
Benchmarking Learned Indexes
Ryan Marcus

MIT CSAIL / Intel Labs
ryanmarcus@csail.mit.edu

Andreas Kipf
MIT CSAIL

kipf@csail.mit.edu

Alexander van Renen
TUM

renen@in.tum.de

Mihail Stoian
TUM

stoian@in.tum.de

Sanchit Misra
Intel Labs

sanchit.misra@intel.com

Alfons Kemper
TUM

kemper@in.tum.de

Thomas Neumann
TUM

neumann@in.tum.de

Tim Kraska
MIT CSAIL

kraska@csail.mit.edu

ABSTRACT
Recent advancements in learned index structures propose replacing
existing index structures, like B-Trees, with approximate learned
models. In this work, we present a unified benchmark that com-
pares well-tuned implementations of three learned index structures
against several state-of-the-art “traditional” baselines. Using four
real-world datasets, we demonstrate that learned index structures
can indeed outperform non-learned indexes in read-only in-memory
workloads over a dense array. We investigate the impact of caching,
pipelining, dataset size, and key size. We study the performance
profile of learned index structures, and build an explanation for why
learned models achieve such good performance. Finally, we investi-
gate other important properties of learned index structures, such as
their performance in multi-threaded systems and their build times.

PVLDB Reference Format:
Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit
Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking
Learned Indexes. PVLDB, 14(1): 1 - 13, 2021.
doi:10.14778/3421424.3421425

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://learned.systems/sosd.

1 INTRODUCTION
While index structures are one of the most well-studied components
of database management systems, recent work [11, 18] provided a
new perspective on this decades-old topic, showing how machine
learning techniques can be used to develop so-called learned index
structures. Unlike their traditional counterparts (e.g., [9, 14, 15, 19,
30, 32]), learned index structures build an explicit model of the
underlying data to provide effective indexing.

Since learned index structures have been proposed, they have been
criticized [25, 26]. These criticisms were motivated by the lack of an
efficient open-source implementation of the learned index structure,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:10.14778/3421424.3421425

inadequate data-sets, and the lack of a standardized benchmark suite
to ensure a fair comparison between the different approaches.

Even worse, the lack of an open-source implementation forced
researchers to re-implement the techniques of [18], or use back-of-
the-envelop calculations, to compare against learned index structures.
While not a bad thing per se, it is easy to leave the baseline unopti-
mized, or make other unrealistic assumptions, even with the best of
intentions, potentially rendering the main takeaways void.

For example, recently Ferragina and Vinciguerra proposed the
PGM index [12], a learned index structure with interesting theoret-
ical properties, which is recursively built bottom-up. Their experi-
mental evaluation showed that the PGM index was strictly superior
to traditional indexes as well as their own implementation of the orig-
inal learned index [18]. This strong result surprised the authors of
[18], who had experimented with bottom-up approaches and found
them to be slower (see Section 3.4 for a discussion why this may be
case). This motivated us to investigate if the results of [12] would
hold against tuned implementations of [18] and other structures.

Further complicating matters, learned structures have an “unfair”
advantage on synthetic datasets, as synthetic datasets are often sur-
prisingly easy to learn. Hence, it is often easy to show that a learned
structure outperforms the traditional approaches just by using the
right data. While this is true for almost any benchmark, it is more
pronounced for learned algorithms and data structures, as their entire
goal is to automatically adjust to the data distribution / workload.

In this paper, we try to address these problems on three fronts:
(1) we provide a first open-source implementation of RMIs for
researchers to compare against and improve upon, (2) we created a
repository of several real-world datasets and workloads for testing,
and (3) we created a benchmarking suite, which makes it easy to
compare against learned and traditional index structures. To avoid
comparing against weak baselines, our open-source benchmarking
suite [4] contains implementations of index structures that are either
widespread, tuned by their original authors, or both.

Understanding learned indexes. In addition to providing an open
source benchmark for use in future research, we also tried to achieve
a deeper understanding of learned index structures, extending the
work of [16]. First, we present a Pareto analysis of three recent
learned index structures (RMIs [18], PGM [12], and RS [17]) and

1

https://doi.org/10.14778/3421424.3421425
https://learned.systems/sosd
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3421424.3421425

Lookup Key

Index
Structure

1

3

9

12

56

57

58

95

98

99

Data
 (sorted)

(e.g., 72)

Search bound

1 A query for a particular key
is made.

2 An index structure maps the lookup
key to a search bound, which must
contain the correct index.

3 Given a valid search
bound, a search
function (e.g., binary
search) is used to
locate the correct
index within the search
bound.

Figure 1: Index structures map each lookup key to a search
bound. This search bound must contain the “lower bound” of
the key (i.e., the smallest key ≥ the lookup key). The depicted
search bound is valid for the lookup key 72 because the key 95 is
in the bound. A search function, such as binary search, is used
to locate the correct index within the search bound.

several traditional index structures, including trees, tries, and hash ta-
bles. We show that, in a warm-cache, tight-loop setting, all three vari-
ants of learned index structures can provide better performance/size
tradeoffs than several traditional index structures. We extend this
analysis to multiple dataset sizes, 32 and 64-bit integers, and differ-
ent search techniques (i.e., binary, linear, interpolation).

Second, we analyze why learned index structures achieve such
good performance. While we were unable to find a single metric
that fully explains the performance of an index structure (it seems
intuitive that such a metric does not exist), we offer a statistical anal-
ysis of performance counters and other properties. The single most
important explanatory variable was cache misses, although cache
misses alone are not enough for a statistically significant explana-
tion. Surprisingly, we found that branch misses do not explain why
learned index structures perform better than traditional structures, as
originally claimed in [18]. In fact, we found that both learned index
structures and traditional index structures use branching efficiently.

Third, we analyze the performance of index structures in the
presence of memory fences, cold caches, and multi-threaded en-
vironments, to test behavior under more realistic settings. In all
scenarios, we found that learned approaches perform well.

However, our study is not without its limitations. We focused
only on read-only workloads, and we tested each index structure
in isolation (e.g., a lookup loop, not with integration into any
broader application). While this certainly does not cover all po-
tential use cases, in-memory performance is increasingly important,
and many write-heavy DBMS architectures are also moving towards
immutable read-only data-structures (for example, see LSM-trees in
RocksDB [3, 20]). Hence, we believe our benchmark can serve as a
foundation for mixed read/write workloads and the next generation
of learned index structures which supports writes [10, 12, 13].

2 FORMULATION & DEFINITIONS
As depicted in Figure 1, we define an index structure 𝐼 over a zero-
indexed sorted array 𝐷 as a mapping between an integer lookup key
𝑥 ∈ Z and a search bound (𝑙𝑜, ℎ𝑖) ∈ (Z+ × Z+), where Z+ is the
positive integers and zero:

𝐼 : Z→ (Z+ × Z+)

1

3

9

12

56

57

58

95

98

99

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0 20 40 60 80 100

CDF Input (key)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Ou
tp

ut
 (r

el
at

iv
e

po
sit

io
n) Approximation

CDF

CDF Function
Data Relative position

Figure 2: The cumulative distribution function (CDF) view of a
sorted array.

We consider only sorted data and integer keys. We assume that
data is stored in a way supporting fast random access (e.g., an array).

Search bounds are indexes into 𝐷. A valid index structure maps
any possible lookup key 𝑥 to a bound that contains the “lower bound”
of 𝑥 : the smallest key in 𝐷 that is greater than or equal to 𝑥 . Formally,
we define the lower bound of a key 𝑥 , 𝐿𝐵(𝑥), as:

𝐿𝐵(𝑥) = 𝑖 ↔
[︁
𝐷𝑖 ≥ 𝑥 ∧ ¬∃ 𝑗 (𝑗 < 𝑖 ∧ 𝐷 𝑗 ≥ 𝑥)

]︁
As a special case, we define the lower bound of any key greater

than or equal to the largest key in 𝐷 as one more than the size of 𝐷:
𝐿𝐵(max𝐷) = |𝐷 |. Our definition of “lower bound” corresponds to
the C++ standard [1]. We say that an index structure is valid if and
only if it produces search bounds that contain the lower bound for
every possible lookup key.

