
Computers & Security 92 (2020) 101750

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Prioritizing data flows and sinks for app security transformation

�

Ke Tian

a , ∗, Gang Tan

b , Barbara G. Ryder a , Danfeng (Daphne) Yao

a , 1

a Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060 United States
b Department of Computer Science and Engineering, Penn State University, University Park, PA 16802 United States

a r t i c l e i n f o

Article history:

Received 5 June 2018

Revised 1 September 2019

Accepted 6 February 2020

Available online 7 February 2020

Keywords:

Android security

Application rewriting

Sink prioritization

Program analysis

Machine learning

Data-flow analysis

a b s t r a c t

There have been extensive investigations on identifying sensitive data flows in Android apps for detect-

ing malicious behaviors. Typical real world apps have a large number of sensitive flows and sinks. Thus,

security analysts need to prioritize these flows and data sinks according to their risks, i.e., flow ranking

and sink ranking. In this paper, we present an efficient graph-algorithm based risk metric for prioritizing

risky flows and sinks in Android grayware apps. The new risk metric is quantitative and can differentiate

the sensitivities of flows and sinks in an app. In the experiments, our risk prioritization produces order-

ings that are highly consistent with manual inspection. To enable post-detection security enforcement of

sensitive sinks, we also present an automatic rewriting framework that utilizes the above prioritization

technique. Our rewriting strategies are more feasible than the state-of-art solutions by supporting flow-

and sink-based rewriting. We implement our prototype as ReDroid. ReDroid is designed for security ana-

lysts who manage organizational app repositories and customize third-party apps to satisfy organization

imposed security requirements. We use ReDroid to rewrite both benchmark apps and real world gray-

ware.

© 2020 Elsevier Ltd. All rights reserved.

1

c

b

s

(

e

a

f

p

g

a

a

r

a

o

t

N

r

r

p

e

s

I

n

a

c

b

m

a

i

c

e

a

u

h

0

. Introduction

The research on mobile app security has been consistently fo-

used on the problem of how to differentiate malicious apps from

enign apps. Static data-flow analysis has been widely used for

creening Android apps for malicious code or behavioral patterns

e.g., Elish et al., 2015; Gibler et al., 2012; Gordon et al., 2015; Lu

t al., 2012). In addition, the use of machine-learning methods en-

bles automatic malware recognition based on multiple data-flow

eatures (e.g., Arp et al., 2014; Tian et al., 2016).

These solutions are useful for security analysts who manage

ublic app marketplaces or organizational app repositories. An or-

anizational app repository is a private app sharing platform within

n organization, the security of apps on which is regulated and

pproved by the organization based on its security policies and

estrictions. For example, the organization may be a government

gency where employees with certain security clearance levels are
� A preliminary version of the work appeared in the proceedings of workshop

n Forming an Ecosystem Around Software Transformation (FEAST), collocated with

he ACM Conference on Computer and Communications Security (CCS). Dallas, TX.

ov. 2017. (Tian et al., 2017).
∗ Corresponding author.

E-mail addresses: ketian@cs.vt.edu (K. Tian), gtan@cse.psu.edu (G. Tan),

yder@cs.vt.edu (B.G. Ryder), danfeng@cs.vt.edu (D. (Daphne) Yao).
1 Member, IEEE.

d

t

t

c

S

z

(

a

ttps://doi.org/10.1016/j.cose.2020.101750

167-4048/© 2020 Elsevier Ltd. All rights reserved.
equired to install apps from the specified repository to their work

hones. The organization may also be a company, where employ-

es possessing highly sensitive proprietary information and trade

ecrets are required to install apps compliant with the company’s

T security policies.

In these scenarios, a security analyst is often faced with a

ew type of apps, besides malware and benign apps. These apps

re mostly benign, but with undesirable behaviors that are in-

ompatible with the organization’s policies. Such apps or app li-

raries may be from trustworthy companies or developers, and

ay have passed standard conventional screenings. However, the

pp contains potentially sensitive data flows that are incompat-

ble with the organization’s policies. As requesting developers to

hange their code is oftentimes infeasible, current practices are to

ither reject the app or reluctantly accept it, despite its undesir-

ble security behaviors. A similar dilemma is faced by individual

sers as well. For example, a privacy-conscious user may wish to

ynamically restrict an app’s location sharing at runtime according

o her specific preferences.

Our work is motivated by this new need of security customiza-

ion of apps. A general-purpose framework for customizing the se-

urity of off-the-shelf apps would be extremely useful and timely.

uch a framework involves several key operations: (1) [Prioriti-

ation] to identify problematic code regions in the original app,

2) [Modification] to modify the code and repackage the app. In

ddition, post-rewrite monitoring may be needed, if the access or

https://doi.org/10.1016/j.cose.2020.101750
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101750&domain=pdf
mailto:ketian@cs.vt.edu
mailto:gtan@cse.psu.edu
mailto:ryder@cs.vt.edu
mailto:danfeng@cs.vt.edu
https://doi.org/10.1016/j.cose.2020.101750

2 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

i

fl

m

m

f

2

p

p

d

t

T

(

i

i

(

a

g

3

(

i

a

2

fi

s

d

t

p

c

d

2 ReDroid is short for Re writing An Droid apps.
3 Flow ranking is a special case of sink ranking in our Algorithm 1 .
sharing of sensitive data is determined dynamically. We have made

substantial progress towards these goals. We report several new

techniques, including quantitative risk metrics for ranking sensitive

data flows and sinks in Android apps.

Our major contribution is to propose a new prioritization algo-

rithm to rank sensitive sinks for apps. Our approach is capable to

capture internal data dependencies among sensitive sinks and pro-

vide sinks with evidence-based quantification of risks. The algo-

rithm consists of two major components: a taint-flow based sensi-

tivity aggregation and a machine learning based sensitivity quan-

tification. Comparing with existing solutions that only aim to de-

tect taint flows (Arzt et al., 2014) of sensitive sinks, our goal is

to enable both sensitivity aggregation and quantitative ranking of

sensitive sinks.

To achieve our goal, we first define a quantitative risk metric for

sensitive flows and sinks in a taint-flow. For sensitive sinks, the

metric summarizes all the sensitive flows that a sink is involved

in. We design an efficient graph algorithm that computes the risks

of all sensitive sinks in time linear to the size of a directed taint-

flow graph G , i.e., O (| E |), where | E | is the number of edges in G .

(A taint-flow graph is a specialized data-flow graph that only con-

tains data flows originated from predefined sensitive sources and

leading to predefined sensitive sinks.) The risk value of a sink is

calculated based on all the sensitive API calls made on the sensi-

tive data flows leading to a sink. A sink may be associated with

multiple such sensitive flows.

In order to rank risky sinks, we map sensitive API calls to quan-

titative risk values, using a maximum likelihood estimation ap-

proach through parameterizing machine-learning classifiers. These

classifiers are trained with permission-based features and a labeled

dataset. Then, we use the risk metric to identify and rewrite the

sinks associated with the riskiest data flows without reducing the

app’s functionality.

Our work also moves a step towards sink-specific rewriting by

extending app rewriting solutions for Android. Rewriting is re-

garded as post-detection mitigation to enforce security policies. Ex-

isting solutions are specific to certain code issues and are not de-

signed for our security customization scenarios (Davis and Chen,

2013; Fratantonio et al., 2015). Due to the specific rewriting needs,

the target locations to be rewritten are relatively straightforward to

identify. Most of the existing solutions use direct parsing for code-

region identification. Yet, oftentimes it is unclear which regions of

the code need to be modified in order to achieve the best risk re-

duction. If additional post-rewrite monitoring is required at run-

time, then modifying every single sensitive flow or sink may sub-

stantially slow down the performance. Since the rewriting process

at the binary or bytecode level is error-prone, minimizing the im-

pact of rewriting on the original code structure is also important.

We demonstrate a practical Jimple-level code rewriting tech-

nique that can verify and terminate the riskiest sink at runtime .

For the Android-specific inter-app inter-component communication

(ICC) mechanism, we propose ICC relay to redirect an intent. We

replace the original intent with a relay intent; the relay intent then

redirects the potentially dangerous data flow to an external trusted

app for runtime security policy enforcement. The communication

between the modified app and the trusted app is via explicit-intent

based ICC. The trusted app is where data owner may implement

customized security policies.

The technical contributions of our work are summarized as fol-

lows.

1) We present a general sink-ranking approach that is useful

for prioritizing sensitive data flows in Android apps. Specif-

ically, our approach relies on two main technical enablers.

The one enabler is a quantitative risk metric for sensitive
flows and sinks in taint-flow graphs that is based on ma-

chine learning techniques.

The other enabler is an efficient O (| E |)-time taint-graph

based risk-propagation algorithm that ensures the maximum

coverage of all sensitive sources and internal nodes of a sink.

2) We implement a proof-of-concept prototype called Re-

Droid 2 . We use ReDroid to demonstrate the usage of rewrit-

ing in defending ICC hijacking and privacy leak vulnera-

bilities. Our rewriting supports flow-based and sink-based

rewriting, which is more feasible beyond the state-of-art

rewriting solutions.

3) We have performed an extensive experimental evaluation on

the validity of permission risks and sink rankings. Our man-

ual inspection indicates that top risky sinks found by Re-

Droid are consistent with external reports. We compare var-

ious permission-based and non-permission-based risk met-

rics, in terms of their abilities to identify top risky sinks.

4) We demonstrate the feasibility and effectiveness of both

inter-app ICC relay and logging-based rewriting techniques

in testing DroidBench and ICC-bench apps. We also success-

fully customized recently released grayware. The customized

app enables one to monitor runtime activities involving Java

reflection, dynamic code loading, and URL strings.

Our ranking algorithm supports both sink ranking and flow rank-

ng 3 . However, due to the interdependencies of flows, cutting a

ow in the middle may cause much more runtime errors than re-

oving the flow’s end-point sink. In addition, a sink aggregates

ultiple flows, making them riskier than a single flow. Thus, we

ocus on rewriting sinks.

Comparing with the previous conference version (Tian et al.,

017), we substantially extended the paper from 7 pages to 13

ages by adding new content, and providing details of our ap-

roach and evaluation.

We summarize the differences in three aspects: (1) we con-

ucted new experiments that evaluated and compared the effec-

iveness of our ranking and rewriting approach (Section 4.1 - 4.9).

he experimental results validate the efficiency of our approach

 Section 4.5 and 4.6). We also provided case studies on the abil-

ty to prioritizing sensitive flows (Section 4.6) and machine learn-

ng accuracy for transforming permission strings into risk values

 Section 4.8). (2) We incorporated the pseudocode to describe our

lgorithms on computing risk scores of sinks from the risk propa-

ation (Algorithm 1). We added new definitions (Definition 2 and

 for aggregation notations) to elaborate our algorithm in details.

