
Workload-Aware Approximate Computing

Configuration

Dongning Ma‡, Rahul Thapa‡, Xingjian Wang‡, Cong Hao§, Xun Jiao‡,
‡Villanova University, §Georgia Institute of Technology

Abstract—Approximate computing recently arises due to its
success in many error-tolerant applications such as multimedia
applications. Various approximation methods have demonstrated
the effectiveness of relaxing precision requirements in a specific
arithmetic unit. This provides a basis for exploring simulta-
neous use of multiple approximate units to improve efficiency.
In this paper, we aim to identify a proper approximation
configuration of approximate units in a program to minimize
energy consumption while meeting quality constraints. To do
this, we formulate a constrained optimization problem and
develop a tool called WOAxC that uses genetic algorithm to
solve this problem. WOAxC considers the impact of different
input workload on the application quality. We evaluate the
efficacy of WOAxC in minimizing the energy consumption of
several image processing applications with varying size (i.e.,
number of operations), workload (i.e., input datasets), and quality
constraints. Our evaluation shows that the configuration provided
by WOAxC for a system with multiple approximate units improves
the energy efficiency by, on average, 79.6%, 77.4%, and 70.94%
for quality loss of 5%, 2.5% and 0% (no loss), respectively.
To the best of our knowledge, WOAxC is the first workload-
aware approach to identify proper approximation configuration
for energy minimization under quality guarantee.

I. INTRODUCTION

Approximate computing has recently arisen as a promising

solution for improving energy efficiency in post-Moore’s era.

Its success has been demonstrated in many modern applica-

tions such as image processing [11], [4], machine learning [3],

[8], and bio-signal analysis [14]. These applications typically

show inherent error tolerance, i.e., they do not require com-

pletely accurate computations for delivering acceptable output

quality. Utilizing such error tolerance, approximate computing

“intentionally” seeks to design imperfect hardware to trade off

accuracy for better energy efficiency. Specifically, researchers

have developed approximate arithmetic units through inexact

logic structure such as approximate adders [2], [11], [7]

and multipliers [16], [10], [5]. While offering improvements,

these methods also face several challenges to put approximate

computing to practical use.

The first challenge is how to control the output quality,

especially considering that output quality of approximate com-

puting are heavily application and input dependent [6], [3].

The second challenge is how to identify a proper configuration

of approximate computing from a large search space. This is

because approximate units usually have multiple approxima-

tion settings. For example, the approximate adder developed

in [2] has four settings, each of which has an unique structure,

resulting in different energy-error profile. Using a uniform

configuration for all the target units across the entire program

may limit the potential gains and calls into question the value

of approximate computing.

There are several studies on this problem [3], [9], [15]. For

example, Gupta et al. proposed a gradient descent-based opti-

mization method to select approximation settings for machine

learning applications [3] in an hardware-independent manner,

and Hu et al. proposed integer linear programming (ILP)-

based optimization to select approximate settings [9] in FPGA.

In this work, we will also focus on hardware-independent

approximation configuration at the program level. However, in

these studies, the final output quality is typically formulated

as a mathematical function of the approximation error of

individual approximate units. For example, the final output

in [9] is expressed as a linear function of each individual

approximate unit. Such formulation does not fully reflect the

impact of input workload on quality estimation.

To tackle such limitations, we propose a workload-aware

algorithmic approach that can automatically identify proper

approximation configuration for energy minimization under

quality guarantee. This is implemented in a tool called WOAxC.

We formulate the problem as a constrained combinatorial

optimization problem and solve it using evolutionary searching

algorithm. We perform three steps to construct WOAxC: (1)

integrating approximate units into the data flow graph (DFG)

of the given program and emulating the program over the given

input workload, (2) formulating the problem of minimizing

energy under quality constraints as a constrained combinatorial

optimization problem, and (3) identifying the proper approx-

imation configuration using an evolutionary search algorithm

to solve the optimization problem.

Specifically, our contributions are as follows:

• We propose WOAxC, to the best of our knowledge, the

first workload-aware approximate computing configura-

tion tool that can automatically identify proper approx-

imation settings for energy minimization with quality

guarantee.

• To enable an efficient search, WOAxC employs two

phases, pruning and searching. The pruning phase can

significantly compress the solution space, after which the

searching phase uses an evolutionary algorithm to search

the proper solution.

• We evaluate the efficacy of WOAxC across three image

processing applications, three input datasets, and three

quality constraints. Our evaluation shows that WOAxC can

improve the energy consumption by, on average, 79.6%,



77.4%, and 70.94% for quality loss of 5%, 2.5% and 0%

(no loss), respectively.

