviors that are in-
compatible with the organization’s policies. Such apps or app li-
braries may be from trustworthy companies or developers, and
may have passed standard conventional screenings. However, the
app contains potentially sensitive data flows that are incompat-
ible with the organization’s policies. As requesting developers to
change their code is oftentimes infeasible, current practices are to
either reject the app or reluctantly accept it, despite its undesir-
able security behaviors. A similar dilemma is faced by individual
users as well. For example, a privacy-conscious user may wish to
dynamically restrict an app’s location sharing at runtime according
to her specific preferences.

Our work is motivated by this new need of security customiza-
tion of apps. A general-purpose framework for customizing the se-
curity of off-the-shelf apps would be extremely useful and timely.
Such a framework involves several key operations: (1) [Prioriti-
zation] to identify problematic code regions in the original app,
(2) [Modification] to modify the code and repackage the app. In
addition, post-rewrite monitoring may be needed, if the access or
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sharing of sensitive data is determined dynamically. We have made
substantial progress towards these goals. We report several new
techniques, including quantitative risk metrics for ranking sensitive
data flows and sinks in Android apps.

Our major contribution is to propose a new prioritization algo-
rithm to rank sensitive sinks for apps. Our approach is capable to
capture internal data dependencies among sensitive sinks and pro-
vide sinks with evidence-based quantification of risks. The algo-
rithm consists of two major components: a taint-flow based sensi-
tivity aggregation and a machine learning based sensitivity quan-
tification. Comparing with existing solutions that only aim to de-
tect taint flows (Arzt et al., 2014) of sensitive sinks, our goal is
to enable both sensitivity aggregation and quantitative ranking of
sensitive sinks.

To achieve our goal, we first define a quantitative risk metric for
sensitive flows and sinks in a taint-flow. For sensitive sinks, the
metric summarizes all the sensitive flows that a sink is involved
in. We design an efficient graph algorithm that computes the risks
of all sensitive sinks in time linear to the size of a directed taint-
flow graph G, i.e., O(|E|), where |E| is the number of edges in G.
(A taint-flow graph is a specialized data-flow graph that only con-
tains data flows originated from predefined sensitive sources and
leading to predefined sensitive sinks.) The risk value of a sink is
calculated based on all the sensitive API calls made on the sensi-
tive data flows leading to a sink. A sink may be associated with
multiple such sensitive flows.

In order to rank risky sinks, we map sensitive API calls to quan-
titative risk values, using a maximum likelihood estimation ap-
proach through parameterizing machine-learning classifiers. These
classifiers are trained with permission-based features and a labeled
dataset. Then, we use the risk metric to identify and rewrite the
sinks associated with the riskiest data flows without reducing the
app’s functionality.

Our work also moves a step towards sink-specific rewriting by
extending app rewriting solutions for Android. Rewriting is re-
garded as post-detection mitigation to enforce security policies. Ex-
isting solutions are specific to certain code issues and are not de-
signed for our security customization scenarios (Davis and Chen,
2013; Fratantonio et al., 2015). Due to the specific rewriting needs,
the target locations to be rewritten are relatively straightforward to
identify. Most of the existing solutions use direct parsing for code-
region identification. Yet, oftentimes it is unclear which regions of
the code need to be modified in order to achieve the best risk re-
duction. If additional post-rewrite monitoring is required at run-
time, then modifying every single sensitive flow or sink may sub-
stantially slow down the performance. Since the rewriting process
at the binary or bytecode level is error-prone, minimizing the im-
pact of rewriting on the original code structure is also important.

We demonstrate a practical Jimple-level code rewriting tech-
nique that can verify and terminate the riskiest sink at runtime.
For the Android-specific inter-app inter-component communication
(ICC) mechanism, we propose ICC relay to redirect an intent. We
replace the original intent with a relay intent; the relay intent then
redirects the potentially dangerous data flow to an external trusted
app for runtime security policy enforcement. The communication
between the modified app and the trusted app is via explicit-intent
based ICC. The trusted app is where data owner may implement
customized security policies.

The technical contributions of our work are summarized as fol-
lows.

1) We present a general sink-ranking approach that is useful
for prioritizing sensitive data flows in Android apps. Specif-
ically, our approach relies on two main technical enablers.
The one enabler is a quantitative risk metric for sensitive

flows and sinks in taint-flow graphs that is based on ma-
chine learning techniques.

The other enabler is an efficient O(|E|)-time taint-graph
based risk-propagation algorithm that ensures the maximum
coverage of all sensitive sources and internal nodes of a sink.

2) We implement a proof-of-concept prototype called Re-
Droid?. We use ReDroid to demonstrate the usage of rewrit-
ing in defending ICC hijacking and privacy leak vulnera-
bilities. Our rewriting supports flow-based and sink-based
rewriting, which is more feasible beyond the state-of-art
rewriting solutions.

3) We have performed an extensive experimental evaluation on
the validity of permission risks and sink rankings. Our man-
ual inspection indicates that top risky sinks found by Re-
Droid are consistent with external reports. We compare var-
ious permission-based and non-permission-based risk met-
rics, in terms of their abilities to identify top risky sinks.

4) We demonstrate the feasibility and effectiveness of both
inter-app ICC relay and logging-based rewriting techniques
in testing DroidBench and ICC-bench apps. We also success-
fully customized recently released grayware. The customized
app enables one to monitor runtime activities involving Java
reflection, dynamic code loading, and URL strings.

Our ranking algorithm supports both sink ranking and flow rank-
ing3. However, due to the interdependencies of flows, cutting a
flow in the middle may cause much more runtime errors than re-
moving the flow’s end-point sink. In addition, a sink aggregates
multiple flows, making them riskier than a single flow. Thus, we
focus on rewriting sinks.

Comparing with the previous conference version (Tian et al.,
2017), we substantially extended the paper from 7 pages to 13
pages by adding new content, and providing details of our ap-
proach and evaluation.

We summarize the differences in three aspects: (1) we con-
ducted new experiments that evaluated and compared the effec-
tiveness of our ranking and rewriting approach (Section 4.1-4.9).
The experimental results validate the efficiency of our approach
(Section 4.5 and 4.6). We also provided case studies on the abil-
ity to prioritizing sensitive flows (Section 4.6) and machine learn-
ing accuracy for transforming permission strings into risk values
(Section 4.8). (2) We incorporated the pseudocode to describe our
algorithms on computing risk scores of sinks from the risk propa-
gation (Algorithm 1). We added new definitions (Definition 2 and
3 for aggregation notations) to elaborate our algorithm in details.
(3) We substantially extended most part of the paper to improve
its readability, added new related work, and provided details of our
approach and implementation.

2. Overview

Before we give the overview of our approach in Section 2.2, we
first show a few examples to motivate the needs for ranking sen-
sitive data flows and rewriting apps for security.

We target data leaks in our current threat model, specifically
data flows in an app that may result in the disclosure and exfil-
tration of sensitive data. With proper source-sink definitions, the
proposed sink-ranking and rewriting-based monitoring framework
can be extended to support other security applications, which is
discussed in Section 3.9.