∀𝑥 ∈ Z [𝐼 (𝑥) = (𝑙𝑜, ℎ𝑖) → 𝐷𝑙𝑜 ≤ 𝐿𝐵(𝑥) ≤ 𝐷ℎ𝑖]
Intuitively, this view of index structures corresponds to an approx-

imate index, an index that returns a search range instead of the exact
position of a key [7, 18]. Given a valid index, the actual index of
the lower bound for a lookup key is located via a “last mile” search
(e.g., binary search). This last mile search only needs to examine the
keys within the provided search bound (e.g., Figure 1).

2.1 Approximating the CDF
Learned index structures use machine learning techniques ranging
from deep neural networks to simple regression in order to model
the cumulative distribution function, or CDF, of a sorted array [18].
Here, we use the term CDF to mean the function mapping keys to
their relative position in an array. This is strongly connected to the
traditional interpretation of the CDF from statistics: the CDF of a
particular key 𝑥 is the proportion of keys less than 𝑥 . Figure 2 shows
the CDF for some example data.

Given the CDF of a dataset, finding the lower bound of a lookup
key 𝑥 in a dataset 𝐷 with a CDF 𝐶𝐷𝐹𝐷 is trivial: one simply com-
putes 𝐶𝐷𝐹𝐷 (𝑥) × |𝐷 |. Learned index structures function by approx-
imating the CDF of the dataset using learned models (e.g., linear
regressions). Of course, such learned models are never entirely accu-
rate. For example, the blue line in Figure 2 represents one possible
imperfect approximation of the CDF. While imperfect, this approxi-
mation has a bounded error: the largest deviation from the blue line
to the actual CDF occurs at key 12, which has a true CDF value

2

linear

cubic
1

cubic
2

cubic
n...

Stage 1

Stage 2

Figure 3: A recursive model index (RMI). The linear model
(stage 1) makes a coarse-grained prediction. Based on this, one
of the cubic models (stage 2) makes a refined prediction.

of 0.4 but an approximated value of 0.24. The maximum error of
this approximation is thus 0.4 − 0.24 = 0.16 (some adjustments may
be required for lookups of absent keys). Given this approximation
function 𝐴 and the maximum error of 𝐴, we can define an index
structure 𝐼𝐴 as such:

𝐼𝐴 (𝑥) = (𝐴(𝑥) − |𝐷 | × 0.16, 𝐴(𝑥) + |𝐷 | × 0.16)
Note that this technique, while utilizing approximate machine

learning techniques, never produces an incorrect search bound.
One can view a B-Tree as a way of memorizing the CDF function

for a given dataset: a B-Tree in which every 𝑛th key is inserted can be
viewed as an approximate index with an error bound of 𝑛 − 1. At one
extreme, if every key is inserted into the B-Tree, the B-Tree perfectly
maps any possible lookup key to its position in the underlying data
(an error bound of zero). Instead, one can insert every other key into
a B-Tree in order to reduce the size of the index. This results in a
B-Tree with an error bound of one: any location given by the B-Tree
can be off by at most one position.

3 LEARNED INDEX STRUCTURES
In this work, we evaluate the performance of three different learned
index structures: recursive model indexes (RMI), radix spline in-
dexes (RS), and piecewise geometric model indexes (PGM). We
do not compare with a number of other learned index struc-
tures [10, 13, 23] because tuned implementations could not be made
publicly available. While all three of these techniques approximate
the CDF of the underlying data, the way these approximations are
constructed vary. We next give a high-level overview of each tech-
nique, followed by a discussion of their differences.

3.1 Recursive model indexes (RMI)
Originally presented by Kraska et al. [18], RMIs use a multi-stage
model, combining simpler machine learning models together. For
example, as depicted in Figure 3, an RMI with two stages, a linear
stage and a cubic stage, would first use a linear model to make an
initial prediction of the CDF for a specific key (stage 1). Then, based
on that prediction, the RMI would select one of several cubic models
to refine this initial prediction (stage 2).

Structure. When all keys can fit in memory, RMIs with more than
two stages are almost never required [21]. Thus, here we explain
only two-stage RMIs for simplicity. See [18] for a generalization to
𝑛 stages. A two-stage RMI is a CDF approximator 𝐴 trained on |𝐷 |
data points (key / index pairs). The RMI approximator𝐴 is composed
of a single first stage model 𝑓1, and 𝐵 second-stage models 𝑓 𝑖2 . The
value 𝐵 is referred to as the “branching factor” of the RMI.

0 1 2 3 4 5 6 7

Key

In
de

x

4718310
1011 1000 0100 11112

Lookup key:

Radix table

Spline point

CDF

Pointer

Figure 4: A radix spline index. A linear spline is used to approx-
imate the CDF of the data. Prefixes of resulting spline points are
indexed in a radix table to accelerate the search on the spline.

Formally, the RMI is defined as:

𝐴(𝑥) = 𝑓
⌊𝐵×𝑓1 (𝑥)/ |𝐷 | ⌋
2 (𝑥) (1)

Intuitively, the RMI first uses the stage-one model 𝑓1 (𝑥) to com-
pute a rough approximation of the CDF of the input key 𝑥 . This
coarse-grained approximation is then scaled between 0 and the
branching factor 𝐵, and this scaled value is used to select a model
from the second stage, 𝑓 𝑖2 (𝑥). The selected second-stage model is
used to produce the final approximation. The stage-one model 𝑓1 (𝑥)
can be thought of as partitioning the data into 𝐵 buckets, and each
second-stage model 𝑓 𝑖2 (𝑥) is responsible for approximating the CDF
of only the keys that fall into the 𝑖th bucket.

Choosing the correct models for both stages (𝑓1 and 𝑓2) and se-
lecting the best branching factor for a particular dataset depends on
the desired memory footprint of the RMI as well as the underlying
data. In this work, we the CDFShop RMI auto-tuner [21].

Training. Let (𝑥,𝑦) ∈ 𝐷 be the set of key / index pairs in the
underlying data. Then, an RMI is trained by adjusting the parameters
contained in 𝑓1 (𝑥) and 𝑓 𝑖2 (𝑥) to minimize:∑︂

(𝑥,𝑦) ∈𝐷
(𝐹 (𝑥) − 𝑦)2 (2)

Intuitively, minimizing Equation 2 is done by training “top down”:
first, the stage one model is trained, and then each stage 2 model is
trained to fine-tune the prediction. Details can be found in [18].

3.2 Radix spline indexes (RS)
An RS index [17] consists of a linear spline [24] that approximates
the CDF of the data and a radix table that indexes spline points
(Figure 4). RS is built in a bottom-up fashion. Uniquely, RS can be
built in a single pass with a constant worst-case cost per element
(PGM provides a constant amortized cost).

Structure. As depicted in Figure 4, RS consists of a radix table and
a set of spline points that define a linear spline over the CDF of the
data. The radix table indexes 𝑟 -bit prefixes of the spline points and
serves as an approximate index over the spline points. Its purpose is
to accelerate binary searches over the spline points. The radix table
is represented as an array containing 2𝑟 offsets into the sorted array
of spline points. The spline points themselves are represented as key
/ index pairs. To locate a key in a spline segment, linear interpolation
between the two spline points is used.

3

1

3

9

12

56

57

58

95

98

99

Data

Key: 1 Model: f
1

Key: 56 Model: f
2

Key: 95 Model: f
3

1

56

95
Key: 56 Model: f

5

Key: 1 Model: f
4

PGM Level 1 PGM Level 2

Figure 5: A piecewise geometric model (PGM) index.
Using the example in Figure 4, a lookup in RS works as follows:

First, the 𝑟 most significant bits 𝑏 of the lookup key are extracted
(𝑟 = 3 and 𝑏 = 101). Then, the extracted bits 𝑏 are used as an offset
into the radix table to retrieve the offsets stored at the 𝑏th and the
𝑏+1th position (e.g., the 5th and the 6th position). Next, RS performs
a binary search between the two offsets on the sorted array of spline
points to locate the two spline points that encompass the lookup key.
Once the relevant spline segment has been identified, it uses linear
interpolation between the two spline points to estimate position of
the lookup key in the underlying data.