3) We substantially extended most part of the paper to improve

ts readability, added new related work, and provided details of our

pproach and implementation.

. Overview

Before we give the overview of our approach in Section 2.2 , we

rst show a few examples to motivate the needs for ranking sen-

itive data flows and rewriting apps for security.

We target data leaks in our current threat model, specifically

ata flows in an app that may result in the disclosure and exfil-

ration of sensitive data. With proper source-sink definitions, the

roposed sink-ranking and rewriting-based monitoring framework

an be extended to support other security applications, which is

iscussed in Section 3.9 .

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 3

Algorithm 1 Pseudocode for computing risk scores of sinks from

the risk propagation. The function getSelfPermission() is used to

compute the self risk. The function getRiskValue() is used to com-

pute the risk value for each permission with machine learning.

1: Input: The sensitive taint-flow graph G a program.
2: Output: The sink set T with risk scores.
3: function PerAggre (Graph G (V, E, S, T) , aggregation

function agg _ f unc)
4: V sort = Topological_Sort (G)
5: G

′ (V, E ′ , S, T) = Transitive_Reduction (G, V sort)
6: /* P is a hashmap representing the aggregate permis-

sions for all nodes in G , and r is the hashmap repre-
senting the risk score for all nodes in G */

7: for each v ∈ V do

8: P [v] = ∅ , r[v] = 0
9: end for

10: if agg _ f unc == E2 E then

11: /* In case of E2E aggregation */
12: for each v ∈ V do

13: P [v] = getSelfPermission (v)
14: end for
15: else agg _ f unc == SS
16: /* In case of SS aggregation */
17: for each v ∈ S ∪ T do

18: P [v] = getSelfPermission (v)
19: end for
20: end if
21: /* Propagation of sensitive permissions */
22: for (i = 1 → V sort .size ()) do

23: v = V sort [i]
24: for e = { v 1 → v } ∈ G

′ do

25: P [v] = P [v] ∪ P [v 1]
26: end for
27: if v ∈ T then

28: for each p ∈ P [v] do

29: /* Map permissions to risk values */
30: r[v]+ = getRiskValue (p)
31: end for
32: end if
33: end for
34: return r
35: end function

2

2

i

h

c

c

O

a

o

a

t

u

Table 1

The vulnerabilities that can be identified by our rewriting framework. Our

rewriting framework can identify vulnerabilities in stand-alone apps and

vulnerabilities in app communication channels.

Type Vulnerability Our framework addresses

Inter-app Com. ICC hijacking �

(IAC) Collusion �

Stand-alone Privacy Leak �

App Reflection �

String Obfuscation �

Dynamic Code Loading �

2

d

d

A

u

S

s

s

l

o

o

d

b

fl

a

i

e

s

2

p

b

t

b

s

c

s

F

e

m

2

p

t

s

o

fi

s

b

o

s

a

i

i

.1. Motivation and design choices

.1.1. Security usage of App rewriting

Table 1 summarizes the security applications with our rewrit-

ng. Our rewriting can identify multiple vulnerabilities such as ICC

ijacking and privacy leak. We rewrite apps to enforce different se-

urity policies, these security policies help a security analyst effi-

iently detect vulnerable activities and offer security mitigations.

ur rewriting framework can prevent vulnerabilities in stand-alone

pps and vulnerabilities in app communication channels. We elab-

rate our rewriting feasibility with more details in Section 4.1 .

We envision two types of use scenarios for app rewriting tools

s follows. Both scenarios are possible. However, before rewriting

ools can be made fully reliable, automated, and usable, the second

se scenario is unlikely.

1) Used by security analysts who manage app repositories. Secu-

rity analysts retrofit off-the-shelf apps for organizational app

repositories to make them comply with organizational secu-
rity policies. Employees download retrofitted apps into their

regulated work phones.

2) Used by individuals to customize privacy . Users have specific

data-access preferences that cannot be satisfied by an off-

the-shelf app and choose to retrofit the app.

.1.2. Flow and sink prioritizing

Apps typically have a large number of sensitive flows. In or-

er to show the importance of ranking these flows, we con-

uct an experiment on 100 apps that are randomly selected from

ndroid Malware Genome Database (Zhou and Jiang, 2012). We

se FlowDroid Arzt et al. (2014) for static program analysis and

uSi Rasthofer et al. (2014) for labeling sensitive sources and

inks. Our sensitive source and sink definitions follow SuSi , where

ources are calls to read sensitive data and sinks are calls that can

eak sensitive data. Fig. 1 a shows the distribution of the number

f sensitive flows. Fig. 1 b presents the distribution of the number

f source and sink nodes. A single app can contain more than 20

istinct sinks. A data flow is sensitive, if any node on its path is la-

eled sensitive. These statistics indicate the complexity of sensitive

ows and sinks in a single app. An appropriate prioritizing mech-

nism would help a security analyst to facilitate the app monitor-

ng, e.g., identifying most sensitive flows and sinks. The motivating

xperiment indicates the need for prioritizing sensitive flows and

ensitive sinks according to systematic quantitative metrics.

.1.3. Flow-based sink ranking vs. flow ranking

The risk of a sink should be associated with all the sensitive

aths flowing into that sink, which usually involves many nodes

esides the sink itself. A sink may be reachable by multiple sensi-

ive flows. Therefore, the risk factors from all these flows need to

e aggregated in order to completely reflect the risk of a sink. Our

ink ranking is computed on flows, i.e., flow-based sink ranking . In

omparison, computing the risk of a single flow is simpler. It can

erve as a basic building block for computing the risk of a sink.

low ranking is a special case of our sink ranking algorithm. How-

ver, flow ranking should not be used to guide the rewriting, as it

ay provide an incomplete risk profile of the code.

.1.4. Sink rewriting vs. flow rewriting

Once the most sensitive sink is identified, rewriting that end-

oint region likely produces a minimal impact on the app’s func-

ionality. Revising a flow (e.g., cutting an internal edge) requires

ubstantial more engineering efforts, due to the interdependency

f flows. However, in some scenarios, flow rewriting may be more

ne-grained than sink rewriting. For example, a sink may be as-

ociated with n flows, only one of which is sensitive and needs to

e modified. The other n − 1 flows do not involve sensitive data

r operations and can be left intact. Our logging based rewriting

upports both flow- and sink-based rewriting. This strategy can log

nd inspect each node along a data flow. In contrast, the ICC relay

s more focusing on sinks (e.g., startActivity) with ICC vulnerabil-

ties.

4 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

Fig. 1. The example for the distribution of sensitive flows and sources and sinks.

Fig. 2. An example of a taint-flow graph. Nodes represent function calls or instruc-

tions. Permissions (shown at the bottom of a node) associated with the functions

(shown at the top of a node) are shown. Directed edges represent data dependence

relations.

w

s

s

p

r

s

n

q

s

i

2

r

t

d

i

t

D

s

fl

v

m

g

t

P

a

c

a

o

T

g

t

i

f

g

r

(

w

p

a

2.1.5. Sensitive API-based risk vs. permission-based risk

These two risk metrics are equivalent in our model. We map the

sensitive API calls of a data-flow path into their corresponding An-

droid permissions, as shown in Fig. 2 . For example, getLocation

API call is mapped to LOCATION permission. We then quantify per-

missions’ risks through statistical methods. Our risk-computation

approach can be extended to support other types of risk definitions

(e.g., by leveraging data-flow features in Android malware classi-

fiers such as (Arp et al., 2014; Elish et al., 2015)).

2.1.6. A toy example

In Fig. 2 , we use a toy taint-flow graph (simplified from Gold-

Dream) to illustrate several possible sink-ranking methods and

how they impact security. The figure contains two sensitive source

(s 1 and s 2), three sensitive sinks (t 1 , t 2 , and t 3) and several inter-

nal nodes, one of which involves a sensitive function. Android per-

missions associated with the functions are shown at the bottom

of nodes. Consider two approaches for ranking the risks of sensi-

tive sinks: a sink-only approach and a source-sink approach. In the

straightforward sink-only approach, the risk level of a sink is deter-

mined only by the sink’s function name and the permission it re-

quires. This approach clearly cannot distinguish two different sinks

sharing the same function name, e.g., t 1 and t 3 . It is also unclear

how to compare the risk level of t 1 ’s permission and t 2 ’s permis-

sion.

In a more complex source-sink approach, the risk of a sink is

determined not only by the sink itself, but also by all of its sensi-

tive sources. For example, in Fig. 2 the risk of sink t 2 is associated

with the permission set (PHONE_ST , RECEIVE_SMS , and INTERNET),
here the first two permissions are from the two sources s 1 and

 2 , and the last permission is from the sink itself. Although this

ource-sink approach also needs a method to quantify the risks of

ermissions, it is more desirable than the sink-only method. The

eason is that the source-sink approach more accurately reflects

ensitive flow properties.

This example indicates that a reasonable sink-ranking algorithm

eeds (1) to capture internal data dependences; (2) evidence-based

uantification of risk. In ReDroid, we evaluate and compare several

ink ranking mechanisms in terms of how they impact app rewrit-

ng.

.2. Definitions

We describe the workflow of our flow-ranking analysis for sink

anking and rewriting. Our new capability is the efficient compu-

ation of end-to-end flow risks, quantifying risks associated with

ata-flow dependence. We first give several key definitions used

n our model, including self risk, aggregate risk, and the standard

aint-flow graph.

efinition 1. Taint-flow graph is a directed graph G (V, E, S, T) with

ource set S ⊆V and sink set T ⊆V and S ∩ T = ∅ , where for any flow

f = { v 0 , v 1 ... v n } in G, v 0 ∈ S and v n ∈ T and e = { v i → v j } ∈ E. The

ow f represents the taint-flow path from the source v 0 to the sink

 n , which is denoted as f = { v 0 � v n } .
The taint-flow graph is a subgraph of the data-flow graph. Our

odel considers two types of risks for each node in the taint-flow

raph, self risk and aggregate risk , which are defined next.

Self Risk . Given a taint-flow graph G (V, E, S, T) and a node v ∈ V ,

he self risk P s [v] of v is the risk associated with v ’s execution.

 s [v] = ∅ , if no risk is involved.
Aggregate risk . Given a sink t ∈ T in the taint-flow graph G , the

ggregate risk P [t] of sink t is a set that represents the risks asso-

iated with the taint flows of t under some aggregation function

gg_func() .

Our instantiation of the risk metric is based on the analysis

f risks associated with sensitive APIs on data flows into a sink.

herefore, self risk is also referred to as self permission , and aggre-

ate risk is also referred to as aggregate permission for the rest of

he paper. We compute risk values of permissions through a max-

mum likelihood estimation approach.