2 ReDroid is short for Rewriting AnDroid apps.
3 Flow ranking is a special case of sink ranking in our Algorithm 1.
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Algorithm 1 Pseudocode for computing risk scores of sinks from
the risk propagation. The function getSelfPermission() is used to
compute the self risk. The function getRiskValue() is used to com-
pute the risk value for each permission with machine learning.
1: Input: The sensitive taint-flow graph G a program.
2: Output: The sink set T with risk scores.
3: function PERAGGRE(Graph G(V,E,S,T),
function agg_func)
4: Vsort = TOPOLOGICAL_SORT(G)
5: G (V,E',S, T) = TRANSITIVE_REDUCTION (G, Vot )
6: [*P is a hashmap representing the aggregate permis-
sions for all nodes in G, and r is the hashmap repre-
senting the risk score for all nodes in G */

aggregation

7: for each v ¢V do
8: Plv]=0,r[v]=0
: end for
10: if agg func == E2E then
11: [* In case of E2E aggregation */
12: for each vV do
13: P[v] = GETSELFPERMISSION (V)
14: end for
15: else agg func == SS
16: [* In case of SS aggregation */
17: for each veSUT do
18: P[v] = GETSELFPERMISSION (V)
19: end for
20: end if
21: [* Propagation of sensitive permissions */
22: for (i=1 — Vy.size()) do
23: v = Viore[1]
24: fore={v; - v} € G do
25: Plv] = P[v] U P[11]
26: end for
27: if v € T then
28: for each p € P[v] do
29: [* Map permissions to risk values */
30: r[v]+ = GETRISKVALUE(p)
31 end for
32: end if
33: end for
34: return r

35: end function

2.1. Motivation and design choices

2.1.1. Security usage of App rewriting

Table 1 summarizes the security applications with our rewrit-
ing. Our rewriting can identify multiple vulnerabilities such as ICC
hijacking and privacy leak. We rewrite apps to enforce different se-
curity policies, these security policies help a security analyst effi-
ciently detect vulnerable activities and offer security mitigations.
Our rewriting framework can prevent vulnerabilities in stand-alone
apps and vulnerabilities in app communication channels. We elab-
orate our rewriting feasibility with more details in Section 4.1.

We envision two types of use scenarios for app rewriting tools
as follows. Both scenarios are possible. However, before rewriting
tools can be made fully reliable, automated, and usable, the second
use scenario is unlikely.

1) Used by security analysts who manage app repositories. Secu-
rity analysts retrofit off-the-shelf apps for organizational app
repositories to make them comply with organizational secu-

Table 1

The vulnerabilities that can be identified by our rewriting framework. Our
rewriting framework can identify vulnerabilities in stand-alone apps and
vulnerabilities in app communication channels.

Type Vulnerability Our framework addresses
Inter-app Com.  ICC hijacking

(IAC) Collusion

Stand-alone Privacy Leak

App Reflection
String Obfuscation

v
v
v
v
v
Dynamic Code Loading v

rity policies. Employees download retrofitted apps into their
regulated work phones.

2) Used by individuals to customize privacy. Users have specific
data-access preferences that cannot be satisfied by an off-
the-shelf app and choose to retrofit the app.

2.1.2. Flow and sink prioritizing

Apps typically have a large number of sensitive flows. In or-
der to show the importance of ranking these flows, we con-
duct an experiment on 100 apps that are randomly selected from
Android Malware Genome Database (Zhou and Jiang, 2012). We
use FlowDroid Arzt et al. (2014) for static program analysis and
SuSt Rasthofer et al. (2014) for labeling sensitive sources and
sinks. Our sensitive source and sink definitions follow SuSi, where
sources are calls to read sensitive data and sinks are calls that can
leak sensitive data. Fig. 1a shows the distribution of the number
of sensitive flows. Fig. 1b presents the distribution of the number
of source and sink nodes. A single app can contain more than 20
distinct sinks. A data flow is sensitive, if any node on its path is la-
beled sensitive. These statistics indicate the complexity of sensitive
flows and sinks in a single app. An appropriate prioritizing mech-
anism would help a security analyst to facilitate the app monitor-
ing, e.g., identifying most sensitive flows and sinks. The motivating
experiment indicates the need for prioritizing sensitive flows and
sensitive sinks according to systematic quantitative metrics.

2.1.3. Flow-based sink ranking vs. flow ranking

The risk of a sink should be associated with all the sensitive
paths flowing into that sink, which usually involves many nodes
besides the sink itself. A sink may be reachable by multiple sensi-
tive flows. Therefore, the risk factors from all these flows need to
be aggregated in order to completely reflect the risk of a sink. Our
sink ranking is computed on flows, i.e., flow-based sink ranking. In
comparison, computing the risk of a single flow is simpler. It can
serve as a basic building block for computing the risk of a sink.
Flow ranking is a special case of our sink ranking algorithm. How-
ever, flow ranking should not be used to guide the rewriting, as it
may provide an incomplete risk profile of the code.

2.1.4. Sink rewriting vs. flow rewriting

Once the most sensitive sink is identified, rewriting that end-
point region likely produces a minimal impact on the app’s func-
tionality. Revising a flow (e.g., cutting an internal edge) requires
substantial more engineering efforts, due to the interdependency
of flows. However, in some scenarios, flow rewriting may be more
fine-grained than sink rewriting. For example, a sink may be as-
sociated with n flows, only one of which is sensitive and needs to
be modified. The other n — 1 flows do not involve sensitive data
or operations and can be left intact. Our logging based rewriting
supports both flow- and sink-based rewriting. This strategy can log
and inspect each node along a data flow. In contrast, the ICC relay
is more focusing on sinks (e.g., startActivity) with ICC vulnerabil-
ities.
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Fig. 1. The example for the distribution of sensitive flows and sources and sinks.
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Fig. 2. An example of a taint-flow graph. Nodes represent function calls or instruc-
tions. Permissions (shown at the bottom of a node) associated with the functions
(shown at the top of a node) are shown. Directed edges represent data dependence
relations.

2.1.5. Sensitive API-based risk vs. permission-based risk

These two risk metrics are equivalent in our model. We map the
sensitive API calls of a data-flow path into their corresponding An-
droid permissions, as shown in Fig. 2. For example, getLocation
API call is mapped to LOCATION permission. We then quantify per-
missions’ risks through statistical methods. Our risk-computation
approach can be extended to support other types of risk definitions
(e.g., by leveraging data-flow features in Android malware classi-
fiers such as (Arp et al., 2014; Elish et al., 2015)).

2.1.6. A toy example

In Fig. 2, we use a toy taint-flow graph (simplified from Gold-
Dream) to illustrate several possible sink-ranking methods and
how they impact security. The figure contains two sensitive source
(s; and s,), three sensitive sinks (ti, 5, and t3) and several inter-
nal nodes, one of which involves a sensitive function. Android per-
missions associated with the functions are shown at the bottom
of nodes. Consider two approaches for ranking the risks of sensi-
tive sinks: a sink-only approach and a source-sink approach. In the
straightforward sink-only approach, the risk level of a sink is deter-
mined only by the sink’s function name and the permission it re-
quires. This approach clearly cannot distinguish two different sinks
sharing the same function name, e.g., t; and t3. It is also unclear
how to compare the risk level of t;’s permission and t,’s permis-
sion.

In a more complex source-sink approach, the risk of a sink is
determined not only by the sink itself, but also by all of its sensi-
tive sources. For example, in Fig. 2 the risk of sink t, is associated
with the permission set (PHONE_ST, RECEIVE_SMS, and INTERNET),

where the first two permissions are from the two sources s; and
so, and the last permission is from the sink itself. Although this
source-sink approach also needs a method to quantify the risks of
permissions, it is more desirable than the sink-only method. The
reason is that the source-sink approach more accurately reflects
sensitive flow properties.

This example indicates that a reasonable sink-ranking algorithm
needs (1) to capture internal data dependences; (2) evidence-based
quantification of risk. In ReDroid, we evaluate and compare several
sink ranking mechanisms in terms of how they impact app rewrit-
ing.

2.2. Definitions

We describe the workflow of our flow-ranking analysis for sink
ranking and rewriting. Our new capability is the efficient compu-
tation of end-to-end flow risks, quantifying risks associated with
data-flow dependence. We first give several key definitions used
in our model, including self risk, aggregate risk, and the standard
taint-flow graph.