Training. To build the spline layer, RS uses a one-pass spline fitting
algorithm [24] that is similar to the shrinking cone algorithm of
FITing-Tree [13]. The spline algorithm guarantees a user-defined
error bound. At a high level, whenever the current error corridor
exceeds the user-supplied bound, a new spline point is created. When-
ever the spline algorithm encounters a new 𝑟 -bit prefix, a new entry
is inserted into the pre-allocated radix table.

RS has only two hyperparameters (spline error and number of
radix bits), which makes it straightforward to tune. In practice, few
configurations need to be tested to reach a desired performance /
size tradeoff on a given dataset [17].

3.3 Piecewise geometric model indexes (PGM)
The PGM index is a multi-level structure, where each level represents
an error-bounded piecewise linear regression [12]. An example PGM
index is depicted in Figure 5. In the first level, the data is partitioned
into three segments, each represented by a simple linear model
(𝑓1, 𝑓2, 𝑓3). By construction, each of these linear models predicts the
CDF of keys in their corresponding segments to within a preset error
bound. The partition boundaries of this first level are then treated as
their own sorted dataset, and another error-bounded piecewise linear
regression is computed. This is repeated until the top level of the
PGM is sufficiently small.

Structure. A piecewise linear regression partitions the data into 𝑛+1
segments with a set of points 𝑝0, 𝑝1, . . . , 𝑝𝑛 . The entire piecewise
linear regression is expressed as a piecewise function:

𝐹 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎0 × 𝑥 + 𝑏0 if 𝑥 < 𝑝0
𝑎1 × 𝑥 + 𝑏1 if 𝑥 ≥ 𝑝0 and 𝑥 < 𝑝1
𝑎2 × 𝑥 + 𝑏2 if 𝑥 ≥ 𝑝1 and 𝑥 < 𝑝2
. . .

𝑎𝑛 × 𝑥 + 𝑏𝑛 if 𝑥 ≥ 𝑝𝑛 and 𝑥 < 𝑝𝑛

Each regression in the PGM index is constructed with a fixed error
bound 𝜖. Such a regression can trivially be used as an approximate
index. PGM indexes apply this trick recursively, first building an
error-bounded piecewise regression model over the underlying data,
then building another error-bounded piecewise regression model
over the partitioning points of the first regression. Key lookups are
performed by searching each index layer until the regression over
the underlying data is reached.

Training. Each regression is constructed optimally, in the sense that
the fewest pieces are used to achieve a preset maximum error. This
can be done quickly using the approach of [31]. The first regression
is performed on the underlying data, resulting in a set of split points
(the boundaries of each piece of the regression) and regression co-
efficients. These split points are then treated as if they were a new
dataset, and the process is repeated, resulting in fewer and fewer
pieces at each level. Since each piecewise linear regression contains
the fewest possible segments, the PGM index is optimal in the sense
of piecewise linear models [12].

Intuitively, PGM indexes are constructed “bottom-up”: first, an
error bound is chosen, and then a minimal piecewise linear model
is found that achieves that error bound. This process is repeated
until the piecewise models become smaller than some threshold.
The PGM index can also handle inserts, and can be adapted to a
particular query workload. We do not evaluate either capability here.

3.4 Discussion
RMIs, RS indexes, and PGM indexes all approximate the CDF of
the underlying data. However, the specifics vary.

Model types. While RS indexes and PGM indexes use only a single
type of model (spline regression and piecewise linear regression,
respectively), RMIs can use a wide variety of model types. This
gives the RMI a greater degree of flexibility, but also increases the
complexity of tuning the RMI. While both the PGM index and
RS index can be tuned by adjusting just two knobs, automatically
optimizing an RMI requires a more involved approach, such as [21].
Both the PGM index authors and the RS index authors mention
integrating other model types as future work [12, 17].

Top-down vs. bottom-up. RMIs are trained “top down”, first fit-
ting the topmost model and training subsequent layers to correct
errors. PGM and RS indexes are trained “bottom up”, first fitting the
bottommost layer to a fixed accuracy and then building subsequent
layers to quickly search the bottommost layer for the appropriate
model. Because both PGM and RS indexes require searching this
bottommost layer (PGM may require searching several intermediate
layers), they may require more branches or cache misses than an
RMI. While an RMI uses its topmost model to directly index into
the next layer, avoiding a search entirely, the bottommost layer of
the RMI does not have a fixed error bound; any bottom-layer model
could have a large maximum error.

RS indexes and PGM indexes also differ in how the bottommost
layer is searched. PGM indexes decompose the problem recursively,
essentially building a second PGM index on top of the bottommost
layer. Thus, a PGM index may have many layers, each of which
must be searched (within a fixed range) during inference. On the
other hand, an RS index uses a radix table to narrow the search
range, but there is no guarantee on the search range’s size. If the

4

Method Updates Ordered Type

PGM [12] Yes Yes Learned
RS [17] No Yes Learned
RMI [18] No Yes Learned

BTree [6] Yes Yes Tree
IBTree [14] Yes Yes Tree
FAST [15] No Yes Tree

ART [19] Yes Yes Trie
FST [32] Yes Yes Trie

Wormhole [30] Yes Yes Hybrid hash/trie
CuckooMap [5] Yes No Hash
RobinHash [2] Yes No Hash

RBS No Yes Lookup table
BS No Yes Binary search

Table 1: Search techniques evaluated

radix table provides a comparable search range as the upper level of
a PGM index, then an RS index locates the proper final model with
a comparatively cheaper operation (a bitshift and an array lookup).
If the radix table does not provide a narrow search range, significant
time may be spent searching for the appropriate bottom-layer model.

4 EXPERIMENTS
Our experimental analysis is divided into six sections.

Setup (4.1): we describe the index structures, baselines, and
datasets used. Pareto analysis (4.2): we analyze the size and per-
formance tradeoffs offered by each structure, including variations
in dataset and key size. We find that learned index structures offer
competitive performance. Explanatory analysis (4.3): we analyze
indexes via performance counters (e.g., cache misses) and other
descriptive statistics. We find that no single metric can fully ac-
count for the performance of learned structures. CPU interactions
(4.4): we analyze how CPU cache and operator reordering impacts
performance. We find that learned index structures benefit dispropor-
tionately from these effects. Multithreading (4.5): we analyze the
throughput of each index in a multithreaded environment. We find
that learned structures have comparatively high throughput, possibly
attributable to the fact that they incur fewer cache misses per lookup.
Build times (4.6): we analyze the time to build each index structure.
We find that RMIs are slow to build compared to PGM and RS
indexes, but that (unsurprisingly) no learned structure yet provides
builds as fast as insert-optimized traditional index structures.

4.1 Setup
Experiments are conducted on a machine with 256 GB of RAM and
an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

4.1.1 Indexes. In this section, we describe the index structures we
evaluate, and how we tune their size/performance tradeoffs. Table 1
lists each technique and its capabilities.

Learned indexes. We compare RMIs, PGM indexes, and RadixS-
pline indexes (RS), each of which are described in Section 3. We
use implementations tuned by each structure’s original authors. RMI
hyperparameters are tuned using CDFShop [21], an automatic RMI
optimizer. RS and PGM are tuned by varying the error tolerance of
the underlying models.

0.0

0.5

1.0

1.5

2.0

O
ffs

et

1e8 amzn face

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Key

0.0

0.5

1.0

1.5

2.0

O
ffs

et

1e8 osm

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Key

wiki

Figure 6: CDF plots of each testing dataset. The face dataset
contains ≈ 100 large outlier keys, not plotted.

Tree structures. We compare with several tree-structured indexes:
the STX B-Tree (BTree) [6], an interpolating BTree (IBTree) [14],
the Adaptive Radix Trie (ART) [19], the Fast Architectural-Sensitive
Tree (FAST) [15], Fast Succinct Trie (FST) [32], and Wormhole [30].

For each tree structure, we tune the size/performance tradeoff
by inserting subsets of the data (Section 2.1). To build a tree of
maximum size with perfect accuracy, we insert every key. To build a
tree with a smaller size and decreased accuracy, we insert every other
key. We note that this technique, while simple, may not be the ideal
way to trade space for accuracy in each tree structure. Specifically,
ART may admit a smarter method in which keys are retained or
discarded based on the fill level of a node. We only evaluate the
simple and universal technique of inserting fewer keys into each
structure, and leave structure-specific optimizations to future work.

