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Abstract

Serializability is a well-understood concurrency control mech-
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ACM Reference Format:

programs. Unfortunately, enforcing serializability has a high
performance cost, especially on geographically distributed
database clusters. Consequently, many databases allow pr

Kartik Nagar
IIT Madras, India
nagark@cse.iitm.ac.in

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Keywords: gchema Refactoring, Serializability, Weak Con-
sistency, Weak Isolation

Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagan-
nathan.2021. Repairing Serializability Bugs in Distributed Data-

%Pase Programs via Automated Schema Refactoring. In Proceedings
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concurrency bugs. However, this is a significant burden to
impose on developers, requiring them to (a) reason about
subtle concurrent interactions among potentially interfering
transactions, (b) determine when such interactions would
violate desired invariants, and (c) then identify the minimum

number of transactions whose executions should be serial-

ized to prevent these violations. To mitigate this burden, this
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1 Introduction

Programs that concurrently access shared data are ubiqui-
tous: bank accounts, shopping carts, inventories, and social
media applications all rely on a shared database to store

paper presents a sound and fully automated schema refacinformation. For performance and fault tolerance reasons,

toring procedure that transforms a program’s data layout
$ rather than its concurrency control logic $ to eliminate
statically identified concurrency bugs, allowing more trans-

actions to be safely executed under weaker and more perfor-

the underlying databases that manage state in these appli-
cations are often replicated and distributed across multiple,
geographically distant locations3, 36 48 51). Writing pro-
grams which interact with such databases is notoriously

mant database guarantees. Experimental results over a ranggjtficult, because the programmer has to consider an expo-
of realistic database benchmarks indicate that our approach nential space of possible interleavings of database operations

is highly effective in eliminating concurrency bugsyith

in order to ensure that a client program behaves correctly.

safe refactored programs showing an average of 120% higheyne approach to simplifying this task is to assume that sets

throughput and 45% lower latency compared to a serialized
baseline.

CCS Concepts:. goftware and its engineering >  Sys-
tem modeling languagegspplication specific development
environments; Computing methodologies -~ Distributed
computing methodologies.
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of operations, or transactions, executed by the program are
serializable 40, i.e. that the state of the database is always
consistent with some sequential ordering of those transac-
tions. One way to achieve this is to rely on the underlying
database system to seamlessly enforce this property. Unfor-
tunately, such a strategy typically comes at a considerable
performance costThis cost is particularly significant for
distributed databases, where the system must rely on expen-
sive coordination mechanisms between different replicas,
in effect limiting when a transaction can see the effects of
another in a way that is consistent with a serializable execu-
tion [5]. This cost is so high that developers default to weaker
consistency guarantees, using careful design and testing to
ensure correctness, only relying on the underlying system
to enforce serializable transactions when serious bugs are
discovered [27, 37, 45, 50].
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Uncovering such bugs is a delicate and highly error-prone
task even in centralized environments: in one recent study,
Warszawski and Bail[§6] examined 12 popular E-Commerce
applications used by over two million well-known websites
and discovered 22 security vulnerabilities and invariant vi-
olations that were directly attributable to non-serializable

transactions. To help developers identify such bugs, the com-

munity has developed multiple program analyses that report
potential serializability anomalied?, 13 27, 31, 39. Auto-
matically repairing these anomalies, however, has remained
a challenging open problem: in many cases full application
safety is only achievable by relying on the system to enforce
strong consistency of all operations. Such an approach re-
sults in developers either having to sacrifice performance
for the sake of correctness, or conceding to operate within
a potentially restricted ecosystem with specialized services
and APIs §] architectured with strong consistency in mind.
In this paper,we propose a novel language-centric ap-
proach to resolving concurrency bugs that arise in these dis-
tributed environments. Our solution is to alter the schema,

or data layout, of the data maintained by the database, rather

than the consistency levels of the transactions that access
that data.Our key insight is that it is possible to modify
shared state to remove opportunities for transactions to wit-
ness changes that are inconsistent with serializable execu
tions. We, therefore,investigate automated schema trans-
formations that change how client programs access data to
ensure the absence of concurrency bugs, in contrast to using
expensive coordination mechanisms to limit when transac-
tions can concurrently access the database.

For example, to prevent transactions from observing non-
atomic updates to different rows in different tables, we can
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1. We observe that serializability violations in database
programs can be eliminated by changing the schema
of the underlying database and the client programs
in order to eliminate problematic accesses to shared
database state.

Using this observation, we develop an automated refac-

toring algorithm that iteratively repairs statically iden-

tified serializability anomalies in distributed database
clients. We show this algorithm both preserves the se-
mantics of the original program and eliminates many
identified serializability anomalies.

. We develop a tool,Atropos !, implementing these
ideas, and demonstrate its ability to reduce the num-
ber of serializability anomalies in a corpus of standard
benchmarks with minimal performance impact over
the original program, but with substantially stronger
safety guarantees.

2.

The remainder of the paper is structured as follow$he

next section presents an overview of our approach. Section 3
defines our programming model and formalizes the notion

of concurrency bugs. Section 4 provides a formal treatment
of our schema refactoring strategy. Sections 5 and 6 describe
our repair algorithm and its implementation, respectively.
Section 7 describes our experimentalaluation.Related

work and conclusions are given in Section 8 and Section 9.

2 Overview

To illustrate our approach, consider an online course man-

agement program that uses a database to manage a list of
course offerings and registered students. Figure 1 presents a
simplified code snippet implementing such a program. The

fuse the offending fields into a single row in a single table database consists of three tables, maintaining information

whose updates are guaranteed to be atomic under any consigedarding courses, students, and their email addrtyasses. The
tency guarantee. Similarly, consecutive reads and writes on a> | UDENdble maintains a reference to a student’s email

row can be refactored into ffunctional? inserts into a new ta- €Ntry in schema&MAll(via secondary kegt_em_id) and a

ble, which removes the race condition between concurrently féference to a course entry in tablEOURSiza secondary
running instances of the program. By changing the schema key.st_co._ld ) that t!we studen.t hgs registered for. A student’s
(and altering how transactions access data accordingly), withJegistration status is stored in fielst_reg . Each entry in
out altering a transaction’s atomicity and isolation levels, tableCOURS#so stores information about the availability
we can make clients of distributed databases safer without Of @ course and the number of enrolled students.
sacrificing performance. In our experimental evaluation, we  1he Program includes three sets of database operations or
were able to fix on average 74% of all identified serializabil- {ransactions. TransactigetSt, given a student’s id, first re-
ity anomalies with only a minimal impact (less than 3% on trieves a!l information for that studen(). It then p.erforms.
average) on performance in an environment that provides W0 dueries, $2andS3, on the other tables to retrieve their
only weak eventually consistent guarantees$4. For the email address anq course avalIabllltﬂlfransactlonsetSt-
remaining 26% of anomalies that were not eliminated by our akes a student's id and updates their name and email ad-
refactoring approach, simply marking the offending trans- dressit includes a query $4 and an update to table
actions as serializable yields a provably safe program that S TYDENRd an update to thieMAlliable 3. Finally, trans-

nonetheless improves the throughput (resp. latency) of its actionregSt registers a §tudent in a course. It consists of
fully serialized counterpart by 120% (resp. 45%) on average@n UPdate to the student's entry)§, a query taCCOURS&
This paper makes the following contributions: determine the number of students enrolled in the course they

1https://github.com/Kiarahmani/AtroposTool
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STUDENT ‘ st_id %t_name sk_em_id stl_co_id st_jreg ‘

COURSE ‘co_id ko_avail ‘co_st_cnt‘

1 | getSt(id):

2 x:=select * from STUDENTwhere st_id=id// S1

3 y :=select em_addr from EMAIL where em_id =x.st_em_id// S2
4 z:=select co_aval from COURSEwhere co_id=x.st co_id// S3

setSt (id , name , email ) :
X select st.em_id from STUDENTwhere st_id=id//S4
update STUDENTset st name =name where st id=id// U1
update EMAIL set em_addr=emal where em_id =x.st_em_id // U2

B WN =

regSt (id , course ) :
update STUDENTset st_co_id = course,
where st_id =id / U3
x :=select co_st.cnt from COURSEwhere co_id = course // S5
update COURSEset co_st cnt=x.co_st cnt+1,
co_avail = true where co_id = course /I'U4

st_reg = true

o0 hwWN =

Figure 1. Database schemas and code snippets from an on-
line course management program

wish to register for $5, and an update to that course’s avail-
ability (U4 indicating that it is available now that a student
has registered for it.