II. RELATED WORK

Approximate computing recently emerges as a promising

computing paradigm for many error-tolerant applications such

as multimedia and machine learning. Many studies focused

on developing new approximate hardware units with flexible

configurations. For example, in [2], authors proposed a recon-

figurable approximate carry look-ahead adder (RAP-CLA) that

could switch between approximate and exact operating modes.

In [16], authors proposed AQ-LETAM, an output quality-

tunable multiplier that allowed the users to define the level

of approximation based on input characteristics or application

quality constraints. Xu et al. proposed a runtime reconfigurable

manager to select the proper approximate design based on a

presumed input data distribution [18]. This reconfigurability

leads to a tradeoff between efficiency and error at circuit level.

On the other hand, several studies were proposed to enable

a system-level tuning of approximate units under an end-to-

end quality constraints [3], [9], [15], [13]. LEMAX [3] used

gradient descent-based method to optimize approximation

settings of different approximate units for machine learning

applications. Hu et al. optimized the approximation settings

of adders and multipliers using an ILP-based optimization

method [9]. autoAx [13] selects the most suitable approximate

circuits from available libraries to generate an approximate

accelerator for a given application. It construct a machine

learning model to predict the output quality largely largely

based on the hardware configuration without considering dif-

ferent input workload. Achilles [15] selects between three

different quality management modes based on a quality pre-

dictor. A common limitation for all these studies is that they

did not consider the impact of different input workload on

the output quality. Actually, even under same approximation

configuration, different input workload will lead to different

output quality.

Unlike these previous studies, WOAxC presents the first

effort to identify the proper approximation configuration by

incorporating the impact of input workload. WOAxC identifies

the approximation configuration on a per-application and per-

dataset basis because the experimental results show that differ-

ent applications/datasets have different amenability to approx-

imation. Further, instead of employing a mathematical model

for evaluating the output quality [9], [3], WOAxC performs

real program DFG emulation with error injection to obtain

the output quality.

III. MOTIVATING CASE STUDY

This section describes how errors are injected to programs,

and the impact of input workload on approximate computing.

A. Error Injection to Program DFG

We target two most-widely used approximate units, ap-

proximate adders and approximate multipliers. We choose

approximate adders from RAP-CLA [2], which includes four

(a) Original (b) Apx. multiplier (c) Apx. adder(d) Apx. adder and
multiplier

Fig. 1. The injection of approximation error into data flow graph. ω and α

are the average relative error of adder and multiplier respectively.

0
A0

0.004
A1

0.056
A2

0.12
A3

Avg. Rel. Err

0

2000

4000

6000

En
er

gy
 (

aJ
)

5789

1906 1815
1145

(a) Approximate Adders

0
M0

0.00072
M1

0.0024
M2

0.008
M3

0.024
M4

Avg. Rel. Err

0

1000

2000

3000

4000

5000

En
er

gy
 (

aJ
)

4920

1000 930 740 590

(b) Approximate Multipliers

Fig. 2. Energy-error trade-off for approximate adders and multipliers under
different settings. A0 and M0 are the exact setting, and AX and MX are
approximation settings.

approximation configurations (referred as A0 - A4). We

choose approximate multipliers from AQ-LETAM [16], which

includes five approximation configurations (referred as M0 -

M5). We use the relative error as the error metric to represent

the approximation error of each unit, based on which we inject

errors to the program DFG. The error injection of approximate

multipliers and adders to DFGs are presented in Fig. 1. Take

an adder as an example, if the original addition is c = a+b, the

post-approximation result would become c = (a+b)∗(1+ω),
where ω is the relative error. We illustrate the energy-error

tradeoff of approximate units with different approximation

settings in Fig. 2, based on which we can see that the energy

decreases with the increase of approximation error. Note that

while we focus on relative error as error metric in this paper,

WOAxC can be naturally extended to other error metrics such

as error rate because the quality evaluation is performed by

emulating real programs.

B. Impact of Input Workload

We use Sobel filter as an example, one of the most widely-

used image processing application, to show the impact of input

workload on the quality of approximate computing. The DFG

of Sobel filter has 18 multipliers and 17 adders, each of which

can adopt a different setting.



