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Abstract—As the connectivity of autonomous vehicles keeps
growing, it is an accepted fact that they are even more vulnerable
to malicious cyber-attacks. Recently, sensor spoofing has become
an emerging attack that can compromise vehicle safety as vehicles
are equipped with more sensors. Thus, it is critical to validate
the sensor readings before utilizing them for future actions. In
this paper, we develop HDAD, a hyperdimensional computing-
based anomaly detection method. Hyperdimensional computing
(HDC) is an emerging brain-inspired computing paradigm that
mimics the brain cognition and leverages hyperdimensional
vectors with fully distributed holographic representation and
(pseudo)randomness. The key idea of HDAD is to use HDC to
build encoder and decoder to reconstruct the sensor readings.
The anomalous data typically have comparatively higher recon-
struction errors than normal sensor readings. We explore three
different metrics to measure the reconstruction error including
mean squared error, mean absolute error, and cosine similarity.
Using a real-world vehicle sensor reading dataset, we demonstrate
the feasibility and efficacy of HDAD, opening the door for a new
set of anomaly detection algorithm design.

I. INTRODUCTION

The growing connectivity and autonomy of modern vehicles
requires a complex interaction with the physical environment
via many different kinds of sensors such as encoder, IMU,
GPS, LiDAR, camera, etc. While the equipment of these
sensors enables promising functionalities and services of mod-
ern vehicles such as self-driving and unmanned delivery, it
also introduces potential security vulnerabilities that are easily
exploitable [1], [2].

Exploiting these vulnerabilities, attackers may corrupt these
sensors and spoof a vehicle to perform dangerous actions.
Besides software and network attacks, non-invasive sensor
attacks can be launched by compromising the physical prop-
erty to allow injecting malicious signals to sensors [3]. For
example, sensor spoofing attacks have been performed on
GPS sensors [4], antilock braking systems [5], and camera
and LiDAR sensors [6]. These attacks can result in serious
consequences such as deviation from original driving course
and malfunction of braking systems. The security issue is even
more critical as the deployment of autonomy increases.

These attacks emphasize the need to validate sensor mea-
surements before acting on them. There are three popular
research threads for sensor attack detection [7]–[9]. The first
is model-based validation, which assumes a system model
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known a prior. They compare model-predicated values with
sensor readings to identify if they are altered [10]. Works
in the second thread use homogeneous sensor redundancy
by comparing measurements of sensors that measure the
same physical parameters [11]. The third thread leverages the
correlation existing among heterogeneous sensors to detect
anomalies [8], [12], [13].

This work aligns with the last thread and leverages the fact
that multiple sensors on a vehicle can simultaneously respond
to the same physical phenomenon in a correlated manner. For
example, pressing the accelerator will increase engine RPM
and vehicle speed while pressing the brake pedal will decrease
both. GPS readings will also be affected by the correlated
sensors. Note that this inherent correlation neither depends on
the knowledge of the system model nor has the cost increased
by redundant sensors. Based on the observation, we propose to
identify the consistency embedded in correlated sensors’ data
and use it for anomaly detection.

To realize this idea, we develop a hyperdimensional comput-
ing (HDC)-based anomaly detection method. HDC is a brain-
inspired computing scheme based on the working mechanism
of the brain that computes with deep and abstract patterns
of neural activity instead of actual numbers. Compared with
traditional machine learning algorithms such as deep learning,
HDC is more memory-centric, granting it advantages such as
a relatively smaller model size, less computation cost, and
one-shot learning [14], [15]. While HDC has demonstrated
promising capability in supervised learning context on var-
ious applications such as language classification [16], vision
sensing [17], brain computer interfaces [18], and DNA pattern
matching [19], there is limited research on using HDC for
unsupervised learning. This paper presents the first effort in
developing an anomaly detection algorithm based on HDC.

We make the following contributions:

• We develop HDAD, an HDC-based anomaly detection
approach. To the best of our knowledge, this is the first
work on using HDC for anomaly detection.

• HDAD detects the anomaly patterns using three phases:
pattern encoding, pattern decoding, and reconstruction er-
ror checking. HDAD presents three metrics for measuring
the reconstruction error, and identifies anomaly patterns
if the reconstruction errors are comparatively higher than
normal patterns.



• Using a real-world vehicle sensor reading dataset,
HDAD can achieve 100% detection accuracy for all three
error metrics. This paper opens the door for a new set of
anomaly detection algorithm design.

