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Abstract—Cyber-Physical Systems (CPS) tightly couple infor-
mation technology with physical processes, which rises new vul-
nerabilities such as physical attacks that are beyond conventional
cyber attacks. Attackers may non-invasively compromise sensors
and spoof the controller to perform unsafe actions. This issue is
even emphasized with the increasing autonomy in CPS. While
this fact has motivated many defense mechanisms against sensor
attacks, a clear vision on the timing and usability (or the false
alarm rate) of attack detection still remains elusive. Existing
works tend to pursue an unachievable goal of minimizing the
detection delay and false alarm rate at the same time, while
there is a clear trade-off between the two metrics. Instead, we
argue that attack detection should bias different metrics when
a system sits in different states. For example, if the system is
close to unsafe states, reducing the detection delay is preferable
to lowering the false alarm rate, and vice versa. To achieve this,
we make the following contributions.

In this paper, we propose a real-time adaptive sensor attack
detection framework. The framework can dynamically adapt the
detection delay and false alarm rate so as to meet a detec-
tion deadline and improve the usability according to different
system status. The core component of this framework is an
attack detector that identifies anomalies based on a CUSUM
algorithm through monitoring the cumulative sum of difference
(or residuals) between the nominal (predicted) and observed
sensor values. We augment this algorithm with a drift parameter
that can govern the detection delay and false alarm. The second
component is a behavior predictor that estimates nominal sensor
values fed to the core component for calculating the residuals. The
predictor uses a deep learning model that is offline extracted from
sensor data through leveraging convolutional neural network
(CNN) and recurrent neural network (RNN). The model relies
on little knowledge of the system (e.g., dynamics), but uncovers
and exploits both the local and complex long-term dependencies
in multivariate sequential sensor measurements. The third com-
ponent is a drift adaptor that estimates a detection deadline
and then determines the drift parameter fed to the detector
component for adjusting the detection delay and false alarms.
Finally, we implement the proposed framework and validate it
using realistic sensor data of automotive CPS to demonstrate its
efficiency and efficacy.

Index Terms—autonomous cyber-physical systems, security,
physical attacks, real-time, detection

I. INTRODUCTION

Autonomous Cyber-Physical Systems (CPS), such as self-
driving cars and unmanned aerial vehicles (UAV), are becom-
ing an integral part of our daily lives. For example, Amazon’s
Prime Air service seeks to use drones to deliver orders up to
five pounds in 30 minutes or less and has already demonstrated
its feasibility in [1]. UAVs have also been seen in applications
such as aerial photography [2], policing and surveillance [3]

[4], infrastructure inspections [5], construction site manage-
ment [6] and many others. Self-driving cars continue to attract
huge investments from big companies and they are expected
to be in common use in the near future [7] [8].

Due to the safety-critical roles that they play, autonomous
CPS security continues to be an essential requirement for
its safe functioning. However, due to the tight integration of
information technology with physical processes, autonomous
CPSs have become susceptible to both cyber and physical
attacks. Cyber attacks refer to attacks against the comput-
ing and communication CPS components. Physical attacks
compromise the physical environment of the CPS to allow
injecting malicious signals into sensors and actuators. There
are numerous works addressing cyber attacks such as memory
isolation [9], software and firmware techniques [10]-[13],
control-flow integrity [14] [15], and so on.

Such conventional cybersecurity techniques, however, are
inadequate to address physical attacks. This is especially
emphasized by non-invasive sensor attacks. These attacks do
not require physical access to the target component and have
been shown to be easy (requiring a modicum of knowl-
edge) and inexpensive (requiring cheap equipment to execute).
Rutkin [16] showed how non-invasive attacks enabled mali-
cious signals to be injected into GPS sensors, and in the end
misguided a yacht off course. Similarly, Shoukry et al. [17]
demonstrated how non-invasive attacks on wheel speed sensors
influenced Anti-lock Braking Systems (ABS) of a vehicle to
malfunction. Petit et al. [18] also showed how an automotive
CPS camera and LiDAR can be attacked remotely. In addition,
the consequences of sensor attacks will be even exaggerated
as the autonomy increases.

The urgent need to protect autonomous CPS from physical
sensor attacks has motivated a lot of research efforts such
as attack-resilient sensor fusion [19]-[21], model-based at-
tack detection [22]-[24], and data-based detection [25]-[30].
However, the timing and usability of attack detection have
not been adequately addressed in existing works. This timing
constraint is the detection deadline, before which attacks must
be detected. The usability refers to the false alarm rate, and a
lower (higher) rate means a better (worse) usability. Existing
works tend to minimize the detection delay and false alarm
rate at the same time. However, the goal is deemed to be
unachievable because of the clear trade-off between the two
metrics, i.e., lower delay coming with higher false alarm rate,
and vice versa [24], [31], [32]. Hence, we believe that attack
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detection should have a preference on different metrics when
a system runs in different states.

To realize this, we propose a real-time adaptive sensor attack
detection framework that can dynamically adjust detection de-
lay and false alarms. The key rationale behind this framework
is as follows.

(i) Why real-time? Given safety-critical CPS, timing is
important, as untimely defense, that is, detection of an attack
after consequences occur, is just as damaging. For example,
consider the cruise control function under a speed sensor
spoofing attack that changes the true measurement to a smaller
value. Then the vehicle is misled to accelerate so that the real
speed can be much higher than the desired. This attack needs
to be detected before the vehicle crashes into the front car.
This timing constraint is referred to as the detection deadline,
before which attacks must be detected.