The desired semantics of this program is these transaction
should be performed atomically and in isolation. Atomicity
guarantees that a transaction never observes intermediate
updates of another transaction. Isolation guarantees that a

transaction never observes changes to the database by other

committed transactions once it begins executing. Taken to-
gether, these properties ensure that all executions of this pro
gram are serializable, yielding behavior that corresponds to
some sequential interleaving of these transaction instances.

While serializability is highly desirable, it requires using
costly centralized locks29 or complex version manage-
ment systems 10, which severely reduce the system’s avail-
able concurrencygespecially in distributed environments
where database state may be replicated or partitioned to
improve availability. In such environments, enforcing seri-
alizability typically either requires coordination among all
replicas whenever shared data is accessed or updabed,
ensuring replicas always witness the same consistent order
of operations [1§. As a result, in most modern database sys-
tems, transactions can be executed under weaker isolation
levels, e.g. permitting them to observe updates of other com-
mitted transactions during their executior3fl, 38 43 4§.
Unfortunately, these weaker guarantees can result in serial-
izability anomalies, or behaviors that would not occur in a
serial execution. To illustrate, Figure 2 presents three con-
current executions of this program’s transaction instances
that exhibit non-serializable behaviors.

The execution on the left shows instances of thetSt
andsetSet transactions. Following the order in which op-

S

concurrent execution of instances @&tSt andregSt. Here,

(S1) witnesses the effect of (U3) observing that the student is
registered, but (S3) sees that the course is unavailable, since
it does not witness the effect of (U4)This is an instance

of a dirty-read anomaly. Lastly, the execution on the right
shows two instances afgSt that attempt to increment the
number of students in a course. This undesirable behavior,
known as a lost update, leaves the database in a state incon-
sistent with any sequential execution of the two transaction
instances. All of these anomalies can arise if the strong atom-
icity and isolation guarantees afforded by serializability are
weakened.

getSt(1): || setSt(1,A,a@b): getSt(1): || regSt(1,101): regSt(2,101):
S1 u3
Li1 31 S5
v
u2
s2 S3 U4 U4

Figure 2. Serializability Anomalies

regSt(1,101):

S5
U4

Several recent proposals attempt to identify such unde-
sirable behaviors in programs using a variety of static or
dynamic program analysis and monitoring techniqué$ [

13 39 56. Given potential serializability violations, the stan-
dard solution is to strengthen the atomicity and isolation
requirements on the offending transactions to eliminate the
undesirable behaviour, at the cost of increased synchroniza-
tion overhead or reduced availability [7, 27, 50].

Atropos. Are developers obligated to sacrifice concur-
rency and availability in order to recover the pleasant safety
properties afforded by serializability? Surprisingly, we are
able to answer this question in the negativ8.o see why,
observe that a database program consists of two main com-
ponents - a set of computations that includes transactions,
SQL operations (e.g., selects and updates), locks, isolation-
level annotations, etc.; and a memory abstraction expressed
as a relational schema that defines the layout of tables and
the relationship between them. The traditional candidates
picked for repairing a serializability anomaly are the trans-
actions from the computationacomponent:by injecting
additional concurrency control through the use of locks or
isolation-strengthening annotations, developers can control
the degree of concurrency permitted, albeit at the expense
of performance and availability.

This paper investigates the under-explored alternative of
transforming the program’s schema to reduce the number
of potentially conflicting accesses to shared staker ex-
ample, by aggregating information found in multiple tables
into a single row on a single table, we can exploit built-in
row-level atomicity properties to eliminate concurrency bugs

erations execute (denoted by red arrows), observe that (S2)that arise because of multiple non-atomic accesses to differ-
witnesses the update to a student’s email address, but (S1gnt table state. Row-level atomicity, a feature supported in
does not see their updated name. This anomaly is known as most database systems, guarantees that other concurrently
a non-repeatable read. The execution in the center depicts thexecuting transactions never observe partial updates to a
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STUDENT [[st_id $t_name s{_em_id st|em_addr [ st_co_id }t_co_avail |st_reg] Using the functioruuid() ensures that a new record is in-
serted every time the transaction is callefhese updates
remove potential serializability anomalies by replacing the

COURSE_CO_ST_CNT_LOG [ co_id | log_id [co_st_cnt_log]

1 getSt(id): o disjoint updates to fields in different tables from the original
2 x:=select * from STUDENTwhere stid=id //RS1, RS2, RS3 . . . . .

with a simple atomic row insertion. Notably, the refactored
1 setSt(id, name , email ) : program can be shown to _be a_mfean?ngful refinemfent of_
2 update STUDENTset st name =name, st em_addr = email the original program, despite eliminating problematic seri-
3 where stid=id //RU1,RU2 . i . -

alizability errors found in it. Program refinement ensures
| rea) , e ) - th_at the refactorfac_l program malnltalns all m_fo_rlmatlon main-
2 update STUDENTset st co_id=course,  st_co_avail = true, tained by the original program without exhibiting any new
3 st reg=true  where stid=id //RU3 behavi
4 inset into COURSE_CO_ST CNT_LOGalues enhaviour. o _
5 (co_id = course , log_id = uuid () , co_st_cnt_log =1) /I RU4 The program shown in Figure 3 is the result of several data-

base schema refactoring8,[21, 24, incremental changes

to a database program’s data model along with correspond-
ing semantic-preserving modifications to its logic. Manually
searching for such a refactored program is unlikely to be
particular row. Alternatively, it is possible to decompose data-successfulOn one hand,the set of potential solutions is
base state to minimize the number of distinct updates to a large [3], rendering any manual exploration infeasible. On
field, for example by logging state changes via table inserts, the other hand, the process of rewriting an application for a
rather than recording such changes via updates. The former(even incrementally) refactored schema is extremely tedious
effectively acts as a functional update to a table. To be sure,and error-prone [55].

these transformations affect read and write performance to  We have implemented a tool named Atropos that, given a
database tables and change the memory footprint, but they database program, explores the space of its possible schema
notably impose no additional synchronization costs. In scal- and program refactorings, and returns a new version with
able settings such as replicated distributed environments, possibly many fewer concurrency bugs. The refactored pro-
this is a highly favorable trade-off since the cost of global gram described above, for example, is automatically gener-
concurrency control or coordination is often problematic  ated by Atropos from the original shown in Figure 1. Figure 4
in these settingsan observation that is borne our in our presents the Atropos pipeline. A static analysis engine is

Figure 3. Refactored transactions and database schemas

experimental results. used to identify potential serializability anomalies in a given
To illustrate the intuition behind our approach, consider program. The program is then pre-processed to extract the
the database program depicted in FigureThis program components which are involved in at least one anomaly, in

behaves like our previous example, despite featuring very order to put it into a form amenable for our analysis. Next, a
different database schemas and transactions. The first of the refactoring engine applies a variety of transformations in an
two tables maintained by the progra8f UDENfemoves the  attempt to eliminate the bugs identified by our static analysis.
references to other tables from the origiSalUDENaDle, in- Finally, the program is analyzed to eliminate dead code, and
stead maintaining independent fields for the student’s email the refactored version is then reintegrated into the program
address and their course availability. These changes make th&om which it was extracted.

original course and email tables obsolete, so they have been
removed. In addition, the number of students in each course

is now stored in a dedicated tall®OURSE_CO_ST_CNT_LOr Af;amﬁzly Pre-proc Refactoring il Post-proc;
. Engi essor
Each time the enrollment of a course changes, a new record == | Detector || > nane e ——

is inserted into this table to record the change. Subsequent -~ Refactored Schema
queries can retrieve all corresponding records in the table

and aggregate them in the program itself to determine the
number of students in a course.