In Section 3 , we present two instantiations of the aggregation

unction agg_func() . One is a straightforward source-sink (SS) ag-

regation, where the aggregate risk of a sink is the union of self

isks of the sink and its source(s). The other is the end-to-end

E2E) aggregation, which outputs all the permissions associated

ith all the taint flows that the sink is in. Our experiments com-

are how these two aggregation functions impact the flow-ranking

ccuracy.

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 5

Fig. 3. Our workflow for prioritizing risky sinks.

2

g

N

F

l

c

t

m

3

a

a

t

fi

s

t

O

p

S

3

a

3

F

r

f

t

d

s

w

p

v

T

s

d

s

3

m

g

t

d

b

g

T

.3. Workflow

Fig. 3 shows our workflow for sink ranking with graph propa-

ation. We briefly describe these operations.

1) Taint-flow construction . We generate the taint-flow graph

that describes sensitive data flows from sources to sinks.

Nodes in the taint-flow graph are mapped to their self risk

values, as defined above. This mapping process may vary, if

different risk aggregation function is used. We demonstrate

two such functions, source-sink aggregation and end-to-end

aggregation.

2) Risk propagation to sinks. The operation outputs the ag-

gregate risk set for each sensitive sink. The propagation

needs to efficiently traverse the data-dependence edges from

sources to sinks. The key in designing the propagation al-

gorithm is to visit each graph edge a constant number of

times, realizing O (| E |) complexity, where | E | is the size of the

graph edges. We present our solution in Section 3.1 .

3) Permission-Risk Mapping . We follow a maximum likelihood

estimation approach to produce a risk value for each per-

mission empirically. Intuitively, the risk of a permission

is high, if the permission is often requested by malware

apps, but rarely by benign apps. With labeled training data

and machine learning (ML) classifiers with permission-based

features, we automatically map permissions to risk values

r ∈ [0, 1]. We present our ML-solution in Section 3.5 . 4
4 Other permission-risk quantification techniques may be used, e.g., Bayesian-

etwork based Android permission risk analysis (Peng et al., 2012).

t

b

F
4) Flow-based Sink Prioritization . To obtain the risk score of a

sink, one needs to quantify the risk associated with the

sink’s aggregate permission. The risk score of a sink is com-

puted by its correlated permissions with risk values. We

rank the sinks according to their risk scores. The risk score

of sinks captures its importance and security properties in

the app.

Risk ranking guides the app customization for risk reduction.

or example, one can choose to intercept the riskiest sink and re-

ay the flow to a trusted runtime monitor. We describe several se-

urity customization techniques in Section 3.6 . Besides rewriting,

he sink-ranking technique is also useful for static analysis based

alware detection.

. Risk metrics and computation

We aim to quantitatively compute and rank risks of sinks in

n app. Our approach is to construct the sensitive taint-flow graph

nd compute the set of permissions associated with each flow

hrough graph propagation algorithms. The aggregation algorithms

nd the accumulated risk factors (naming permissions) of a source-

ink path in O (| E |) complexity, where | E | is the number of edges in

he graph. Our risk is based on the permissions of sensitive APIs.

ur pseudocode is given in Algorithm 1 in the Appendix.

Next, we describe technical details of our operations. We

resent risk propagation in Section 3.1 , permission mapping in

ection 3.5 and rewriting in Section 3.6 .

.1. Risk propagation

The purpose of risk propagation is to aggregate all risky flows

ssociated with a sink.

.2. Graph construction

We use Android-specific static program analysis tools (namely

lowDroid) to obtain the taint-flow graph G (V, E, S, T), which rep-

esents the data dependence among code statements in the app

rom sensitive sources to sinks, where n ∈ V is the statement in

he code and e = { n 1 → n 2 } ∈ E represents that n 2 is data depen-

ent on n 1 , S ⊆V is the sensitive source set S and T ⊆V is the sen-

itive sink set. Loops may occur due to control dependence, e.g.,

hile loops. Our subsequent permission aggregation only com-

utes over distinct permissions. Because each loop execution in-

olves the same set of permissions, we follow each loop only once.

his reduction generates a directed acyclic graph G (V, E, S, T).

Security analysts can customize their definitions of sensitive

ources and sinks based on organizational security policies. These

efinitions impact the static taint analysis. For example, smaller

ensitive sets usually give fewer sensitive flows required to rewrite.

.3. Transitive reduction

The purpose of transitive reduction is to maximally re-

ove redundant edges while preserving reachability of the

raph (Aho et al., 1972). Transitive reduction helps us to reduce

he iteration of edges in our quantitative propagation analysis. It

oes not affect our final results because it preserves the reacha-

ility from a source s ∈ S to a sink t ∈ T . Specially, the reduced

raph has the same nodes, sources, and sinks, but different edges.

ransitive reduction transforms G (V, E, S, T) into G

′ (V, E ′ , S, T).
Specifically, the reduced graph G

′ (V ′ , E ′ , S ′ , T ′) is a subgraph of
he original taint-flow graph G (V, E, S, T), with E ′ ⊆E , and the num-

er of nodes keep the same V ′ = V, S = S ′ and T = T ′ .
Transitive reduction produces a directed acyclic graph (DAG).

or each sink t , it has a subgraph reversely rooted by t , i.e., there

6 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

D

r

r

w

r

p

W

T

n

m

n

n

r

m

r

s

b

m

r

d

K

a

h

s

t

t

3

w

p

r

e

i

t

w

i

p

C

a

i

n

t

i

W

W

c

T

s

3

a

5 Without access to the code of existing solutions, we aim to release our frame-

work to facilitate the reproduction of app rewriting.
exists a subgraph rooted by t , if the directions of edges are re-

versed.

3.4. Risk propagation to sinks

With the assignment of all the statements, we perform risk

propagation analysis algorithm on the graph G

′ (V, E ′ , S, T). Each
node in the graph is initialized with the corresponding self risk

and the empty set as its aggregate risks. Specifically, we provide

two different aggregation algorithms: SS (source-to-sink) aggrega-

tion and E2E (end-to-end) aggregation in Definition 2 .

Definition 2. Denote a taint-flow path in a transitive reduced

taint-flow graph G

′ (V, E ′ , S, T) by f = { s � n 1 � ... � n i � t} ,
where s ∈ S, t ∈ T and n i is an internal node on f . We define source-

sink (SS) aggregation and end-to-end (E2E) aggregation methods as

follows.

SS aggregation. The aggregate risk set P [t] of a sink t ∈ T is de-

fined as

P [t] = P s [t] ∪

{ ⋃

{ s ∈ S | ∃ f= { s � t} }
P s [s]

}

(1)

E2E aggregation . The aggregate risk set P [t] of a sink t ∈ T is

defined as

P [t] = P s [t] ∪

{ ⋃

{ s ∈ S, { n 1 ...n k }∈ f | ∃ f= { s � t}}

P s [s] ∪ P s [n 1] ... ∪ P s [n k]

}

(2)

E2E aggregation for a sink t generates a set that consists of all

the distinct permissions corresponding to the taint-flow subgraph

that is reversely rooted by t . The difference between the two aggre-

gations is on the sensitive internal nodes. The SS aggregation only

considers the sensitive sources and sinks, whereas the E2E aggre-

gation includes the permissions of internal nodes. The E2E aggre-

gation produces all the distinct permissions that are required by

the taint-flow subgraph that is reversely rooted by a sink t .

Following a taint flow, the aggregate risk set of a node is

non-decreasing (i.e., increasing or stable). If n j is the successor

of n i on a path, the permission used in n i is propagated to n j .

Algorithm 1 shows the pseudocode for the permission aggregation

and risk computation.

For the example in Fig. 2 , the output of E2E and SS aggre-

gations are the same for sinks t 1 and t 2 , i.e., P [t 1] = { PHONE_ST ,

SEND_SMS }, and P [t 2] = { PHONE_ST , RECEIVE_SMS , INTERNET }.

However, they are different for sink t 3 . Specifically, for SS ag-

gregation P [t 3] = { RECEIVE_SMS , SEND_SMS }, whereas E2E ag-

gregation has a larger aggregate risk set for the sink, which is

P [t 3] = { RECEIVE_SMS , READ_SMS , SEND_SMS }. Our experiments in

Section 4.5 show how they impact security and rewriting.

The flow-based sink aggregation algorithm can be modified to

compute risk scores of flows. For a flow f = { v 0 � v n } , risk value
of node n ∈ f is computed by getRiskValue (n). The risk score of flow

f is computed though the propagation from v 0 to v n without aggre-

gation of other flows.

3.5. Permission-risk mapping with maximum likelihood estimation

The purpose of permission-risk mapping is to quantify the risk

values of sensitive permissions. Although research has shown cer-

tain permissions are predictive of malware and researchers pro-

pose risk-quantification mechanisms for permissions (e.g., rule-

based Enck et al. (2009) and Bayesian-based probabilistic mod-

els (Peng et al., 2012)), how to use them for prioritizing sinks for

rewriting has not been systematically studied.

Definition 3 Sink Risk . For a sink t in a taint-flow graph G , we

evaluate its risk based on its aggregate permissions P [t]. In Re-
roid, we compute r (t) as the summation of quantified permission

isks:

(t) =

∑

p∈ P[t]
w (p) (3)

here w () is a function that maps a permission p to a quantitative

isk value w (p).

We follow a maximum likelihood estimation approach, to em-

irically map a permission p to their quantitative risk value w (p).

e parameterize binary classifiers with permission-based features.

he task of binary classifiers is to label an unknown app as be-

ign (negative) or malicious (positive). The optimal permission-risk

apping and configuration should maximize the accuracy of a bi-

ary classifier, i.e., low false positives (false alarms) and low false

egatives (missed detection of malware).

We use the feature-importance value of a permission as a secu-

ity measurement for the permission sensitivity. An important per-

ission is an indicator of malicious apps, because malicious apps

equest more critical permissions (e.g., READ_SMS) from empirical

tudies (Arp et al., 2014). A permission (e.g., INTERNET) existing in

oth benign and malicious apps has a low importance value. Our

ethod automatically maps a permission string into a quantitative

isk value.

Our training set is selected from both malicious and benign app

ataset. We evaluate several supervised learning techniques (e.g.,

NN, SVM, Decision Tree and Random Forest) and compare their

ccuracy in Section 4.8 . The Random Forest classifier achieves the

ighest accuracy. The evaluation of these classifiers is based on

tandard measurements, namely 10-fold cross-validation. We use

he classifier that maximizes the classification accuracy to compute

he risk values of permissions.