(ii) Why adaptive? On the one hand, a shorter detection
delay is not always favorable. In the end, we can have an
attack detector that raises an alert at every control period.
The detector will discover an attack once it occurs, and thus
the detector has the shortest detection delay. However, this
will give an unmanageable number of false alarms and thus
unacceptably low usability. On the other hand, an alert can be
raised after monitoring multiple control periods to ascertain the
occurrence of an attack. However, this can lead to increased
detection delay. Hence, we argue that there is a need to adapt
the attack detection so that it can make the appropriate trade-
off. For example, if the system is already close to unsafe
states and thus the detection deadline is stringent, reducing
the detection delay will be preferable to lowering the false
alarm rate, and vice versa.

To enable real-time adaptive detection, our attack detection
framework consists of three necessary components: attack
detector, behavior predictor, and drift adaptor, as shown in
Fig. 1. The technical contribution for each component is as
follows.

(i) Attack Detector. As the core of our framework, this
component detects anomalies using a CUSUM algorithm that
monitors the cumulative sum of residuals between the nominal
(estimated by the behavior predictor) and observed sensor
values. The algorithm will raise an alarm when the cumulative
sum of the residuals is greater than a predefined threshold.
Importantly, we augment this algorithm with a drift parameter
that governs both the detection delay and false alarms. That
is, the algorithm can adjust the two metrics by changing the
drift parameter.

(ii) Behavior Predictor. This component estimates nominal
sensor values that are fed to the core component. It uses a
deep learning (DL) model that is offline extracted through
uncovering and exploiting both the local and complex long-
term dependencies in multivariate sequential sensor measure-
ments. Thus this model depends on little knowledge of the
physical system (e.g., dynamics). Further, this model leverages
convolutional neural network (CNN) and recurrent neural
network (RNN) to capture non-linear aspects in sensor data
and uses autoregressive models to capture linear aspects.
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This combination results in high robustness and scalability in
handling the sequential sensor data.

(iii) Drift Adaptor. The third component is a drift adaptor
that estimates a detection deadline and then determines the
drift parameter. The detector component uses this parameter
for adjusting the detection delay to ensure timely detection as
the detection deadline varies over time.

We implement our framework and validate it using realistic
sensor data of automotive CPS from the AEGIS Big Data
Project [33]. The results demonstrate that our framework
can detect attacks in a real-time manner. One key insight
here is that tuning the drift parameter has little impact on
false negatives while the detection deadline can be effectively
satisfied.

The rest of this paper is organized as follows. Section II
presents a background and system design overview. Sec-
tions IV, III, and V detail the design for each component
respectively. Section VI validates the proposed framework.
Section VII gives further discussions on the applicability of our
framework. Section VIII presents the related work. Section IX
concludes the paper.

II. BACKGROUND AND SYSTEM OVERVIEW

In this section, we first present the system and threat model,
and then briefly describe our real-time detection framework.

A. System and Threat Model

The CPS model we consider in the paper is a physical
system, also called a plant, controlled by a controller. The
controller operates at every ¢ unit of time, where § > 0 is
called a control period. At the beginning of every control
period, the controller first reads the output of the plant or
sensor measurements. Then using a control algorithm, the
controller computes the control signals or inputs that are sent
to the actuators. The actuators will apply the control inputs to
the plant in the current step.

We consider attack scenarios, where the attacker is able to
compromise the integrity and availability of sensor data of
autonomous CPS, as shown in Fig. 1.

(1) Integrity of Sensor Measurements. The adversary is able
to modify the sensor measurements by launching spoofing
attacks in the CPS’s physical environment such as introducing
noise or interference in the signals that the sensor is perceiving.
The attacker may also undertake replay attacks to compromise
data integrity. A successful replay attack enables an attacker to
send previously captured data to the CPS. While the replayed
data was valid data at a particular point in the past, it does
not reflect the current state of the CPS.

(ii) Availability of Sensor Measurements. The adversary is
able to delay the controller from receiving the sensor values.
The received values are out-of-date and reflect a historical state
of the system. Denial of service (DOS) attacks belong to this
kind of attack, where the delay is infinite. Signal jamming is
one typical DOS attack that the attacker can execute in the
CPS’s physical environment.
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Fig. 1: Design overview of the real-time adaptive sensor attack
detection framework.

This paper is focused only on sensor the attacks mentioned
above. We thus assume that the adversary does not compro-
mise the controller, the actuator, or other cyber components of
the system (cyber attacks). We do not restrict the maximum
number of sensors that can be compromised by an attacker
but assume that the attacker has no knowledge of our attack
detector.

B. Overview of System Design

Fig. 1 shows the overview of the proposed adaptive real-
time attack detection framework. It has two phases: an offline
training phase and an online detection phase.

The offline phase consists of components that function
together to learn the nominal behavior of the system through
training a deep learning model. It leverages both the local and
complex long-term dependencies that exist among sensor data.
To achieve this, the pre-processing component first screens out
sensors that are correlated with each other by calculating their
pairwise correlations. Then, the Long- and Short-Term Time-
Series Network (LSTNet) component captures a consistent
pattern among the correlated sensors, which is referred to as
the nominal behavior.

The online phase handles the real-time attack detection and
is made up of three components. The Behavior Predictor uses
the learned model to predict nominal sensor values. In the
presence of attacks, sensor measurements (observed) will be
different from the predicted values. This difference, called
the residual, is tracked by the Attack Detector to identify
anomalies. It will raise an alarm when the cumulative sum
of residuals becomes larger than a pre-defined threshold.
The Drift Adaptor ensures a usable detection result before
the detection deadline. The deadline may vary over time
as the physical environment changes. This component can
dynamically adjust the detection delay to meet the deadline
via the drift parameter. To be clear, we state the workflow
of the online phase as follows. At each control period, the
Behavior Predictor and Drift Adaptor first produce nominal
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sensor values and the drift value, respectively. Then the Attack
Detector uses these values to identify anomalies.