(a) Cat 22.71dB (b) Dog 16.83dB (c) Butterfly 13.36dB

Fig. 3. Same approximate setting applied to Cat, Dog, and Butterfly images
for Sobel filter

We randomly choose an approximation configuration for all

the 35 target units. Then, we feed three different images as

input for Sobel filter — cat, dog, and butterfly. As shown in

Fig. 3, the output of the three input images are different. The

output of cat image has a PSNR of 22dB while the output

of dog and butterfly images have noted distortions with only

16dB and 13dB respectively. This difference suggests that

even under same approximation configuration, different input

workload will lead to different output quality. This key obser-

vation motivates us to explore workload-aware approximate

computing.

IV. WOAXC FRAMEWORK

Quality metrics &
constraints

Program
Pruning Searching

Approximate
Units

Error-Energy
Profile

Approximation
Configuration

Input Workload

WOAxC

Fig. 4. WOAxC framework

The identification of a proper approximation setting can

be formulated as a constrained combinatorial optimization

problem, i.e., find an approximation configuration vector s for

all the target units in an application that:

min
s

Energy(A, I, s)

s.t. QualityLoss(A, I, s) < σ
(1)

where A represents the application program, I represents the

input workload and σ is the user-defined constraint of quality

loss. Note that the quality loss is a strong function of I .

The entire flow of the WOAxC is illustrated in Fig. 4,

with several key steps: first, users will feed the information

regarding application program A, input workload I and quality

constraints σ into the WOAxC. The error-energy profile of

approximate units will also be fed into WOAxC. WOAxC will

then determine a specific configuration for the available con-

figurable approximate units to minimize energy consumption,

while meeting the quality constraints. The most intuitive way

to find the solution is through brute-force search. However,

the search space complexity is prohibitively huge: if there are

n computation units and each unit has m different configu-

rations, the search space size is mn. Using Sobel filter as an

example, the search space is 518∗417 = 6.5536e+22. Directly

applying heuristic solution will result in a significantly long

search time.

To tackle such issue, we develop a two-phase approach

for WOAxC: pruning and searching. Pruning phase will first

reduce the search space by eliminating infeasible solutions.

This is key to enabling an efficient search action. Then, the

search phase will use evolutionary algorithm to search for the

solution.

A. Pruning

Algorithm 1 WOAxC Pruning

Input The application A; list of possible settings P .
Output Feasible search space S

1: S = {}
2: for each unit A[i] in application A do
3: A[i]← P [0] //P [0] is the unit with minimum error in P .
4: end for
5: for each unit A[i] in application A do
6: for each available setting P [j] in P do
7: A[i]← P [j] and run application A
8: if QualityLoss(A) > QualityConstraint() then
9: S.append(P [j − 1])

10: A[i]← P [0]
11: break
12: end if
13: end for
14: end for
15: return S

The pruning process is shown in Algorithm 1. We start

with examining if each individual unit is amenable to ap-

proximation, and, if so, to what extent. When examining the

approximation amenability of a specific unit, all the other units

are configured without any approximation, i.e., using exact

settings A0/M0 (Line 2, Line 3). For this specific unit, the

approximation level will be sequentially enhanced and applied,

starting from no approximation (A0/M0), to A1/M1, A2/M2,

etc.

Under each approximation setting, the program DFG will be

emulated under corresponding error injection and the output

quality will be evaluated against the user-defined quality

constraints. If the output satisfies the user-defined constraints,

the approximation level will be further enhanced. Then, the

program DFG will be emulated and the output quality will

be evaluated again. Similarly, this process will be iteratively

executed until the output quality does not meet the constraints

(Line 8). This suggests that previous approximation setting

is the boundary approximation level for this unit and cannot

be enhanced further, otherwise the quality constraint will be

violated.

By repeating such process for each target unit in the DFG,

we can obtain a boundary setting for each unit (Line 9). Any

setting beyond this boundary set will be infeasible due to

quality constraints violation. In the rare case that if the lowest

approximation level of a certain unit can lead to a quality



violation, this unit is deemed as a “critical” unit and is not

amenable to approximation at all. The output of this pruning

process eliminates a significant amount of infeasible solutions,

which drastically reduces the search space of applications.

B. Searching

Algorithm 2 WOAxC Searching

Input The application A; feasible search space S.
Output Optimized population C

1: Randomly generate initial population C within S
2: for each chromosome C[k] in C do
3: run A with settings of C[k]
4: if QualityLoss(A) > QualityConstraint() then
5: delete C[k] from C
6: end if
7: end for
8: while not terminate do
9: C.children ← GA(C) //Generate children based on the

current population
10: C ← TopF it(C,C.children) //Only the fittest can survive
11: end while
12: return C

After obtaining the pruned solution space, we develop a

customized search process based on genetic algorithm (GA),

one of the most-widely used evolutionary algorithms, to solve

this combinatorial optimization problem. The basic idea of GA

is that natural evolution will choose the fittest species over

time. Note that many heuristic methods such as simulated an-

nealing can be used to solve the problem. While the selection

and comparison of different heuristic methods are beyond the

scope of this paper, GA naturally fits our problem because the

approximation settings can be easily interpreted and encoded

as genes.