.6. Automatic app rewriting

We rewrite on the app’s intermediate representation Jimple ,

hich is based on Java analysis framework Soot . The Soot sup-

orts Java-specific function instrumentation. We implement our

ewriting framework by supporting Android-specific components,

.g., ICC. Our prioritizing algorithm is regarded as a Soot plug-

n to quantitatively compute risk scores for sinks. Table 2 presents

he comparison of ReDroid with existing Android rewriting frame-

orks. Our ReDroid supports more rewriting operations, includ-

ng intent redirection, than current rewriting solutions. Unlike

revious rewriting demonstrations on Smali (such as Davis and

hen (2013) ; Xu et al. (2012)), our inter-app ICC relay rewriting

pproach requires more substantial code modification 5 .

The target sink can be selected by the sink prioritization. We

dentify a target sink based on its package, class and method

ames and the context of the sink (e.g., parameters). Once the

arget sink is located, code modification is more challenging, as

t needs to ensure the successful execution of the modified app.

e reuse the registers and parameter fields from the original code.

e replace the sink function with a new customized function. We

ompile the new function separately and extract its Jimple code.

he new function’s parameters need to be compatible with the API

pecification and the context.

.7. Proactive rewriting with inter-app ICC relay.

This ICC-relay strategy redirects data flows to the risky sink of

n app to a trusted proxy app, so that the trusted proxy app can

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 7

Table 2

Comparison of ReDroid with existing Android rewriting frameworks. Method invoc. is

short for method invocation to invoke a customized method instead of an original

method. RetroSkeleton is implemented based on I-ARM-Droid. ReDroid supports more

rewriting strategies than the existing frameworks.

Rewriting I-ARM-Droid Davis et al. (2012) ReDroid

Granularity RetroSkeleton Davis and Chen (2013) (Ours)

Package-level (Repackage) � �

Class-level (Class Inject) � �

Method-level (Method Invoc.) � �

ICC-level (Intent Redirect) – �

Flow-based Rewriting – �

Sink-based Rewriting – �

i

t

m

a

v

o

p

t

t

t

p

r

(

t

c

b

t

3

n

e

t

r

t

s

i

(

a

t

t

i

3

T

g

c

3

t

a

i

g

o

L

c

g

a

a

a

o

3

(

r

2

F

t

a

r

b

s

a

3

t

f

H

I

I

g

s

t

v

3

f

c

H

t

c

J

s

4

y

6 https://goo.gl/9FTnEL .
nspect the data before it is consumed (e.g., sent out). Our redirec-

ion mechanism leverages Android-specific inter-component com-

unication (ICC) and explicit intent. Android ICC mechanism en-

bles the communication among different apps (Chin et al., 2011).

The original intent is replaced by a new explicit intent that in-

okes methods in the proxy app in order to complete the task. The

riginal intent is cloned and stored in a data field of the new ex-

licit intent. This redirection mechanism gives the proxy an oppor-

unity to inspect the sensitive data of the original intent at run-

ime . Specifically, once the trusted proxy receives a request from

he rewritten app via ICC, the execution of the rewritten app is

aused (i.e., onPause is invoked). The proxy can choose to log the

equests and analyze them offline, or perform online inspections

with respect to pre-defined policies). Upon proxy’s completion,

he original intent is re-constructed to allow the rewritten app to

ontinue its execution. The execution of the app may be impacted

y the invocation of the ICC, especially when the proxy’s inspec-

ion is performed online.

.8. Passive rewriting with logging

Passive logging-based rewriting is useful for intercepting dy-

amically generated data structures that are related to risky sinks,

.g., a URL string in an HTTP request that is manipulated along the

aint flow. The static taint-flow analysis can detect the suspicious

isky sink with strings as its parameters. However, the exact con-

ent of the string usually cannot be resolved through static analy-

is. Logging them to local storage enables offline inspection.

The advantages of the logging approach are two-fold. (1) It

s relatively straightforward to implement at the Smali level, and

2) logging does not impact the execution path of the rewritten

pp. The rewritten app executes without interruption. However,

he analysis in this approach is conducted the offline, whereas

he redirect mechanism can actively block data leaks at runtime

f needed.

.9. Discussion and limitations

We discuss limitations of our approach and future directions.

his paper is focused on technical aspects of app modifications. Le-

al issues (e.g., copyright restrictions) are out of the scope of dis-

ussion.

.10. Flow precision

Static analysis cannot estimate exactly dynamic execu-

ion paths, our graph analysis is conservative and may over-

pproximate the permissions related to the sinks. Our prototype

s built on the existing framework FlowDroid , for the facility of

enerating flow-sensitive graphs. Our approach can be also built

n other program analysis frameworks, e.g., Gibler et al. (2012) ;

u et al. (2012) . Our main source of imprecision in sink ranking
omes from imprecise data-flow graphs. Current static pro-

ram analysis over-approximates apps’ behaviors by considering

ll possible paths, including some infeasible paths. The over-

pproximation in graphs introduces inaccuracy for our quantitative

nalysis. Thus, the corresponding aggregate permissions and risks

f sinks in ReDroid may be overestimated.

.11. Native code

Native code gains its popularity recently for code obfuscation

 Tam et al., 2017). Android supports invoking sensitive APIs in a

eflection-like way from native code dynamically (Afonso et al.,

016). Native code introduces missing edges for the static tool

lowDroid to generate graphs in our analysis. A possible mitiga-

ion is to introduce hybrid analysis. Hybrid analysis combines static

nalysis similar to our approach and dynamic analysis to resolve

eflected APIs by running the application at runtime. However, hy-

rid analysis suffers from performance and is not as scalable as

tatic analysis. Therefore, more substantial work is needed for bal-

ncing precision and scalability.

.12. Dynamic permission

Google has recently introduced Android dynamic permission

o protect user privacy 6 . Dynamic permission provides an inter-

ace for denying the access of reading private data (i.e., sources).

owever, dynamic permission ignores the data flow dependence.

t cannot track data and estimate how the private data is abused.

n contrast, our rewriting is based on ranked sinks with the ag-

regated sensitive data flows. Our approach can estimate the risk

core of a dangerous sink and provide customized rewriting opera-

ions. In compliment with dynamic permission, our rewriting pro-

ides two-factor data verification for both sources and sinks.

.13. Rewriting challenges

Code rewriting requires substantial technique skills. If not care-

ul, the retrofitted app may not be successfully recompiled or may

rash at runtime. Our sink ranking and rewriting is automated.

owever, the current rewriting demonstration is based on the in-

ermediate representation Jimple via reverse engineering. Current

utting-edge reverse engineering tools (e.g., Soot) cannot extract

imple IR from native code or encrypted code. Therefore, more sub-

tantial work is needed for increasing the rewriting usability.

. Experimental Eevaluation

We use FlowDroid Arzt et al. (2014) for static program anal-

sis. Our map Tables 1–7 ping from a statement into the re-

https://goo.gl/9FTnEL

8 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

Table 3

Evaluation of ICC relay and logging based rewriting on benchmark apps. The column

of Re. means the number of apps that can run without crashing after rewriting.

The column of In. means the number of apps that we can successfully invoke the

sensitive sink and observe the modified behaviors.

App Category #of ICC Exits Logging Success ICC Relay Success

ICCBench Re. In. Re. In.

icc_implicit_action 1 1 1 1 1

icc_implicit_category 1 1 1 1 1

icc_implicit_data 2 2 2 2 2

Icc_implicit_mix 3 3 3 3 3

icc_implicit_src_sink 2 2 2 2 2

icc_dynregister 2 2 2 2 2

DroidBench(IccTA)

iac_startActivity 1 1 1 1 1

icc_startActivity 2 2 2 2 0

iac_startService 1 1 1 1 1

iac_broadCast 1 1 1 1 1

Summary 16 16 16 16 14

Table 4

Percentages of malware and benign apps that ex-

hibit conditions A and B, respectively, where condi-

tion A is where the risk of the aggregate permission

of the riskiest sink is greater than the risk of the

sink’s self permission, and condition B is where the

risk of the aggregate permission of the riskiest sink

is greater than the risk of (aggregated) self permis-

sions of its corresponding sources.

Condition A Condition B

Malware 92% 88%

Benign 41% 40%

Table 5

A case study for sink T 1 , T 2 , T 3 and T 4 . T i represents the sink ID, C represents

the class name, M represents the method name, F represents the function

name. They have different risk scores with a same function android.util.Log:

int e under different classes and methods inside an app DroidKungFu3–

1cf4d ∗ . E2E and SS aggregations identify the same sensitive sink. T 1 is the

riskiest sink with more critical taint flows and permissions.

T i T 1 T 2 T 3 T 4

C com.ju6.a uk.co.

lilhermit. com.adwo. com.adwo.

android. adsdk.L adsdk.i

core.Native

M a() runcmd a() a()

_wrapper()

F Android.util.Log int e()

r (T i) 0.170 0.156 0.007 0

Table 6

Compare classification performance with two dif-

ferent measurements: 10-fold cross-validation and

ROC curve with AUC value. Random Forest achieves

highest accuracy in the four different classifiers. The

detection achieves 96% accuracy for distinguishing

malicious and benign apps.

10-fold CV ROC Curve

F-Score Accu AUC value

KNN 0.88 0.88 0.9786

SVM 0.91 0.92 0.9584

D.Tree 0.94 0.94 0.9661

R.Forest 0.96 0.96 0.9796

Table 7

Top risky permissions with their normalized risk

values. Risk values are computed based on feature

importance from Random Forest classifier. Risk val-

ues are computed by the maximization of the capa-

bility to distinguish benign and malicious apps.

Permission Risk value

READ_PHONE_STATE 0.149

READ_SMS 0.107

RECEIVE_SMS 0.090

CHANGE_WIFI_STATE 0.080

WRITE_SMS 0.062

SEND_SMS 0.050

WRITE_CONTACTS 0.034

READ_CONTACTS 0.034

REC_BOOT_COMPLETED 0.029

A

z

f

S

s

g

g

T

t

p

i

f

v

c

F

d

t

4

r

W

T

i

r

c

h

w

i

7 https://www.virustotal.com/ .
quested permission is based on PSCout (Au et al., 2012). It iden-

tifies 98 distinct permissions, and builds a one-to-one projection

from 15,099 distinct statements to the corresponding permissions.