III. DESIGN OF ATTACK DETECTOR

In this section, we present the detailed design of the core
component, Attack Detector, in our framework. This compo-
nent needs predicted sensor values and the drift parameter
from Behavior Predictor and Drift Adaptor respectively. The
latter two components will be detailed in the subsequent
sections.

A. Problem Formulation

We formulate the attack detection problem as follows. Given
the predicted nominal sensor value y; € R™, observed sensor
value y; € R™ and the drift parameter A, the problem is to
determine the appropriate time to raise an attack alert £474,m
when the observed sensor values deviate from the expected
values such that it exceeds a threshold 7:

talarm = C(yt7 Qtv A) > T, (1)

where C is a change detection mechanism.

B. Attack Detection

There are two main strategies that can be used to realize
Eq. (1), that is, to determine the appropriate time to raise
alarm: stateless and stateful. (i) In a stateless strategy, it is
confined to monitor every single period’s residual, and an
alarm is raised for every single deviation, that is, if the residual
exceeds a pre-determined threshold 7 i.e, r, > 7. This kind
of strategy has been shown to have increased false positives
[24]. (ii) A stateful strategy, on the other hand, calculates the
statistic .Sy that keeps track of the historical changes of r;. It
raises alarm when there is a persistent deviation over time, i.e.
S¢ > 7. This kind of strategy has been demonstrated to have
decreased false positives [24].

We thus choose to develop a stateful strategy in our frame-
work due to its lower false positive rates. There are usually two
kinds of stateful strategies: time window and cumulative sum
(CUSUM). (i) In a time-window-based method, the detector
looks at the residuals within a time window of multiple control
periods. (ii)) A CUSUM-based method, on the other hand,
efficiently tracks the cumulative sum of residuals of the whole
history. The authors in [23] demonstrate that a CUSUM-based
approach tends to be faster and more accurate than a time-
window-based approach. Further, the former is more robust to
attacks that are hard to be detected by other approaches such
as attacks hidden in-between time windows and other stealthy
attacks.

Hence, we present a CUSUM-based attack detection ap-
proach. The algorithm is augmented with a drift parameter,
by tuning which the detection delay and false alarms can be
changed. The algorithm outline is shown in Algorithm 1. We
briefly explain the algorithm as follows.

Line 1 initializes the cumulative sum to zero. Line 2
calculates the residual between the observed sensor value y;
and the predicted sensor value ¢; obtained from the Behavior
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Algorithm 1: The CUSUM Algorithm.
Input: threshold 7, drift A\, observed sensor value y;,
predicted sensor value ¢,
Output: alarm time 474:m
1 Initialize: Sy = 0;
while ¢ > 0 do

2 e = Yt — Ut} /I the residual of control period ¢.
3 Sy = [Si—1+|re] = A]T;  // the cumulative sum;
/' [a]t = maz{a,0}.
4 if S; > 7 then
5 tatarm =,
6 S; = 0;
7 end
/I the cumulative sum is greater than the threshold;
at period ¢ an alarm is raised; rest the sum.
8 end

Predictor. That is, this difference indicates how deviated the
observed value is from the nominal estimate. Line 3 calculates
the cumulative sum S; at control period ¢, which is a non-
negative value. Basically, it equals the cumulative sum at
period ¢ — 1 plus the absolute value of the residual at ¢
minus the drift parameter. The drift parameter is decided by
the Drift Adaptor. As mentioned, selecting the appropriate
drift parameter is an important aspect of the algorithm. It
can impact both the detection delay and the number of false
positives. Line 4-7 checks if the cumulative sum is larger than
the pre-defined threshold. If yes, an alert ¢,;4,,, is raised, and
S; is reset to zero.

IV. DESIGN OF BEHAVIOR PREDICTOR

In this section, we present the detailed design of behavior
predictor. This component builds a data model of the system
that captures physical invariants for the purpose of predicting
sensor measurements.

Physical invariants are properties of the physical system that
should always hold. The invariants are guarded by physical
laws. One method to capture physical invariants is to use a
physical system model. One disadvantage of this method is
the requirement of adequate knowledge of accurate system
dynamics, which may not be easy to attain.

In this paper, we approximate physical invariants using a
deep learning technique instead. The approximated physical
invariant will be used as the nominal behavior of the system.
This technique treats the system as a black box and explores
the correlation of multivariate sensor data. Our insight is that
if the system operates normally and obeys physical laws, then

Behavior Ui

Predictor N
Tt =Y — Yy

Ge1

CUSUM > Alert

Fig. 2: Dataflow in attack detector.
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Fig. 3: Example confirming the wheel speed sensors in the
dataset has strong correlation with the wheel speed, engine
speed and boost pressure sensors.Table I shows the available
sensors in the dataset.

the sensor data obtained from the CPS also indirectly obeys
physical laws. Hence, with little knowledge of the system
dynamics, our deep learning approach enables us to learn the
behavior of the system in order to make accurate predictions.

A. Problem Formulation

In order to perform the non-trivial task of predicting
nominal system behavior, we formulate the problem as a
multivariate time series forecasting problem.

Given a fully observable system with n correlated sensors
Y = {y1,y2,...,yr} where y; € R™, we want to extract the
natural redundancy that exists among the correlated sensors
using a deep learning model D, so that we can learn the
nominal behavior of the system such that we can predict future
sensor values yr41. It is assumed that {y1,y2,...,yr} will
always be available whenever we predict yp4;. The input
to the behavior predictor at time step 7' is formulated as
Xr=A{y1,y2,...,yr} € R™*T

9741 = D(X7) 2

B. Pre-processing

Sensors on automotive CPS exhibit physical sensor corre-
lation or natural redundancy [25]. We need to ensure the DL
model is trained using only sensor data that are correlated.
This component uses a statistical method to observe the natural
redundancy in the dataset and also finds sensor data that are
correlated but may not be obvious from domain knowledge.