To customize and apply genetic algorithm in finding the

solution, we define the following items:

• Definition - representation of chromosomes

• Population generation - crossover and mutation

• Population selection and elimination - fitness function

• Termination conditions

We describe our customized GA in Algorithm 2, which

consists of the following stages.

Chromosomes We define each individual chromosome as an

approximation configuration vector. Each gene in the chromo-

some indicates the approximation configuration for a specific

unit. The length of a chromosome depends upon the number

of target units in a given application.

Population After pruning, a set of initial populations is ran-

domly generated. Note that, every individual in this initial

population must meet quality constraints. If one individual

fails to meet the constraints, it will be immediately eliminated.

In WOAxC, we apply two genetic operations to generate

future generations, crossover and mutation. Crossover is to

produce a child chromosome with segments from two parent

chromosomes based on one (or more) crossover points. We

adopt random two-point crossover mechanism which randomly

selects two crossover points in the chromosome. The genes

between the two crossover points from the two chromosomes

will be swapped to produce children.

Mutation is to randomly modify the gene on one parent

chromosome to produce a child chromosome. We adopt ran-

dom two-point mutation algorithm which randomly selects two

mutation points in the chromosome and replace them with

random genes.

Fitness Function The fitness function is to determine which

individuals can survive. Since our objective is to minimize

the energy consumption, we compute the fitness value based

on the energy consumption of each individual. The fitness

function is based on elitism selection, i.e., only a certain

number of individuals with the best fitness values will survive.

Empirically, we retain the best 10 individuals in our experi-

ment.

Termination Condition Termination conditions indicate the

end of searching. If the GA iteration count or running time

surpasses the user-defined limitation, or if further generations

cannot produce more elite children, searching will terminate.

After this step, we can have solutions to the optimization

problem.

V. EXPERIMENTAL RESULTS

0.0 2.5 5.0
20

40

60

80

100

En
er

gy
 S

av
in

g 
(%

)

Sobel

0.0 2.5 5.0
Quality Loss (%)

20

40

60

80

100 Prewitt

0.0 2.5 5.0
20

40

60

80

100 Laplacian

Cat
Dog
Butterfly

Fig. 5. Energy saving under different quality loss

A. Experimental Setup

We select and implement three widely-used image process-

ing applications: Sobel Filter, Prewitt Filter and Laplacian

Filter. Both Sobel filter and Prewitt filter have 35 target units,

among which 18 units are multipliers and the other are adders.

Laplacian filter has 17 units, among which 9 are multipliers

and the other are adders. We adopt three different datasets:

Butterlfy Dataset [17], Dogs dataset, and Cats Dataset [1].

We implement WOAxC in Python. We define PSNR ≥ 30dB
as acceptable quality for a single image [12]. For a dataset, we

define the quality loss q as q = n

m
, where n is the number of

unacceptable images (i.e., PSNR<30dB), while m is the total

number of images in the dataset. Without loss of generality,

we assume three different quality constraints (q): 0%, 2.5%,

and 5%.

Baseline A direct comparison with existing approaches are

infeasible [9], [15], [13], [3] because their problem formulation

is not so tightly connected with input workload: we measure

the quality loss through a direct program DFG emulation

over input workload and approximation configuration, while

the existing approaches mostly estimate quality loss based

on approximation configuration only. Therefore, we compare



TABLE I
SEARCH SPACE REDUCTION BY PRUNING

Sobel Prewitt Laplacian

Search Space Size butterfly cat dog butterfly cat dog butterfly cat dog

Before Pruning 6.55E+22 6.55E+22 6.55E+22 6.55E+22 6.55E+22 6.55E+22 1.28E+11 1.28E+11 1.28E+11
After Pruning 2.62E+10 9.06E+14 3.69E+9 1.97E+11 1.64E+17 8.96E+12 1.01E+5 3.28E+7 2.025E+5

Compression ratio (≈) 2E+12 7E+7 1E+13 3E+11 4E+5 7E+9 13E+5 39E+2 63E+4

WOAxC with a workload-unaware approach that uses GA to

identify an approximation configuration under one dataset but

also use it for other datasets. For example, the approximation

configuration identified under butterfly dataset will be used for

dog dataset.