The transactions in the refactored program are also modi-
fied to reflect the changes in the data model. The transaction
getSt now simply selects a single record from the student 3 Database Programs
table to retrieve all the requested information for a student. We adopt a commonly-used modefor database applica-
The transactiorsetSt similarly updates a single record. Note tions [41, 42, 44], in which programs consist of a statically
that both these operations are executed atomically, thus elimknown set of transactions that are comprised of a combina-
inating the problematic data accesses in the original programtion of control flow and database operations. The syntax of
Similarly,regSt updates the studentst_co_id field and in- our database programs is given in Figure 5. A progrBis
serts a new record into the schel@®URSE_CO_ST_CNT_LO@efined in terms of a set of database schen®asand a set

Transactional Program Refactored Program

Figure 4. Schematic overview of Atropos
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a database command is executed; it is used to resolve con-

S gt’hNn?,r\l“:me © G {:’;’x_’ /}> . flicts among concurrent operations performed on the same
t” 2 TxnName (? z EA;}_ =) elements, which can be used to define a linearization or ar-
a e Arg T = 1(a){c;retum e} bitration order on updatesif. Given a database statg)(

x e Var R = p:if and a primary key- € Rq, it is possible to reconstruct each

n e val F = (fin) field f of a recordr, which we denote aZ(r .).f

agg < {summinmax} P = (RT Retrieving a record from a tablRgenerates a set of read
e= nlale®e |e@e |ece |iter| agg(x .f|at®(x .§ eventstd(z, r ), vhich witness that the field of the record

¢ =this . fOe | $-¢ o with the primary keyr € Rq was accessed when the value
g = x:=SELECF FROMWHERE | UPDATE SETf = e WHERE of the execution counter was Similarly, a write event,

¢ = gq |iterate(e){c} |if(e){ ¢} | skip| c;c

wr(z, r , J, records that the field of record- was assigned
the valuen at timestamprz. The timestamp (resprecord)
Figure 5. Syntax of database programs associated with an eventis denoted by;. (resps;).

Our semantics enforces record-level atomicity guarantees:
transactions never witness intermediate (non-committed)
= ) updates to a record in a table by another concurrently ex-
of transactionsX). A database schema consists of a SChemaecuting one. Thusall updates to fields in a record from a
name p) and a set of field names/). A database recordX  gatapase command happen atomically. This form of atomic-
for schemaRis comprised of a set of value bindingsRe  ty s offered by most commercial database systems, and is
fields. A datab.ase table is a set of recor_ds. 'Assomated W'theasily realized through the judicious use of locks. Enforcing
each schema is a non-empty subset of its fields that act asstronger multi-record atomicity guarantees is more challeng-
a primary key. Each assignment to these fields identifies aj,g especially in distributed environments with replicated
unique record in the tableln the following, we write Rq database statef] 9, 20, 35 57). In this paperwe consider
to denote the set of all possible primary key values for the penhaviors induced when the database guarantees only a very
schemaR. In our model, a table includes a record correspond-yyeak form of consistency and isolation that allows trans-
ing to every primary key. Every schema includes a special gctions to see an arbitrary subset of committed updates by
Boolean fieldalive < FldNamewhose value determines if  other transactions. Thus, a transaction which accesses multi-

a record is actually present in the table. This field allows us ple records in a table is not obligated to witness all updates

to modelDELETEBNd INSERTommands without explicitly performed by another transaction on these records.

including them in our program syntax. _ To capture these behaviorsye use a visibility relation
Transactions are uniquely namednd are defined by @  petween eventsyis , that relates two events when one wit-

sequence of parameters, a body, and a return expression. Thgegses the other in its local view of the database at the time of

body of a transactior] is a sequence of database commandsiig creation. A local view is captured by the relaton =x =

(9) and control commands. A database command either modiyetween database states, which is constrained as follows:

fies or retrieves a subset of records in a database table. The ,

. (ConstructView) , , ,
records retrieved by a database query are stored locally and “str ¢ str Vy'estr Vyeste (nr = np Ane =)= (nestr’)
can be used in subsequent commands. Control commands vis' =vis|sr'  cnt =cnt

consist of conditional guards, loops, and return statements. (str ',vis ,ent’) (str ,vis,cnt)

Both database commandSHLECandUPDATHequire an  The above definition ensures that an event can only be

explicit where clause) to filter the records they retrieve or present in a local vievstr ', if all other event®n the same

updategnq denotes the set of fields appearing in a clagse  record with the same counter value are also present in
Expressionse| include constants, transaction arguments, str * (ensuring record-level atomicity). Additionally, the vis-

arithmetic and Boolean operations and comparisorisy- ibility relation permitted on the local viewyis ', must be

ation counters and field accessord he values of field f consistent with the global visibility relation, vis.

of records stored in a variable can be aggregated using Figure 6 presents the operational semantics of our lan-

agg(x .); or accessed individually, using dtx .). guage, which is defined by a small-step reduction relation,
=>C X x I'x X x I, between tuples of data-store states

3.1 Data Store Semantics (2) and a set of currently executing transaction instances

Database state® are modeled as a triplgstr ,vis ,cnt), (T € cxex(Var— Rq x F)). A transaction instance is

wherestr is a set of database event$ that captures the a tuple consisting of the unexecuted portion of the trans-
history of all reads and writes performed by a program oper- action body (i.e., its continuation), the transaction’s return
ating over the database, an& is a partial order on those  expression, and a local store holding the results of previously
events. The execution countemt, is an integer that rep-  processed query command$he rules are parameterized
resents a global timestamp that is incremented every time over a programP containing a set of transactionByx, . At
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(txn-invoke) (txn-step) L, (txn-ret)
n € Val t(a) {c; return e} e Pyn S A e Z,A ¢ e ¢ Val A, elm
S, > 3, U{t :claln]; skip;elaln]; @} S {ticie;AuT=> S, {t :c;e;A' T s, {t : skip; ;AU T > =, {t : skip;m;A)u T
(seq) o (skip) (cond-t) (cond-f) (iter)
S, A e Z,A ¢ A, el true A, el false A, eln

S, A= S, A ¢ 3 Askipie= S A ¢ 3 Aff( e){c}= 3, A ¢ I, Aif( e){c}=> I, Askip I, Ajterate( e){c}= =, Aconcat(n,

(select)

S S eg={dlent,r )AreRd A fedq )}

(update)

results ={( r (fin)) |reRg AZ(@)=(fn)>A D>
A K nD)Ytruen finSfin} e={wrient, r ;,f)|r €eRg A S (r)=(fin)A
’ €2 ={rd(cnt , ;)f| (r {f 1n)) eresults A fef A ffm) Utruen( f=e)ef=e A A ¢lUm}
str =Zstru eqU e vis' = Svisu{(n, 7)|n €e1Uex A 5 €3 str)} str' = Sstru ¢ vis'=2visu{(n n)ln eenn X str}

=, A, 3= SELECT FROM WHERfE= (str ",vis ', cnt + 1), Ax - results] , skip =, AUPDATE SETf = ¢ WHERE= (str ",vis ', cnt + 1), Askip

Figure 6. Operational semantics of weakly-isolated database programs.

every step, a new transaction instance can be added to theview. All updates are performed atomically, as the set of cor-
set of currently running transactions via (txn-invoke). Al- responding write events all have the same timestamp value,
ternatively, a currently running transaction instance can be however, other transactions are not obligated to see all the
processed via (txn-step). Finally, if the body of a transac- effects of an update since their local view may only capture
tion has been completely processedrélurn expression a subset of these events.

is evaluated via (txn-ret); the resulting instance simply
records the binding between the transaction instangead

its return value f2).

