Workload-Aware Approximate Computing
Configuration

Dongning Ma?, Rahul Thapa?, Xingjian Wang?, Cong Hao®, Xun Jiao¥,
Villanova University, 3Georgia Institute of Technology

Abstract—Approximate computing recently arises due to its
success in many error-tolerant applications such as multimedia
applications. Various approximation methods have demonstrated
the effectiveness of relaxing precision requirements in a specific
arithmetic unit. This provides a basis for exploring simulta-
neous use of multiple approximate units to improve efficiency.
In this paper, we aim to identify a proper approximation
configuration of approximate units in a program to minimize
energy consumption while meeting quality constraints. To do
this, we formulate a constrained optimization problem and
develop a tool called WOAxC that uses genetic algorithm to
solve this problem. WOAxC considers the impact of different
input workload on the application quality. We evaluate the
efficacy of WOAxC in minimizing the energy consumption of
several image processing applications with varying size (i.e.,
number of operations), workload (i.e., input datasets), and quality
constraints. Our evaluation shows that the configuration provided
by WOAxC for a system with multiple approximate units improves
the energy efficiency by, on average, 79.6%, 77.4%, and 70.94%
for quality loss of 5%, 2.5% and 0% (no loss), respectively.
To the best of our knowledge, WOAxC is the first workload-
aware approach to identify proper approximation configuration
for energy minimization under quality guarantee.

I. INTRODUCTION

Approximate computing has recently arisen as a promising
solution for improving energy efficiency in post-Moore’s era.
Its success has been demonstrated in many modern applica-
tions such as image processing [11], [4], machine learning [3],
[8], and bio-signal analysis [14]. These applications typically
show inherent error tolerance, i.e., they do not require com-
pletely accurate computations for delivering acceptable output
quality. Utilizing such error tolerance, approximate computing
“intentionally” seeks to design imperfect hardware to trade off
accuracy for better energy efficiency. Specifically, researchers
have developed approximate arithmetic units through inexact
logic structure such as approximate adders [2], [11], [7]
and multipliers [16], [10], [5]. While offering improvements,
these methods also face several challenges to put approximate
computing to practical use.

The first challenge is how to control the output quality,
especially considering that output quality of approximate com-
puting are heavily application and input dependent [6], [3].
The second challenge is how to identify a proper configuration
of approximate computing from a large search space. This is
because approximate units usually have multiple approxima-
tion settings. For example, the approximate adder developed
in [2] has four settings, each of which has an unique structure,
resulting in different energy-error profile. Using a uniform
configuration for all the target units across the entire program

may limit the potential gains and calls into question the value
of approximate computing.

There are several studies on this problem [3], [9], [15]. For
example, Gupta et al. proposed a gradient descent-based opti-
mization method to select approximation settings for machine
learning applications [3] in an hardware-independent manner,
and Hu et al. proposed integer linear programming (ILP)-
based optimization to select approximate settings [9] in FPGA.
In this work, we will also focus on hardware-independent
approximation configuration at the program level. However, in
these studies, the final output quality is typically formulated
as a mathematical function of the approximation error of
individual approximate units. For example, the final output
in [9] is expressed as a linear function of each individual
approximate unit. Such formulation does not fully reflect the
impact of input workload on quality estimation.

To tackle such limitations, we propose a workload-aware
algorithmic approach that can automatically identify proper
approximation configuration for energy minimization under
quality guarantee. This is implemented in a tool called WOAxC.
We formulate the problem as a constrained combinatorial
optimization problem and solve it using evolutionary searching
algorithm. We perform three steps to construct WOAxC: (1)
integrating approximate units into the data flow graph (DFG)
of the given program and emulating the program over the given
input workload, (2) formulating the problem of minimizing
energy under quality constraints as a constrained combinatorial
optimization problem, and (3) identifying the proper approx-
imation configuration using an evolutionary search algorithm
to solve the optimization problem.

Specifically, our contributions are as follows:

o We propose WOAxC, to the best of our knowledge, the
first workload-aware approximate computing configura-
tion tool that can automatically identify proper approx-
imation settings for energy minimization with quality
guarantee.

e To enable an efficient search, WOAxXC employs two
phases, pruning and searching. The pruning phase can
significantly compress the solution space, after which the
searching phase uses an evolutionary algorithm to search
the proper solution.

o We evaluate the efficacy of WOAXC across three image
processing applications, three input datasets, and three
quality constraints. Our evaluation shows that WOAxC can
improve the energy consumption by, on average, 79.6%,

77.4%, and 70.94% for quality loss of 5%, 2.5% and 0%
(no loss), respectively.