II. HDAD-BASED ANOMALY DETECTION

A. Overview

Fig. 1 illustrates the overview of HDAD-based anomaly
detection with two key phases: i) pattern encoding, where we
encode training samples into hypervectors (HVs) for the pat-
tern learning purpose, ii) pattern decoding, where we decode
the HVs and reconstruct them to the original samplesand iii)
reconstruction error check, where we check the reconstruction
error between original and reconstructed sample.
• Pattern Encoding: We encode all sensor input samples

into HVs. HVs are high-dimensional vectors with a large
number of dimension D, e.g., D = 10000. First, we
randomly assign N base HVs for n features of each
sensor input, with one base HV per feature. Then, we
encode each sensor sample into an HV SV . The details of
the encoding method will be explained in Section III-B.
In HDAD, for the purpose of anomaly detection, we
use all the encoded SV s to learn the existing patterns.
We generate a reference HV RV by accumulating all
SV s for all normal patterns in the training dataset, i.e.,
RV =

∑
SVi. (The training dataset only contains normal

patterns).
• Pattern Decoding: During the testing phase, a given

testing sample T is fed into the HDAD to detect whether it
is an anomaly sample. First, we encode the testing sample
T into an HV TV by using HV encoding method. Then,
we add TV to the reference HV RV to get TV ′. Then,
we decode TV ′ using the same set of base HVs, and get
the pattern decoding result T ′. The details of the decoding
method will be explained in Section III-C

• Reconstruction Error Check: After the pattern decod-
ing, sample T is “reconstructed” into T ′. Note that the
“reconstruction” here does not strictly follow the defini-
tion of reconstruction in an auto-encoder context because
we do not try to reconstruct the original input sample
T . Actually we shifted the value of T by adding TV
to RV as we need the information from normal pattern
and RV is the representation of all normal patterns. If T
is an anomaly sample, then the “reconstructed” T ′ will
be comparatively more deviated from T than that of a
normal sample.

The details of HDAD approach are explained as below.

B. Encoding

The encoding phase is to use HDC arithmetic to encode
a given pattern into a hypervector (HV) called “sensor HV
(SV)”. HV is the fundamental building block of HDC. They
are high-dimensional, holographic, and (pseudo-)random with
independent and identically distributed (i.i.d.) components. In
the pattern encoding stage, we map a feature vector F =
[f1, ..., fn] containing N features into hyper-dimensional
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Fig. 1: HDAD overview

space, using a set of N Base HVs B = [b1, ..., bn] with D
dimensions, according to Equation 1. Base HVs are assigned
with random orthogonal bipolar vector. Since base HVs are
randomly generated with a high dimension, they are almost
mutually orthogonal. That is, the cosine similarity between
any two base HVs bi and bj, SIM(bi, bj) = 0.

P = f1 · b1 + f2 · b2 + ...+ fn · bn (1)

C. Decoding
The HV decoding is performed by using the same set of

base HVs to reconstruct related feature vector. The decoding
method is described in Equation 2. We use the same set of base
HVs B and reference HV to reconstruct the feature vector F ′.

F ′ ' HV ·B/D = fi ∗ (bi · bi)/D +
∑
i 6=j

fj ∗ (bj · bi)/D (2)

The value of bi*bi is the dimension D since the elements
in bi and bi are the same 1 or -1, which makes the prod-
uct equal to D. The bi*bj is close to zero because of the
orthogonal characteristic of HV. Thus, we can reconstruct
feature vector F with the Equation 2. Since it’s difficult to
guarantee every single base HV is strictly orthogonal to each
base HV else, the production of bi and bj may introduce noise
in the reconstruction result and the reconstructed feature may
slightly different from the original input sample. Theoretically,
increasing the dimension can clearly reduce the noise in the
reconstruction progress, but also can increase the computing
time and resource consumption.

D. Reconstruction Error Checking

In HDAD, anomaly detection was employed on every testing
sample by the following progress. We first encode the testing
sample T into a testing HV TV and combine TV into
reference HV RV , which contains the overall patterns learned
from the training set. Then we reconstruct the testing data T ′

by decoding the feature vector from the reference HV RV
. After decoding, we get the reconstructed feature vector T ′

and the testing sample T . We measure the distance between T ′

and T , called reconstruction error. For the purpose of anomaly
detection, We can analyze Distance(T, T ′) to evaluate the
reconstruction error, the distance between the testing sample



and the reconstructed feature vector. In this paper, we use three
kinds of distance metrics, mean squared error (MSE), mean
absolute error (MAE) and cosine similarity (SIM), to evaluate
the reconstruction result. For each testing sample T = [T1, ...,
Tn] and reconstructed feature vector T ′ = [T1′, ..., Tn′] with
n elements, we can measure the corresponding MSE, MAE
and SIM distance by Equation 3 to 5.