Definition 1. Taint-flow graph is a directed graph G(V, E, S, T) with
source set SCV and sink set TCV and SN T = ¢, where for any flow
f={vo,v1..1} in G, vy € Sand vy € T and e = {v; > v;} € E. The
flow f represents the taint-flow path from the source vg to the sink
vp, which is denoted as f = {vg ~ vn}.

The taint-flow graph is a subgraph of the data-flow graph. Our
model considers two types of risks for each node in the taint-flow
graph, self risk and aggregate risk, which are defined next.

Self Risk. Given a taint-flow graph G(V, E, S, T) and a node v € V,
the self risk Ps[v] of v is the risk associated with v's execution.
B[v] = ¢, if no risk is involved.

Aggregate risk. Given a sink t € T in the taint-flow graph G, the
aggregate risk P[t] of sink t is a set that represents the risks asso-
ciated with the taint flows of t under some aggregation function
agg_func().

Our instantiation of the risk metric is based on the analysis
of risks associated with sensitive APIs on data flows into a sink.
Therefore, self risk is also referred to as self permission, and aggre-
gate risk is also referred to as aggregate permission for the rest of
the paper. We compute risk values of permissions through a max-
imum likelihood estimation approach.

In Section 3, we present two instantiations of the aggregation
function agg_func(). One is a straightforward source-sink (SS) ag-
gregation, where the aggregate risk of a sink is the union of self
risks of the sink and its source(s). The other is the end-to-end
(E2E) aggregation, which outputs all the permissions associated
with all the taint flows that the sink is in. Our experiments com-
pare how these two aggregation functions impact the flow-ranking
accuracy.
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Fig. 3. Our workflow for prioritizing risky sinks.

2.3. Workflow

Fig. 3 shows our workflow for sink ranking with graph propa-
gation. We briefly describe these operations.

1) Taint-flow construction. We generate the taint-flow graph
that describes sensitive data flows from sources to sinks.
Nodes in the taint-flow graph are mapped to their self risk
values, as defined above. This mapping process may vary, if
different risk aggregation function is used. We demonstrate
two such functions, source-sink aggregation and end-to-end
aggregation.

2) Risk propagation to sinks. The operation outputs the ag-
gregate risk set for each sensitive sink. The propagation
needs to efficiently traverse the data-dependence edges from
sources to sinks. The key in designing the propagation al-
gorithm is to visit each graph edge a constant number of
times, realizing O(|E|) complexity, where |E| is the size of the
graph edges. We present our solution in Section 3.1.

3) Permission-Risk Mapping. We follow a maximum likelihood
estimation approach to produce a risk value for each per-
mission empirically. Intuitively, the risk of a permission
is high, if the permission is often requested by malware
apps, but rarely by benign apps. With labeled training data
and machine learning (ML) classifiers with permission-based
features, we automatically map permissions to risk values
r € [0, 1]. We present our ML-solution in Section 3.5.%

4 Other permission-risk quantification techniques may be used, e.g., Bayesian-
Network based Android permission risk analysis (Peng et al., 2012).

4) Flow-based Sink Prioritization. To obtain the risk score of a
sink, one needs to quantify the risk associated with the
sink’s aggregate permission. The risk score of a sink is com-
puted by its correlated permissions with risk values. We
rank the sinks according to their risk scores. The risk score
of sinks captures its importance and security properties in
the app.

Risk ranking guides the app customization for risk reduction.
For example, one can choose to intercept the riskiest sink and re-
lay the flow to a trusted runtime monitor. We describe several se-
curity customization techniques in Section 3.6. Besides rewriting,
the sink-ranking technique is also useful for static analysis based
malware detection.

3. Risk metrics and computation

We aim to quantitatively compute and rank risks of sinks in
an app. Our approach is to construct the sensitive taint-flow graph
and compute the set of permissions associated with each flow
through graph propagation algorithms. The aggregation algorithms
find the accumulated risk factors (naming permissions) of a source-
sink path in O(|E|) complexity, where |E| is the number of edges in
the graph. Our risk is based on the permissions of sensitive APIs.
Our pseudocode is given in Algorithm 1 in the Appendix.

Next, we describe technical details of our operations. We
present risk propagation in Section 3.1, permission mapping in
Section 3.5 and rewriting in Section 3.6.

3.1. Risk propagation

The purpose of risk propagation is to aggregate all risky flows
associated with a sink.

3.2. Graph construction

We use Android-specific static program analysis tools (namely
FlowDroid) to obtain the taint-flow graph G(V, E, S, T), which rep-
resents the data dependence among code statements in the app
from sensitive sources to sinks, where n € V is the statement in
the code and e = {n; — ny} € E represents that n, is data depen-
dent on ny, SCV is the sensitive source set S and TCV is the sen-
sitive sink set. Loops may occur due to control dependence, e.g.,
while loops. Our subsequent permission aggregation only com-
putes over distinct permissions. Because each loop execution in-
volves the same set of permissions, we follow each loop only once.
This reduction generates a directed acyclic graph G(V, E, S, T).

Security analysts can customize their definitions of sensitive
sources and sinks based on organizational security policies. These
definitions impact the static taint analysis. For example, smaller
sensitive sets usually give fewer sensitive flows required to rewrite.

3.3. Transitive reduction

The purpose of transitive reduction is to maximally re-
move redundant edges while preserving reachability of the
graph (Aho et al., 1972). Transitive reduction helps us to reduce
the iteration of edges in our quantitative propagation analysis. It
does not affect our final results because it preserves the reacha-
bility from a source s € S to a sink t e T. Specially, the reduced
graph has the same nodes, sources, and sinks, but different edges.
Transitive reduction transforms G(V, E, S, T) into G'(V, E/, S, T).

Specifically, the reduced graph G'(V/, E/, ', T') is a subgraph of
the original taint-flow graph G(V, E, S, T), with E'CE, and the num-
ber of nodes keep the same V' =V, S=S5 and T =T'.

Transitive reduction produces a directed acyclic graph (DAG).
For each sink ¢, it has a subgraph reversely rooted by ¢, i.e., there
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exists a subgraph rooted by t, if the directions of edges are re-
versed.

3.4. Risk propagation to sinks

With the assignment of all the statements, we perform risk
propagation analysis algorithm on the graph G'(V, E/, S, T). Each
node in the graph is initialized with the corresponding self risk
and the empty set as its aggregate risks. Specifically, we provide
two different aggregation algorithms: SS (source-to-sink) aggrega-
tion and E2E (end-to-end) aggregation in Definition 2.

Definition 2. Denote a taint-flow path in a transitive reduced
taint-flow graph G'(V, E', S, T) by f={s~ Ny~ ..~ n;~ t},
where s € S, t € T and n; is an internal node on f. We define source-
sink (SS) aggregation and end-to-end (E2E) aggregation methods as
follows.

SS aggregation. The aggregate risk set P[t] of a sink t € T is de-
fined as

Plt] = Ryt] u{

U Ps[s]} (1)

{seS | 3 f={s~t} }

E2E aggregation. The aggregate risk set P[t] of a sink t € T is
defined as

Pei=ridu{ U
{seS, {ny..n}ef
[ 3 f={s~t}}

E2E aggregation for a sink t generates a set that consists of all
the distinct permissions corresponding to the taint-flow subgraph
that is reversely rooted by t. The difference between the two aggre-
gations is on the sensitive internal nodes. The SS aggregation only
considers the sensitive sources and sinks, whereas the E2E aggre-
gation includes the permissions of internal nodes. The E2E aggre-
gation produces all the distinct permissions that are required by
the taint-flow subgraph that is reversely rooted by a sink t.