II. RELATED WORK

Approximate computing recently emerges as a promising
computing paradigm for many error-tolerant applications such
as multimedia and machine learning. Many studies focused
on developing new approximate hardware units with flexible
configurations. For example, in [2], authors proposed a recon-
figurable approximate carry look-ahead adder (RAP-CLA) that
could switch between approximate and exact operating modes.
In [16], authors proposed AQ-LETAM, an output quality-
tunable multiplier that allowed the users to define the level
of approximation based on input characteristics or application
quality constraints. Xu et al. proposed a runtime reconfigurable
manager to select the proper approximate design based on a
presumed input data distribution [18]. This reconfigurability
leads to a tradeoff between efficiency and error at circuit level.

On the other hand, several studies were proposed to enable
a system-level tuning of approximate units under an end-to-
end quality constraints [3], [9], [15], [13]. LEMAX [3] used
gradient descent-based method to optimize approximation
settings of different approximate units for machine learning
applications. Hu et al. optimized the approximation settings
of adders and multipliers using an ILP-based optimization
method [9]. autoAx [13] selects the most suitable approximate
circuits from available libraries to generate an approximate
accelerator for a given application. It construct a machine
learning model to predict the output quality largely largely
based on the hardware configuration without considering dif-
ferent input workload. Achilles [15] selects between three
different quality management modes based on a quality pre-
dictor. A common limitation for all these studies is that they
did not consider the impact of different input workload on
the output quality. Actually, even under same approximation
configuration, different input workload will lead to different
output quality.

Unlike these previous studies, WOAXC presents the first
effort to identify the proper approximation configuration by
incorporating the impact of input workload. WOAxC identifies
the approximation configuration on a per-application and per-
dataset basis because the experimental results show that differ-
ent applications/datasets have different amenability to approx-
imation. Further, instead of employing a mathematical model
for evaluating the output quality [9], [3], WOAXC performs
real program DFG emulation with error injection to obtain
the output quality.

ITII. MOTIVATING CASE STUDY
This section describes how errors are injected to programs,
and the impact of input workload on approximate computing.

A. Error Injection to Program DFG

We target two most-widely used approximate units, ap-
proximate adders and approximate multipliers. We choose
approximate adders from RAP-CLA [2], which includes four

. - def main_err(u, v):
def main(u, v): def multiplier(u, v):| |def adder(w, x): W= U)
ERTLY W = UtV PERTES .
= +
Y = WX Ww_err = wh{1+q) y_err = y*(1+w) ;v:evrvr ex/+§<l a)
return w_err -
return y L return y_err y_err = y¥(L+w)
returny_err
u v u v u v u v
w X w_err X w X w_err X
y Y y_er y_err

(a) Original (b) Apx. multiplier (c) Apx. adder(d) Apx.
multiplier

adder and

Fig. 1. The injection of approximation error into data flow graph. w and «
are the average relative error of adder and multiplier respectively.

6000

N
=
=3
o

5000 | 4920

3 = 4000

£ 4000 L

> > 3000

))

4 |4

7] @ 2000

c

w

w 1000

0 0.004
Al

0.056 0.12 o
2 A3 Mo

0.00072 0.0024 0.008 0.024
M1 M2 M3 M4

Avg. Rel. Err Avg. Rel. Err

(a) Approximate Adders (b) Approximate Multipliers

Fig. 2. Energy-error trade-off for approximate adders and multipliers under
different settings. AO and MO are the exact setting, and AX and MX are
approximation settings.

approximation configurations (referred as A0 - A4). We
choose approximate multipliers from AQ-LETAM [16], which
includes five approximation configurations (referred as MO -
M5). We use the relative error as the error metric to represent
the approximation error of each unit, based on which we inject
errors to the program DFG. The error injection of approximate
multipliers and adders to DFGs are presented in Fig. 1. Take
an adder as an example, if the original addition is ¢ = a+b, the
post-approximation result would become ¢ = (a+b) % (1 +w),
where w is the relative error. We illustrate the energy-error
tradeoff of approximate units with different approximation
settings in Fig. 2, based on which we can see that the energy
decreases with the increase of approximation error. Note that
while we focus on relative error as error metric in this paper,
WOAXxC can be naturally extended to other error metrics such
as error rate because the quality evaluation is performed by
emulating real programs.