B. Energy Saving

TABLE II
AVERAGE ENERGY SAVING.

Quality loss (%) Sobel Prewitt Laplacian
5.0 74.15 83.63 80.92
2.5 69.31 83.28 79.59
0.0 57.44 80.52 74.86

We first present the results of pruning for the applications in

Table I, where we can see that the search space is compressed

by 3900X to 1013X . Then, using WOAxC, we identify the

approximation configuration for each application and compute

the energy saving results under different quality loss, as shown

in Fig. 5 and Table II.

Even under most stringent 0% quality loss constraint,

WOAxC is able to save significant energy. WOAxC can enable

57.44%, 80.52%, and 74.86% energy saving on average across

three datasets on Sobel filter, Prewitt filter, and Laplacian

filter respectively. Under 5% quality constraint, WOAxC can

enable 74.15%, 83.63%, and 80.92% energy saving on Sobel

filter, Prewitt filter, and Laplacian filter respectively. For a

specific application, e.g., Sobel filter, WOAxC saves energy

consumption at 42.57% (butterfly), 78.35% (cat), and 51.41%

(dog). This also applies to other applications and datasets.

Further, different applications have different amenability to

approximation and this amenability can change with different

quality constraints. For example, under absolute zero quality

loss, Prewitt filter shows the highest approximation level with

an average energy saving of 83.63% and Sobel filter is worst

at 57.44%. Different datasets of the same application also

result in different approximation configurations and energy

saving. For example, for Sobel filter, cat dataset always results

in the highest energy saving. This is because, as verified by

our experiments, cat dataset is the most error tolerant. This

further motivates an workload-aware approximation configu-

ration. Actually, this phenomena also applies to the other two

applications.

Generally, as the quality constraints are relaxed, the energy

saving also increases. This is expected because more relaxed

quality constraint means that higher approximation level can

be applied. However, there are also exceptions depends on the

datasets and applications. For example, in Sobel filter, as the

quality constraints relax, dog dataset does not have increased

energy saving. All these phenomenon show that approximate

computing is highly application and input dependent.

C. Compare to Baseline

We compare WOAxC with the baseline method by per-

forming the following steps: we use WOAxC to identify the

approximation configuration under one dataset (e.g., butterfly),

and then use this setting for another dataset (e.g., dogs), and

then examine the output quality. The results are shown in

Table III-V, which clearly shows that the baseline cannot

guarantee the output quality.

Table III presents the case that the approximation configu-

ration is identified based on butterfly dataset and then used on

cats and dogs datasets. We observe that the approximation

configuration can lead to four violations of dog datasets.

Moreover, Table IV presents the case that the approximation

configuration is identified based on cat dataset and is then used

on butterfly and dog datasets. We can observe that not a single

quality constraint being satisfied for butterfly and dog datasets.

The similar situations can be observed in Table V where

the approximation configuration identified under dog dataset

leads to multiple violations of other datasets. In summary, a

proper approximation configuration must be highly workload-

dependent, otherwise, the output quality cannot be guaranteed.

D. Discussion

The main contribution of this paper is the formulation

of a constrained optimization problem that considers input

workload and approximation configuration at the program

level, and solve it using a two-phase approach. While the

selection and tuning of heuristic algorithm is important to

achieve good solution, it is not the main focus of this paper. We

leave this direction open to follow up research, e.g., applying

more advanced heuristic algorithms. Actually, without loss of

generality, we changed the GA parameters from two-point op-

erations (crossover and mutation) to three-point and four-point

operations, and observe that WOAxC’s performance is similar.

Our future work aims to extend WOAxC for approximate high-

level synthesis by integrating WOAxC with more hardware-

level constraints such as latency and area.