Hashing. While most hash tables do not support range queries,
hash tables are still an interesting point of comparison due to their
unmatched lookup performance. Unordered hash tables cannot be
shrunk using the same technique as we use for trees.1 Therefore,
we only evaluate hash tables that contain every key. We evaluate a
standard implementation of a Robinhood hash table (RobinHash) [2]
and a SIMD-optimized Cuckoo map (CuckooMap) [5].

Baselines. We also include two naive baselines: binary search (BS),
and a radix binary search (RBS). Radix binary search [16] stores
only the radix table used by the learned RS approach. We vary the
size of the radix table to achieve different size/performance tradeoffs.

4.1.2 Datasets. We use four real-world datasets for our evalua-
tion. Each dataset consists of 200 million unsigned 64-bit integer
keys. We generate random 8-byte payloads for each key. For each
lookup, we compute the sum of these values.
• amzn: book popularity data from Amazon. Each key represents

the popularity of a particular book.
• face: randomly sampled Facebook user IDs [29]. Each key

uniquely identifies a user.
• osm: cell IDs from Open Street Map. Each key represents an

embedded location.

1We evaluate Wormhole [30], a state-of-the-art ordered hashing approach.

5

• wiki: timestamps of edits from Wikipedia. Each key represents
the time an edit was committed.

The CDFs of each of these datasets are plotted in Figure 6. The
zoom window on each plot shows 100 keys. While the “zoomed out”
plots appear smooth, each CDF function is much more complex,
containing both structure and noise. We select 10M random lookup
keys from each dataset. Indexes are required to return search bounds
that contain the lower bound of each lookup key (see Section 2).

Why not test synthetic datasets? Synthetic datasets are often used
to benchmark index structures [12, 18, 19]. However, synthetic
datasets are problematic for evaluating learned index structures.
Synthetic datasets are either (1) entirely random, in which case there
is no possibility of learning an effective model of the underlying data
(although a model may be able to overfit to the noise), or (2) drawn
from a known distribution, in which case learning the distribution
is trivial. Here, we focus only on datasets drawn from real world
distributions, which we believe are the most important. For readers
specifically interested in synthetic datasets, we refer to [16].

4.2 Pareto analysis
A primary concern of index structures is lookup performance: given
a query, how quickly can the correct record be fetched? However,
size is also important: with no limits, one could simply store a lookup
table and retrieve the correct record with only a single cache miss.
Such a lookup table would be prohibitively large in many cases, such
as 64-bit keys. Thus, we consider the performance / size tradeoff
provided by each index structure, plotted in Figure 7.

For each index structure, we selected ten configurations ranging
from minimum to maximum size. While different applications may
weigh performance and size differently, all applications almost surely
desire a Pareto optimal index: an index for which no alternative has
both a smaller size and improved performance. For the amzn and
wiki datasets, learned structures are Pareto optimal up to a size of
100MB, at which point the RBS lookup table becomes effective. For
face, learned structures are Pareto optimal throughout.

Poor performance on osm. Both traditional and learned index struc-
tures fail to outperform RBS on the osm dataset for nearly any size.
The poor performance of learned index structures can be attributed
to the osm’s dataset lack of local structure: even small pieces of the
CDF exhibit difficult-to-model erratic behavior. This is an artifact of
the technique used to project the Earth into one-dimensional space
(a Hilbert curve). In Section 4.3, we confirm this intuition by ana-
lyzing the errors of the learned models; all three learned structures
required significantly more storage to achieve errors comparable to
those observed on the other datasets. Simply put, learned structures
perform poorly on osm because osm is difficult to learn. Because
osm is a one-dimensional projection of multi-dimensional data, a
multi-dimensional learned index [23] may yield improvements.

Performance of PGM. In [12], the authors showed that “the PGM-
index dominates RMI,” contradicting our previous experience that
the time spent on searches between the layers of the index out-
weighed the benefits of having a lower error. Indeed, in our exper-
imental evaluation we found that the PGM index performs signifi-
cantly worse than RMI on 3 out of the 4 datasets and slightly worse
on osm. After contacting the authors of [12], we found that their
RMI implementation was missing several key optimizations: their

RMI only used linear models rather than tuning different type of
models as proposed in [18, 21], and omitted some optimizations for
RMIs with only linear models.2 This highlights how implementation
details can affect experimental results, and the importance of having
a common benchmark with strong implementations. We stress that
our results are the first to compare RMI and PGM implementations
tuned by their respective authors.

Performance of RBS. Both RS and RBS exhibits substantially de-
graded performance on face. This is due to a small number (≈ 100)
of outliers in the face dataset: most keys fall within (0, 250), but
the outliers fall in (259, 264 − 1). These outliers cause the first 16
prefix bits of the radix table to be nearly useless. One could adjust
RBS to handle this simple case (when all outliers are at one end of
the dataset), but in general such large jumps in values represents a
severe weakness of RBS. ART [19] can be viewed as a generaliza-
tion of RBS to handle this type of skew. On other datasets, RBS is
surprisingly competitive, often outperforming other indexes. This
is partially explained by the low inference time required by RBS:
getting a search bound requires only a bit shift and an array lookup.
When the prefixes of keys are distributed uniformly, an RBS with a
radix table of size 2𝑏 provides equally accurate bounds as a binary
search tree with 𝑏 levels, but requires only a single cache miss.

Tree structures are non-monotonic. All tree structures tested
(ART, BTree, IBTree, and FAST) become less effective after a cer-
tain size. For example, the largest ART index for the amzn data
occupies nearly 1GB of space, but has worse lookup performance
than an ART index occupying only 100MB of space. This is because,
at a certain point, performing a binary search on a small densely-
packed array becomes more efficient than traversing a tree. As a
result, tree structures show non-monotonic behavior in Figure 7.

Indexes slower than binary search? At extremely small or large
sizes, some index structures perform worse than binary search. In
both cases, this is because some index structures are unable to pro-
vide sufficiently small search bounds to make up for the inference
time required. For example, on the osm dataset, very small RMIs
barely narrow down the search range at all. Because this small RMIs
fit is so poor (analyzed later, Figure 12), the time required to exe-
cute the RMI model and produce the search bound is comparatively
worse than executing a binary search on the entire dataset.

Structures for strings. Many recent works on index structures have
focused on indexing keys of arbitrary length (e.g., strings) [30, 32].
We evaluated two structures designed for string keys – FST and
Wormhole – in Figure 8. Unsurprisingly, neither performed as well
as binary search. These indexes contain optimizations that assume
comparing two keys is expensive, which is not the case when consid-
ering only integer keys. ART, an index designed for both string and
integer data, does so by indexing one key-byte per radix tree level.

Hashing. Hashing provides𝑂 (1) time point lookups. However, hash-
ing generally does not support lower bound lookups, and hash tables
generally have a large footprint, as they store every key. We evaluate

2We shared our RMI implementation with Ferragina and Vinciguerra before
the publication of [12], but since [12] was already undergoing revision, they
elected to continue with their own RMI implementation instead, without note.
All PGM results in this paper are based on Ferragina and Vinciguerra’s tuned
PGM code as of May 18th, 2020.

6

10 1 102

Size (MB)

0

200

400

600

800

Lo
ok

up
 ti

m
e

(n
s)

amzn

10 1 102

Size (MB)

face

10 1 102

Size (MB)

osm

10 1 102

Size (MB)

wiki
RMI
PGM
RS
RBS
ART
BTree
IBTree
FAST

Figure 7: Performance and size tradeoffs for four different datasets. The black horizontal line represents the performance of binary
search (which has a size of zero). Extended plots with all techniques are available here: https://rm.cab/lis1

10 1 101

Size (MB)

500

1000

1500

Lo
ok

up
 ti

m
e

(n
s)

amzn

10 1 101

Size (MB)

face

RMI
BTree
FST
Wormhole

Figure 8: Performance of index structures built for strings
(stars) on our integer datasets.