Following a taint flow, the aggregate risk set of a node is
non-decreasing (i.e., increasing or stable). If n; is the successor
of n; on a path, the permission used in n; is propagated to n;.
Algorithm 1 shows the pseudocode for the permission aggregation
and risk computation.

For the example in Fig. 2, the output of E2E and SS aggre-
gations are the same for sinks t; and t,, i.e., P[t;] ={PHONE_ST,
SEND_SMS}, and P[t,] ={PHONE_ST, RECEIVE_SMS, INTERNET}.
However, they are different for sink t;. Specifically, for SS ag-
gregation P[t3] = {RECEIVE_SMS, SEND_SMS}, whereas E2E ag-
gregation has a larger aggregate risk set for the sink, which is
P[t3] = {RECEIVE_SMS, READ_SMS, SEND_SMS}. Our experiments in
Section 4.5 show how they impact security and rewriting.

The flow-based sink aggregation algorithm can be modified to
compute risk scores of flows. For a flow f = {vg ~ vy}, risk value
of node n ¢ fis computed by getRiskValue(n). The risk score of flow
fis computed though the propagation from v, to v, without aggre-
gation of other flows.

Rls] UR{m]... uPS[nkl} (2)

3.5. Permission-risk mapping with maximum likelihood estimation

The purpose of permission-risk mapping is to quantify the risk
values of sensitive permissions. Although research has shown cer-
tain permissions are predictive of malware and researchers pro-
pose risk-quantification mechanisms for permissions (e.g., rule-
based Enck et al. (2009) and Bayesian-based probabilistic mod-
els (Peng et al., 2012)), how to use them for prioritizing sinks for
rewriting has not been systematically studied.

Definition 3 Sink Risk. For a sink t in a taint-flow graph G, we
evaluate its risk based on its aggregate permissions P[t]. In Re-

Droid, we compute r(t) as the summation of quantified permission
risks:

r¢)= "y w(p) (3)

pePlt]

where w() is a function that maps a permission p to a quantitative
risk value w(p).

We follow a maximum likelihood estimation approach, to em-
pirically map a permission p to their quantitative risk value w(p).
We parameterize binary classifiers with permission-based features.
The task of binary classifiers is to label an unknown app as be-
nign (negative) or malicious (positive). The optimal permission-risk
mapping and configuration should maximize the accuracy of a bi-
nary classifier, i.e., low false positives (false alarms) and low false
negatives (missed detection of malware).

We use the feature-importance value of a permission as a secu-
rity measurement for the permission sensitivity. An important per-
mission is an indicator of malicious apps, because malicious apps
request more critical permissions (e.g., READ_SMS) from empirical
studies (Arp et al., 2014). A permission (e.g., INTERNET) existing in
both benign and malicious apps has a low importance value. Our
method automatically maps a permission string into a quantitative
risk value.

Our training set is selected from both malicious and benign app
dataset. We evaluate several supervised learning techniques (e.g.,
KNN, SVM, Decision Tree and Random Forest) and compare their
accuracy in Section 4.8. The Random Forest classifier achieves the
highest accuracy. The evaluation of these classifiers is based on
standard measurements, namely 10-fold cross-validation. We use
the classifier that maximizes the classification accuracy to compute
the risk values of permissions.

3.6. Automatic app rewriting

We rewrite on the app’s intermediate representation Jimple,
which is based on Java analysis framework Soot. The Soot sup-
ports Java-specific function instrumentation. We implement our
rewriting framework by supporting Android-specific components,
e.g., ICC. Our prioritizing algorithm is regarded as a Soot plug-
in to quantitatively compute risk scores for sinks. Table 2 presents
the comparison of ReDroid with existing Android rewriting frame-
works. Our ReDroid supports more rewriting operations, includ-
ing intent redirection, than current rewriting solutions. Unlike
previous rewriting demonstrations on Smali (such as Davis and
Chen (2013); Xu et al. (2012)), our inter-app ICC relay rewriting
approach requires more substantial code modification®.

The target sink can be selected by the sink prioritization. We
identify a target sink based on its package, class and method
names and the context of the sink (e.g., parameters). Once the
target sink is located, code modification is more challenging, as
it needs to ensure the successful execution of the modified app.
We reuse the registers and parameter fields from the original code.
We replace the sink function with a new customized function. We
compile the new function separately and extract its Jimple code.
The new function’s parameters need to be compatible with the API
specification and the context.

3.7. Proactive rewriting with inter-app ICC relay.

This ICC-relay strategy redirects data flows to the risky sink of
an app to a trusted proxy app, so that the trusted proxy app can

5 Without access to the code of existing solutions, we aim to release our frame-
work to facilitate the reproduction of app rewriting.
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Table 2

Comparison of ReDroid with existing Android rewriting frameworks. Method invoc. is
short for method invocation to invoke a customized method instead of an original
method. RetroSkeleton is implemented based on [-ARM-Droid. ReDroid supports more
rewriting strategies than the existing frameworks.

Rewriting [-ARM-Droid Davis et al. (2012) ReDroid
Granularity RetroSkeleton Davis and Chen (2013)  (Ours)
Package-level (Repackage) v v
Class-level (Class Inject) v v
Method-level (Method Invoc.) v v
ICC-level (Intent Redirect) - v
Flow-based Rewriting - v
Sink-based Rewriting - v

inspect the data before it is consumed (e.g., sent out). Our redirec-
tion mechanism leverages Android-specific inter-component com-
munication (ICC) and explicit intent. Android ICC mechanism en-
ables the communication among different apps (Chin et al., 2011).

The original intent is replaced by a new explicit intent that in-
vokes methods in the proxy app in order to complete the task. The
original intent is cloned and stored in a data field of the new ex-
plicit intent. This redirection mechanism gives the proxy an oppor-
tunity to inspect the sensitive data of the original intent at run-
time. Specifically, once the trusted proxy receives a request from
the rewritten app via ICC, the execution of the rewritten app is
paused (i.e., onPause is invoked). The proxy can choose to log the
requests and analyze them offline, or perform online inspections
(with respect to pre-defined policies). Upon proxy’s completion,
the original intent is re-constructed to allow the rewritten app to
continue its execution. The execution of the app may be impacted
by the invocation of the ICC, especially when the proxy’s inspec-
tion is performed online.

3.8. Passive rewriting with logging

Passive logging-based rewriting is useful for intercepting dy-
namically generated data structures that are related to risky sinks,
e.g., a URL string in an HTTP request that is manipulated along the
taint flow. The static taint-flow analysis can detect the suspicious
risky sink with strings as its parameters. However, the exact con-
tent of the string usually cannot be resolved through static analy-
sis. Logging them to local storage enables offline inspection.

The advantages of the logging approach are two-fold. (1) It
is relatively straightforward to implement at the Smali level, and
(2) logging does not impact the execution path of the rewritten
app. The rewritten app executes without interruption. However,
the analysis in this approach is conducted the offline, whereas
the redirect mechanism can actively block data leaks at runtime
if needed.

3.9. Discussion and limitations

We discuss limitations of our approach and future directions.
This paper is focused on technical aspects of app modifications. Le-
gal issues (e.g., copyright restrictions) are out of the scope of dis-
cussion.

3.10. Flow precision

Static analysis cannot estimate exactly dynamic execu-
tion paths, our graph analysis is conservative and may over-
approximate the permissions related to the sinks. Our prototype
is built on the existing framework FlowDroid, for the facility of
generating flow-sensitive graphs. Our approach can be also built
on other program analysis frameworks, e.g., Gibler et al. (2012);
Lu et al. (2012). Our main source of imprecision in sink ranking

comes from imprecise data-flow graphs. Current static pro-
gram analysis over-approximates apps’ behaviors by considering
all possible paths, including some infeasible paths. The over-
approximation in graphs introduces inaccuracy for our quantitative
analysis. Thus, the corresponding aggregate permissions and risks
of sinks in ReDroid may be overestimated.