B. Impact of Input Workload

We use Sobel filter as an example, one of the most widely-
used image processing application, to show the impact of input
workload on the quality of approximate computing. The DFG
of Sobel filter has 18 multipliers and 17 adders, each of which
can adopt a different setting.

(b) Dog 16.83dB

(a) Cat 22.71dB (c) Butterfly 13.36dB

Fig. 3. Same approximate setting applied to Cat, Dog, and Butterfly images
for Sobel filter

We randomly choose an approximation configuration for all
the 35 target units. Then, we feed three different images as
input for Sobel filter — cat, dog, and butterfly. As shown in
Fig. 3, the output of the three input images are different. The
output of cat image has a PSNR of 22dB while the output
of dog and butterfly images have noted distortions with only
16dB and 13dB respectively. This difference suggests that
even under same approximation configuration, different input
workload will lead to different output quality. This key obser-
vation motivates us to explore workload-aware approximate
computing.

IV. woAxC FRAMEWORK

Quality metrics &
constraints
1
Program

Input

Error-Energy
Profile

PP

Configuration

Fig. 4. WOAxC framework

The identification of a proper approximation setting can
be formulated as a constrained combinatorial optimization
problem, i.e., find an approximation configuration vector s for
all the target units in an application that:

min Energy(A, I, s)

: (M

s.t. QualityLoss(A,1,s) <o
where A represents the application program, [represents the
input workload and o is the user-defined constraint of quality
loss. Note that the quality loss is a strong function of .

The entire flow of the WOAxC is illustrated in Fig. 4,
with several key steps: first, users will feed the information
regarding application program A, input workload I and quality
constraints o into the WOAxC. The error-energy profile of
approximate units will also be fed into WOAxC. WOAxC will
then determine a specific configuration for the available con-
figurable approximate units to minimize energy consumption,
while meeting the quality constraints. The most intuitive way
to find the solution is through brute-force search. However,
the search space complexity is prohibitively huge: if there are

n computation units and each unit has m different configu-
rations, the search space size is m™. Using Sobel filter as an
example, the search space is 5'8 %47 = 6.5536¢4-22. Directly
applying heuristic solution will result in a significantly long
search time.

To tackle such issue, we develop a two-phase approach
for WOAxC: pruning and searching. Pruning phase will first
reduce the search space by eliminating infeasible solutions.
This is key to enabling an efficient search action. Then, the
search phase will use evolutionary algorithm to search for the
solution.

A. Pruning

Algorithm 1 WOAxXC Pruning

Input The application A; list of possible settings P.
Output Feasible search space S
S={}
: for each unit Afi] in application A do
Ali] < P[0] //P[0] is the unit with minimum error in P.
end for
: for each unit A[¢] in application A do
for each available setting P[j] in P do
Ali] + P[j] and run application A
if QualityLoss(A) > QualityConstraint() then
S.append(P[j — 1])
Ali] + P[0]
break
end if
end for
: end for
: return S

AN ol s

—_ e
NREWYM o0

The pruning process is shown in Algorithm 1. We start
with examining if each individual unit is amenable to ap-
proximation, and, if so, to what extent. When examining the
approximation amenability of a specific unit, all the other units
are configured without any approximation, i.e., using exact
settings AO/MO0 (Line 2, Line 3). For this specific unit, the
approximation level will be sequentially enhanced and applied,
starting from no approximation (A0/MO0), to A1/M1, A2/M2,
etc.

Under each approximation setting, the program DFG will be
emulated under corresponding error injection and the output
quality will be evaluated against the user-defined quality
constraints. If the output satisfies the user-defined constraints,
the approximation level will be further enhanced. Then, the
program DFG will be emulated and the output quality will
be evaluated again. Similarly, this process will be iteratively
executed until the output quality does not meet the constraints
(Line 8). This suggests that previous approximation setting
is the boundary approximation level for this unit and cannot
be enhanced further, otherwise the quality constraint will be
violated.

By repeating such process for each target unit in the DFG,
we can obtain a boundary setting for each unit (Line 9). Any
setting beyond this boundary set will be infeasible due to
quality constraints violation. In the rare case that if the lowest
approximation level of a certain unit can lead to a quality

violation, this unit is deemed as a “critical” unit and is not
amenable to approximation at all. The output of this pruning
process eliminates a significant amount of infeasible solutions,
which drastically reduces the search space of applications.