Method Time Size

PGM 326.48 ns 14.0 MB
RS 266.58 ns 4.0 MB
RMI 180.90 ns 48.0 MB
BTree 482.11 ns 166.0 MB
IBTree 446.55 ns 9.0 MB
FAST 435.33 ns 102.0 MB
BS 741.69 ns 0.0 MB

CuckooMap 114.50 ns 1541.0 MB
RobinHash 93.69 ns 6144.0 MB

Table 2: The fastest variant of each index structure compared
against two hashing techniques on the amzn dataset.

two hashing techniques – a Cuckoo hash table [5] and a Robin-
hood hash table [2]. We found that a load factor of 0.99 and 0.25
(respectively) maximized lookup performance.

Table 2 lists the size and lookup performance of the best-
performing (and thus often largest) variant of each index structure
and both hashing techniques for a 32-bit version3 of the amzn
dataset (results similar for others). Unsurprisingly, both hashing
techniques offer superior point-lookup latency compared to tradi-
tional and learned index structures. This decreased latency comes at
the cost of a larger in-memory footprint. For example, CuckooMap
provides a 114ns lookup time compared to the 180ns provided by
the RMI, but CuckooMap uses over 1GB of memory, whereas the

3The SIMD Cuckoo implementation only supports 32-bit keys.

RMI uses only 48MB. When range lookups and memory footprint
are not concerns, hashing is a clear choice.

4.2.1 Larger datasets. Figure 9 shows the performance / size
tradeoff for each learned structure and a BTree for four different
data sizes of the amzn dataset, ranging from 200M to 800M. All
three learned structures are capable of scaling to larger dataset sizes,
with only a logarithmic slowdown (as expected from the final binary
search step). For example, consider an RMI that produces an average
search bound that spans 128 keys, requiring 7 steps of binary search.
If the dataset size doubles, an RMI of equal size is likely to return
bounds that are twice as large: search bounds that span 256 keys.
Such a bound requires only 8 total (1 additional) binary search
steps. Thus, learned index structures scale to larger datasets in much
the same way as BTrees. If larger datasets have more pronounced
patterns, learned index structures may provide better scaling.

4.2.2 32-bit datasets. Here, we scale down the amzn dataset
from 64 to 32 bits, and compare the performance of the three learned
index structures, BTrees, and FAST. The results are plotted in Fig-
ure 10. For learned structures, the performance on 32-bit data is
nearly identical to performance on 64-bit data. Our implementa-
tions of RS and RMI both transform query keys to 64-bit floats, so
this is not surprising. We attempted to perform computations on
32-bit keys using 32-bit floats, but found that the decreased precision
caused floating point errors. The PGM implementation uses 32-bit
computations for 32-bit inputs, achieving modest performance gains.

For both tree structures, the switch from 64-bit to 32-bit keys
allows twice as many keys to fit into a single cache line, improving
performance. For FAST, which makes heavy use of AVX-512 opera-
tions, doubling the number of keys per cache line essentially doubles
computational throughput as well, as each operator can work on 16
32-bit values simultaneously (as opposed to 8 64-bit values).

4.2.3 Search function. Normally, we use binary search to locate
the correct key within the search bound provided by the index. How-
ever, other search techniques can be used. Figure 11 evaluates using
binary, linear, and interpolation search for various index structures
on osm and amzn. We observed that binary search (first column)
was always faster than linear search (second column). This aligns
with prior work that showed binary search being effective until the
data size dropped below a very small threshold [28].

7

https://rm.cab/lis1

10 1 102

Size (MB)

500

1000

1500

Lo
ok

up
 ti

m
e

(n
s)

RMI, amzn

10 1 102

Size (MB)

PGM, amzn

10 1 102

Size (MB)

RS, amzn

10 1 102

Size (MB)

BTree, amzn
200M
400M
600M
800M

Figure 9: Performance / size tradeoffs for datasets of various sizes (200M, 400M, 600M, and 800M keys) for the amzn dataset. The
face and wiki datasets were not sufficiently large to compare. Extended plots with all techniques and the osm dataset are available
here: https://rm.cab/lis2

10 2 100 102

Size (MB)

500

1000

1500

Lo
ok

up
 ti

m
e

(n
s)

amzn
RMI (32-bit)
RMI (64-bit)

10 2 100 102

Size (MB)

amzn
RS (32-bit)
RS (64-bit)

10 2 100 102

Size (MB)

amzn
PGM (32-bit)
PGM (64-bit)

10 2 100 102

Size (MB)

amzn
BTree (32-bit)
BTree (64-bit)

10 2 100 102

Size (MB)

amzn
FAST (32-bit)
FAST (64-bit)

Figure 10: Performance / size tradeoff for 32 and 64 bit keys. While decreasing the key size to 32-bits has a minimal impact on learned
structures, the ability to pack more values into a single cache line improves the performance of tree structures.

103

104

Lo
ok

up
 ti

m
e

(n
s)

amzn (bin. search) amzn (lin. search) amzn (int. search)

10 2 100 102

Size (MB)

103

104

105

Lo
ok

up
 ti

m
e

(n
s)

osm (bin. search)

10 2 100 102

Size (MB)

osm (lin. search)

10 2 100 102

Size (MB)

osm (int. search)

RMI (binary)
PGM (binary)
RS (binary)

RMI (linear)
PGM (linear)
RS (linear)

RMI (interpolation)
PGM (interpolation)
RS (interpolation)

Figure 11: A comparison of “last mile” (Section 2) search tech-
niques for the osm and amzn datasets.

Interpolation search (third column) behaves similarly to binary
search on the amzn dataset, even offering improved performance on
average (≈ 2%). This was surprising, because interpolation search
works by assuming that keys are uniformly distributed between two
end points. If this were the case, one would expect a learned index
to learn this distribution, subsuming any gains from interpolation
search. However, because the learned structures have a limited size,
there can be many segments of the underlying data that exhibit linear
behavior that the learned structure does have the capacity to learn.

For osm, which is relatively complex, interpolation search does not
provide a benefit. This is unsurprising, since interpolation search
works best on smooth datasets.

One could also integrate more complex interpolation search tech-
niques, such as SIP [29]. One difficulty with incorporating SIP is the
precomputation steps, which vary depending on the search bound
used. Integrating an exponential search [8] technique could also be
of interest, although it is not immediately clear how to integrate a
search bound. We leave such investigations to future work.

4.3 Explaining the performance
In this section, we investigate why learned index structures have
such strong performance and size properties. While prior work [18]
attributed this to decreased branching and instruction count, we
discovered that the whole story was more complex. None of model
accuracy, model size (or “precision gain”, the combination of the
two in [18]), cache misses, instruction count, or branch misses can
fully account for learned index structures’ performance.

Figure 12 shows the correlation between lookup time and var-
ious performance characteristics of different index structures for
the amzn and osm datasets. The first column shows the in-memory
size of each model, the second column shows average log2 search
bound size (i.e., expected binary search steps required), the third col-
umn shows last-level cache misses, the fourth column shows branch
mispredictions, and the fifth column shows instruction counts. One
can visually dismiss any single metric as explanatory: any vertical
line corresponds to structures that are equal on the given metric, but
exhibit different lookup times. For example, at a size of 1MB, RMIs

8

https://rm.cab/lis2

0

200

400

600

800

1000

Lo
ok

up
 ti

m
e

(n
s)

amzn

Lo
ok

up
 ti

m
e

(n
s)

amzn

Lo
ok

up
 ti

m
e

(n
s)

amzn

Lo
ok

up
 ti

m
e

(n
s)

amzn

Lo
ok

up
 ti

m
e

(n
s)

amzn

PGM
RS
RMI
BTree
ART

10 1 102

Size (MB)

0

200

400

600

800

1000

Lo
ok

up
 ti

m
e

(n
s)

osm

0 10 20
Log2 Error

Lo
ok

up
 ti

m
e

(n
s)

osm

50 100
Cache misses

Lo
ok

up
 ti

m
e

(n
s)

osm

5 10
Branch misses

Lo
ok

up
 ti

m
e

(n
s)

osm

200 400
Instructions

Lo
ok

up
 ti

m
e

(n
s)

osm

Figure 12: Various metrics compared with lookup times across index structures and datasets. No single metric can fully explain
the performance of different index structures, suggesting a multi-metric analysis is required. Extended plots for all techniques and
datasets are available here: https://rm.cab/lis5

achieve a latency of 220ns on amzn, but a BTree with the same size
achieves a latency of 650ns (blue vertical line).