3.11. Native code

Native code gains its popularity recently for code obfuscation
(Tam et al,, 2017). Android supports invoking sensitive APIs in a
reflection-like way from native code dynamically (Afonso et al.,
2016). Native code introduces missing edges for the static tool
FlowDroid to generate graphs in our analysis. A possible mitiga-
tion is to introduce hybrid analysis. Hybrid analysis combines static
analysis similar to our approach and dynamic analysis to resolve
reflected APIs by running the application at runtime. However, hy-
brid analysis suffers from performance and is not as scalable as
static analysis. Therefore, more substantial work is needed for bal-
ancing precision and scalability.

3.12. Dynamic permission

Google has recently introduced Android dynamic permission
to protect user privacy®. Dynamic permission provides an inter-
face for denying the access of reading private data (i.e., sources).
However, dynamic permission ignores the data flow dependence.
It cannot track data and estimate how the private data is abused.
In contrast, our rewriting is based on ranked sinks with the ag-
gregated sensitive data flows. Our approach can estimate the risk
score of a dangerous sink and provide customized rewriting opera-
tions. In compliment with dynamic permission, our rewriting pro-
vides two-factor data verification for both sources and sinks.

3.13. Rewriting challenges

Code rewriting requires substantial technique skills. If not care-
ful, the retrofitted app may not be successfully recompiled or may
crash at runtime. Our sink ranking and rewriting is automated.
However, the current rewriting demonstration is based on the in-
termediate representation Jimple via reverse engineering. Current
cutting-edge reverse engineering tools (e.g., Soot) cannot extract
Jimple IR from native code or encrypted code. Therefore, more sub-
stantial work is needed for increasing the rewriting usability.

4. Experimental Eevaluation

We use FlowDroid Arzt et al. (2014) for static program anal-
ysis. Our map Tables 1-7 ping from a statement into the re-

6 https://go0.gl/9FTnEL.
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Table 3

Evaluation of ICC relay and logging based rewriting on benchmark apps. The column
of Re. means the number of apps that can run without crashing after rewriting.
The column of In. means the number of apps that we can successfully invoke the
sensitive sink and observe the modified behaviors.

App Category #of ICC Exits  Logging Success  ICC Relay Success
ICCBench Re. In. Re. In.
icc_implicit_action 1 1 1 1 1
icc_implicit_category 1 1 1 1 1
icc_implicit_data 2 2 2 2 2
Icc_implicit_mix 3 3 3 3 3
icc_implicit_src_sink 2 2 2 2 2
icc_dynregister 2 2 2 2 2
DroidBench(IccTA)
iac_startActivity 1 1 1 1 1
icc_startActivity 2 2 2 2 0
iac_startService 1 1 1 1 1
iac_broadCast 1 1 1 1 1
Summary 16 16 16 16 14

Table 4

Percentages of malware and benign apps that ex-

hibit conditions A and B, respectively, where condi-

tion A is where the risk of the aggregate permission

of the riskiest sink is greater than the risk of the

sink’s self permission, and condition B is where the

risk of the aggregate permission of the riskiest sink

is greater than the risk of (aggregated) self permis-

sions of its corresponding sources.

Condition A Condition B
Malware 92% 88%
Benign 41% 40%
Table 5

A case study for sink Ty, T, T3 and Ty. T; represents the sink ID, C represents
the class name, M represents the method name, F represents the function
name. They have different risk scores with a same function android.util.Log:
int e under different classes and methods inside an app DroidKungFu3-
1cf4d*. E2E and SS aggregations identify the same sensitive sink. T; is the
riskiest sink with more critical taint flows and permissions.

T; T T T3 Ty

C com.ju6.a uk.co.
lilhermit. com.adwo. com.adwo.
android. adsdk.L adsdk.i
core.Native

M a() runcmd a() a()
_wrapper()

F Android.util.Log int e()

r(T;) 0.170 0.156 0.007 0

Table 6

Compare classification performance with two dif-
ferent measurements: 10-fold cross-validation and
ROC curve with AUC value. Random Forest achieves
highest accuracy in the four different classifiers. The
detection achieves 96% accuracy for distinguishing
malicious and benign apps.

10-fold CV ROC Curve

F-Score Accu AUC value
KNN 0.88 0.88 0.9786
SVM 0.91 0.92 0.9584
D.Tree 0.94 0.94 0.9661
R.Forest 0.96 0.96 0.9796

quested permission is based on PSCout (Au et al., 2012). It iden-
tifies 98 distinct permissions, and builds a one-to-one projection
from 15,099 distinct statements to the corresponding permissions.
Permission risk value is computed based on a machine learning
toolkit Sklearn. We use Androguard to extract permissions from
a large set of apps. The permission risk is computed by using the

Table 7

Top risky permissions with their normalized risk
values. Risk values are computed based on feature
importance from Random Forest classifier. Risk val-
ues are computed by the maximization of the capa-
bility to distinguish benign and malicious apps.

Permission Risk value
READ_PHONE_STATE 0.149
READ_SMS 0.107
RECEIVE_SMS 0.090
CHANGE_WIFI_STATE 0.080
WRITE_SMS 0.062
SEND_SMS 0.050
WRITE_CONTACTS 0.034
READ_CONTACTS 0.034
REC_BOOT_COMPLETED 0.029

App Genome dataset. It can also be computed based on Andro-
zoo Allix et al. (2016) dataset. We choose the Genome dataset
for the demonstration. The source and sink identifiers come from
Susi Rasthofer et al. (2014), which categorizes a large set of critical
sources and sinks. The graph analysis is based on a standard Java
graph library JGraphT. Unless stated otherwise, we use E2E ag-
gregation to evaluate the properties of malicious and benign apps.
The rewriting process is based on the assemble and disassemble
tool Soot. The app is automatically modified to enforce security
properties and recompiled into a new application. Our evaluation
is performed on 923 malicious apps from Genome dataset and 683
free popular benign apps from Google Play. The benign apps are
verified via the VirusTotal inspection’. These apps cover different
categories and contain complex code structures. As we show in
Figure 1, a single app contains 11 distinct sensitive sources and 19
distinct sensitive sinks on average.

We aim to answer the following questions through our evalua-
tion:

RQ1: Can ReDroid be used to rewrite real world gray-
ware and benchmark apps to defend vulnerabilities? (In
Section 4.1).

RQ2: Does the more complex E2E aggregation method pro-
vide high accuracy in ranking (In Section 4.5)?

RQ3: Are the ranking results interpretable, e.g., consistent
with manual validation (In Section 4.6) ?

RQ4: Is ReDroid flow-aware, i.e., being able to differentiate
sinks with identical method names (In Section 4.7)?

RQ5: How efficient is our maximum likelihood estimation
for the permission-risk mapping (In Section 4.8)?

RQ6: How much is our analysis overhead (In Section 4.9)?

.

4.1. RQ1: rewriting apps for security

We present the feasibility of ReDroid to detect and rewrite
real world grayware apps that previously have not been reported.
We also demonstrate the ICC-relay based rewriting technique.
Table 1 summarizes the security applications with our rewrit-
ing. We utilize benchmark apps to evaluate the feasibility of our
rewriting framework. The benchmark apps are proposed by Ic-
cTA (Li et al, 2015) and AmanDroid (Wei et al., 2014) to achieve
high coverage of various ICC vulnerabilities. We also use two real
world grayware apps to demonstrate the possibility to use rewrit-
ing to mitigate static analysis limitations.