The semantics of commands are defined using a local
reduction relation 4 ) on database states, local states, and
commands. The semantics for control commands are straigh
forward outside of the (iter) rule, which uses an auxiliary
function concat(n, ¢ to sequence copies of the command
c. Expression evaluation is defined using the big-step rela-
tion U € (Var—~ Rgq x F) x e x Val which, given a store
holding the results of previous query commands, determines
the final value of the expression. The full definition dfcan
be found in the supplementary material.

The semantics of database commands, given by the (select)
and (update) rules, expose the interplay between global a.nd Strong Isolatlon Vo i, 0. st(n ) Avis( ", ) =
local views of the Qatabase. Both rules construct a local view vis( 1", #.
of the databasgX %) that is used to select or update ’

the contents of recordsiNeither rule imposes any restric- The strong atomicity property prevents non-atomic inter-
tions onX other than the consistency constraints defined |eavings of concurrently executing transactioriBhe first

by (ConstructView). The key component of each rule is  constraint linearizes events, relating timestamp ordering of
how it defines the set of new events that are added to the  eyents to visibility. The second generalizes this notion to
database. In the select rules captures the retrievals that oc-  multiple events, obligating all effects from the same trans-

cur on database-wide scans to identify records satisfying the action (identified by thest relation) to be visible to another
SELEC®ommand’s where clause. In an abuse of notatlon We|f any of them are; in par‘hcu'ar any recorded event of a

3.2 Anomalous Data Access Pairs

We reason about concurrency bugs on transactions induced
by our data store programming model using execution histo-
tr|es finite traces of the forrBy, I'> 2o, b=> "> 2, |

that capture interleaved execution of concurrently executing
transactionsA complete history is one in which all trans-
actions have finished, i.e., the finBlin the trace is of the
form: {¢1 : skip;m1, AYU . . U {t; : skip;my, A}. Asa
shorthand, we refer to the final state in a histdrashsn . A
serial execution history satisfies two important properties:

Strong Atom|C|ty (V n, 1. fent < ncm :>VIS( n, 1)) A
Vi, n, n.st(n, n) A(vis(n, n)=>vis( 1, 1))

write A, & (f 1)) ¥ n as shorthand fon, dthis f/ n] 4 n. transactionTy that precedes an event i requires all offs
&2 constructs the appropriate read events of these retrieved events to precede all Gb's.
records.The (update) rule similarly definese, the set of The strong isolation property prevents a transaction from

write events on the appropriate fields of the records that  opserving the commits of other transactions once it begins
satisfy the where clause of th&?PDATéommand under an  execution. It does so through visibility constraints on a trans-
arbitrary (but ConSiStent) local Vie‘NX) of the glObal store actionT that require any evem” generated by any other
(Z). Both rules increment the local timestamp, and establish transaction that is visible to an evem't generated b)T to

new global visibility constraints reflecting the dependencies pe visible to any event that precedes it ifT”’s execution.
introduced by the database command, i.e., all the generated A serializability anomaly is an execution history with a
read and write events depending upon the events in the local fina state that violates at least one of the above constraints.
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These sorts of anomalies capture when the events of a trans- COURSE, COURSE_ST_CNT_LOG
action instance are either not made visible to other events | «.i | co_avai |co_stcnt co_id |co_fogi | co_cnt log
in totality (in the case of a violation of strong atomicity) . e 2 . u :

or which themselves witness different events (in the case . 33 1

of a violation of strong isolation). Both kinds of anomalies STUDENT

can be eliminated by identifying commands which gener- | st.% | stname |stem.id stem addr| stcoid |stco avall| streg
ate sets of problematic events and altering them to ensure 1 Bob 1| Sob@hosteom] T true e

X X . i 200 Alice 2 Alice@host.com 1 true true
atomic execution. Two events are executed atomically if they [ 550 Chris 3 |cris@hosteom| 2 true true
witness the same set of events and they are both made
visible to other events simultaneously, iadomic(n, ) = Figure 7. An example illustrating value correspondences.

Vn" . (vis(m n)=vis( n', n)A(VS( 1, A= vis( 7, 1))
Given a programp, we_define a database access pgir (
as a quadrupléc1, £, o, p) wherec1 andc, are database

commands from a transaction i, and 7‘1 (resp.?z) is a

4.1 Database Containment

Consider the tables in Figure 7, which are instances of the
subset of the fields that are accessed by (resp.cz). An ;chemas fro;nfSectlciln 2. l}lote thfat every f'ﬁﬂ?ﬂ(?&&r_‘h
access pair is anomalous if there is at least one execution in e computed from the values of some Ot_ ertield in either
the execution history of P that results in an event generated the STUDENSr COURSE_ST_CNTo tbIgs co_avail cor-

by ¢1 accessing a fielgi e 7, which induces a serializability ~ SPONdS to the value of thet_co_avail field of a record

anomaly with another event generated byaccessing field in STUDENTwhile co_st_cnt can be recovered by sum-
naly 9 9 ming up the values of theo_cnt_log field of the records in

£ € f,- An example of an anomalous access pair for the - RSE ST CNT, WBBeco id field has the same value
program from in Section 2,(i§1, {st_name}, & {em_addr}) as the original table.
and (U1, {st_name}, (2,{em_addr}); this pair contributes to The containment relation between a table (EQURSE
that program’s non-repeatable read anomaly from Figure 2. 34 3 set of tables (eSTUDENTENdCOURSE_ST_CNTy)LOG
We now turn to the development of an automated static re-js defined using a set of mappings called value correspon-
pair strategy that given a progranffand a set of anomalous  dences. A value correspondence captures how to com-
access pairs produces a semantically equivalent progtam pute a field in the contained table from the fields of the
with fewer anomalous access pairs. In particular, we repair containing set of tables. Formally, a value correspondence
programs by refactoring their database schemas in order to between field / of schemaR and field /' of schemaRr is
benefit from record-level atomicity guarantees offered by defined as atupler, R f ., ) im which: (i) a total record
most databases, without introducing new observable behav- correspondence function, denoted byRq ~ R, relates
iors. We elide the details of how anomalous access pairs €Very record of any instance &fto a set of records in any

are discovered, but note that existing tools3[4G can be insta_nce ofR and (i) a fold function on values, denoted by
adapted for this purposeSection 6 provides more details @ : Val -~ Val is used to aggregate a set of values. We say
about how this works in Atropos. that a tableX is contained by a set of tablésunder a set

of value correspondencds, if V' accurately explains how to
computeX from X, i.e.