VI. CONCLUSION

In this paper, we propose WOAxC, a workload-aware ap-

proach that can identify a proper approximation configuration



TABLE III
QUALITY VIOLATION UNDER BUTTERFLY-BASED APPROXIMATION SETTING

Sobel Prewitt Laplacian

Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog

5.0 ✔ ✔ ✘(7.5) ✔ ✔ ✔ ✔ ✔ ✔

2.5 ✔ ✔ ✘(7.5) ✔ ✔ ✘(5.0) ✔ ✔ ✔

0.0 ✔ ✔ ✔ ✔ ✔ ✘(5.0) ✔ ✔ ✔

TABLE IV
QUALITY VIOLATION UNDER CAT-BASED APPROXIMATION SETTING

Sobel Prewitt Laplacian

Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog

5.0 ✘(40.0) ✔ ✘(20.0) ✘(47.5) ✔ ✘(17.5) ✘(12.5) ✔ ✘(17.5)
2.5 ✘(32.5) ✔ ✘(20.0) ✘(55.0) ✔ ✘(20.0) ✘(12.5) ✔ ✘(17.5)
0.0 ✘(20.0) ✔ ✘(20.0) ✘(52.5) ✔ ✘(22.5) ✘(12.5) ✔ ✘(5.0)

TABLE V
QUALITY VIOLATION UNDER DOG-BASED APPROXIMATION SETTING

Sobel Prewitt Laplacian

Quality constraint (%) butterfly cat dog butterfly cat dog butterfly cat dog

5.0 ✔ ✔ ✔ ✘(17.5) ✔ ✔ ✘(12.5) ✔ ✔

2.5 ✔ ✔ ✔ ✔ ✔ ✔ ✘(12.5) ✔ ✔

0.0 ✔ ✔ ✔ ✔ ✔ ✔ ✘(10.0) ✔ ✔

to minimize energy consumption while meeting quality con-

straints. WOAxC is based on genetic algorithm to search the

proper approximation configuration for a given program, input

workload, and quality constraint. WOAxC has two key phases:

pruning phase to reduce the search space, and searching

phase to search the solution. Experimental results on three

applications and three datasets show that WOAxC can enable

on average, 79.6%, 77.4%, and 70.94% for quality loss of

5%, 2.5% and 0%, respectively. Comparisons with workload-

unaware approaches highlight the importance of considering

input workload in configuring approximate computing.

VII. ACKNOWLEDGMENTS

This work was partially supported by NSF grant #2028889,

and Villanova University Summer Grant. Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

REFERENCES

[1] Dogs vs. cats. https://www.kaggle.com/c/dogs-vs-cats/.
[2] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram.

Rap-cla: A reconfigurable approximate carry look-ahead adder. IEEE

Transactions on Circuits and Systems II: Express Briefs, 65(8), 2016.
[3] Vahideh Akhlaghi et al. Lemax: learning-based energy consumption

minimization in approximate computing with quality guarantee. In DAC,
2018.

[4] Vaibhav Gupta et al. Impact: imprecise adders for low-power approxi-
mate computing. In ISLPED, 2011.

[5] Soheil Hashemi et al. Drum: A dynamic range unbiased multiplier for
approximate applications. In ICCAD, 2015.

[6] Xun Jiao et al. Clim: A cross-level workload-aware timing error
prediction model for functional units. IEEE Transactions on Computers,
2017.

[7] Xun Jiao et al. Combining structural and timing errors in overclocked
inexact speculative adders. In DATE, 2017.

[8] Xun Jiao et al. Energy-efficient neural networks using approximate
computation reuse. In DATE, 2018.

[9] Chaofan Li, Wei Luo, Sachin S Sapatnekar, and Jiang Hu. Joint precision
optimization and high level synthesis for approximate computing. In
Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE,
pages 1–6. IEEE, 2015.

[10] Cong Liu et al. A low-power, high-performance approximate multiplier
with configurable partial error recovery. In DATE, 2014.

[11] Cong Liu et al. An analytical framework for evaluating the error
characteristics of approximate adders. IEEE Transactions on Computers,
2015.

[12] Sparsh Mittal. A survey of techniques for approximate computing. ACM

Computing Surveys (CSUR), 48(4):62, 2016.
[13] Vojtech Mrazek et al. autoax: An automatic design space exploration

and circuit building methodology utilizing libraries of approximate
components. In DAC, 2019.

[14] Bharath Srinivas Prabakaran, Semeen Rehman, and Muhammad
Shafique. Xbiosip: A methodology for approximate bio-signal process-
ing at the edge. 2019.

[15] Shayan Tabatabaei-Nikkhah et al. Achilles: Accuracy-aware high-level
synthesis considering online quality management. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 2018.
[16] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud

Pedram. Letam: A low energy truncation-based approximate multiplier.
Computers & Electrical Engineering, 63:1–17, 2017.

[17] Josiah Wang, Katja Markert, and Mark Everingham. Learning models for
object recognition from natural language descriptions. In Proceedings

of the British Machine Vision Conference, 2009.
[18] Chengwen Xu et al. On quality trade-off control for approximate

computing using iterative training. In Design Automation Conference

(DAC), 2017.