The second column (“log2 error”), is especially interesting.
Learned indexes must balance inference time with model error [21].
For example, with a log2 error of 7, an RMI achieves a lookup time
of 250ns on the amzn dataset, but the PGM index with the same
log2 error achieves a latency of 480ns (red vertical line). This is at-
tributable to the higher inference time of the PGM index. Of course,
other factors, such as overall model size, must be taken into account.

Analysis. In order to test each potential explanatory factor, we per-
formed a linear regression analysis using every index structure on
all four datasets at 200 million 64-bit keys. The results indicated that
cache misses, branch misses, and instruction count had a statistically
significant effect on lookup time (𝑝 < 0.001), whereas size and log2
error did not (𝑝 > 0.15). To be clear, this means that given the branch
misses, cache misses, and instruction counts, the size and log2 error
do not significantly affect performance. This does not mean that the
log2 error and size do not have an impact on cache misses; just that
the relevant variation in lookup time explained by model size and
log2 error is accounted for fully in the other measures.

Overall, a regression on cache misses, branch misses, and in-
struction count explained 95% of the variance (𝑅2 = 0.955). This
means that 95% of the variation we observed in our experiments can
be explained by a linear relationship between cache misses, branch
misses, instructions, and lookup latency. The standardized regression
coefficients for cache misses, branch misses, and instruction misses
were 0.85, −0.28, and 0.50, respectively. Standardized regression
coefficients can be interpreted as the number of standard deviations
that a particular measure needs to increase by, assuming the other
measures stay fixed, in order to increase the output by one stan-
dard deviation; in other words, these coefficients are descriptive of
the variations within our measurements, not of the actual hardware
impact of the metrics (although these are obviously related).

Interpretation: branch misses. While the magnitude of standard-
ized coefficients are not useful on their own, their sign can provide

insights. Surprisingly, the coefficient on branch misses is negative.
This does not mean that an increased number of branch misses leads
to increased model performance. Instead, the negative coefficient
means that for a fixed number of cache misses and instructions, the
tested indexes that incurred more branch misses performed better.
In other words, indexes are getting significant value from branch
misses; when an index incurs a branch miss, it does so in such a way
that reduces lookup time more than an hypothetical alternative index
that uses the same number of instructions and misses.

We offer two possible explanations. First, structures may be over-
optimized to avoid branching, trading additional cache misses or
instructions to reduce branching. Second, indexes that experience
more branch misses may benefit from speculative loads on modern
hardware. We leave further investigation to future work.

Interpretation: what metrics matter? If there is a single metric
that explains the performance of learned index structures, we were
unable to find it. Regression analysis suggests that cache misses,
branch misses, and instruction counts are all significant, and account
for model size and log2 error. Of the significant measures, cache
misses had the largest explanatory power. This is consistent with
indexes being latency-bound (limited by round-trip time to RAM).

The vast majority of cache misses for RMIs happen during the
last-mile search. Two-layer RMIs require at most two cache misses
for inference (potentially only one if the RMI’s top layer is small
enough). On the other hand, for a full BTree, no cache misses hap-
pen during the final search at all, but BTrees generally require at
least one cache miss per level of the tree. Cache misses also help
explain performance differences between RMI and PGM: since each
additional PGM layer likely requires a cache miss at inference time,
a large RMI with low log2 error will incur fewer cache misses than a
large PGM index with a similar log2 error (e.g., amzn in Figure 12).
When an RMI is not able to achieve a low log2 error, this advantage
vanishes, as more cache misses are required during the last-mile
search (e.g., osm in Figure 12).

9

https://rm.cab/lis5

10 1 102

Size

0

10

20

Lo
g2

amzn

10 1 102

Size

osm

RS
RMI
PGM
BTree

Figure 13: Size and log2 error bound of various index struc-
tures. When evaluated as a compression technique, learned in-
dex structures can be evaluated purely based on their size and
log2 error. Extended plots are available here: https://rm.cab/lis7

Current implementations of learned index structures seem to pri-
oritize fast inference time over log2 error. This makes sense, since a
linear increase in log2 error only leads to a logarithmic increase in
lookup time (due to binary search). However, our analysis suggests
that a learned index structure could use significantly more cache
misses if it could accurately pinpoint the cache line containing the
lookup key. We experimented with multi-stage RMIs (> 10 lev-
els), but were unable to achieve such an accuracy. This could be an
interesting direction for future work.

We encourage future development of index structures to take into
account cache misses, branch misses, and instruction counts. Since
all three of these metrics have a statistically significant impact on
performance, ignoring one or two of them in favor of the other may
lead to poor results. While we cannot suggest a single metric for
evaluating index structures, if one must select a single metric, our
analysis suggests that cache misses are the most significant.

Learned indexes as compression. A common view of learned in-
dex structures is to think of learned indexes as a lossy compression
of the CDF function [12, 18]. In this view, the goal of a learned
index is similar to lossy image compression (like JPG): come up
with a representation that is smaller than the CDF with minimal
information loss. The quality of a learned index can thus be judged
by just two metrics: the size of the structure, and the log2 error (infor-
mation loss). Figure 13 plots these two metrics for the three learned
index structures and BTrees. These plots indicate that the informa-
tion theoretic view, while useful, is not fully predictive of index
performance. For example, for face, all three structures have very
similar size and log2 errors after 1MB. However, some structures
are substantially faster than others at a fixed size (Figure 7).

We encourage researchers and practitioners to familiarize them-
selves with the information theoretic view of learned index structures,
but we caution against ending analysis at this stage. For example, an
index structure that achieves optimal compression (i.e., an optimal
size to log2 error ratio) is not necessarily going to outperform an
index with suboptimal compression. The simplest way this could
occur is because of inference time: if the index structure with supe-
rior compression takes a long time to produce a search bound, an
index structure that quickly generates less accurate search bounds
may be superior. However, if one assumes that storage mediums are
arbitrarily slow (i.e., search time is strictly dominated by the size of
search bound), then there is merit in viewing learned index structures
as a pure compression problem, and investigating more advanced
compression techniques for these structures [12] could be fruitful.

4.4 CPU interactions
Many prior works on both learned and non-learned index structures
(including those by authors of this work) have evaluated their index
structures by repeatedly performing lookups in a tight loop. While
convenient and applicable to many applications, this experimental
setup may exaggerate the performance of some index structures due,
in part, to caching and operator reordering.

4.4.1 Caching. Executing index lookups in a tight loop, as it is
often done to evaluate an index structure, will cause nearly all of
the CPU cache to be filled with the index structure and underlying
data. Since accessing a cached value is significantly faster (10s of
nanoseconds) than accessing an uncached value (≈ 100 nanosec-
onds), this may cause such tight-loop experiments to exaggerate the
performance of an index structure.

The amount of data that will remain cached from one index lookup
to another is clearly application dependent. In Figure 14, we investi-
gate the effects of caching by evaluating the two possible extremes:
the datapoints labeled “warm” correspond to a tight loop in which
large portions of the index structure and underlying data can be
cached between lookups. The datapoints labeled “cold” correspond
to the same workload, but with additionally fully flushing the cache
after each lookup. The gain from a warm cache for all five index
structures ranges from 2x to 2.5x. With small index sizes (< 1MB),
the cold-cache variant of several learned index structures outperform
the warm-cache BTree. With larger (and arguably more realistic)
index structure sizes, obviously whether or not the cache is warm or
cold is more important than the choice of index structure. Regardless
of if the cache is warm or cold, we found that learned approaches
exhibited dominant performance / size tradeoffs.

4.4.2 Memory fences. Modern CPUs and compilers may reorder
instructions to overlap computation and memory access or other-
wise improve pipelining. For example, consider a simple program
that loads 𝑥 , does a computation 𝑓 (𝑥), loads 𝑦, and then does a
computation 𝑔(𝑦). Assuming the load of 𝑦 does not depend on 𝑥 ,
a load of 𝑦 may be reordered to occur before the computation of
𝑓 (𝑥), so that the latency from loading 𝑦 can be hidden within the
computation of 𝑓 (𝑥). When considering index structures, lookups
placed in a tight loop may cause the CPU or compiler to overlap
the final computation of one query with the initial memory read
of the next query. In some applications, this may be realistic and
desirable – in other applications, expensive computations between
index lookups may prevent such overlapping. Thus, some indexes
may disproportionately benefit from this reordering.