7 https://www.virustotal.com/.
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4.2. Benchmark suits evaluation

We evaluate our ICC relay and logging rewriting strategies on
DroidBench(lccTA)® and ICC-Bench®. Apps in the ICC-Bench con-
tain ICC-based data leak vulnerabilities. DroidBench also involves
collusion apps through inter-app communications. Logging based
rewriting achieves 100% success rate in both rewriting and observ-
ing the modified behaviors. The reason why logging based rewrit-
ing achieves high accuracy is that the inspection of sensitive sinks
does not violate the program control and data dependences. All
the rewritten apps keep valid logic (without crashing) when we
run these apps with Monkey!?. We can detect private data in the
intent by inspecting the logs at runtime. It is worth to note that
the logging based rewriting is easily extended to support dynamic
checking. By implementing a sensitivity checking function for the
logged data, our logging based rewriting can terminate the sink in-
vocation at runtime. Therefore, the logging based rewriting is more
suitable to defend privacy leak vulnerabilities in stand-alone apps.

For ICC relay rewriting, we can successfully rewrite all the apps
but fail to redirect the intent in two cases. The failed two cases
belong to the icc_startActivity category, where the receiver com-
ponent InFlowActivity is protected and not exposed to compo-
nents outside the app. Our ICC relay cannot reinvoke the receiver
component from the outsider proxy app. Except the two cases, our
rewriting is able to relay and redirect all the intents in the inter-
app communications (IAC). Furthermore, implicit intents only spec-
ify the properties of receiver components by actions or categories.
Adversarial apps can intercept implicit intents by ICC hijacking. Our
ICC relay is capable to relay the implicit intent and inspect the re-
ceiver components. Therefore, the ICC relay is more suitable to de-
fend IAC-based vulnerabilities.

4.3. Grayware I-reflection and DexClassLoad

The grayware app belongs to the game category targeting Poke-
mon fans. It is a puzzle game based on the Pokemon-Go app. The
package called mobi.rhmjpuj.ghmjvk.sprvropjgtn appears on a
third-party market (AppChina Market). VirusTotal reports it as be-
nign''. However, we found multiple permissions registered in the
app, e.g., WRITE_EXTERNAL_STORAGE, GET_TASKS, PHONE_STATE,
SYSTEM, RESTART_PACKAGES and etc. This puzzle app is poten-
tially risky, as it appears to request for more permissions than nec-
essary and has dynamically loaded code (e.g., DexClassLoad) and
reflection methods (e.g., Java.lang.reflection).

We use ReDroid to perform the logging-based rewriting, aim-
ing to intercepting reflection and Dexloaded strings. For reflection,
we focus on strings related to get class and method names (e.g.,
Class.forName and Class.getMethod) before reflect.invoke is
triggered. For dynamic dex loading, we focus on strings before
they are passed into system.DexClassLoader.loadClass to dy-
namically load classes. The sensitive string parameters are logged
by ReDroid. We test the rewritten app on an emulator, using Mon-
key. During our execution (nearly 100 seconds), the reflection and
dynamically loaded classes showed no suspicious activities.

This customization demonstrates the monitoring of Java reflec-
tion and dynamic code loading regions through rewriting. The
monitoring of activities from rewritten apps can be automated
with minimal human interactions with pre-defined rules and fil-
ters. App customization provides opportunities to perform dynamic
monitoring of apps in production environments.

8 https://github.com/secure-software-engineering/DroidBench/tree/iccta.
9 https://github.com/fgwei/ICC-Bench.

10 https://developer.android.com/studio/test/monkey.html.

1 We submitted two grayware APKs to VirusTotal on Aug-10-2016.

4.4. Grayware Il — URL strings

The grayware app belongs to the wallpaper category target-
ing Pokemon-Go fans. It is a Pokemon wallpaper app. The pack-
age called com.vlocker.theme575¢30395* appears on a third-
party Android app market (Anzhi Market). The app was re-
leased leveraging the world-wide popularity of the Pokemon-Go
app. Only 1 out of 55 anti-virus scanners reports this app as
potentially risky. However, the wallpaper app contains a large
number of sensitive sinks as URL.init(), file.write(), execute-
Http(). It requests multiple permissions, including writing set-
tings: WRITE_EXTERNAL_STORAGE, modifying the file system:
FILESYSTEMS, intercepting calls: PROCESS_OUTGOING_CALLS, and
changing network state: CHANGE_NETWORK_STATE. These per-
missions enable the wallpaper app to read sensitive information
and modify the device state. We rewrote the URL related sink,
e.g., net.URL.init(String) to log string type data before calling
net.URL.openConnection(). We tested the rewritten app on an
emulator, using Monkey. By analyzing the logged events, we found
that private data (e.g., phone ID, IMEI) is leaked through a network
request, when a user clicks on an image. Similarly as above, the
monitoring of activities from rewritten apps can be automated.

The experimental results present the feasibility of the rewrit-
ing on both benchmark and real wold apps. We demonstrate two
real world use cases to apply ReDroid to mitigation static analysis
limitations.

4.5. RQ2: comparison of ranking accuracy

We compare our SS and E2E aggregation with the follow-
ing sink-ranking metrics in terms of their accuracy in identifying
the riskiest sinks. We compare our aggregation-based sink-ranking
metrics with 2 basic metrics: the in-degree metric and the sink-only
metric. In the in-degree metric, the sensitive sink’s risk score is de-
termined by its in-degree on a taint-flow graph. In the sink-only
metric, the sensitive sink’s risk score is determined by the risk of
this sink’s self permission.

We compare the result of the riskiest sink selection among sev-
eral risk metrics. The comparison is expressed as the result consis-
tencies, with respect to the E2E aggregation metric. For only 25%
of the malware apps, the sink-only approach produces consistent
riskiest sink result with E2E. This rate is higher at 47% for benign
apps. The in-degree approach clearly has a very low consistency
with E2E, i.e, they disagree on most rankings.

Although both SS and E2E agree to most cases, we found
they disagree on long taint-flow paths that have sensitive inter-
nal nodes. Internal nodes (i.e., non-sink and non-source) on taint
flows may also involve sensitive permissions. For example, in app
cc.halley.droid.qwiz, a sensitive taint flow as: findVlewbyld()
— getActiveNetworkinfo() — outputStream() — Log.e().
Both source findVlewbyld() and sink Log.e() are permission-
insensitive, however, the sensitive internal codes on the path in-
creases the sensitivity of the sink. getActiveNetworkInfo() is as-
sociated with permission NETWORK and outputStream() is asso-
ciated with permission EXTERNAL_STORAGE. The path is risky, be-
cause the internal nodes involve critical permission. Network state
information is propagated and may be potentially leaked along the
path. A lack of coverage on the internal sensitive nodes introduces
ranking inaccuracy. These results confirm that the comprehensive
coverage of permission-requiring nodes in E2E aggregation is use-
ful in practice.

Since E2E captures internal data flow dependences, it would be
expected for E2E to achieve a higher accuracy comparing to SS,
which is validated by our experiments. However, SS aggregation
is still useful to balance accuracy and performance. We found E2E
encounters additional 4% overhead in Section 4.9.
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We compare the permission propagation properties in mali-
cious and benign apps. We consider two conditions, A and B,
which are defined next. Table 4 presents the percentages of apps
that exhibit such conditions. The experimental results show a large
number of apps, especially malware, involve multiple ( > 2) sensi-
tive permissions on taint flows. They indirectly validate the impor-
tance of flow-based permission propagation and aggregation algo-
rithm.

Condition A is where the risk of the aggregate permission of
the riskiest sink is greater than the risk of the sink’s self permis-
sion.