B. Searching

Algorithm 2 WOAxC Searching

Input The application A; feasible search space S.

Output Optimized population C'

1: Randomly generate initial population C' within .S

2: for each chromosome C[k] in C' do

3 run A with settings of C[k]

4: if QualityLoss(A) > QualityConstraint() then
5: delete C'[k] from C
6
7

8
9

end if
: end for
: while not terminate do
C.children < GA(C) //Generate children based on the
current population
10: C + TopFit(C,C.children) //Only the fittest can survive
11: end while
12: return C'

After obtaining the pruned solution space, we develop a
customized search process based on genetic algorithm (GA),
one of the most-widely used evolutionary algorithms, to solve
this combinatorial optimization problem. The basic idea of GA
is that natural evolution will choose the fittest species over
time. Note that many heuristic methods such as simulated an-
nealing can be used to solve the problem. While the selection
and comparison of different heuristic methods are beyond the
scope of this paper, GA naturally fits our problem because the
approximation settings can be easily interpreted and encoded
as genes.

To customize and apply genetic algorithm in finding the
solution, we define the following items:

« Definition - representation of chromosomes

« Population generation - crossover and mutation

« Population selection and elimination - fitness function
o Termination conditions

We describe our customized GA in Algorithm 2, which
consists of the following stages.
Chromosomes We define each individual chromosome as an
approximation configuration vector. Each gene in the chromo-
some indicates the approximation configuration for a specific
unit. The length of a chromosome depends upon the number
of target units in a given application.
Population After pruning, a set of initial populations is ran-
domly generated. Note that, every individual in this initial
population must meet quality constraints. If one individual
fails to meet the constraints, it will be immediately eliminated.

In WOAxC, we apply two genetic operations to generate
future generations, crossover and mutation. Crossover is to
produce a child chromosome with segments from two parent
chromosomes based on one (or more) crossover points. We
adopt random two-point crossover mechanism which randomly
selects two crossover points in the chromosome. The genes

between the two crossover points from the two chromosomes
will be swapped to produce children.

Mutation is to randomly modify the gene on one parent
chromosome to produce a child chromosome. We adopt ran-
dom two-point mutation algorithm which randomly selects two
mutation points in the chromosome and replace them with
random genes.

Fitness Function The fitness function is to determine which
individuals can survive. Since our objective is to minimize
the energy consumption, we compute the fitness value based
on the energy consumption of each individual. The fitness
function is based on elitism selection, i.e., only a certain
number of individuals with the best fitness values will survive.
Empirically, we retain the best 10 individuals in our experi-
ment.

Termination Condition Termination conditions indicate the
end of searching. If the GA iteration count or running time
surpasses the user-defined limitation, or if further generations
cannot produce more elite children, searching will terminate.
After this step, we can have solutions to the optimization
problem.

V. EXPERIMENTAL RESULTS

Sobel Prewitt
100 100 100

Laplacian

80 | yommmmm" L 8 80

> -4 Cat
60 60 Dog 60
% -+- Butterfly

Energy Saving (%)

40 40 40

20 20 20
0.0 2.5 5.0 0.0 5.0 0.0 2.5 5.0

2.5
Quality Loss (%)

Fig. 5. Energy saving under different quality loss

A. Experimental Setup

We select and implement three widely-used image process-
ing applications: Sobel Filter, Prewitt Filter and Laplacian
Filter. Both Sobel filter and Prewitt filter have 35 target units,
among which 18 units are multipliers and the other are adders.
Laplacian filter has 17 units, among which 9 are multipliers
and the other are adders. We adopt three different datasets:
Butterlfy Dataset [17], Dogs dataset, and Cats Dataset [1].
We implement WOAxC in Python. We define PSNR > 30dB
as acceptable quality for a single image [12]. For a dataset, we
define the quality loss ¢ as ¢ = -, where n is the number of
unacceptable images (i.e., PSNR<30dB), while m is the total
number of images in the dataset. Without loss of generality,
we assume three different quality constraints (q): 0%, 2.5%,
and 5%.