XSy X =V feXyg . IR Rf..0)aV IX eX .

4 Refactoring Database Programs VreRg. Xr .)f= a{m|r €0(r)AX (r. f)=m})
In this section,we establish the soundness properties on For examplethe table COURSE contained in the set
the space of database program refactorings and then intro-of tables{STUDENTCOURSE_ST_CNTy}L@@er the pair
duce our particular choice of sound refactoring rules. Similar of value correspondencegCOURSETUDENGo_avail ,
refactorings are typically applied by developers when mi- st_co_avail , 61, any) and (COURSEOURSE_ST_CNT_LOG
grating traditional database programs to distributed database co_st_cnt,co_cnt_log, ,sum), wher&4(1) = {100,200},
systems P8 5§. Our approach to repair can be thought of 61(2) = {30G,602(1) ={( 1,11), (1,33 }andd2(2) = {( 222 }.
as automating this manual process in a way that eliminates The aggregator functiorany : Val » Val returns a non-
serializability anomalies. deterministically chosen value from a set of valueghe

The correctness of our approach relies on being able to containment relation on tables is straightforwardly lifted to
show that each program transformation maintains the invari- data store states, denoted By=, >, if all tables in= are
ant that at every step in any history of a refactored program,contained by the set of tables .
it is possible to completely recover the state of the data-storeWe define the soundness of our program refactorings us-
for a corresponding history of the original program. To estabing a pair of refinement relations between execution histo-
lish this property, we begin by formalizing the notion of a ries and between programs. An execution histarywhere

containment relation between tables. h;in = (3, 1)) is a refinement of an executiorh (where
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(intro p) B (intro p .J o B transactionggetSt andsetSt to utilize a value correspon-
p ¢ RRelNames R=p:f f&f R=p:fu{f} dence fromem_addto st_em_addr, moving email addresses
VR TV (Ru{p:@}D V ({RUR FTV ({RIURF to the STUDEN3ble, as described in Section 2. The select
(intro 0) commandsS1and S3in getS remain unchanged after the
veV T ={t@{[e]l,;retun[[e]l,} | 7(@){c; return e} e T} refactoring, as they do not access the affected table. However,
V(R To-Vu{oh (R D the queryS2 which originally accessed theMAIlLtable is
redirected to the STUDENT table.
Figure 8. Refactoring Rules More generally,in order to take advantage of a newly

hin = (2, 1)), denoted byr" <y A, if and only if " andT’ added value correspondencd[.]], must alter every query
have the same collection of finalized transaction instances ©n the source table and field into use the target table of

and there is a set of value correspondenicesder whichs instead, so that the new query accesses the same data as the
is contained ir®', i.e.X 5, = '. Intuitively, any refinement of  original. This rewrite has the general form:

a historyh maintains the same set of records and spawns the

same set of transaction instances/gswith each instance [[x:= SELECF FROMWHERAH], =

producing the same result as it does/in Lastly, we define x:= SELECF FROM WHERE redirecip, § M

a refactored progran® to be a refinement of the original - ) ] .

program P, denoted byP =<y, P, if the following conditions Intuitively, in order for this transformation to ensure R1,
are satisfied: theredirect function must return a new where clause on

the target table which selects a set of records corresponding
to set selected by the original clause.

In order to preserve R2, program expressions also need to
be rewritten to evaluate to the same value as in the original
program. For example, observe that tieéurn expression
in getSt is updated to reflect that the records held in the
variable y now adhere to a different schema.

The transformation performed in Figure 9 also rewrites
42 Refactoring Rules the update (U2 of transactiorsetSt . In this case, the update

) , ] ) ] is rewritten using the same redirection strategy 89( so

We describe Atropos’s refactorings using a relatiens that it correctly reflects the updates that would be performed
V x PxV x P, between programs and sets of value cor-  py the original program to the EMAIL record.
respondence_sThe rules in Figu_re 8 are templates of the Taken togetherR1 — R3 are sufficient to ensure that a
three categories of transformations employed by Atropos. narticular instance of intro v is sound:
These categories are: (1) adding a new schema to the pro-
gram, captured by the rule (introp); (2) adding a new field ~ Theorem 4.1. Any instance of introv whose instantiation
to an existing schema, captured by rule (intro p .y and,  of [[']], satisfiesR1 - R3 is guaranteed to produce a refactored
(3) relocating certain data from one table to another while Program that refines the original, i.e.
modifying the way it is accessed by the program, captured Vepy e IV, P VU {0}, P) - P <pu(o) P
by the rule (intro v).

The refactorings represented by (introv) introduce a

new value correspondenag and modify the body and re-  Aithough our focus has been on preserving the semantics of
turn expressions of a programs transactions via a rewrite  refactored programs, note that as a direct consequence of our

function, [[.]],. A particular instantiation of[.]], must en-  gefinition of program refinement, this theorem implies that
sure the same data is accessed and modified by the resultingsoynd transformations do not introduce any new anomalies.
program, in order to guarantee that the refactored program  \yg now present the instantiations ofntro v used by

refines the original. At a high-level, it is sufficient ffir]] , Atropos, explaining along the way how they ensure R1-R3.
to ensure the following relationship between the origin®) (

and refactored programgf() : 4.2.1 Redirect Rule. Our first refactoring rule is param-

(R1) P accesses the same datamasvhich may be main- eterized over the choice of schemas and fields and uses
tained by different schemas; the aggregatorany. Given data store state® and =, the

(R2) P returns the same final value & rgcord correspondence is defingdAdQ:W ¢)={r | r €
(R3)and, P properly updates all data maintained b5 Ry NV feryVn. Z(r ) n=> Z(r .0(f)) ¥ n}. Inessence,
To see how a rewrite function might ensure R1to R3, con- 2A complete formalization of all three refactoring rules, their correctness

sider the original (top) and refactored (bottom) programs riteria, and proofs of soundness is presented in the extended version of
presented in Figure 9. This example depicts a refactoring of this paper [47].

(1) Every historyh’ of P has a corresponding history
in Psuch thath' is a refinement of.

(II) Every serializable historyr of Phas a corresponding
history 4" in P such thath' is a refinement ofi.

The first condition ensures tha? does not introduce any
new behaviors oveP, while the second ensures that does
not remove any desirable behavior exhibited By
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1 getSt(id): 1 setSt(id, name, email ) :
2 x:=select * from STUDENTwhere st id=id// S1 2 x:=select stem_id from STUDENTwhere st id=id /1 S4
3 y:=select em_addr from EMAIL where em_id =x.st_em_id// S2 3 update STUDENTset st_name =name where st_id=id /1'U1
4 z:=select co_avail from COURSE 4 update EMAIL set em_addr = email
5 where co_id =x.st_co_id / S3 5 where em_id =x . st_em_id // U2
6 return (y.em_addr) 6 return O

intro (EMAIL, STUDENE&m_addr st_em_addr, 1697, any) intro (EMAIL, STUDENE&m_addr st_em_addr, [o7, any)

O -— S ———

1 getSt(id): 1 setSt(id, name, email ) :

2 x:=select * from STUDENTwhere stid=id // S1 2 x:=select stem_id from STUDENTwhere st.id=id // S4
3 y:=select stem_addr from STUDENT 3 update STUDENTset st_name =name where st.id=id // U1
4 where st_em_id=x.st_em_id// S2"' 4 update STUDENTset st_em_addr=email

5 z:=select co_avail from COURSE 5 where st_em_id=x.st.em_id /U2’

6 where co_id =x.st_co_id / S3 6 return O

7 return (y.st_em_addr)