To test the impact of reordering on lookup time, we inserted a
memory fence instruction into our experimental loop. Figure 15
shows that RMI and RS – two of the most competitive index struc-
tures – have the largest drop in performance when a memory fence
is introduced(≈ 50% slowdown). The BTree, FAST and PGM are
almost entirely unaffected. While the inclusion of a memory fence
harms the performance of RMI and RS, learned structures still pro-
vide a better performance / size tradeoff for the amzn dataset (results
for other datasets are similar, but omitted due to space constraints).

The impact of a memory fence was highly correlated with the
number of instructions used by an index structure (Figure 12): in-
dexes using fewer instructions, like RMI and RS, were impacted to a

10

https://rm.cab/lis7

10 2 100 102

Size (MB)

0

1000

2000

3000

Lo
ok

up
 ti

m
e

(n
s)

amzn
RMI (cold)
RMI (warm)

10 2 100 102

Size (MB)

amzn
RS (cold)
RS (warm)

10 2 100 102

Size (MB)

amzn
PGM (cold)
PGM (warm)

10 2 100 102

Size (MB)

amzn
BTree (cold)
BTree (warm)

10 2 100 102

Size (MB)

amzn
FAST (cold)
FAST (warm)

Figure 14: The performance impact of having a cold cache for various index structures. Extended plots with all techniques are
available here: https://rm.cab/lis3

10 1 102

Size (MB)

500

1000

1500

Lo
ok

up
 ti

m
e

(n
s)

amzn
RMI (fence)
RMI (no fence)

10 1 102

Size (MB)

amzn
RS (fence)
RS (no fence)

10 1 102

Size (MB)

amzn
PGM (fence)
PGM (no fence)

10 1 102

Size (MB)

amzn
BTree (fence)
BTree (no fence)

10 2 100 102

Size (MB)

amzn
FAST (fence)
FAST (no fence)

Figure 15: Performance of various index structures with and without a memory fence. Without the fence, the CPU may reorder
instructions and overlap computation between lookups. With the fence, each lookup must be completed before the next lookup begins.
Extended plots with all techniques and datasets are available here: https://rm.cab/lis4

greater extent than structures using more instructions. Since reorder-
ing optimizations often examine only a small window of instructions
(i.e., “peephole optimizations” [22]), reordering optimizations may
be more effective when instruction counts are lower.

We recommend that future researchers test index structures with
memory fences to determine the benefit their structure gets from
reordering. Getting a lot of benefit from reordering is not necessarily
bad; plenty of applications require performing index lookups in a
tight loop, with only minimal computation being performed on each
result. Ideally, researchers should evaluate their index structures
within a specific application, although this is much more difficult.

4.5 Multithreading
Here, we evaluate how various index structures scale when queried
by concurrent threads. Our test CPU had 20 physical cores (40 with
hyperthreading). Since multithreading strictly increases latency, here
we evaluate throughput (lookups per second).

Varying thread count. We first vary the number of threads, fixing
the model size at 50MB except for RobinHash, which is still the
full size. The results are plotted in Figure 16a, with and without a
memory fence. Overall, all three learned index variants scale with
an increasing number of threads, although only the RMI achieved
higher throughput than the RBS lookup table in this experiment.

RobinHash, the technique with the lowest latency with a single
thread, does not achieve the highest throughput in a concurrent envi-
ronment.4 We do not consider hash tables optimized for concurrent
environments [27]; here we only demonstrate that an off-the-shelf

4The SIMD Cuckoo implementation [5] only supports 32-bit keys, and was
not included in this experiment.

hash table with a load factor optimized for single-threaded lookups
does not scale seamlessly.

To help explain why certain indexes scaled better than others,
we measured the number of cache misses incurred per second by
each structure, plotted in Figure 16c. If a index structure incurs more
cache misses per second, then the benefits of multithreading will be
diminished, since threads will be latency bound waiting for access
to RAM. Indeed, RobinHash incurs a much larger number of cache
misses per second than any other technique. The larger size of the
hash table may contribute to this, as fewer cache lines may be shared
in between lookups compared with a smaller index.

PGM and FAST have the fewest cache misses per second at
40 threads, suggesting that PGM and FAST may benefit the most
from multithreading. To investigate this, we tabulated the relative
speedup factor of each technique. Due to space constraints, the plot
is available online: https://rm.cab/lis8. FAST has the highest relative
speedup, achieving 32x throughput with 40 threads. In addition to
having few cache misses per second, FAST also takes advantage of
streaming AVX-512 instructions, which allows for effective overlap
of computation with memory reads. PGM, despite having the least
cache misses per second, achieved only a 27x speedup at 40 threads.
On the other hand, RobinHash had by far the most cache misses per
second and the lowest relative speedup at 40 threads (20x). Thus,
cache misses per second correlate with, but do not always determine,
the speedup factor of an index structure.

Varying index size. Next, we fix the number of threads at 40, and
vary the size of the index. Results are plotted in Figure 16b. One
might expect smaller structures to have better throughput because
of caching effects; we did not find this to be the case. In general,
larger indexes had higher throughput than smaller ones. One possible
explanation of this behavior is that smaller models, while more likely

11

https://rm.cab/lis3
https://rm.cab/lis4
https://rm.cab/lis8

0 10 20 30 40
Threads

0

50

100

150

M
 lo

ok
up

s
pe

r
s

no fence (amzn)

0 10 20 30 40
Threads

fence (amzn)

(a) Multithreaded throughput for amzn, mod-
els have a fixed size of 50MB. No memory fence
(left) and with memory fence (right).

10 3 10 2 10 1 100 101 102 103 104

Size (MB)

0

50

100

150

M
 lo

ok
up

s
pe

r
s

Size vs. Throughput, 40 threads (amzn)

(b) Model size vs. 40-thread throughput for the
amzn dataset. An extended plot with all index
techniques is available here: https://rm.cab/lis6

0 10 20 30 40
Threads

0

20

40

60

80

100

Ca
ch

e
m

is
se

s
/ l

oo
ku

p
/ s

ec

amzn (fence)
RMI
PGM
RS
RBS
ART
BTree
IBTree
FAST
RobinHash

(c) Cache misses per lookup per second. Higher
values indicates that speedup from multithread-
ing may be negatively impacted.

Figure 16: Multithreading results

PG
M RS RM
I

RB
S

AR
T

BT
re

e

IB
Tr

ee

FA
ST FS
T

W
or

m
ho

le

Ro
bi

nH
as

h

100

101

102

Bu
ild

 ti
m

e
(s

)

200M
400M
600M
800M

Figure 17: Build times for the fastest (in terms of query time)
variant of each index type for the amzn dataset at four different
data sizes. Note the log scale.

to remain cached, produce larger search bounds, which cause more
cache misses during the last mile search.

PGM, BTree, RS, and ART indexes suffered decreased throughput
at large model sizes. This suggests that the cache misses incurred
from the larger model sizes are not enough to make up for the
refinement in the search bound. The RMI did not suffer such a
regression, possibly because each RMI inference requires at most
two cache misses (one for each model level), whereas for other
indexes the number of cache misses per inference could be higher.

4.6 Build times
Figure 17 shows the single-threaded build time required for the
fastest (in terms of lookup time) variants of each index structure on
amzn at different dataset sizes. We do not include the time required
to tune each structure (automatically via CDFShop [21] for RMIs,
manually for other structures). We note that automatically tuning
an RMI may take several minutes. Unsurprisingly, BTrees, FST,
and Wormhole provide the fastest build times, as these structures
were designed to support fast updates.5 Of the non-learned indexes,
FAST and RobinHash have the longest build times. Maximizing the
performance of Robinhood hashing requires using a high load factor
(to keep the structure compact), which induces a high number of
swaps. We note that many variants of Robinhood hashing support
parallel operations, and thus lower build times.