The pre-processing component builds a correlation matrix
based on Pearson’s Correlation Coefficient (PCC) algorithm.
Data variables or features are said to have a positive corre-
lation when both variables move in tandem. That is, if one
variable increases, the other variable also increases. A positive
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correlation also holds when one variable decreases and the
other variable decreases as well. Conversely, two variables
have a negative correlation when one increases and the other
variable decreases, and vice versa. PCC indicates a strong
positive correlation with coefficient values that are close to
+1.0 whereas a strong negative correlation has coefficients that
are close to -1.0. Coefficient values close to 0 signifies that the
two variables do not have any correlation. We select dataset
features whose PCC values are either greater than 0.5 or less
than -0.5 as input to model training. For example, to observe
the sensors that have natural redundancy with the wheel speed
sensor in the AEGIS CAN dataset (we describe this dataset
in section VI-B), we created the heatmap shown in Fig. 3
based on the PCC values. In the figure, we observe the wheel
speed sensors have a strong positive correlation with vehicle
speed, engine speed, boost pressure, engine torque and oil
temperature Sensors.

C. Long- and Short-Term Time-Series Network (LSTNet)

Fig. 4 is an overview of the deep learning architecture used
which is based on [34]. The interested reader is referred to
[34] for details, here, we briefly describe each component.
Mainly, the architecture consists of a convolutional neural
network (CNN), a recurrent neural networks (RNN) as well
as an autoregressive linear model.

CNN Component. The first layer of the deep learning frame-
work is a CNN without pooling. It is tasked to extract
the temporal patterns and the local relationship between the
correlated sensor variables. This CNN layer is made up of
a number of filters of width w and height n (the number
of correlated sensor variables) with each k-th filter passing
through the input matrix X to output a vector hy:

hie = RELU(W), X + by,) 3)

where * is the convolution operation, W}, and b denote the
weight parameter and bias respectively. RELU activation
function ensures values stay between 0 and 1. Each vector
hy is zero-padded on the left of the input matrix X to have
a length of 7. In the end, the convolutional layer outputs a
matrix of size d. X T, where d.. is the number of filters. This
output matrix is inputted into the recurrent component.

Recurrent Component. The recurrent component has two
sub-components namely, gated recurrent unit (GRU) and
recurrent-skip.

GRU is a specialized recurrent neural network (RNN)
that is suited for modeling sequential data such as sensor
readings [35]. Unlike artificial neural networks (ANN), GRU
is able to store past information in addition to current inputs
in order to determine current outputs. The ability to store past
information in GRU is enabled by the state variables that it
introduces i.e. the update and reset gates. At a time ¢, given
the input minibatch z; € R™*! (where m is the number of
examples in the minibatch and [ is the number of inputs) and
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the previous hidden state h; 1 € R™*® (where s is the number
of hidden states), the reset gate z; € R™*® and update gate
u; € R™*% candidate hidden state c¢; and final state h; are
computed as,

Zt = U(xthr + htflwhr + br)

uy = O—(:L'tWIu + ht—IWhu + bu) (4)
¢t = RELU(xWge+ 1t ® (hi—1Whe) + be)

ht = (]-_ut)QCt"‘ut@ht,l

where © is the element-wise (Hadamard) product, o is the
sigmoid function, Wy, Waw, Wae, Wiy Whiy, Wi are the
weight parameters, and b,., by, b. are bias parameters.

The output of the GRU layer is the hidden state h; at each
time step. Note that the use of GRU in the recurrent component
allows the deep learning model to discard irrelevant previous
sensor information and extract only the important ones that
help to learn the nominal system behavior.

The second sub-component of the recurrent component
is the recurrent skip component. This feature enables the
architecture to memorize the repeated historic periodic pattern
(such as daily, weekly patterns) in time series data. However,
since the automotive CPS sensor data do not exhibit this
periodic pattern, we do not turn it on in our experiment.

The output of the recurrent component is passed to a fully
connected (FC) layer as shown in Fig. 4. FC combines its
input to make a prediction result 7 is at time step ¢.

Autoregressive Component. This component addresses a
deficiency found in the non-linear neural network components:
convolutional and recurrent components. The scale of output
in neural networks is known to be insensitive to the scale of its
inputs [34]. Hence, given the non-periodic nature of sensor
data, this deficiency diminishes the forecasting accuracy of
the neural networks. This is solved by decomposing the final
prediction into a linear component by using an autoregressive
(AR) model which is formulated as,
-1
hf =" Wiv, g+ 5)
k=0
where hf € R" is the forecasting result of the AR
component, W & R?"" and b°" € R are the coefficients
of the AR model such that ¢°" is the size of input window
over the input matrix. v;_j is the past series values (lagged
values).
At time step ¢, the DL model makes a prediction ¢; by
integrating the outputs of the neural network part and the AR

component:
g =hi +hy (©)

Objective function. We use absolute loss (L1-loss) as the
objective function which is formulated as:
n—1

rrgn Z Z |yt,i - @tz\

tEQTrain =0

)

where © denotes the parameter set of our model, Q7,4 1S
the set of time stamps used for training.
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Fig. 4: Architecture of LSTNet model that learns both local and complex long-term dependencies in automotive CPS sensor

values for attack detection.

Although squared error function is an option often used,
experiment results in [34] indicate the absolute loss function
is more robust.

V. DESIGN OF DRIFT ADAPTOR

In this section, we present the design of the drift adaptor.
This component ensures attack detection occurs before a
detection deadline.