Figure 9. A single program refactoring step, wheée(EMAILem_addr) = STUDEBITem_addr

the lifted functiond identifies how the value of the primary  4.2.2 Logger Rule. Unfortunately, instantiating intro v
key f of a recordr can be used to constrain the value of is not so straightforward when we want to utilize value cor-
field é(f) in the target schema to recover the set of records respondences with more complicated aggregation functions
corresponding tar, i.e.d(r). The record correspondences thanany. To see why, consider how we would need to mod-
from Section 4.1 were defined in this manner, where ify an UPDATRvhen « = sumis used. In this case, our rule
0r(COURSD d) = STUDENLco id . and lo 620 upcite parformed by the orginal program Hence
- S u y igi ) ,
62(COURSH_id) = COURSE_CO_ST_CNTcd.0G the set of corresponding records in the target table always
Defining the record correspondence this way ensures that if agrows and cannot be statically identified.
recordr is selected i, the corresponding set of record¥'in We enable these sorts of transformations by using log-
can be determined by identifying the values that were used toging schema for the target schemd.logging schema for
selectr, without depending on any particular instance of the source schem&and the fieldf is defined as follows: (i) the
tables. Our choice of record correspondence function makes target schemalogR has a primary key field, correspond-
the definition of [[]] for select statements a straightforward  ing to every primary key field of the original schemaRj;

instantiation of (1) with the following definition oédirect :  (ii) the schema has one additional primary key field, denoted
. by LogRlog_id , which allows a set of records iLogRto
] A U oA represent each record iR and (iii) the schemd.ogRhas a
redirect( ¢,7017) = this .6(f) = ¢l flew  (2) single field corresponding to the original fielR. f, denoted
J<bng by LogR.f.
The one wrinkle in this definition ofedirect is that it is Intuitively, a logging schema captures the history of up-
only defined when the where clausé is well-formedj.e. dates performed on a record, instead of simply replacing old

¢ only consists of conjunctions of equality constraints on  values with new ones. Program-level aggregators can then
primary key fields. The expressions used in such a constraintbe utilized to determine the final value of each record, by
is denoted by @[ flexp- As an example the where clause observing all corresponding entries in the logging schema.
of command 82 in Figure 9 (left) is well-formed,where The schemaCOURSE_CO_ST_CNTrdi®Gection 2 is an
¢lem_idlexp = x .st_e_id . However,the where clause in example of a logging schema for the source schema and field
(S2) after the refactoring step is not well-formed, since it COURS#_st_cnt.

does not constrain the primary key of theSTUDENZble. Under these restrictionsye can define an implementa-
This restriction ensures that only queries that access a singletion of [[']] for the logger rule usingsumas an aggregator.
record of the original table will be rewrittenExpressions  This refactoring also uses a lifted functior 1 for its value
using variables containing the results of such queries are correspondence, which allows [[-]] to reuse our earlier defi-
rewritten by substituting the source field name with the nition of redirect . We defing][]] on accesses t¢to use

target field name, e.dfat '(x Y]], = at'(x .}. program-level aggregators, effat '(x )], = sumg .J).
Redirecting updates is similarly defined using the defini-  Finally, the rewrittenJPDAT€éommands simply need to
tion of redirect( ¢, §from 2: log any updates to the field, so its original value can be

recovered in the transformed program, e.g.
[[UPDATRSETf = e WHERH], =

UPDATE SET (f = [[e]],) WHERE redirectf, § [[UPDATRSETf = ¢ +at'(x .YWHERH], = UPDATE
SET/ =[[e]] ,\WHERE redirect, § A R .log_id = uuid() .
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Having introduced the particular refactoring rules instan-
tiated in Atropos, we are now ready to establish the sound-
ness of those refactorings:

Theorem 4.2. The rewrite rules described in this section saf
isfy the correctness properties (R1), (R2) and (R3).

Corollary 4.3. (Soundness) Any sequence of refactorings p

regSt (id , course ) :

update STUDENTset st _co_id = course, st_reg = true
where st_id=id// U3

x :=select co_stcnt from COURSE
where co_id = course // S5

update COURSEset co_st_cnt=x.co_st_cnt+1
where co_id = course // U4 1

update COURSEset co_avail = true

1
2
3
4
5
6
7
8
9 where co_id = course // U4 .2

formed by Atropos is sound, i.e. the refactored program is

ntro (COURSE STUDENT€o_avail , st_co_avail ,

a [ 1017, any)
P -

refinement of the original program.

Proof.Direct consequence of theorems 4.1 and 4.2. O

5 Repair Procedure

Figure 10 presents our algorithm for eliminating serializ-
ability anomalies using the refactoring rules from the previ-

regSt (id , course ) :
update STUDENTset st_co_id = course, st_reg = true
where st id=id// U3
x :=select co_st _cnt from COURSE
where co_id = course // S5
COURSEset co_st_cnt = x. co_st_cnt +1
where co_id = course // U4 .1
STUDENTset st_co_avail = true
where st_co_id = course // U4 2"

1
2
3
4
5
6 update
7
8
9

update

ous section. The algorithnrépair ) begins by applying an
anomaly detectofO to a program to identify a set of anoma-
lous access pairs. As an example, consielgBt from our

intro COURSE_CO_ST_CNT_LOG

intro (COURSECOURSE_ST_CNT, t®&t_cnt, co_cnt_log, F9'21,sum)
P}

running example. For this transaction, the anomaly oracle

identifies two anomalous access pairs:
(U3 {st_co_id ,st_reg} ,U4{co_avail}) (n)
(S5 {co_st_cnt} ,U4{co_st_cnt}) ()

The first of these is involved in the dirty read anomaly from
Section 2while the second is involved in the lost update

regSt (id , course ) :

update STUDENTset st co_id = course, st_reg = true
where st_id=id// U3
x :=select co_st_cnt from COURSE

where co_id = course // S5
insert into COURSE_CO_ST_CNT_LO@®alues //U4.1"'
(co_id = course , log_id = uuid () , co_st_cnt_log =1)
update STUDENTset st_co_avail = true
where st_co_id =course // U4 2"

anomaly.

Function : repair( P)

7<O( P); P« pre_process( P, )

for y € ydo ) ’
iftry_repair( P, = Pthen P« P

return post_process( P)

2w N -

Function : try_repair( P, »
cl1e Y .6 2« x.g
if same_kind(c1, ¢) then
if same_schemafs, ¢) then
return try_merging( P, a, o)
else if try_redirect( P, g, o) = P then
return try_merging( P, 4, o)
return try_logging( P, a, ¢)

N o a0 A~ N -

Figure 10. The repair algorithm

Figure 11. Repair steps of transaction regSt

repair them one by one usindry_repair . This function
attempts to eliminate a given anomaly in two different ways;
either by merging anomalous database commands into a sin-
gle command, and/or by removing one of them by making it
obsolete. In the remainder of this section, we present these
two strategies in more detailusing the running example
from Figure 11.

We first explain the merging approach. Two database com-
mands can only be merged if they are of the same kind (e.g.
both are selects and if they both access the same schema.
These conditions are checked in lines 2-3. Furicliomerge
attempts to merge the commands if it can establish that their
where clauses always select the exact same set of records, i.e.
condition (R1) described in Section 4.2.