5In particular, Wormhole and PGM can handle parallel inserts and builds
respectively, which we do not evaluate here.

For the largest dataset, the build times for the fastest variants
of RMI, PGM, and RS were 80 seconds, 38 seconds, and 20 sec-
onds respectively. Of the learned index structures, RS consistently
provides the fastest build times regardless of dataset size. This is
explained by the fact that an RS index can be built in a single pass
over the data with constant time per element [17]. In contrast, while
a PGM index could theoretically be built in a single pass, the tested
implementation of the PGM index builds the initial layer of the index
in a single pass, and builds subsequent layers in a single pass over
the previous layer (each logarithmically smaller). RMIs require one
full pass over the underlying data per layer. In our experiments, no
learned index takes advantage of parallelism during construction,
which could provide a speedup.

5 CONCLUSION AND FUTURE WORK
In this work, we present an open source benchmark that includes
several tuned implementations of learned and traditional index struc-
tures, as well as several real-world datasets. Our experiments on
read-only in-memory workloads searching over dense arrays showed
that learned structures provided Pareto dominant performance / size
behavior. This dominance, while sometimes diminished, persists
even when varying dataset sizes, key sizes, memory fences, cold
caches, and multi-threading. We demonstrate that the performance
of learned index structures is not attributable to any specific metric,
although cache misses played the largest explanatory role. In our
experiments, learned structures generally had higher build times than
insert-optimized traditional structures like BTrees. Amongst learned
structures, we found that RMIs provided the strongest performance /
size but the longest build times, whereas both RS and PGM indexes
could be constructed faster but had slightly slower lookup times.

In the future, we plan to examine the end-to-end impact of learned
index structures on real applications. Opportunities to combine a
simple radix table with an RMI structure (or vice versa) are also
worth investigating. As more learned index structures begin to sup-
port updates [10, 12, 13], a benchmark against traditional indexes
(which are often optimized for updates) could be fruitful.

ACKNOWLEDGMENTS
This research is supported by Google, Intel, and Microsoft as part
of the MIT Data Systems and AI Lab (DSAIL) at MIT, NSF IIS
1900933, and DARPA Award 16-43-D3M-FP040.

12

https://rm.cab/lis6

REFERENCES
[1] C++ lower_bound, http://cplusplus.com/reference/algorithm/lower_bound/.
[2] RobinMap, https://github.com/Tessil/robin-map.
[3] RocksDB, https://rocksdb.org/.
[4] Searching on sorted data benchmark, https://learned.systems/sosd.
[5] SIMD Cuckoo Hash, https://github.com/stanford-futuredata/index-baselines.
[6] STX B+ Tree, https://panthema.net/2007/stx-btree/.
[7] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu, and S. Lin. Effi-

cient parallel lists intersection and index compression algorithms using graphics
processing units. Proceedings of the VLDB Endowment, 4(8):470–481, May 2011.

[8] J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(3):82–87, Aug. 1976.

[9] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis. HOT: A height optimized
trie index for main-memory database systems. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD ’18, pages 521–534, New
York, NY, USA, 2018. Association for Computing Machinery.

[10] J. Ding, U. F. Minhas, H. Zhang, Y. Li, C. Wang, B. Chandramouli, J. Gehrke,
D. Kossmann, and D. Lomet. ALEX: An Updatable Adaptive Learned Index.
arXiv:1905.08898 [cs], May 2019.

[11] P. Ferragina and G. Vinciguerra. Learned data structures. In Recent Trends
in Learning From Data, volume 896 of Studies in Computational Intelligence.
Springer, 2020.

[12] P. Ferragina and G. Vinciguerra. The PGM-index: A fully-dynamic compressed
learned index with provable worst-case bounds. Proceedings of the VLDB Endow-
ment, 13(8):1162–1175, Apr. 2020.

[13] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska. FITing-
Tree: A Data-aware Index Structure. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 1189–1206, New York,
NY, USA, 2019. ACM.

[14] G. Graefe. B-tree indexes, interpolation search, and skew. In Proceedings of the
2nd International Workshop on Data Management on New Hardware, DaMoN
’06, Chicago, Illinois, June 2006. Association for Computing Machinery.

[15] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.
Lee, S. A. Brandt, and P. Dubey. FAST: Fast architecture sensitive tree search on
modern CPUs and GPUs. In Proceedings of the 2010 International Conference
on Management of Data, SIGMOD ’10, 2010.

[16] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neu-
mann. SOSD: A Benchmark for Learned Indexes. In ML for Systems at NeurIPS,
MLForSystems @ NeurIPS ’19, Dec. 2019.

[17] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neu-
mann. RadixSpline: A single-pass learned index. In Proceedings of the Third
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, aiDM @ SIGMOD ’20, pages 1–5, Portland, Oregon, June 2020.
Association for Computing Machinery.

[18] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for Learned
Index Structures. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18, New York, NY, USA, 2018. ACM.

[19] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful indexing
for main-memory databases. In Proceedings of the 2013 IEEE International
Conference on Data Engineering, ICDE ’13, pages 38–49, USA, 2013. IEEE
Computer Society.

[20] C. Luo and M. J. Carey. LSM-based storage techniques: A survey. PVLDB,
29(1):393–418, Jan. 2020.

[21] R. Marcus, E. Zhang, and T. Kraska. CDFShop: Exploring and Optimizing
Learned Index Structures. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, Portland, OR, June 2020.

[22] W. M. McKeeman. Peephole optimization. Communications of the ACM, 8(7):443–
444, July 1965.

[23] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning Multi-dimensional
Indexing. In ML for Systems at NeurIPS, MLForSystems @ NeurIPS ’19, Dec.
2019.

[24] T. Neumann and S. Michel. Smooth interpolating histograms with error guarantees.
In Sharing Data, Information and Knowledge, 25th British National Conference
on Databases, BNCOD ’08, pages 126–138, 2008.

[25] Peter Bailis, Kai Sheng Tai, Pratiksha Thaker, and Matei Zaharia. Don’t Throw
Out Your Algorithms Book Just Yet: Classical Data Structures That Can Outper-
form Learned Indexes (blog post), https://dawn.cs.stanford.edu/2018/01/11/index-
baselines/, 2018.

[26] Peter Boncz and Thomas Neumann. The Case for B-Tree Index Structures (blog
post), http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-
structures.html, 2017.

[27] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of hashing
methods and its implications on query processing. Proceedings of the VLDB
Endowment, 9(3):96–107, Nov. 2015.

[28] L.-C. Schulz, D. Broneske, and G. Saake. An eight-dimensional systematic
evaluation of optimized search algorithms on modern processors. Proceedings of
the VLDB Endowment, 11(11):1550–1562, July 2018.

[29] P. Van Sandt, Y. Chronis, and J. M. Patel. Efficiently Searching In-Memory
Sorted Arrays: Revenge of the Interpolation Search? In Proceedings of the 2019
International Conference on Management of Data, SIGMOD ’19, pages 36–53,
New York, NY, USA, 2019. ACM.

[30] X. Wu, F. Ni, and S. Jiang. Wormhole: A Fast Ordered Index for In-memory Data
Management. In Proceedings of the Fourteenth EuroSys Conference 2019, Eu-
roSys ’19, pages 1–16, Dresden, Germany, Mar. 2019. Association for Computing
Machinery.

[31] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng. Maximum error-bounded
Piecewise Linear Representation for online stream approximation. The VLDB
Journal, 23(6):915–937, Dec. 2014.

[32] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton, and A. Pavlo.
SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of
the 2018 International Conference on Management of Data, SIGMOD ’18, pages
323–336, Houston, TX, USA, May 2018. Association for Computing Machinery.

13

	Abstract
	1 Introduction
	2 Formulation & definitions
	2.1 Approximating the CDF

	3 Learned index structures
	3.1 Recursive model indexes (RMI)
	3.2 Radix spline indexes (RS)
	3.3 Piecewise geometric model indexes (PGM)
	3.4 Discussion

	4 Experiments
	4.1 Setup
	4.2 Pareto analysis
	4.3 Explaining the performance
	4.4 CPU interactions
	4.5 Multithreading
	4.6 Build times

	5 Conclusion and future work
	Acknowledgments
	References