Condition B is where the risk of the aggregate permission of
the riskiest sink is greater than the risk of the (aggregated) self
permissions of its corresponding sources.

4.6. RQ3: validation of sink priorities

Because of the lack of standard benchmarks!?, validating the
quality of sink priorities is challenging. We perform manual in-
spections by comparing the riskiest sinks with the descriptions for
known grayware and malware apps, to ensure our outputs are con-
sistent and compatible with English descriptions found in security
websites and articles. Due to the limited reports, we narrow down
our analysis in popular ads libraries and typical malware families.
These reported apps include varied behaviors, from network com-
munications to root privilege escalations. The in-depth literature
on grayware is scant, which increases the difficulty of this valida-
tion.

For grayware apps jp.co.jags and android.TigerJumping,
our analysis returns the risky method net.URL located in the
jp.Adlantis package. This finding is consistent with previous
report stating that Adlantis libraries cause binary-classification
based malware detection to fail (Tian et al., 2016).

For grayware apps org.ohny.weekend, org.qstar.guardx and
uk.org.crampton.battery, our analysis returns the risky sink ex-
ecute() located in an ad package com.android.Flurry. This ad li-
brary was previously reported to demonstrate excessive amounts
of unauthorized operations by researchers (Elish et al., 2013).

For malware in the Geinimi family (e.g., Geinimi-037c*.apk),
our analysis identifies the risky sink sendTextMessage. This sink
is confirmed by a security report'3. It is identified as a trojan to
send critical messages to a premium number.

For malware in Plankton family (e.g., Plankton-5aff*.apk), our
analysis returns the risky sink execute(HttpRequst) associated
with aggregate permission as READ_PHONE_STATE (from a source
getDeviceld()) and INTERNET. Our finding is consistent with the
report of this malware, which refers to it as the spyware with
background stealthy behaviors involving a remote server'4,

For malware in DroidDream (e.g., DroidDream-fed6*.apk),
our analysis returns the risky sink write(byte[]) in package an-
droid.root.setting. An external report cites this malware for root
privilege escalation'®. These manual validation efforts provide the
initial evidences indicating the quality of our ranking results.

4.7. RQ4: case study on sensitive taintflows

We use a real world app DroidKungFu3-1cfdd* to illustrate
the importance of risk propagation. This app has four distinct

12 We aim to release our dataset as a benchmark.

13 https://nakedsecurity.sophos.com/2010/12/31/geinimi-android-trojan- horse-
discovered)/.

14 https://www.csc.ncsu.edu/faculty/jiang/Plankton/.

15 https://blog.lookout.com/droiddream/.

sinks sharing the same method name. The method name is an-
droid.util.Log. This function requires no permission, i.e., self per-
mission is @. Yet, the four sinks have different risk scores computed
by our risk aggregation procedure. Table 5 presents the four sinks
with their risk scores.

The sink with the highest risk score involves three distinct
permissions READ_PHONE_STATE, LOCATION and INTERNET. The
sources getLine1Number(), getDeviceld(), getSubscribeld() and
getSimSerialNumber() are related to READ_PHONE_STATE per-
mission. The source getLastKnownLocation() and the internal
node getLongitude() are related to LOCATION permission. The ex-
ecute(HttpUriRequest) and openConnection() are related to IN-
TERNET permission. getintent() requires no permission. Although
these sinks share the same function name, the riskiest sink T; in-
volves more critical paths than the others.

» T;: getLastKnownLocation() — getLongitude() — Ty,
getLinelNumber() — T;, getDeviceld() — Ty, getSub-
scribeld()) — Ty, getSimSerialNumber() — T, exe-

cute(Http) — Tj.

« T,: execute(HttpUriRequest) —
— T,, getDeviceld() — T>.

+ T3: openConnection() — Ts.

» T4: getintent() — Ty.

T,, getLinelNumber()

4.8. RQ5: quality of likelihood estimation

Our machine learning techniques enable to compute risk scores
of permissions, which maps one particular permission to a quan-
titative and computable score value. We test four different ma-
chine learning approaches: Support Vector Machine (SVM), k-
nearest neighbors (KNN), Decision Tree (D.Tree) and Random For-
est (R.Forest). The dataset is originally labeled for Android mal-
ware classification (Tian et al., 2016). We reuse the dataset for our
risk score computation. The benign apps are collected from offi-
cial app market Google Play. The malicious apps are selected from
popular malware database Genome and VirusShare. It is worth to
note that our machine learning technique is aimed to compute the
risk scores of permissions, not for malware classification. The per-
missions of an app are transformed into features for each classi-
fier. Each permission corresponds to a certain position in a feature
vector, where 1 means the app registers for this permission and
0 means the app does not register for this permission. We apply
two standard evaluation measurements: 10-fold cross-validation
and ROC curve. 10-fold cross-validation divides the dataset into 10
portions. Each time, the 9 portions of them are used as the training
set and the rest of the data is used as the testing set.

We compute the average accuracy rate and F-score to evalu-
ate these classifiers. Receiver operating characteristic (ROC) curve
draws a statistic curve and computes an area under curve (AUC)
value. A higher AUC value represents a better classification capac-
ity.

The experimental results validate the hypothesis that permis-
sions are useful as the features to distinguish the benign and ma-
licious apps. Random Forest maximizes the accuracy in the classi-
fication.

Table 6 presents the detection accuracy of four different classi-
fiers. Random Forest achieves the highest accuracy and AUC value
among these four classifiers. In ReDroid, we calculate the risk value
for each permission in the random forest classifier. Table 7 presents
top risky permissions with their normalized risk values. We fo-
cus on the permissions that are related to private data and phone
state reading. Specifically, READ_PHONE_STATE achieves highest
risk value as 0.149. The reason why READ_PHONE_STATE is most
sensitive is because it enables an app to access private phone in-
formation, e.g., device Id and current phone state. Malicious apps
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Fig. 4. Runtime of permission propagation in Algorithm 1 on malware and benign
apps under SS and E2E aggregation functions, respectively. Both aggregation meth-
ods have a low average runtime of around 0.1 second, with E2E aggregation slightly
slower than SS.

abuse this permission for collecting privacy information. These
sensitive permissions have higher risk values, because they are as-
sociated with malicious behaviors. In our quantitative analysis, the
risk values of permissions are used as the input for initialization of
sensitive nodes.

4.9. RQ6: analysis overhead

We compare the runtime of Algorithm 1 under two SS and E2E
aggregations in Fig. 4.1 Experiments were performed over both
benign and malware datasets on a Linux machine with Intel Xeon
CPU (@3.50GHz) and 16G memory. Fig. 4 presents the four runtime
distributions in log scale. The runtime is focusing on the permis-
sion propagation analysis with the input of the transitive reduced
graph and the output of sorted sinks. Both E2E and SS aggregations
have a similar low overhead of around 0.1 second. E2E has an ad-
ditional 4% overhead than SS on average. The average runtime of
malware is larger than that of benign apps, because malware apps
typically have more sensitive sinks and complex graph structures.
The performance results confirm the efficiency of our graph algo-
rithm.

We evaluate rewriting performance based on the file size over-
head. The benchmark apps come from DroidBench and ICC-Bench
in Section 4.1). On average, both logging and ICC relay based
rewriting achieves <1 % size overhead, which is relatively nego-
tiable. Our approach is very efficient in rewriting benchmark apps.
We also discuss the sources that introduce size overhead in prac-
tical rewriting scenarios. 1) The complexity of rewriting. If the
rewriting strategy is very complex, e.g., dynamic checking with
multiple conditions, we need to implement more rewriting func-
tions. 2) The number of impacted code in rewriting. If we need to
rewrite a large number of sinks in an app, the rewriting overhead
increases significantly. Therefore, with the sensitive sink prioritiza-
tion, we could optimize the number of sinks for rewriting based
on the sensitivity ranking.