Unfortunately, database commands involved in anomalies

The repair procedure next performs a pre-processing phasere rarely on the same schema and cannot be merged as they
where database commands are split into multiple commands originally are. Using the refactoring rules discussed earlier,
such that each command is involved in at most one anoma- Atropos attempts to introduce value correspondences so
lous access pair. For example, the first step of repairing the that the anomalous commands are redirected to the same
regSt transaction is to split command4into two update table in the refactored program and thus mergeable. This is
commands, as shown in Figure 11 (top). Note that we onlycaptured by the call to the procedutey_redirect . This
perform this step if the split fields are not accessed together iprocedure first introduces a set of fields into the schema
other parts of the program; this is to ensure that the splitting accessed by4, each corresponding a field accesseddy
does not introduce new unwanted serializability anomalies. Next, it attempts to introduce a sequence of value correspon-

After pre-processingthe algorithm iterates over all de-
tected anomalous access paip éand greedily attempts to
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correspondence is constructed by analyzing the commands’Table 1.Statica|ly identified anomalous access pairs in the
where clauses and identifying equivalent expressions used original and refactored benchmark programs
in their constraints. If redirection is successfoy, merge is
invoked on the commands and the result is returned (line 6).  gonchmark #Txns #Tables EC AT CCRR  Time (s)

For example, consider command8andU42 in Figure 11
(top), which are involved in the anomaly. By introducing

TPC-C [1, 18, 33]

[$)]
©
-
(o]
w
w
o]

) 33 33 812
8,12 35 10 35 33 615

SEATS [18, 52 6

a value correspondence fro@OUR3& STUDENAtropos Sma”Ba[nk“S]SO] 6 35 24 8 21 20 687
refactors the program into a refined version whesd?2 is Twitter [18] 5 45 6 1 6 5 36
transformed into U2 and is mergeable with U3. SIBench [18] 2 1,2 1 0 1 1 0.3
Merging is sufficient to fix y1, but fails to eliminate y. Wikipedia [18] 5 12132 1 2 2 90
: ; : FMKe [53] 7 79 6 2 6 6 336

The repair algorithm next tries to translate database up- ;
. : . : ; . Killrchat [2, 13] 5 3,4 6 3 6 6 429
dates into an equivalent insert into a logging table using Courseware[27,32] 5 3.2 5 0 5 5 127

thetry_logging procedure.This procedure first introduces
a new logging schema (using the intre rule) and then in-
troduces fields into that schema (using intre .J. It then at- set of anomalous access pairs. These access pairs are then
tempts to introduce a value correspondence from the schemaused by an implementation of the repair algorithm build a
involved in the anomaly to the newly introduced schema repaired version of the input program.

using the logger rule. The function returns successfully if

such a translation exists and if the select command involved 7 Eyaluation

in the anomaly becomes obsolete, i.e., the command is dead-

code. For example, in Figure 11, a value correspondence from S Section evaluates Atropos along two dimensions:

COURS&the logger tabl€OURSE_CO_STisCNffoduced, 1. Effectiveness: Does schema refactoring eliminate se-
which translates theipdate command involved in the anom- rializability anomalies in real-world database appli-
aly to aninsert command. The select command is obsolete cations? Is Atropos capable of repairing meaningful
in the final version, since variableis never used. concurrency bugs?

Once all anomalies have been iterated over, Atropos per- 2. Performance: What impact does Atropos have on
forms a post-processing phase on the program to remove any the performance of refactored programs? How does
remaining dead code and merge commands whenever pos- Atropos compare to other solutions to eliminating
sible. For example, the transactioagSt is refactored into serializability anomalies, in particular by relying on
its final version depicted in Figure 3 after post-processing. stronger database-provided consistency guarantees?

Both anomalous accesseg énd p) are eliminated in the
final version of the transaction.
7.1 Effectiveness

) To assess Atropos’ effectiveness, we applied it to a corpus of
6 Implementation standard benchmarks from the database community. Table 1
Atropos is a fully automated static analyzer and program re- presents the results for each program. The first six programs
pair tool implemented in Java. Its input programs are written come from the ten benchmarks defined in the OLTPBench
in a DSL similar to the one described in Figure 5, but it would project [1§. We did not consider the remaining four bench-
be straightforward to extend the front-end to support popu- marks because they do not exhibit any serializability anom-
lar database programming APls, e.g. JDBC or Python’s DB-alies. The last three programs are drawn from papers that
API. Atropos consists of a static anomaly detection engine deal with the consistency of distributed system§ P7, 53.
and a program refactoring engine and outputs the repaired  The first four columns in Table 1 display the number of
program.The static anomaly detector in Atropos adapts  transactions (#Txns), the number of tables in the original and
existing techniques to reason about serializability violations refactored schemas (#Tables), and the number of anomalies
over abstract executions of a database applicatiGB[. In detected assuming eventually consistent guarantees for the
this approach, detecting a serializability violation is reduced original (EC) and refactored (AT) programs. For each bench-
to checking the satisfiability of an FOL formula constructed mark, Atropos was able to repair at least half the anomalies,
from the input program. This formula includes variables  and in many cases substantially more, suggesting that many
for each of the transactional dependencies well as the serializability bugs can be directly repaired by our schema
visibility and global time-stamps that can appear during a refactoring technique. The total time needed to analyze and
program’s execution. The assignments to these variables in repair each benchmark is presented in fliene(s) column.
any satisfying model can be used to reconstruct an anoma-The time spent on analysis dominates these numbewes;
lous execution. We use an off-the-shelf SMT solver,1ZB3 [  pairing programs took under 50ms for every benchmark.
to check for anomalies in the input program and identify a
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Figure 12. Performance evaluation of SmallBanBEATS and TPC-C benchmarks running on US cluster (see the
extended version [47] for experimental results for local and globally distributed clusters).

In order to compare our approach to other means of anom-Interestingly, we were able to detect violations of all three in-
aly elimination $ namely, by merely strengthening the con- variants in the original program under EC, while the repaired
sistency guarantees provided by the underlying database § program violated only invariant (ii). This is evidence that
we modified Atropos’s anomaly oracle to only consider ex- the statically identified serializability anomalies eliminated
ecutions permitted under causal consistency and repeatable by Atropos are meaningful proxies to the application-level
read; the former enforces causal ordering in the visibility re- invariants that developers care about.
lation, while the latter prevents results of a newly committed
transactionT becoming visible to an executing transaction 7.2 Performance

that has already read state that is written by. The next  To evaluate the performance impact of schema refactor-
two columns of Table 1, (CC) and (RR), show the result of jng, we conducted further experiments on a real-world geo-
this analysis:causal consistency was only able to reduce replicated database clusteconsisting of three AWS ma-
the number of anomalies in one benchmark (by 12%) and chines (M10 tier with 2 vCPUs and 2GB of memory) lo-
repeatable read in three (by 5%, 15% and 16%). This suggestgated across US in N/irginia, Ohio and OregonSimilar
that only relying on isolation guarantees between eventual resuylts were exhibited by experiments on a single data cen-
and sequential consistency is not likely to significantly re- ter and globally distributed clusters. Each node runs Mon-
duce the number of concurrency bugs that manifest in an goDB (v.4.2.9), a modern document database management
EC execution. system that supports a variety of data-model design options
As a final measure of Atropos’s impact on correctness, we and consistency enforcement levels. MongoDB documents
carried out a more in-depth analysis of the SmallBank bench-gre equivalent to records and a collection of documents is
mark, in order to understand Atropos’s ability to repair equivalent to a table instancenaking all our techniques
meaningful concurrency bugs. This benchmark maintains applicable to MongoDB clients.
the details of customers and their accounts, with dedicated Figure 12 presents the latency (top) and throughput (bot-
tables holding checking and savings entries for each cus- tom) of concurrent executions of SmallBank (left), SEATS
tomer. By analyzing this and similar banking applications (middle) and TPC-C (right) benchmarks. These benchmarks
from the literature P7, 31, 56, we identified the following  are representative of the kind of OLTP applications best

three invariants to be preserved by each transaction: suited for our refactoring approach. Horizontal axes show
(i) Each account must accurately reflect the history of the number of clients,where each client repeatedly sub-
deposits to that account, mits transactions to the database according to each bench-