Permission risk value is computed based on a machine learning

toolkit Sklearn . We use Androguard to extract permissions from

a large set of apps. The permission risk is computed by using the
pp Genome dataset. It can also be computed based on Andro-

oo Allix et al. (2016) dataset. We choose the Genome dataset

or the demonstration. The source and sink identifiers come from

usi Rasthofer et al. (2014) , which categorizes a large set of critical

ources and sinks. The graph analysis is based on a standard Java

raph library JGraphT . Unless stated otherwise, we use E2E ag-

regation to evaluate the properties of malicious and benign apps.

he rewriting process is based on the assemble and disassemble

ool Soot . The app is automatically modified to enforce security

roperties and recompiled into a new application. Our evaluation

s performed on 923 malicious apps from Genome dataset and 683

ree popular benign apps from Google Play. The benign apps are

erified via the VirusTotal inspection 7 . These apps cover different

ategories and contain complex code structures. As we show in

igure 1 , a single app contains 11 distinct sensitive sources and 19

istinct sensitive sinks on average.

We aim to answer the following questions through our evalua-

ion:

• RQ1: Can ReDroid be used to rewrite real world gray-

ware and benchmark apps to defend vulnerabilities? (In

Section 4.1).

• RQ2: Does the more complex E2E aggregation method pro-

vide high accuracy in ranking (In Section 4.5)?

• RQ3: Are the ranking results interpretable, e.g., consistent
with manual validation (In Section 4.6) ?

• RQ4: Is ReDroid flow-aware, i.e., being able to differentiate

sinks with identical method names (In Section 4.7)?

• RQ5: How efficient is our maximum likelihood estimation

for the permission-risk mapping (In Section 4.8)?

• RQ6: How much is our analysis overhead (In Section 4.9)?

.1. RQ1: rewriting apps for security

We present the feasibility of ReDroid to detect and rewrite

eal world grayware apps that previously have not been reported.

e also demonstrate the ICC-relay based rewriting technique.

able 1 summarizes the security applications with our rewrit-

ng. We utilize benchmark apps to evaluate the feasibility of our

ewriting framework. The benchmark apps are proposed by Ic-

TA (Li et al., 2015) and AmanDroid (Wei et al., 2014) to achieve

igh coverage of various ICC vulnerabilities. We also use two real

orld grayware apps to demonstrate the possibility to use rewrit-

ng to mitigate static analysis limitations.

https://www.virustotal.com/

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 9

4

D

t

c

r

i

i

d

t

r

i

t

c

l

v

s

b

b

p

n

c

r

a

i

A

I

c

f

4

m

p

t

n

a

S

t

e

r

i

w

C

t

t

n

b

k

d

t

m

w

t

m

4

i

a

p

l

a

p

n

H

t

F

c

m

a

e

n

e

t

r

m

i

r

l

4

i

t

m

m

t

m

t

e

t

o

r

a

w

t

n

fl

c

→
B

i

c

s

c

c

i

p

r

c
.2. Benchmark suits evaluation

We evaluate our ICC relay and logging rewriting strategies on

roidBench(IccTA) 8 and ICC-Bench 9 . Apps in the ICC-Bench con-

ain ICC-based data leak vulnerabilities. DroidBench also involves

ollusion apps through inter-app communications. Logging based

ewriting achieves 100% success rate in both rewriting and observ-

ng the modified behaviors. The reason why logging based rewrit-

ng achieves high accuracy is that the inspection of sensitive sinks

oes not violate the program control and data dependences. All

he rewritten apps keep valid logic (without crashing) when we

un these apps with Monkey 10 . We can detect private data in the

ntent by inspecting the logs at runtime. It is worth to note that

he logging based rewriting is easily extended to support dynamic

hecking. By implementing a sensitivity checking function for the

ogged data, our logging based rewriting can terminate the sink in-

ocation at runtime. Therefore, the logging based rewriting is more

uitable to defend privacy leak vulnerabilities in stand-alone apps.

For ICC relay rewriting, we can successfully rewrite all the apps

ut fail to redirect the intent in two cases. The failed two cases

elong to the icc_startActivity category, where the receiver com-

onent InFlowActivity is protected and not exposed to compo-

ents outside the app. Our ICC relay cannot reinvoke the receiver

omponent from the outsider proxy app. Except the two cases, our

ewriting is able to relay and redirect all the intents in the inter-

pp communications (IAC). Furthermore, implicit intents only spec-

fy the properties of receiver components by actions or categories.

dversarial apps can intercept implicit intents by ICC hijacking. Our

CC relay is capable to relay the implicit intent and inspect the re-

eiver components. Therefore, the ICC relay is more suitable to de-

end IAC-based vulnerabilities.

.3. Grayware I–reflection and DexClassLoad

The grayware app belongs to the game category targeting Poke-

on fans. It is a puzzle game based on the Pokemon-Go app. The

ackage called mobi.rhmjpuj.ghmjvk.sprvropjgtn appears on a

hird-party market (AppChina Market). VirusTotal reports it as be-

ign 11 . However, we found multiple permissions registered in the

pp, e.g., WRITE_EXTERNAL_STORAGE , GET_TASKS , PHONE_STATE ,

YSTEM , RESTART_PACKAGES and etc. This puzzle app is poten-

ially risky, as it appears to request for more permissions than nec-

ssary and has dynamically loaded code (e.g., DexClassLoad) and

eflection methods (e.g., Java.lang.reflection).

We use ReDroid to perform the logging-based rewriting, aim-

ng to intercepting reflection and Dexloaded strings. For reflection,

e focus on strings related to get class and method names (e.g.,

lass.forName and Class.getMethod) before reflect.invoke is

riggered. For dynamic dex loading, we focus on strings before

hey are passed into system.DexClassLoader.loadClass to dy-

amically load classes. The sensitive string parameters are logged

y ReDroid. We test the rewritten app on an emulator, using Mon-

ey . During our execution (nearly 100 seconds), the reflection and

ynamically loaded classes showed no suspicious activities.

This customization demonstrates the monitoring of Java reflec-

ion and dynamic code loading regions through rewriting. The

onitoring of activities from rewritten apps can be automated

ith minimal human interactions with pre-defined rules and fil-

ers. App customization provides opportunities to perform dynamic

onitoring of apps in production environments.
8 https://github.com/secure-software-engineering/DroidBench/tree/iccta .
9 https://github.com/fgwei/ICC-Bench .

10 https://developer.android.com/studio/test/monkey.html .
11 We submitted two grayware APKs to VirusTotal on Aug-10-2016.

f

e

w

i

e

.4. Grayware II – URL strings

The grayware app belongs to the wallpaper category target-

ng Pokemon-Go fans. It is a Pokemon wallpaper app. The pack-

ge called com.vlocker.theme575c30395 ∗ appears on a third-

arty Android app market (Anzhi Market). The app was re-

eased leveraging the world-wide popularity of the Pokemon-Go

pp. Only 1 out of 55 anti-virus scanners reports this app as

otentially risky. However, the wallpaper app contains a large

umber of sensitive sinks as URL.init() , file.write() , execute-

ttp() . It requests multiple permissions, including writing set-

ings: WRITE_EXTERNAL_STORAGE , modifying the file system:

ILESYSTEMS , intercepting calls: PROCESS_OUTGOING_CALLS , and

hanging network state: CHANGE_NETWORK_STATE . These per-

issions enable the wallpaper app to read sensitive information

nd modify the device state. We rewrote the URL related sink,

.g., net.URL.init(String) to log string type data before calling

et.URL.openConnection() . We tested the rewritten app on an

mulator, using Monkey . By analyzing the logged events, we found

hat private data (e.g., phone ID, IMEI) is leaked through a network

equest, when a user clicks on an image. Similarly as above, the

onitoring of activities from rewritten apps can be automated.

The experimental results present the feasibility of the rewrit-

ng on both benchmark and real wold apps. We demonstrate two

eal world use cases to apply ReDroid to mitigation static analysis

imitations.

.5. RQ2: comparison of ranking accuracy

We compare our SS and E2E aggregation with the follow-

ng sink-ranking metrics in terms of their accuracy in identifying

he riskiest sinks. We compare our aggregation-based sink-ranking

etrics with 2 basic metrics: the in-degree metric and the sink-only

etric. In the in-degree metric, the sensitive sink’s risk score is de-

ermined by its in-degree on a taint-flow graph. In the sink-only

etric, the sensitive sink’s risk score is determined by the risk of

his sink’s self permission.

We compare the result of the riskiest sink selection among sev-

ral risk metrics. The comparison is expressed as the result consis-

encies, with respect to the E2E aggregation metric. For only 25%

f the malware apps, the sink-only approach produces consistent

iskiest sink result with E2E. This rate is higher at 47% for benign

pps. The in-degree approach clearly has a very low consistency

ith E2E, i.e, they disagree on most rankings.

Although both SS and E2E agree to most cases, we found

hey disagree on long taint-flow paths that have sensitive inter-

al nodes. Internal nodes (i.e., non-sink and non-source) on taint

ows may also involve sensitive permissions. For example, in app

c.halley.droid.qwiz , a sensitive taint flow as: findVIewbyId()

 getActiveNetworkInfo() → outputStream() → Log.e() .

oth source findVIewbyId() and sink Log.e() are permission-

nsensitive, however, the sensitive internal codes on the path in-

reases the sensitivity of the sink. getActiveNetworkInfo() is as-

ociated with permission NETWORK and outputStream() is asso-

iated with permission EXTERNAL_STORAGE . The path is risky, be-

ause the internal nodes involve critical permission. Network state

nformation is propagated and may be potentially leaked along the

ath. A lack of coverage on the internal sensitive nodes introduces

anking inaccuracy. These results confirm that the comprehensive

overage of permission-requiring nodes in E2E aggregation is use-

ul in practice.

Since E2E captures internal data flow dependences, it would be

xpected for E2E to achieve a higher accuracy comparing to SS,

hich is validated by our experiments. However, SS aggregation

s still useful to balance accuracy and performance. We found E2E

ncounters additional 4% overhead in Section 4.9 .

https://github.com/secure-software-engineering/DroidBench/tree/iccta
https://github.com/fgwei/ICC-Bench
https://developer.android.com/studio/test/monkey.html

10 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

s

d

m

b

w

p

s

g

m

n

e

T

t

v

4

o

t

c

n

e

w

r

c

p

n

r

m

fi

v

0

t

a

p

s

a

d

v

i

s

l

fi

fi

a
We compare the permission propagation properties in mali-

cious and benign apps. We consider two conditions, A and B,

which are defined next. Table 4 presents the percentages of apps

that exhibit such conditions. The experimental results show a large

number of apps, especially malware, involve multiple (≥ 2) sensi-

tive permissions on taint flows. They indirectly validate the impor-

tance of flow-based permission propagation and aggregation algo-

rithm.

Condition A is where the risk of the aggregate permission of

the riskiest sink is greater than the risk of the sink’s self permis-

sion.