The requisite detection deadline for an autonomous CPS
varies with its physical environment. In other words, the
deadline by which the attack has to be detected depends on the
physical environment. The deadline can change as the physical
environment varies. For instance, the deadline for detecting a
wheel speed attack of a vehicle that is 50m away from an
object it can crash into will be different from the situation
where the crashing object is 200m away. Hence, there is a
need for real-time attack detection that adapts its mechanism
based on the physical environment or how the system is close
to unsafe states, such that the detection delay will be less than
the required detection deadline.

Another motivation is the trade-off between detection de-
lay and false alarms in our experiment. The attack detector
discussed above (in Section III) is augmented with a drift

—— Attack 1
—— Attack 2
— Attack 3
| — Attack 4
—— Attack 5
—— Attack 6

Detection Delay (s)

0.5

Drift

0.6 0.7 0.8

Fig. 5: The relationship between drift parameter and detection
delay for various attack scenarios.
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Fig. 6: Relationship between drift parameter and number of
false positives.

parameter A\ that can be adjusted to produce varying detection
delays and false positives. Fig. 5 and Fig. 6 show how the
drift parameter affects the detection delay and number of
false positives. We note that as the drift parameter increases,
the time to detection or detection delay increases while the
number of false positives decreases. Hence, adjusting the drift
parameter enables our attack detection mechanism to adapt its
behavior for an appropriate trade-off while meeting the real-
time constraint.

The Drift Adaptor component is made up of two sub-
components: Deadline Estimator and Drift Analyzer. The
deadline estimator determines the detection deadline whereas
the drift analyzer determines the appropriate drift parameter.

A. Deadline Estimator

The detection deadline considered in this paper is the time
in the future when the system may touch the unsafe set. We
consider a time that is estimated in a conservative way, i.e.,
at a worst case. The authors of [36] propose a reachability-
based deadline estimation method, but it requires knowing the
system dynamics. By contrast, we propose a pure data-driven
method towards this end.

The core idea of the proposed method is to first calculate
the maximum change rate of the sensor value and then use it
to estimate the shortest time when the system may touch the
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unsafe set. The proposed method has two phases: offline and
online.

(i) At the offline phase, we consider the collected time series
of each individual sensor i, denoted as {y1(2), y2(7), ...yr (i) }.
The change rate of the sensor value of two adjacent periods
is defined as

A = WO = v d), ®)
Then using the collected time series, we use the following
equations to calculate the maximum (A™) and minimum (A ™)

change rate.

AT (i) = [maz{A(i),2 <t < T}HT, ©)
A7 (1) = [min{A(i),2 <t < T},
where [a]t = maxz{a,0} and [a]~ = min{a,0}.

(ii) At the online phase, based on the fastest change rate
given in Eq. (9), we can perform the following reachability
analysis to estimate the detection deadline. At current time ¢,
we calculate the reachable value for each sensor by

yi (i) = ye(i) x (14+ A1) x5 x (d—t)),d > t, (10)
Yy (1) =ye(1) x 1+ A7(i) x § x (d—1)),d > t.
The earliest time D(i) when the value of sensor ¢ may touch
the unsafe set is
D(i) = min{dly; (i) € UGH) Vyg (1) €UGE}, (D
where U (i) is the unsafe set associated with sensor 4. Finally,
the detection deadline D is calculated by
D =min{D(%)|1 <i<n}. (12)
Note that our framework does not rely on any specific
deadline estimation method, and is always applicable as long
as a detection deadline is outputted.

B. Drift Analyzer

With a detection deadline D as input, the Drift Analyzer
determines the best drift parameter that allows the attack to be
detected before the deadline. For this component to function
properly, we need to first establish the relationship between
the detection delay and the drift parameter. This is achieved
by performing offline profiling. Fig. 5 and Fig. 6 depict that
there is a relationship among the drift parameter, detection
delay and false positives. Armed with this information and the
CUSUM tuning tools provided in [37], we are able to build
a drift-parameter-detection delay pair that ensures we do not
exceed the acceptable false positive rate. In other words, We
build a lookup table based on the offline profiling results. To
perform its online adaptation functionality, the Drift Analyzer
simply queries the lookup table to output the drift parameter
that adjusts the detection delay to meet the given detection
deadline.
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TABLE I: Some sensors in the dataset used in experiment.

CAN bus Sensors IMU Sensors

GPS Sensors |

ASR Acceleration Accelerometer_X
AccPedal Current_sec Accelerometer_Y
AirIntakeTemperature | Direction Accelerometer_Z7
AmbientTemperature Distance Body_acceleration_X
BoostPressure Velocity Body_acceleration_Y
BrkVoltage Body_acceleration_Z
EngineSpeed_CAN G_force
EngineTemperature Magnetometer_X
Kickdown Magnetometer_Y
MFS_Tip_Down Magnetometer_Z
MFS_Tip_Up Velocity_X
SteerAngle Velocity_Y
Trq_FrictionLoss Velocity_Z
Trq_Indicated

VehicleSpeed

WheelSpeed_FL

WheelSpeed_FR

WheelSpeed_RL

WheelSpeed_RR

Yawrate

ASR = Acceleration Slip Regulation, ACC = Acceleration,
BRK = Break, MFS = Misfiring System, TRQ = Torque,
FL = Front Left, FR = Front Right, RL = Rear Left,

RR = Rear Right, G = Gravity

VI. EVALUATION
A. Implementation and Experimental Setup

We implemented our deep learning model in Python, utiliz-
ing PyTorch Deep Learning framework. We train the model on
Ubuntu 18.04 64-bit with sixteen Intel(R) Xeon(R) CPU ES5-
2680 v4 @ 2.40GHz CPUs, two Nvidia GeForce GTX 1080
GPUs and 64 GB RAM. We follow a 60/20/20 proportions for
splitting the original dataset into training/validation/test sets.
The experimental model is made up of 100 hidden CNN layers
and 100 hidden RNN layers. The model was trained for 100
epochs. Metrics used for the test accuracy were Root Relative
Square Error (RSE) and Relative Absolute Error (RAE). The
accuracy for our experimental model was 0.0032 (RSE) and
0.0018 (RAE).