4.10. Summary of experimental findings

We summarize our major experimental findings as follows.

1) We give multiple demonstrations of app customization for
security, including inter-app ICC relay and logging. We suc-
cessfully detect and rewrite recently released Pokemon-Go
related grayware, which enables the monitoring of runtime
activities involving Java reflection and dynamic code loading
and URL strings.

16 Runtime measured excludes FlowDroid and maximum likelihood estimation.

2) Our risk-ranking algorithm is efficient for real world apps.
Given a taint-flow graph, our graph algorithm with E2E ag-
gregation has an additional 4% overhead than the SS aggre-
gation, but both can complete within 0.1 second for most
real world apps.

3) Manual inspections show that our risk ranking results are

consistent with the English descriptions of apps, for a small

set of malware apps and grayware apps. This consistency in-
dicates the effectiveness of sink prioritization algorithms.

SS and E2E aggregations are consistent in finding the riskiest

sinks on most apps, with E2E being slightly more compre-

hensive for long tainted flows with sensitive internal nodes.

They substantially outperform sink-only and in-degree ap-

proaches. Malware sinks have more aggregate permissions

and risk scores than those of benign apps. In 92% of mali-
cious apps, the aggregate permission of the riskiest sink is
greater than the risk of the sink’s self permission, only in

41% of benign apps, the aggregate permission of the riskiest

sink is greater than the risk of the sink’s self permission.

4

~

5. Related work
5.1. Android taint flow analysis

The vulnerability of apps can be abused by attackers for priv-
ilege escalation and privacy leakage attacks (Bugiel et al., 2012).
Researchers proposed taint flow analysis to discover sensitive data-
flow paths from sources to sinks. CHEX (Lu et al., 2012) and An-
droidLeaks (Gibler et al., 2012) identified sensitive data flows to
mitigate apps’ vulnerability. Bastani et al. described a flow-cutting
approach (Bastani et al., 2015). However, their work only provides
theoretical analysis on impacts of a cut, without any implemen-
tation. DroidSafe (Gordon et al., 2015) used a point-to graph to
identify sensitive data leakage. FlowDroid (Arzt et al., 2014) pro-
posed a static context- and flow-sensitive program analysis to track
sensitive taint flows. These solutions address the privacy leakage
by tracking the usage of privacy information. Our sink ranking is
based on static analysis and our prototype utilizes FlowDroid.

5.2. Android rewriting

The app-retrofitting demonstration in RetroSkeleton (Davis and
Chen, 2013) aims at automatically updating HTTP connections to
HTTPS. Aurasium (Xu et al., 2012) instruments low-level libraries
for monitoring functions. Reynaud et al. (2012) rewrote an app’s
verification function to discovered vulnerabilities in the Android
in-app billing mechanism. AppSealer Zhang and Yin (2014) pro-
posed a rewriting solution to mitigate component hijacking vul-
nerabilities, the rewriting is to generate patches for functions with
component hijacking vulnerabilities. Fratantonio et al. (2015) used
rewriting to enforce secure usage of the Internet permission. Be-
cause of the special goal on INTERNET permission, the rewriting
option cannot be applied to general scenarios. The rewriting tar-
gets and goals in these tools are specific. Furthermore, our rewrit-
ing is more feasible than existing rewriting frameworks by sup-
porting both ICC-level and sink-based rewriting with data flow
analysis.

5.3. Malware detection with quantitative reasoning

Our work is also related to malware classification with
quantitative reasoning. Researchers Wiichner et al. (2014) and
Wuchner et al. (2015) regarded the quantitative value among
difference processes as the total number of transferred re-
sources based on the OS-level system logs. These numbers
are used to better distinguish malicious and benign processes.
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PRIMO (Octeau et al., 2016) used probabilities to estimate the like-
lihood of implicit ICC communications. The triage of ICC links is
based on the true positive likelihood of links. MR-Droid (Liu et al.,
2017) measured inter-app communication properties with static
analysis. DIAL-Droid (Bosu et al., 2017) performed static analysis on
millions of apps to discover suspicious ICC link communications.
DroidCat (Cai et al., 2018) utilized app-level profiling to identify
malicious behaviors. Peng et al. (2012) used permissions to de-
tect Android malware. The permission risk values are generated
from probabilistic Bayesian-Network models. In contrast, we com-
pute permission risk values by maximizing the classifier’s capacity
of detecting malicious and benign apps. The risk value computa-
tion in our approach associates a permission’s correlation to mali-
cious apps. These approaches are not compatible with risky-sink-
guided rewriting as they are not designed for security customiza-
tion of off-the-shelf apps. In our model, sensitive sinks are prior-
itized based on the aggregate risk scores. Our analysis is focused
on quantitatively ranking different sensitive sinks. Our results val-
idate the effectiveness of ranking sinks with machine-learning-
based risk value computation and graph-based permission prop-
agation.

5.3.1. Defense of vulnerabilities

Grayware or malware with vulnerabilities can result in pri-
vacy leakage. Pluto (Demetriou and Merrill, 2016) discovered the
vulnerabilities of the abuse in ads libraries. In order to defend
vulnerabilities, many approaches have been proposed to track
dynamic data transformation or enforce security policy. Taint-
Droid (Enck et al., 2014) adopted dynamic taint analysis to track
the potential misuse of sensitive data in Android apps. Cry-
poGuard (Rahaman et al., 2019) used static slicing to identify se-
curity vulnerabilities. Elish et al. (2018) used static program analy-
sis to approximate suspicious inter-application communication vul-
nerabilities. Merlin (Banerjee et al., 2009) used path constraints
to infer explicit information specifications to identify security vi-
olations. AspectDroid (Ali-Gombe et al., 2016) used static instru-
mentation and automated testing to detect malicious activities. We
demonstrate the defense of vulnerabilities by rewriting apps in the
experiments. Our quantitative rewriting is operated on application
level with rewriting. We rank flow-based sinks by the graph prop-
agation with permission-based risk values. We specialize different
rewriting rules to defend vulnerabilities.

5.3.2. Program repairing

Program repairing is related to our work since it provides
solutions for generating patches. The patches are used to iden-
tify bugs for program repairing. GenProg (Le Goues et al., 2012;
Weimer et al., 2009) used genetic programming algorithms to
discover patches that lead to bugs. PAR (Kim et al., 2013) used
human-defined patch templates to learn patterns for fixing bugs.
Prophet (Long and Rinard, 2016) used a probabilistic model to
characterize the properties of correct code patches. The trained
model is used to detect defects in real world apps. Our approach
differs from these approaches in the model design. Our approach
is designed for enhancing Android specific security with rewriting.
Our approach enforces security properties on the sensitive sinks
from the computation of graph-based permission propagation.

6. Conclusions and future work

In this paper, we present two new technical contributions for
Android security, a quantitative risk metric for evaluating sensitive
flows and sinks, and a risk propagation algorithm for computing
the risks. We implement a prototype called ReDroid, and demon-
strate the feasibility of both ICC-relay and logging-based rewriting
techniques.

ReDroid is a tool for (1) quantitatively ranking sensitive data
flows and sinks of Android apps and (2) customizing apps to en-
hance security. Our work is motivated by apps that appear mostly
benign but with some security concerns, e.g., risky flows incom-
patible with organizational policies, aggressive ad libraries, or dy-
namic code that cannot be statically reasoned. We extensively eval-
uated and demonstrated how sink ranking is useful for rewriting
grayware to improve security. Our risk metrics are more general
and can be applied in multiple security scenarios. For future re-
search, we plan to focus on supporting automatic rewriting with
flexible security policy specifications.
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