Baseline A direct comparison with existing approaches are
infeasible [9], [15], [13], [3] because their problem formulation
is not so tightly connected with input workload: we measure
the quality loss through a direct program DFG emulation
over input workload and approximation configuration, while
the existing approaches mostly estimate quality loss based
on approximation configuration only. Therefore, we compare

TABLE I
SEARCH SPACE REDUCTION BY PRUNING

Sobel Prewitt Laplacian
Search Space Size butterfly cat dog butterfly cat dog butterfly cat dog
Before Pruning 6.55E+22 6.55E+22 6.55E+22 6.55E+22 6.55E+22 6.55E+22 1.28E+11 1.28E+11 1.28E+11
After Pruning 2.62E+10 9.06E+14 3.69E+9 1.97E+11 1.64E+17 8.96E+12 1.01E+5 3.28E+7 2.025E+5
Compression ratio (/%) 2E+12 TE+7 1E+13 3E+11 4E+5 TE+9 13E+5 39E+2 63E+4

WOAxC with a workload-unaware approach that uses GA to
identify an approximation configuration under one dataset but
also use it for other datasets. For example, the approximation
configuration identified under butterfly dataset will be used for
dog dataset.

B. Energy Saving

TABLE I
AVERAGE ENERGY SAVING.

Quality loss (%) Sobel Prewitt Laplacian
5.0 74.15 83.63 80.92
2.5 69.31 83.28 79.59
0.0 5744 80.52 74.86

We first present the results of pruning for the applications in
Table I, where we can see that the search space is compressed
by 3900X to 10'3X. Then, using WOAxXC, we identify the
approximation configuration for each application and compute
the energy saving results under different quality loss, as shown
in Fig. 5 and Table II.

Even under most stringent 0% quality loss constraint,
WOAXC is able to save significant energy. WOAXC can enable
57.44%, 80.52%, and 74.86% energy saving on average across
three datasets on Sobel filter, Prewitt filter, and Laplacian
filter respectively. Under 5% quality constraint, WOAxXC can
enable 74.15%, 83.63%, and 80.92% energy saving on Sobel
filter, Prewitt filter, and Laplacian filter respectively. For a
specific application, e.g., Sobel filter, WOAxXC saves energy
consumption at 42.57% (butterfly), 78.35% (cat), and 51.41%
(dog). This also applies to other applications and datasets.

Further, different applications have different amenability to
approximation and this amenability can change with different
quality constraints. For example, under absolute zero quality
loss, Prewitt filter shows the highest approximation level with
an average energy saving of 83.63% and Sobel filter is worst
at 57.44%. Different datasets of the same application also
result in different approximation configurations and energy
saving. For example, for Sobel filter, cat dataset always results
in the highest energy saving. This is because, as verified by
our experiments, cat dataset is the most error tolerant. This
further motivates an workload-aware approximation configu-
ration. Actually, this phenomena also applies to the other two
applications.

Generally, as the quality constraints are relaxed, the energy
saving also increases. This is expected because more relaxed
quality constraint means that higher approximation level can

be applied. However, there are also exceptions depends on the
datasets and applications. For example, in Sobel filter, as the
quality constraints relax, dog dataset does not have increased
energy saving. All these phenomenon show that approximate
computing is highly application and input dependent.

C. Compare to Baseline

We compare WOAxXC with the baseline method by per-
forming the following steps: we use WOAxC to identify the
approximation configuration under one dataset (e.g., butterfly),
and then use this setting for another dataset (e.g., dogs), and
then examine the output quality. The results are shown in
Table III-V, which clearly shows that the baseline cannot
guarantee the output quality.

Table III presents the case that the approximation configu-
ration is identified based on butterfly dataset and then used on
cats and dogs datasets. We observe that the approximation
configuration can lead to four violations of dog datasets.
Moreover, Table IV presents the case that the approximation
configuration is identified based on cat dataset and is then used
on butterfly and dog datasets. We can observe that not a single
quality constraint being satisfied for butterfly and dog datasets.
The similar situations can be observed in Table V where
the approximation configuration identified under dog dataset
leads to multiple violations of other datasets. In summary, a
proper approximation configuration must be highly workload-
dependent, otherwise, the output quality cannot be guaranteed.

D. Discussion

The main contribution of this paper is the formulation
of a constrained optimization problem that considers input
workload and approximation configuration at the program
level, and solve it using a two-phase approach. While the
selection and tuning of heuristic algorithm is important to
achieve good solution, it is not the main focus of this paper. We
leave this direction open to follow up research, e.g., applying
more advanced heuristic algorithms. Actually, without loss of
generality, we changed the GA parameters from two-point op-
erations (crossover and mutation) to three-point and four-point
operations, and observe that WOAxC’s performance is similar.
Our future work aims to extend WOAxC for approximate high-
level synthesis by integrating WOAxC with more hardware-
level constraints such as latency and area.