Condition B is where the risk of the aggregate permission of

the riskiest sink is greater than the risk of the (aggregated) self

permissions of its corresponding sources.

4.6. RQ3: validation of sink priorities

Because of the lack of standard benchmarks 12 , validating the

quality of sink priorities is challenging. We perform manual in-

spections by comparing the riskiest sinks with the descriptions for

known grayware and malware apps, to ensure our outputs are con-

sistent and compatible with English descriptions found in security

websites and articles. Due to the limited reports, we narrow down

our analysis in popular ads libraries and typical malware families.

These reported apps include varied behaviors, from network com-

munications to root privilege escalations. The in-depth literature

on grayware is scant, which increases the difficulty of this valida-

tion.

For grayware apps jp.co.jags and android.TigerJumping ,

our analysis returns the risky method net.URL located in the

jp.Adlantis package. This finding is consistent with previous

report stating that Adlantis libraries cause binary-classification

based malware detection to fail (Tian et al., 2016).

For grayware apps org.ohny.weekend , org.qstar.guardx and

uk.org.crampton.battery , our analysis returns the risky sink ex-

ecute() located in an ad package com.android.Flurry . This ad li-

brary was previously reported to demonstrate excessive amounts

of unauthorized operations by researchers (Elish et al., 2013).

For malware in the Geinimi family (e.g., Geinimi–037c ∗.apk),
our analysis identifies the risky sink sendTextMessage . This sink

is confirmed by a security report 13 . It is identified as a trojan to

send critical messages to a premium number.

For malware in Plankton family (e.g., Plankton–5aff ∗.apk), our
analysis returns the risky sink execute(HttpRequst) associated

with aggregate permission as READ_PHONE_STATE (from a source

getDeviceId()) and INTERNET . Our finding is consistent with the

report of this malware, which refers to it as the spyware with

background stealthy behaviors involving a remote server 14 .

For malware in DroidDream (e.g., DroidDream–fed6 ∗.apk),
our analysis returns the risky sink write(byte[]) in package an-

droid.root.setting . An external report cites this malware for root

privilege escalation 15 . These manual validation effort s provide the

initial evidences indicating the quality of our ranking results.

4.7. RQ4: case study on sensitive taintflows

We use a real world app DroidKungFu3–1cf4d

∗ to illustrate

the importance of risk propagation. This app has four distinct
12 We aim to release our dataset as a benchmark.
13 https://nakedsecurity.sophos.com/2010/12/31/geinimi-android-trojan-horse-

discovered/ .
14 https://www.csc.ncsu.edu/faculty/jiang/Plankton/ .
15 https://blog.lookout.com/droiddream/ .

f

t

c

s

r

s

f
inks sharing the same method name. The method name is an-

roid.util.Log . This function requires no permission, i.e., self per-

ission is ∅ . Yet, the four sinks have different risk scores computed

y our risk aggregation procedure. Table 5 presents the four sinks

ith their risk scores.

The sink with the highest risk score involves three distinct

ermissions READ_PHONE_STATE , LOCATION and INTERNET . The

ources getLine1Number() , getDeviceId() , getSubscribeId() and

etSimSerialNumber() are related to READ_PHONE_STATE per-

ission. The source getLastKnownLocation() and the internal

ode getLongitude() are related to LOCATION permission. The ex-

cute(HttpUriRequest) and openConnection() are related to IN-

ERNET permission. getIntent() requires no permission. Although

hese sinks share the same function name, the riskiest sink T 1 in-

olves more critical paths than the others.

• T 1 : getLastKnownLocation() → getLongitude() → T 1 ,

getLine1Number() → T 1 , getDeviceId() → T 1 , getSub-

scribeId() → T 1 , getSimSerialNumber() → T 1 , exe-

cute(Http) → T 1 .

• T 2 : execute(HttpUriRequest) → T 2 , getLine1Number()

→ T 2 , getDeviceId() → T 2 .

• T 3 : openConnection() → T 3 .

• T 4 : getIntent() → T 4 .

.8. RQ5: quality of likelihood estimation

Our machine learning techniques enable to compute risk scores

f permissions, which maps one particular permission to a quan-

itative and computable score value. We test four different ma-

hine learning approaches: Support Vector Machine (SVM), k-

earest neighbors (KNN), Decision Tree (D.Tree) and Random For-

st (R.Forest). The dataset is originally labeled for Android mal-

are classification (Tian et al., 2016). We reuse the dataset for our

isk score computation. The benign apps are collected from offi-

ial app market Google Play. The malicious apps are selected from

opular malware database Genome and VirusShare. It is worth to

ote that our machine learning technique is aimed to compute the

isk scores of permissions, not for malware classification. The per-

issions of an app are transformed into features for each classi-

er. Each permission corresponds to a certain position in a feature

ector, where 1 means the app registers for this permission and

 means the app does not register for this permission. We apply

wo standard evaluation measurements: 10-fold cross-validation

nd ROC curve. 10-fold cross-validation divides the dataset into 10

ortions. Each time, the 9 portions of them are used as the training

et and the rest of the data is used as the testing set.

We compute the average accuracy rate and F-score to evalu-

te these classifiers. Receiver operating characteristic (ROC) curve

raws a statistic curve and computes an area under curve (AUC)

alue. A higher AUC value represents a better classification capac-

ty.

The experimental results validate the hypothesis that permis-

ions are useful as the features to distinguish the benign and ma-

icious apps. Random Forest maximizes the accuracy in the classi-

cation.

Table 6 presents the detection accuracy of four different classi-

ers. Random Forest achieves the highest accuracy and AUC value

mong these four classifiers. In ReDroid, we calculate the risk value

or each permission in the random forest classifier. Table 7 presents

op risky permissions with their normalized risk values. We fo-

us on the permissions that are related to private data and phone

tate reading. Specifically, READ_PHONE_STATE achieves highest

isk value as 0.149. The reason why READ_PHONE_STATE is most

ensitive is because it enables an app to access private phone in-

ormation, e.g., device Id and current phone state. Malicious apps

https://nakedsecurity.sophos.com/2010/12/31/geinimi-android-trojan-horse-discovered/
https://www.csc.ncsu.edu/faculty/jiang/Plankton/
https://blog.lookout.com/droiddream/

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 11

Fig. 4. Runtime of permission propagation in Algorithm 1 on malware and benign

apps under SS and E2E aggregation functions, respectively. Both aggregation meth-

ods have a low average runtime of around 0.1 second, with E2E aggregation slightly

slower than SS.

a

s

s

r

s

4

a

b

C

d

s

g

h

d

m

t

T

r

h

i

r

t

W

t

r

m

t

r

i

t

o

4

5

5

i

R

fl

d

m

a

t

t

i

p

s

b

b

5

C

H

f

v

i

p

n

c

r

c

o

g

i

p

a

5

q

W
buse this permission for collecting privacy information. These

ensitive permissions have higher risk values, because they are as-

ociated with malicious behaviors. In our quantitative analysis, the

isk values of permissions are used as the input for initialization of

ensitive nodes.

.9. RQ6: analysis overhead

We compare the runtime of Algorithm 1 under two SS and E2E

ggregations in Fig. 4 . 16 Experiments were performed over both

enign and malware datasets on a Linux machine with Intel Xeon

PU (@3.50GHz) and 16G memory. Fig. 4 presents the four runtime

istributions in log scale. The runtime is focusing on the permis-

ion propagation analysis with the input of the transitive reduced

raph and the output of sorted sinks. Both E2E and SS aggregations

ave a similar low overhead of around 0.1 second. E2E has an ad-

itional 4% overhead than SS on average. The average runtime of

alware is larger than that of benign apps, because malware apps

ypically have more sensitive sinks and complex graph structures.

he performance results confirm the efficiency of our graph algo-

ithm.

We evaluate rewriting performance based on the file size over-

ead. The benchmark apps come from DroidBench and ICC-Bench

n Section 4.1). On average, both logging and ICC relay based

ewriting achieves < 1 % size overhead, which is relatively nego-

iable. Our approach is very efficient in rewriting benchmark apps.

e also discuss the sources that introduce size overhead in prac-

ical rewriting scenarios. 1) The complexity of rewriting. If the

ewriting strategy is very complex, e.g., dynamic checking with

ultiple conditions, we need to implement more rewriting func-

ions. 2) The number of impacted code in rewriting. If we need to

ewrite a large number of sinks in an app, the rewriting overhead

ncreases significantly. Therefore, with the sensitive sink prioritiza-

ion, we could optimize the number of sinks for rewriting based

n the sensitivity ranking.

.10. Summary of experimental findings

We summarize our major experimental findings as follows.

1) We give multiple demonstrations of app customization for

security, including inter-app ICC relay and logging. We suc-

cessfully detect and rewrite recently released Pokemon-Go

related grayware, which enables the monitoring of runtime

activities involving Java reflection and dynamic code loading

and URL strings.
16 Runtime measured excludes FlowDroid and maximum likelihood estimation.

d

s

a
2) Our risk-ranking algorithm is efficient for real world apps.

Given a taint-flow graph, our graph algorithm with E2E ag-

gregation has an additional 4% overhead than the SS aggre-

gation, but both can complete within 0.1 second for most

real world apps.

3) Manual inspections show that our risk ranking results are

consistent with the English descriptions of apps, for a small

set of malware apps and grayware apps. This consistency in-

dicates the effectiveness of sink prioritization algorithms.

4) SS and E2E aggregations are consistent in finding the riskiest

sinks on most apps, with E2E being slightly more compre-

hensive for long tainted flows with sensitive internal nodes.

They substantially outperform sink-only and in-degree ap-

proaches. Malware sinks have more aggregate permissions

and risk scores than those of benign apps. In 92% of mali-

cious apps, the aggregate permission of the riskiest sink is

greater than the risk of the sink’s self permission, only in

41% of benign apps, the aggregate permission of the riskiest

sink is greater than the risk of the sink’s self permission.

. Related work

.1. Android taint flow analysis

The vulnerability of apps can be abused by attackers for priv-

lege escalation and privacy leakage attacks (Bugiel et al., 2012).

esearchers proposed taint flow analysis to discover sensitive data-

ow paths from sources to sinks. CHEX (Lu et al., 2012) and An-

roidLeaks (Gibler et al., 2012) identified sensitive data flows to

itigate apps’ vulnerability. Bastani et al. described a flow-cutting

pproach (Bastani et al., 2015). However, their work only provides

heoretical analysis on impacts of a cut, without any implemen-

ation. DroidSafe (Gordon et al., 2015) used a point-to graph to

dentify sensitive data leakage. FlowDroid (Arzt et al., 2014) pro-

osed a static context- and flow-sensitive program analysis to track

ensitive taint flows. These solutions address the privacy leakage

y tracking the usage of privacy information. Our sink ranking is

ased on static analysis and our prototype utilizes FlowDroid.