B. Dataset Description

We used the publicly-available real-world automotive CAN
bus dataset from the AEGIS Big Data Project [33] ! for our
experiment. The sensor data, sampled at 20Hz, was collected
during trips in the same passenger vehicle. More than 40
sensor measurements were collected including but not limited
to those listed in Table I. Specifically, the data contains about
2.5 hours of driving data (about 160,000 data points).

C. Attacks

The dataset does not include any anomalous events or
scenarios, hence we manually modify portions of the dataset
to simulate physical attacks that achieve similar goals of a real
attacker. Based on the attacks discussed in section II and the
attacks in [38], we evaluate our work under (1) modification,
(2) delay and (3) replay attacks.

Uhttps://zenodo.org/record/3267184#.X5YtplhKg2x
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Fig. 7: Front-Left wheel speed sensor measurement showing
the predicted and observed values.

We simulate four attack scenarios under modification attacks
and one each for the delay and replay attacks. Attack 1 adds
a fixed value to the sensor readings for a period of time. This
simulates the attacker spoofing the sensor measurement as
done in Fake Data Injection (FDI) attacks. Attack 2 sets the
sensor reading to a fixed value indicating a spoofing attack
that spoofs sensor readings to a specific value. Attack 3
incrementally changes sensor measurement. Here the attacker
has a target value to spoof the sensor, yet he does not set the
value right away. Rather, he gradually adds small values (e.g
0.01 kph) to current sensor readings until the target spoofing
value is reached. In real life, an attacker might use this strategy
with the intent of evading detection mechanisms. Attack 4
sends both normal sensor values and malicious/fake sensor
values alternately and repeatedly. Like Attack 3, a real attack
might use this tactic to mislead attack detection mechanisms.

Attack 5 mimics delay attack where the attacker causes
a 10s delay in sensor data transmission. Attack 6 is a replay
attack where the sensor data from a previous time are replayed.

D. Experiments and Results

We perform various experiments to evaluate the effective-
ness and efficiency of our proposed framework.

Experiment I: The first experiment tests if the behavior
predictor component was able to capture the behavior of the
automotive CPS accurately. Fig. 7 shows the normal behavior
of the front-left wheel speed sensor. It can be seen in the
figure that the behavior predictor’s prediction closely matches
the observed sensor measurement operating under normal
conditions. A similar plot for the engine speed, oil temperature
and boost pressure sensors shown in Fig. 8 further indicate
the behavior predictor is able to capture the system’s nominal
behavior. The error shown in Fig.7 has a close to zero-average,
an indication that the predictor method is not biased. Further
residual analysis shows the residuals follow a normal Gaussian
distribution and do not have any trend, cyclic or seasonal
structure in the error plot.

Experiment II: We evaluate the attack detector component in
this experiment. The component is tasked to detect the attack
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Fig. 8: Observed and predicted values for the oil temperature,
engine speed and boost pressure sensors.

scenarios described in VI-C. We randomly placed 10 simulated
attacks in each case. Fig. 9 shows the proposed framework is
effective in detecting various attack scenarios. In the figure, the
red dots indicate the points where the CUSUM-based attack
detector raises an alert for the attacks. It can also be observed
that the detector raises alarm only when the abrupt change is
significant and has persisted for a while thus reducing flagging
transients faults as attacks. For instance, a close-up look at one
of the attack points (see Fig. 10), shows the detector observed
an abrupt change in speed at time 39.95s (indicated by the
green arrow) but did not raise alarm immediately until 42.1s.
Experiment III: In this experiment, we measure and analyze
the false-positive (FP) and false-negative (FN) rates under var-
ious drift and threshold monitoring parameters. FP is measured
by inputting normal data (no attack) into the framework and
counting the number of false alarms rate. We measure FN
by inputting data containing simulated attacks and counting
the number of attacks that the framework missed raising an
alert for. Note here that miss means that an alert was not
raised within the duration of the attack. Therefore, alarms
that occurred shortly after the attack ended were not counted.
The results in Fig. 11 and Fig. 12 show the FP and FN
rates respectively for this experiment. In the legend of the
figures, Al, A2...A6 represent the various attack scenarios
discussed above, the numbers (3, 4, 5) represent the threshold
monitoring parameter. For example, Al-3 represents Attack
1 being monitored with a threshold of 3. In FP analysis, we
observe that the CUSUM drift parameter with value 0 produces
very high FP rates. However, the FP rate plummets with drift
values greater than 0. The FN rate results, on the other hand,
show the drift parameter ranging from 0.2 to 0.8 produce zero
rates for all attack case scenarios. This implies that for most
attacks, the behavior of the detector framework can be adapted
to meet attack deadlines whilst still maintaining very low FN
rates. However, beyond that range (0.2 - 0.8), we observe the
FN increases.

Experiment IV: This experiment measures the detection
delay ¢ i.e. the time it takes to detect the attack after its
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Drift

Fig. 11: False positive rate for the various attack scenarios
under different monitoring parameters (drift and threshold).

launch. This metric allows us to evaluate the time needed for
our attack detection framework to disclose or alert an attack. If

an attack starts at time k,, and the attack detection mechanism
detects it at time kg, ¢ is defined as: ¢ = k4 — ks. The lower
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the value of ¢, the better the attack detection mechanism and
as such, reduces the impact of the attack.
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Table II shows the results of the detection delay ¢ for
the various simulated attacks (see section VI-C). Note that
the simulated attacks lasted for 10s. The result in the table
suggests the attacks were detected while the system was being
attacked rather than after the attack ended. While this is
desirable, we show in a subsequent experiment that it is more
desirable and important for real-time systems to detect an
attack before a detection deadline. Further, the result shows
the relationship between the CUSUM drift parameter and the
detection delay. The detection delay increases as the drift
parameter increases.