DisMSE(T, T
′) =

∑n
i=1(Ti− Ti′)2

n
(3)

DisMAE(T, T
′) =

∑n
i=1 |Ti− Ti′|

n
(4)

DisSIM (HV,HV ′) = 1− HV ·HV ′

||HV || · ||HV ′||
(5)

E. Threshold selection

In the real-world driving circumstance, because the environ-
ment and other external influencing factor can slightly change
the correlations and values of sensors data, the patterns of
vehicle sensor data are not always absolutely the same. Thus,
a perturbation is reasonable and affordable in pattern learning.
After learning several normal sensor data patterns, without
loss of generality, we can use a range for evaluating the
reconstruction error of normal samples. Meanwhile, to make
the anomaly detection progress quantifiable, we can define
a threshold to separate anomaly data from normal data. If
the reconstruction error that beyond this threshold, the testing
sample should be detected as anomaly. For MSE and MAE
based metrics, we define the threshold as Tr. In the threshold
determination, we use Distance as the reconstruction error of
each data sample in the testing set. We can get the threshold
by Equation 6, where M is the mean of Distance and N is
the standard deviation of Distance.

Tr = M + 2 ∗N (6)

For cosine similarity we first encode both the reconstructed
feature vector and the testing sample using same set of base
HVs. Then we compare the cosine similarity between these
two HVs and set a threshold. If the cosine similarity between
two HVs is lower than the threshold we set, called Td, HDAD
considers such testing sample to be an anomaly sample.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We choose data from the AEGIS Big Data Project for public
safety and personal security [20] as our dataset, which contains
68 types of CAN bus sensor data, 10 types of GPS sensor data,
and 24 types of IMU sensor data. The sampling frequency
of this dataset is 20Hz, and this dataset contains 200,000
samples from a continuous driving trip of 2.7 hours. Our
training set contains 2000 continuous entries of data which
is collected during normal vehicle states. In our approach,
we did feature engineering by filtering out some features
have less connections with others, like oil temperature and
fuel consumption, before feeding to HDAD. These features

are considered irrelevant to our context. The data for training
and testing are also standardized before we can use them,
since standardized data value can help the training and testing
process of HDADand can improve the performance of HDAD.
To generate data for testing, we randomly select 1000 en-
tries of data and randomly selected 25 entries in the testing
data to inject anomalous data on only one sensor, which
replaces the original sensor reading. For our HDAD model,
with consideration on both accuracy and efficiency, we used
10000-dimension HV for constructing HDAD. First we deploy
pattern learning to generate a reference HV RV by encoding
and combining 2,000 training samples. And for each testing
sample, we encode it into HV TV and add the encoded HV
TV to RV . Then we reconstruct the feature vector from RV
and check three metrics for each pair of testing samples and
reconstruction results.

B. Anomaly Detection Analysis

The anomaly detection result are shown in Fig. 2 to Fig. 4.
We can observe several important facts. First, we find all
three distance models can achieve 100% anomaly detection
accuracy, as all the anomaly samples and normal samples can
be clearly separated by the threshold. Specifically, for MSE-
based and MAE-based models, the reconstruction errors of
all the 25 anomalous samples, are higher than the pre-set
threshold based on Equation 6. Meanwhile, all the normal
driving samples are below the threshold. For the cosine
similarity-based detection, with an example threshold of 0.7,
all the reconstructed anomaly samples have smaller similarity
to their original patterns, but all the normal samples have
higher similarity to their original patterns.

In addition, for MSE-based model, the reconstruction errors
of normal samples are relatively stable compared to MAE-
based and cosine similarity-based model that have large vari-
ations. This is because most of the sensor reconstruction
deviations are less than 1. Hence, the squared values of the
deviations are further reduced, and the square error is much
smaller than the absolute error. This observation suggests that
MSE maybe more reliable in detecting anomaly samples than
the other metrics in our approach.

IV. CONCLUSION

This paper presents HDAD, an anomaly detection approach
based on the emerging HDC. HDAD leverages the inherent
correlation among existing sensors to detect any anomaly.
We train HDAD using all normal samples and extract the
representative patterns for normal samples. Then, for a given
testing sample, HDAD first encodes it to an intermediate HV,
then decodes it to a reconstructed feature vector, and finally
checks the reconstruction error between testing sample and
reconstruction result. We use three metrics for measuring the
reconstruction errors: MSE, MAE, and cosine similarity. By
checking the reconstruction error, HDAD is able to achieve
100% detection accuracy on a real-world vehicle sensors
reading dataset. This paper presents the first effort in using
HDC for anomaly detection and opens the door for this
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Fig. 2: Reconstruction result of detection for sensors data
(MSE distance)
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Fig. 3: Reconstruction result of detection for sensors data
(MAE distance)

potential research direction. Our future work will consider
using HDC for clustering and feature extraction, and use it
for anomaly detection.
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