.2. Android rewriting

The app-retrofitting demonstration in RetroSkeleton (Davis and

hen, 2013) aims at automatically updating HTTP connections to

TTPS. Aurasium (Xu et al., 2012) instruments low-level libraries

or monitoring functions. Reynaud et al. (2012) rewrote an app’s

erification function to discovered vulnerabilities in the Android

n-app billing mechanism. AppSealer Zhang and Yin (2014) pro-

osed a rewriting solution to mitigate component hijacking vul-

erabilities, the rewriting is to generate patches for functions with

omponent hijacking vulnerabilities. Fratantonio et al. (2015) used

ewriting to enforce secure usage of the Internet permission. Be-

ause of the special goal on INTERNET permission, the rewriting

ption cannot be applied to general scenarios. The rewriting tar-

ets and goals in these tools are specific. Furthermore, our rewrit-

ng is more feasible than existing rewriting frameworks by sup-

orting both ICC-level and sink-based rewriting with data flow

nalysis.

.3. Malware detection with quantitative reasoning

Our work is also related to malware classification with

uantitative reasoning. Researchers Wüchner et al. (2014) and

uchner et al. (2015) regarded the quantitative value among

ifference processes as the total number of transferred re-

ources based on the OS-level system logs. These numbers

re used to better distinguish malicious and benign processes.

12 K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750

fl

h

b

p

n

u

g

a

s

fl

D

c

i

A

f

p

R

A

A

A

A

A

B

B

C

D

E

E

E

E

E

G

PRIMO (Octeau et al., 2016) used probabilities to estimate the like-

lihood of implicit ICC communications. The triage of ICC links is

based on the true positive likelihood of links. MR-Droid (Liu et al.,

2017) measured inter-app communication properties with static

analysis. DIAL-Droid (Bosu et al., 2017) performed static analysis on

millions of apps to discover suspicious ICC link communications.

DroidCat (Cai et al., 2018) utilized app-level profiling to identify

malicious behaviors. Peng et al. (2012) used permissions to de-

tect Android malware. The permission risk values are generated

from probabilistic Bayesian-Network models. In contrast, we com-

pute permission risk values by maximizing the classifier’s capacity

of detecting malicious and benign apps. The risk value computa-

tion in our approach associates a permission’s correlation to mali-

cious apps. These approaches are not compatible with risky-sink-

guided rewriting as they are not designed for security customiza-

tion of off-the-shelf apps. In our model, sensitive sinks are prior-

itized based on the aggregate risk scores. Our analysis is focused

on quantitatively ranking different sensitive sinks. Our results val-

idate the effectiveness of ranking sinks with machine-learning-

based risk value computation and graph-based permission prop-

agation.

5.3.1. Defense of vulnerabilities

Grayware or malware with vulnerabilities can result in pri-

vacy leakage. Pluto (Demetriou and Merrill, 2016) discovered the

vulnerabilities of the abuse in ads libraries. In order to defend

vulnerabilities, many approaches have been proposed to track

dynamic data transformation or enforce security policy. Taint-

Droid (Enck et al., 2014) adopted dynamic taint analysis to track

the potential misuse of sensitive data in Android apps. Cry-

poGuard (Rahaman et al., 2019) used static slicing to identify se-

curity vulnerabilities. Elish et al. (2018) used static program analy-

sis to approximate suspicious inter-application communication vul-

nerabilities. Merlin (Banerjee et al., 2009) used path constraints

to infer explicit information specifications to identify security vi-

olations. AspectDroid (Ali-Gombe et al., 2016) used static instru-

mentation and automated testing to detect malicious activities. We

demonstrate the defense of vulnerabilities by rewriting apps in the

experiments. Our quantitative rewriting is operated on application

level with rewriting. We rank flow-based sinks by the graph prop-

agation with permission-based risk values. We specialize different

rewriting rules to defend vulnerabilities.

5.3.2. Program repairing

Program repairing is related to our work since it provides

solutions for generating patches. The patches are used to iden-

tify bugs for program repairing. GenProg (Le Goues et al., 2012;

Weimer et al., 2009) used genetic programming algorithms to

discover patches that lead to bugs. PAR (Kim et al., 2013) used

human-defined patch templates to learn patterns for fixing bugs.

Prophet (Long and Rinard, 2016) used a probabilistic model to

characterize the properties of correct code patches. The trained

model is used to detect defects in real world apps. Our approach

differs from these approaches in the model design. Our approach

is designed for enhancing Android specific security with rewriting.

Our approach enforces security properties on the sensitive sinks

from the computation of graph-based permission propagation.

6. Conclusions and future work

In this paper, we present two new technical contributions for

Android security, a quantitative risk metric for evaluating sensitive

flows and sinks, and a risk propagation algorithm for computing

the risks. We implement a prototype called ReDroid, and demon-

strate the feasibility of both ICC-relay and logging-based rewriting

techniques.
ReDroid is a tool for (1) quantitatively ranking sensitive data

ows and sinks of Android apps and (2) customizing apps to en-

ance security. Our work is motivated by apps that appear mostly

enign but with some security concerns, e.g., risky flows incom-

atible with organizational policies, aggressive ad libraries, or dy-

amic code that cannot be statically reasoned. We extensively eval-

ated and demonstrated how sink ranking is useful for rewriting

rayware to improve security. Our risk metrics are more general

nd can be applied in multiple security scenarios. For future re-

earch, we plan to focus on supporting automatic rewriting with

exible security policy specifications.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgments

The authors would like to thank the anonymous reviewers

or their insightful comments and suggestions on the work. This

roject was supported in part by NSF grant CNS-1717028 .

eferences

fonso, V. , Bianchi, A. , Fratantonio, Y. , Doupé, A. , Polino, M. , de Geus, P. , Kruegel, C. ,

Vigna, G. , 2016. Going native: Using a large-scale analysis of android apps to
create a practical native-code sandboxing policy. In: Proc. of NDSS .

Aho, A.V. , Garey, M.R. , Ullman, J.D. , 1972. The transitive reduction of a directed

graph. SIAM J. Comput. 131–137 .
li-Gombe, A. , Ahmed, I. , Richard III, G.G. , Roussev, V. , 2016. AspectDroid: Android

app analysis system. In: Proc. of CODASPY .
llix, K. , Bissyandé, T.F. , Klein, J. , Le Traon, Y. , 2016. Androzoo: Collecting millions of

android apps for the research community. In: Proc. of MSR .
Arp, D. , Spreitzenbarth, M. , Hübner, M. , Gascon, H. , Rieck, K. , Siemens, C. , 2014.

Drebin: Effective and explainable detection of Android malware in your pocket.

In: Proc. of NDSS .
rzt, S. , Rasthofer, S. , Fritz, C. , Bodden, E. , Bartel, A. , Klein, J. , Le Traon, Y. , Octeau, D. ,

McDaniel, P. , 2014. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In: Conference on Programming

Language Design and Implementation (PLDI) .
u, K.W.Y. , Zhou, Y.F. , Huang, Z. , Lie, D. , 2012. PScout: analyzing the Android per-

mission specification. In: Proc. of CCS .

anerjee, A. , Livshits, B. , Nori, A.V. , Rajamani, S.K. , 2009. Merlin: Specification infer-
ence for explicit information flow problems. In: Proc. of PLDI .

Bastani, O. , Anand, S. , Aiken, A. , 2015. Interactively verifying absence of explicit in-
formation flows in Android apps. In: Proc. of OOPLSA .

Bosu, A. , Liu, F. , Yao, D.D. , Wang, G. , 2017. Collusive data leak and more: Large-scale
threat analysis of inter-app communications. In: Proc. of AisaCCS .

ugiel, S. , Davi, L. , Dmitrienko, A. , Fischer, T. , Sadeghi, A.-R. , Shastry, B. , 2012. To-

wards taming privilege-escalation attacks on Android.. In: Proc. of NDSS .
ai, H., Meng, N., Ryder, B., Yao, D., 2018. DroidCat: Effective android malware de-

tection and categorization via app-level profiling.
Chin, E. , Felt, A.P. , Greenwood, K. , Wagner, D. , 2011. Analyzing inter-application com-

munication in Android. In: Proc. of MobiSys .
Davis, B. , Chen, H. , 2013. RetroSkeleton: Retrofitting Android Apps. In: Proc. of Mo-

biSys .

avis, B. , Sanders, B. , Khodaverdian, A. , Chen, H. , 2012. I-ARM-Droid: A rewriting
framework for in-app reference monitors for Android applications. In: Proc. of

MoST .
lish, K., Cai, H., Barton, D., Yao, D., Ryder, B., 2018. Identifying mobile inter-app

communication risks.
lish, K.O. , Shu, X. , Yao, D.D. , Ryder, B.G. , Jiang, X. , 2015. Profiling user-trigger de-

pendence for Android malware detection. Comput. Secur. 255–273 .

lish, K.O. , Yao, D.D. , Ryder, B.G. , Jiang, X. , 2013. A static assurance analysis of An-
droid applications. Technical Report.. Department of Computer Science .

nck, W. , Gilbert, P. , Han, S. , Tendulkar, V. , Chun, B.-G. , Cox, L.P. , Jung, J. , McDaniel, P. ,
Sheth, A.N. , 2014. TaintDroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) .
nck, W. , Ongtang, M. , McDaniel, P. , 2009. On lightweight mobile phone application

certification. In: Proc. of CCS .
Fratantonio, Y. , Bianchi, A. , Robertson, W. , Egele, M. , Kruegel, C. , Kirda, E. , Vigna, G. ,

Kharraz, A. , Robertson, W. , Balzarotti, D. , et al. , 2015. On the security and engi-

neering implications of finer-grained access controls for Android developers and
users. In: Proc. of DIMVA .

ibler, C. , Crussell, J. , Erickson, J. , Chen, H. , 2012. AndroidLeaks: Automatically de-
tecting potential privacy leaks in Android applications on a large scale. In: Proc.

of Trust and Trustworthy Computing .