Experiment V: This experiment analyses the effect of adaptive
detection. For real-time systems, it is not only desirable but
required that the attack detection mechanisms are able to detect
attacks before the detection deadline D, 0 < ¢ < D. Fig. 13
shows how the real-time adaptive detection enables Attack 3 to
be detected under different deadlines. In the figure, we observe
that, in order to meet Deadline 1 (Isec), the drift parameter
has to be adjusted to a value not greater than 0.25. Though
Attack 3 can be detected with a drift parameter of say 0.8, it
cannot satisfy Deadline 1 because its corresponding detection
delay is 1.8 seconds.

Experiment VI: This experiment compares a fixed time-
window approach with our real-time adaptive attack detection
approach. The goal is to show how our framework adapts it
behavior based on the drift parameter in order to meet an
attack deadline.

The time-window implementation used in this experiment
is similar to [22]’s attack detector monitoring algorithm. It
sums up the square errors between the observed and the
prediction. When the time window expires, it determines
if the accumulated mean square exceeds a threshold. The
accumulated sum is reset when the time window expires. Note
that the time-window approach can only raise an alarm after
its time-window expiration.

We compare the two approaches based on the attacks
described in Section VI-C and the case scenario depicted in
Fig. 14. In this case scenario, an attack occurs at 40s with
a detection deadline estimated at 45s. The red dots in the
figure represent the alarm raised by our framework whereas the
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TABLE II: Detection delay in seconds for the attack scenarios.
Al refers to Attack 1, A2 refers to Attack 2 and so on.

Drift Al A2 A3 A4 A5 A6
0.2 0.3 1.31 1.57 030 221 0.42
0.3 0.35 1.58 1.75 035 231 0.60
0.4 0.4 1.78 1.94 042 237 1.64
0.5 0.53 198 209 052 248 2.24
0.6 0.7 258 226 067 255 2.72
0.7 098 282 241 0.94  2.66 3.55
0.8 140 3.13 2.56 1.54 276 4.63
2.0
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Fig. 13: Adaptive detection for Attack 3.

blue dot refers to the alarm raised by the time-window attack
detector approach. We observe that the time-window approach
rightly determines that an attack occurred in all cases, however,
the alert is raised after the detection deadline. In a real-world
situation, this would mean the attack detection alert is raised
after the damage has occurred. Our framework, on the other,
raises an alarm before the deadline.

Experiment VII: We compare our work with a recent anomaly
detector that closely relates to our work [25]. Like our
work, the researchers exploit the natural redundancy that
exists among heterogeneous sensors and they also employ
deep learning techniques (deep autoencoder) to detect attacks.
Whereas they focus only on the rightness of attack detection,
we focus on detecting attacks before a detection deadline by
adapting the attack detection mechanism. More importantly, in
order to decide to raise an attack alert, their approach monitors
only one control period. Due to the adaptive nature of our
approach to meet a deadline, the number of control periods that
it monitors varies. Their detection mechanism raises an alert
when the reconstruction error of the decoder is above a certain
threshold. We trained a model based on [25] and tuned the
hyper-parameters with our dataset for a fair comparison. The
deep autoencoder attack detector is tasked to detect the same
attack scenarios we subjected our approach to in Experiment
II. Fig. 15 shows the results. The green marks are the data
points that represent the attack. Comparing this results with
our results shown in Fig. 9, the detector in [25] produces high
false alarms.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.



130.5 —— Observed ] H
—— Predicted 1
_’:\‘ 130.0 -~ Attack deadline !
I === Attack occurs
~ e Alarm
; 1295 ® Time-window Alarm
o}
@ I
S 1200 | i
8 ; !
JRELE] i |
z : :
128.0 ! 1
‘ ‘ ‘ : i ; ‘
20 25 30 35 40 a5 50
Time (s)
(a) Attack 1.
132.0
—— Observed |
1315 —— Predicted |
—-- Attack deadline |
= 110 --- Attack occurs :
X~ 1305 o Alarm 1
z e  Time-window Alarm }
@ 130.0 !
v 1
& 1205 !
8 1290 i
< 1
= 1285 ;
128.0 i
20 25 30 35 40 a5 50
Time (s)
(c) Attack 3
—— Observed ! |
—— Predicted |
= 1295 ~-- Attack deadline !
E === Attack occurs
~ e Alarm
; 129.04 . T\me-wwﬂéeﬁ a
o}
o}
Q.
%) I
o 12851 3
£ !
= : :
128.0 4 i i
i i
i i
! |

Zb 2‘5 3b 3‘5 40 45 Sb
Time (s)

(e) Attack 5

—— Observed }
—— Predicted |
-~ Attack deadline !
=== Attack occurs

e Alarm
) Timerwin‘h

129.54

129.04

128.5

Wheel Speed (km/h

128.01

20 25 30 35 40 45 50
Time (s)

(b) Attack 2

132.0

— Observed i
—— Predicted |
~=- Attack deadline H
=== Attack occurs

® Alarm

® Time-window Alarm

131.59

131.04

130.51

130.0

129.51

Wheel Speed (km/h)

2‘0 2‘5 3‘0 3‘5 40 45 5‘0
Time (s)

(d) Attack 4

—— Observed
—— Predicted
—== Attack deadline
=== Attack occurs

o Alarm
o Time-wif ew

129.51

129.01

128.59

Wheel Speed (km/h

128.01

2‘0 2‘5 3b 3‘5 40 45 5‘0
Time (s)

(f) Attack 6
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VII. DISCUSSION
A. Stealthy Attacks