(ii) The balance of accounts must always be non-negative, mark’s specification. Each experiment was run for 90 sec-

(iii) Each client must always witness a consistent state of onds and the average performance results are presented. For
her checking and savings accounts. For example, wheneach benchmark, performance of four different versions of
transferring money between accounts, users should the program are compared: (i) original version running un-
not see a state where the money is deducted from the der EC ¢ EC), (ii) refactored version running under B (
checking account but not yet deposited into savings. AT-EC), (iii) original version running under SC SC) and
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Figure 13. Average latency breakdown for each transaction

(iv) refactored version where transactions with at least one to that account depending on the original account balance.
anomaly are run under SC and the rest are run under EC This is a well-studied anomaly which has been proven to
(4 AT-SC). Across all benchmarks, SC results in poor per-require strong consistency and isolation in order to be fully
formance compared to EC, due to lower concurrency and eliminated [27, 50].
additional synchronization required between the database Since Atropos is a synchronization-free solution, it can-
nodes. On the other hand, AT-EC programs show negligible not always repair every serializability anomaly in a program,
overhead with respect to their EC counterparts, despite hav- as shown in Table 1. Nevertheless, by first using Atropos
ing fewer anomalies. Most interestingly, refactored programs to repair anomalies that do not require synchronization and
show an average of 120% higher throughput and 45% lowerthen relying on stronger consistency semantics to eliminate
latency compared to their counterparts under SC, while of- the remainderijt is possible to provide strong serializabil-
fering the same level of safety. These results provide evidencidy guarantees with less performance impact than relying
that automated schema refactoring can play an important solely on database-level enforcement of strong isolation and
role in improving both the correctness and performance of consistency semantics.
modern database programs.
Lastly,in order to illuminate the impact of refactoring
on the performance of individualtransactions Figure 13 8 Related Work
presents the average latency across all experiments for eachWang et al[55]describe a synthesis procedure for generating
transaction in the original and the refactored programs run- programs consistent with a database refactoring, as deter-
ning under EC. There are minor performance improvements mined by a verification procedure that establishes database
due to fewer database operations (e.g. the update reservatiorprogram equivalenced4]. Their synthesis procedure per-
transaction from SEATS or the payment transaction from forms enumerative search over a template whose structure
TPC-C) and minor performance losses due to additional log-is derived by value correspondences extracted by reasoning
ging and aggregation (e_g_ the balance transaction in Small-over the structure of the original and refactored schemas. Our
Bank or the delivery transaction in TPC-C) witnessed after approach has several important differences. First, our search
refactoring the benchmarks. The refactoring of our bench- for a target program is driven by anomalous access pairs that
marks has limited impact on the latency of individual trans- identify serializability anomalies in the original program and
actions as evidenced by the close similarity of the shapes ofdoes not involve enumerative search over the space of all
the radar charts in the figure. equivalent candidate programs. This important distinction
eliminates the need for generating arbitrarily-complex tem-
. . plates or sketches. Second, because we simultaneously search
7.3 Discussion for a target schema and program consistent with that schema
It is well-known that some serializability anomalies cannot given these access pairs, our technique does not need to em-
be eliminated without database-level enforcement of strong ploy conflict-driven learning 23 or related mechanisms to
isolation and consistency semantic&. In particular, if guide a general synthesis procedure as it recovers from a
an anomaly is caused by a read operation (R) followed by failed synthesis attempt. Instead, value correspondences de-
a write operation (W) that depends on the value returned rived from anomalous access pairs help define a restricted
by R, it cannot be eliminated without synchronization be- class of schema refactorings (e.g., aggregation and logging)
tween clients. For example, the write check transaction in that directly informs the structure of the target program.
the Smallbank benchmark includes an anomaly caused by Identifying serializability anomalies in database systems
reading an account’s balance and then performing writes is a well-studied topic that continues to garner attentid) [
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11,22 30, 37], although the issue of automated repair is com-
paratively less exploredA common approach in all these
techniques is to model interactions among concurrently ex-
ecuting database transactions as a graplith edges con-
necting transactions that have a data dependency with one
another; cycles in the graph indicate a possible serializabil-
ity violation. Both dynamic 12, 5¢ and static [13 39 44
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able to identify any cases where the ordering of refactorings
mattered in our experiments, investigating the potential of
refactorings to enable additional beneficial transformations
merits further investigation.

The techniques presented in this paper operate solely on
the database parts of some larger program. Our refactorings
are guaranteed to soundly preserve the semantics of these

techniques have been developed to discover these violations parts, and thus those of the surrounding program as well. A

in various domains and settings.

more holistic refactoring approach, which considers both the

Various techniques have been developed to discover thesedatabase parts and the surrounding application, may offer
violations dynamically. For example, Warszawski and Bailis further opportunities for repairs and performance improve-

[56] use program traces to identify potential vulnerabilitis in
Web applications that exploit weak isolation while Brutschy
et al [12] present a dynamic analysis technique for discov-
ering serializability in an eventually consistent distributed
setting. Follow-on work{3 develops scalable static methods

ments.

We have presented Atropos, an approach for automati-
cally eliminating serializability anomalies in the clients of dis-
tributed databases. By altering the data layout (i.e. schemas)
of the underlying database and refactoring the client pro-

under stronger causally-consistent assumptions. Rahmani grams accordingly, we demonstrate that it is possible to re-

et al. [46] present a test generation tool for triggering se-
rializability anomalies that builds upon a static detection
framework described in [39].

An alternative approach to eliminating serializability anom-

pair many statically identified anomalies in those clients. Our
experimental results showcase the utility of this approach,
showing that the refactored programs perform comparably
to the original programs, while exhibiting fewer serializabil-

alies is to develop correct-by-construction methods. For ex- ity bugs. Furthermore, our evaluation shows that the combi-
ample, to safely develop applications for eventually-consistenhation of Atropos and stronger database-provided consis-

distributed environments, conflict-free replicated data-types

tency semantics, enables clients of distributed databases to

(CRDTs)49 have been proposed. CRDTs are abstract data-offer strong serializability guarantees with less performance

types (e.gsets,counters) equipped with commutative op-
erations whose semantics are invariant with respect to the
order in which operations are applied on their state. Alterna-

tively, there have been recent efforts which explore enriching

specificationsrather than applications, with mechanisms

that characterize notions of correctness in the presence of

replication [29 50, using these specifications to guide safe

implementations. These techniques, however, have not been

applied to reasoning on the correctness of concurrent re-
lational database programs which have highly-specialized

structure and semantics, centered on table-based operations

over inter-related schema definitions, rather than control-
and data-flow operations over a program heap.

The idea of altering the data structures used by a client
program, rather than changing its control flow, is reminis-
cent of the data-centric synchronization proposed by Dolby
et al. [19], which considers how to build atomic sets with
associated units of work. The context of their investigation,
concurrent Java programs, is quite different from ours; in
particular,their solution does not consider sound schema
refactorings, an integral part of our approach.

9 Conclusions and Future Work

There are several interesting future directions for Atropos.
In particular, our repair algorithm greedily identifies the first
refactoring that eliminates an anomaly. Integrating a cost
model into this search could result in repaired programs with
even better performance. In addition, though we were not
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impact than stronger consistency semantics alone.
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