VI. CONCLUSION

In this paper, we propose WOAxC, a workload-aware ap-
proach that can identify a proper approximation configuration

TABLE III
QUALITY VIOLATION UNDER BUTTERFLY-BASED APPROXIMATION SETTING

Sobel Prewitt Laplacian
Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog
5.0 4 v X(.5) v v v v v v
2.5 v v X(.5) 4 v X(5.0) v v v
0.0 4 v v 4 v X(5.0) v v v
TABLE IV
QUALITY VIOLATION UNDER CAT-BASED APPROXIMATION SETTING
Sobel Prewitt Laplacian
Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog
5.0 X(40.00 v X(20.0) X475 v X(15) X(12.5) v X(17.5)
25 X(32.5) v X(20.0) X(55.00 v X(20.0) X(125) v X(1175)
0.0 X(20.00 v X(20.0) X(525) v X(225) X(125) v X(5.0)
TABLE V
QUALITY VIOLATION UNDER DOG-BASED APPROXIMATION SETTING
Sobel Prewitt Laplacian
Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog
5.0 v v v X175 v v X125 v Vv
2.5 v v v 4 vV v X(125) v vV
0.0 v v v 4 A 4 X(100) v Vv

to minimize energy consumption while meeting quality con-
straints. WOAxC is based on genetic algorithm to search the
proper approximation configuration for a given program, input
workload, and quality constraint. WOA%C has two key phases:
pruning phase to reduce the search space, and searching
phase to search the solution. Experimental results on three
applications and three datasets show that WOAXC can enable
on average, 79.6%, 77.4%, and 70.94% for quality loss of
5%, 2.5% and 0%, respectively. Comparisons with workload-
unaware approaches highlight the importance of considering
input workload in configuring approximate computing.

VII. ACKNOWLEDGMENTS

This work was partially supported by NSF grant #2028889,
and Villanova University Summer Grant. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] Dogs vs. cats. https://www.kaggle.com/c/dogs-vs-cats/.

[2] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram.
Rap-cla: A reconfigurable approximate carry look-ahead adder. /EEE
Transactions on Circuits and Systems II: Express Briefs, 65(8), 2016.
Vahideh Akhlaghi et al. Lemax: learning-based energy consumption
minimization in approximate computing with quality guarantee. In DAC,
2018.

Vaibhav Gupta et al. Impact: imprecise adders for low-power approxi-
mate computing. In ISLPED, 2011.

Soheil Hashemi et al. Drum: A dynamic range unbiased multiplier for
approximate applications. In ICCAD, 2015.

[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

Xun Jiao et al. Clim: A cross-level workload-aware timing error
prediction model for functional units. IEEE Transactions on Computers,
2017.

Xun Jiao et al. Combining structural and timing errors in overclocked
inexact speculative adders. In DATE, 2017.

Xun Jiao et al. Energy-efficient neural networks using approximate
computation reuse. In DATE, 2018.

Chaofan Li, Wei Luo, Sachin S Sapatnekar, and Jiang Hu. Joint precision
optimization and high level synthesis for approximate computing. In
Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE,
pages 1-6. IEEE, 2015.

Cong Liu et al. A low-power, high-performance approximate multiplier
with configurable partial error recovery. In DATE, 2014.

Cong Liu et al. An analytical framework for evaluating the error
characteristics of approximate adders. IEEE Transactions on Computers,
2015.

Sparsh Mittal. A survey of techniques for approximate computing. ACM
Computing Surveys (CSUR), 48(4):62, 2016.

Vojtech Mrazek et al. autoax: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate
components. In DAC, 2019.

Bharath Srinivas Prabakaran, Semeen Rehman, and Muhammad
Shafique. Xbiosip: A methodology for approximate bio-signal process-
ing at the edge. 2019.

Shayan Tabatabaei-Nikkhah et al. Achilles: Accuracy-aware high-level
synthesis considering online quality management. [EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.
Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud
Pedram. Letam: A low energy truncation-based approximate multiplier.
Computers & Electrical Engineering, 63:1-17, 2017.

Josiah Wang, Katja Markert, and Mark Everingham. Learning models for
object recognition from natural language descriptions. In Proceedings
of the British Machine Vision Conference, 2009.

Chengwen Xu et al. On quality trade-off control for approximate
computing using iterative training. In Design Automation Conference
(DAC), 2017.