While our proposed system effectively detects physical
attacks against automotive CPS we do not rule out completely

the possibility of it being vulnerable to stealthy attacks. In this
attack, the attacker spoofs sensor values that do not exceed
the determined threshold, hence the attack detection system
raises no alarm. Gradually, the attacker is able to deviate the
CPS to his desired target. References [23] and [31] note that
this weakness is also found in physics-based attack detection
(PBAD) systems. In the real world, a stealthy attack is hard to
launch as it requires very detailed knowledge about the system
dynamics and ensuring that all the laws of physics are obeyed
[22]. On one hand, our proposed detection framework provides
some defense as the Behavior Predictor component learns
the system dynamics from multiple heterogeneous sensors. To
evade our framework, the attacker may have to launch spoofing
attacks against all the heterogeneous sensors simultaneously
such that it maintains the natural correlation among the
sensors that the proposed framework also learned. Achieving
such a sophisticated attack in the real world is hard since
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each sensor attack requires specific tools and equipment to
successfully launch. On the other hand, we agree with [31] that
a combination of detection schemes can also be implemented
to mitigate stealthy attacks. We suggest combining a deep
learning approach like our work with PBAD approaches can
be a viable solution against stealthy attacks.

B. State Estimation and Attack Response

Our work has focused on physical sensor attack detection
without attack response. Once our framework detects an attack,
the behavior predictor can also be used to predict values that
can be used for state estimation. The state estimation can be
forwarded to the controller for recovery control. However,
there are more viable recovery solutions such as [39] that
recovers the CPS from an attack so that continual functioning
is attained.

VIII. RELATED WORK

This section discusses research works related to attack
detection and sensor correlation.

A. Attack detection

Existing works on cyber-physical systems attack detection
can be categorized based on techniques that are used.

Redundancy-based: Works that use this approach [30],
[40]-[42] detect attacks by using multiple system components.
The duplicated system component may be software (e.g con-
troller) or hardware (e.g. sensors). The states or outputs of
each of the duplicated system components are cross-checked
at runtime. In spite of its effectiveness, this approach leads to
increased cost, weight, power, space requirement and system
complexity.

Signature-based: The works that use this approach [43],
[44] monitor runtime patterns and compare them with a pre-
maintained dictionary that contains known attack types or
attack patterns. For it to be effective, the dictionary needs to
have the latest attack patterns. These methods are known to
be fast and have low false positives rates, however, they are
not effective in handling zero-day attacks [22], [28]

Behavioral rule-based: Behavioral rule-based techniques
[45]-[47] models the normal system operations by using a
specification. The program state transitions or execution time
constraints are usually modeled in this approach.

Physics-based: This approach detects attacks by monitoring
the physics of cyber-physical system. It is an area of research
that is attracting a lot of attention. [24] surveys works that use
this approach for cyber-physical systems in general, whereas
[48] surveys works that use this approach specifically for
autonomous vehicles. Recently, [22] and [23] applied this
technique to detect physical sensor attacks. During the first
of its two steps, Physics-Based Attack Detection (PBAD)
approaches extract the physical invariant of the system and use
it to model the system. Although we do not extract the physical
invariant directly, we indirectly use deep learning to learn
about them. Like other approaches, in the second step, PBAD
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compares the model predictions with the observed values and
raise alarm when observed states exceed a threshold.
Machine/Deep Learning: Machine Learning (ML) and
Deep learning (DL) techniques have been employed in many
CPS attack detection works lately [25], [27], [28], [38], [49]-
[56]. These solutions build a data model by using the system
data to train a machine or deep learning model. The models are
often used to make predictions of CPS measurements such as
sensors. ML and DL methods require a large amount of data to
build accurate models. While supervised ML methods require
both labeled normal and attack training data, unsupervised
methods often process only normal training data. Our solution
uses an unsupervised deep learning approach. Our work is
distinguished by the incorporation of attack detection deadline
estimation and adaptive attack detection mechanism.

B. Sensor correlation

Researchers have explored the correlations among sensors
in their solutions especially for anomaly detection. The authors
in [57] utilize pairwise correlation between vehicle sensors to
detect anomalies caused by sensor faults or attacks. [58] builds
on the idea of [57] by modeling the subtle nonlinear relation-
ships in CAN data without knowing its functional meaning.
[38] demonstrates an in-vehicle intrusion detection system
(IDS) for detecting data spoofing attacks. The solution uses
a regression learning approach to learn CAN bus sensor data
correlation. Liu et.al [59] extract causal interactions among the
sub-systems of a CPS and present a spatio-temporal graphical
modeling approach to detect anomalies for a heating system.
Other works that explore sensor correlation include [60]—
[62]. Our work also exploits the correlation among sensors,
however, our work is unique. All of these works focused on
detecting the attacks instead of when the attack is detected. We
provide a real-time attack detection that adjusts the detection
delay so that it meets the detection deadline.

IX. CONCLUSION

The safety-critical roles that autonomous CPS play require
that they are protected from physical sensor attacks in a
timely manner. In this paper, we have presented a novel deep
learning-based real-time adaptive attack detection framework.
The framework dynamically adjusts the detection delay via
the drift parameter so that the detection deadline can be
satisfied. We achieve this through the three main components:
behavior predictor, attack detector and drift adaptor. Behav-
ior Predictor uses a deep learning technique to approximate
the system’s physical invariant for the purpose of predicting
nominal sensor values. Attack Detector employs the CUSUM
algorithm for attack detection. We have introduced a detection
deadline estimation method in the drift adaptor component.
We evaluated our proposed framework using a real-world
dataset. We compared our work with a time-window attack
detector approach and a recent deep learning-based solution.
The results show that while our work is not free from false
alarms, it is able to adjust its behavior to meet attack deadlines.
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