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0020

K. Tian, G. Tan and B.G. Ryder et al. / Computers & Security 92 (2020) 101750 13

G

K

L

L

L

L

L

O

P

R

R

R

D

T

T

T

W

W

W

W

X

Z

Z

s

u

s

t

A

R

(

A

o

N

S

C

D

a

o

m

P

D

p

V

s

d

C

g

h

s

S

A

c

ordon, M.I. , Kim, D. , Perkins, J. , Gilham, L. , Nguyen, N. , Rinard, M. , 2015. Informa-
tion-flow analysis of Android applications in DroidSafe. In: Proc. of NDSS .

im, D. , Nam, J. , Song, J. , Kim, S. , 2013. Automatic patch generation learned from
human-written patches. In: Proc. of ICSE .

e Goues, C. , Dewey-Vogt, M. , Forrest, S. , Weimer, W. , 2012. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: Proc. of

ICSE .
i, L. , Bartel, A. , Bissyandé, T.F. , Klein, J. , Le Traon, Y. , Arzt, S. , Rasthofer, S. , Bod-

den, E. , Octeau, D. , McDaniel, P. , 2015. IccTA: Detecting inter-component privacy

leaks in android apps. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 1 .

iu, F. , Cai, H. , Wang, G. , Yao, D. , Elish, K.O. , Ryder, B.G. , 2017. MR-Droid: A scalable
and prioritized analysis of inter-app communication risks. In: Proc. of MoST .

ong, F. , Rinard, M. , 2016. Automatic patch generation by learning correct code. In:
Proc. of POPL .

u, L. , Li, Z. , Wu, Z. , Lee, W. , Jiang, G. , 2012. CHEX: statically vetting Android apps

for component hijacking vulnerabilities. In: Proc. of CCS .
cteau, D. , Jha, S. , Dering, M. , McDaniel, P. , Bartel, A. , Li, L. , Klein, J. , Le Traon, Y. ,

2016. Combining static analysis with probabilistic models to enable market-
scale Android inter-component analysis. In: Proc. of POPL .

eng, H. , Gates, C. , Sarma, B. , Li, N. , Qi, Y. , Potharaju, R. , Nita-Rotaru, C. , Molloy, I. ,
2012. Using probabilistic generative models for ranking risks of Android apps.

In: Proc. of CCS .

ahaman, S. , Xiao, Y. , Afrose, S. , Shaon, F. , Tian, K. , Frantz, M. , Kantarcioglu, M. ,
Yao, D.D. , 2019. CryptoGuard: High precision detection of cryptographic vulner-

abilities in massive-sized java projects.. In: Proc. of CCS .
asthofer, S. , Arzt, S. , Bodden, E. , 2014. A machine-learning approach for classifying

and categorizing Android sources and sinks. In: Proc. of NDSS .
eynaud, D. , Song, D.X. , Magrino, T.R. , Wu, E.X. , Shin, E.C.R. , 2012. FreeMarket: Shop-

ping for free in Android applications.. In: Proc. of NDSS .

emetriou, S. , Merrill, W. , Yang, W. , Zhang, A . , Gunter, C.A . , 2016. Free for all! as-
sessing user data exposure to advertising libraries on Android. In: Proc. of NDSS .

am, K. , Feizollah, A. , Anuar, N.B. , Salleh, R. , Cavallaro, L. , 2017. The evolution of
android malware and android analysis techniques. In: Proc. of ACM Computing

Surveys (CSUR) .
ian, K. , Tan, G. , Yao, D. , Ryder, B. , 2017. ReDroid: Prioritizing data flows and sinks

for app security transformation.. In: Proc. of FEAST, collocated with the ACM

Conference on Computer and Communications Security (CCS) .
ian, K. , Yao, D.D. , Ryder, B.G. , Tan, G. , 2016. Analysis of code heterogeneity for high-

precision classification of repackaged malware. In: Proc. of MoST .
ei, F. , Roy, S. , Ou, X. , et al. , 2014. AmanDroid: A precise and general inter-compo-

nent data flow analysis framework for security vetting of android apps. In: Proc.
of CCS .

eimer, W. , Nguyen, T. , Le Goues, C. , Forrest, S. , 2009. Automatically finding patches

using genetic programming. In: Proc. of ICSE .
üchner, T. , Ochoa, M. , Pretschner, A. , 2014. Malware detection with quantitative

data flow graphs. In: Proc. of AsiaCCS .
uchner, T. , Ochoa, M. , Pretschner, A. , 2015. Robust and effective malware detection

through quantitative data flow graph metrics. In: Proc. of DIMVA .
u, R. , Saïdi, H. , Anderson, R. , 2012. Aurasium: Practical policy enforcement for An-

droid applications. In: Proc. of USENIX Security .
hang, M. , Yin, H. , 2014. AppSealer: Automatic generation of vulnerability-specific

patches for preventing component hijacking attacks in Android applications.. In:

Proc. of NDSS .
hou, Y. , Jiang, X. , 2012. Dissecting Android malware: Characterization and evolu-

tion. In: Proc. of IEEE (S&P) .

Ke Tian is a PhD candidate in Department of Computer

Science at Virginia Tech, Blacksburg. He received his bach-
elor degree majoring information security from University

of Science and Technology of China in 2013. He received
the National Scholarship of China in 2012. His research

interests is in Cybersecurity, Mobile security and machine
learning.
Dr. Gang Tan is the James F. Will Career Development As-
sociate Professor in the Department of Computer Science

and Engineering at the Pennsylvania State University, Uni-
versity Park, PA. He leads the Security of Software (SOS)

Lab. His research is at the interface between computer se-

curity, programming languages, and formal methods. He
received his bachelor’s degree in Computer Science with

honors from Tsinghua University in 1999 and his Ph.D.
degree from Princeton University in 2005. He has received

an NSF CAREER award, two Google Research Awards, and
a Francis Upton Graduate Fellowship. He is a member of

IEEE and ACM.

Dr. Barbara G. Ryder is a emerita faculty member in the

Department of Computer Science at Virginia Tech, where
she held the J. Byron Maupin Professorship in Engineer-

ing. She received her A.B. degree in Applied Mathemat-
ics from Brown University (1969), her Masters degree in

Computer Science from Stanford University (1971) and
her Ph.D. degree in Computer Science at Rutgers Univer-

sity (1982). From 2008-2015 she served as Head of the
Department of Computer Science at Virginia Tech, and re-

tired on September 1, 2016. Dr. Ryder served on the fac-

ulty of Rutgers from 1982-2008. She also worked in the
1970s at AT&T Bell Laboratories in Murray Hill, NJ. Dr. Ry-

der’s research interests on static/dynamic program analy-
es for object-oriented and dynamic programming languages and systems, focus on

sage in practical software tools for ensuring the quality and security of industrial-
trength applications. Dr. Ryder became a Fellow of the ACM in 1998, and received

he ACM SIGSOFT Influential Educator Award (2015), the Virginia AAUW Woman of

chievement Award (2014), and the ACM President’s Award (2008). She received a
utgers School of Arts and Sciences Computer Science Distinguished Alumni Award

2016), was named a CRA-W Distinguished Professor (2004), and was given the
CM SIGPLAN Distinguished Service Award (2001). Dr. Ryder led the Department

f Computer Science team that tied nationally for 2nd place in the 2016 NCWIT
EXT Awards.She has been an active leader in ACM (e.g., Vice President 2010-2012,

ecretary-Treasurer 2008-2010; ACM Council 2000-2008; General Chair, FCRC 2003;

hair ACM SIGPLAN (1995-97)). She serves currently as a Member of the Board of
irectors of the Computer Research Association (2014-2020,1998-2001). Dr. Ryder is

n editorial board member of ACM Transactions on Software Engineering Methodol-
gy and has served as an editorial board member of ACM Transactions on Program-

ing Languages and Systems, IEEE Transactions on Software Engineering, Software:
ractice and Experience, and Science of Computer Programming. Dr. Ryder led the

epartment of Computer Science at Virginia Tech team that tied nationally for 2nd

lace in the 2016 NCWIT NEXT Awards. She was a founding member of the NCWIT
A/DC Aspirations in Computing Awards. Dr. Ryder has advised 16 Ph.D. and 3 M.S.

tudents to completion of their theses; she has supervised the research of 4 post-
ocs and more than 30 undergraduate researchers at Rutgers and Virginia Tech.

Daphne Yao is an associate professor of computer science

at Virginia Tech. In the past decade, she has been working

on designing and developing data-driven anomaly detec-
tion techniques for securing networked systems against

stealthy exploits and attacks. Her expertise also includes
mobile security. Dr. Yao received her Ph.D. in Computer

Science from Brown University. Dr. Yao is an Elizabeth
and James E. Turner Jr. ’56 Faculty Fellow and L-3 Faculty

Fellow. She received the NSF CAREER Award in 2010 for

her work on human-behavior driven malware detection,
and the ARO Young Investigator Award for her semantic

reasoning for mission-oriented security work in 2014. She
has several Best Paper Awards (e.g., ICNP ’12, Collaborate-

om ’09, and ICICS ’06) and Best Poster Awards (e.g., ACM CODASPY ’15). She was
iven the Award for Technological Innovation from Brown University in 2006. She

eld multiple U.S. patents for her anomaly detection technologies. Dr. Yao is an as-

ociate editor of IEEE Transactions on Dependable and Secure Computing (TDSC).
he serves as PC members in numerous computer security conferences, including

CM CCS. She has over 75 peer-reviewed publications in major security and privacy
onferences and journals.

http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30638-2/sbref0043

	Prioritizing data flows and sinks for app security transformation
	1 Introduction
	2 Overview
	2.1 Motivation and design choices
	2.1.1 Security usage of App rewriting
	2.1.2 Flow and sink prioritizing
	2.1.3 Flow-based sink ranking vs. flow ranking
	2.1.4 Sink rewriting vs. flow rewriting
	2.1.5 Sensitive API-based risk vs. permission-based risk
	2.1.6 A toy example

	2.2 Definitions
	2.3 Workflow

	3 Risk metrics and computation
	3.1 Risk propagation
	3.2 Graph construction
	3.3 Transitive reduction
	3.4 Risk propagation to sinks
	3.5 Permission-risk mapping with maximum likelihood estimation
	3.6 Automatic app rewriting
	3.7 Proactive rewriting with inter-app ICC relay.
	3.8 Passive rewriting with logging
	3.9 Discussion and limitations
	3.10 Flow precision
	3.11 Native code
	3.12 Dynamic permission
	3.13 Rewriting challenges

	4 Experimental Eevaluation
	4.1 RQ1: rewriting apps for security
	4.2 Benchmark suits evaluation
	4.3 Grayware I-reflection and DexClassLoad
	4.4 Grayware II - URL strings
	4.5 RQ2: comparison of ranking accuracy
	4.6 RQ3: validation of sink priorities
	4.7 RQ4: case study on sensitive taintflows
	4.8 RQ5: quality of likelihood estimation
	4.9 RQ6: analysis overhead
	4.10 Summary of experimental findings

	5 Related work
	5.1 Android taint flow analysis
	5.2 Android rewriting
	5.3 Malware detection with quantitative reasoning
	5.3.1 Defense of vulnerabilities
	5.3.2 Program repairing

	6 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	References

