
Real-Time Adaptive Sensor Attack Detection in
Autonomous Cyber-Physical Systems

Francis Akowuah and Fanxin Kong
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY

feakowua@syr.edu, fkong03@syr.edu

Abstract—Cyber-Physical Systems (CPS) tightly couple infor-
mation technology with physical processes, which rises new vul-
nerabilities such as physical attacks that are beyond conventional
cyber attacks. Attackers may non-invasively compromise sensors
and spoof the controller to perform unsafe actions. This issue is
even emphasized with the increasing autonomy in CPS. While
this fact has motivated many defense mechanisms against sensor
attacks, a clear vision on the timing and usability (or the false
alarm rate) of attack detection still remains elusive. Existing
works tend to pursue an unachievable goal of minimizing the
detection delay and false alarm rate at the same time, while
there is a clear trade-off between the two metrics. Instead, we
argue that attack detection should bias different metrics when
a system sits in different states. For example, if the system is
close to unsafe states, reducing the detection delay is preferable
to lowering the false alarm rate, and vice versa. To achieve this,
we make the following contributions.

In this paper, we propose a real-time adaptive sensor attack
detection framework. The framework can dynamically adapt the
detection delay and false alarm rate so as to meet a detec-
tion deadline and improve the usability according to different
system status. The core component of this framework is an
attack detector that identifies anomalies based on a CUSUM
algorithm through monitoring the cumulative sum of difference
(or residuals) between the nominal (predicted) and observed
sensor values. We augment this algorithm with a drift parameter
that can govern the detection delay and false alarm. The second
component is a behavior predictor that estimates nominal sensor
values fed to the core component for calculating the residuals. The
predictor uses a deep learning model that is offline extracted from
sensor data through leveraging convolutional neural network
(CNN) and recurrent neural network (RNN). The model relies
on little knowledge of the system (e.g., dynamics), but uncovers
and exploits both the local and complex long-term dependencies
in multivariate sequential sensor measurements. The third com-
ponent is a drift adaptor that estimates a detection deadline
and then determines the drift parameter fed to the detector
component for adjusting the detection delay and false alarms.
Finally, we implement the proposed framework and validate it
using realistic sensor data of automotive CPS to demonstrate its
efficiency and efficacy.

Index Terms—autonomous cyber-physical systems, security,
physical attacks, real-time, detection

I. INTRODUCTION

Autonomous Cyber-Physical Systems (CPS), such as self-

driving cars and unmanned aerial vehicles (UAV), are becom-

ing an integral part of our daily lives. For example, Amazon’s

Prime Air service seeks to use drones to deliver orders up to

five pounds in 30 minutes or less and has already demonstrated

its feasibility in [1]. UAVs have also been seen in applications

such as aerial photography [2], policing and surveillance [3]

[4], infrastructure inspections [5], construction site manage-

ment [6] and many others. Self-driving cars continue to attract

huge investments from big companies and they are expected

to be in common use in the near future [7] [8].

Due to the safety-critical roles that they play, autonomous

CPS security continues to be an essential requirement for

its safe functioning. However, due to the tight integration of

information technology with physical processes, autonomous

CPSs have become susceptible to both cyber and physical

attacks. Cyber attacks refer to attacks against the comput-

ing and communication CPS components. Physical attacks

compromise the physical environment of the CPS to allow

injecting malicious signals into sensors and actuators. There

are numerous works addressing cyber attacks such as memory

isolation [9], software and firmware techniques [10]–[13],

control-flow integrity [14] [15], and so on.

Such conventional cybersecurity techniques, however, are

inadequate to address physical attacks. This is especially

emphasized by non-invasive sensor attacks. These attacks do

not require physical access to the target component and have

been shown to be easy (requiring a modicum of knowl-

edge) and inexpensive (requiring cheap equipment to execute).

Rutkin [16] showed how non-invasive attacks enabled mali-

cious signals to be injected into GPS sensors, and in the end

misguided a yacht off course. Similarly, Shoukry et al. [17]

demonstrated how non-invasive attacks on wheel speed sensors

influenced Anti-lock Braking Systems (ABS) of a vehicle to

malfunction. Petit et al. [18] also showed how an automotive

CPS camera and LiDAR can be attacked remotely. In addition,

the consequences of sensor attacks will be even exaggerated

as the autonomy increases.

The urgent need to protect autonomous CPS from physical

sensor attacks has motivated a lot of research efforts such

as attack-resilient sensor fusion [19]–[21], model-based at-

tack detection [22]–[24], and data-based detection [25]–[30].

However, the timing and usability of attack detection have

not been adequately addressed in existing works. This timing

constraint is the detection deadline, before which attacks must

be detected. The usability refers to the false alarm rate, and a

lower (higher) rate means a better (worse) usability. Existing

works tend to minimize the detection delay and false alarm

rate at the same time. However, the goal is deemed to be

unachievable because of the clear trade-off between the two

metrics, i.e., lower delay coming with higher false alarm rate,

and vice versa [24], [31], [32]. Hence, we believe that attack

978-1-6654-0386-3/21/$31.00 ©2021 IEEE
DOI 10.1109/RTAS52030.2021.00027

2
0
2
1
 I

E
E

E
 2

7
th

 R
ea

l-
T

im
e

an
d
 E

m
b
ed

d
ed

 T
ec

h
n
o
lo

g
y
 a

n
d
 A

p
p
li

ca
ti

o
n
s

S
y
m

p
o
si

u
m

 (
R

T
A

S
)

| 9
7
8
-1

-6
6
5
4
-0

3
8
6
-3

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/R

T
A

S
5
2
0
3
0
.2

0
2
1
.0

0
0
2
7

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

detection should have a preference on different metrics when

a system runs in different states.

To realize this, we propose a real-time adaptive sensor attack

detection framework that can dynamically adjust detection de-

lay and false alarms. The key rationale behind this framework

is as follows.

(i) Why real-time? Given safety-critical CPS, timing is

important, as untimely defense, that is, detection of an attack

after consequences occur, is just as damaging. For example,

consider the cruise control function under a speed sensor

spoofing attack that changes the true measurement to a smaller

value. Then the vehicle is misled to accelerate so that the real

speed can be much higher than the desired. This attack needs

to be detected before the vehicle crashes into the front car.

This timing constraint is referred to as the detection deadline,

before which attacks must be detected.

(ii) Why adaptive? On the one hand, a shorter detection

delay is not always favorable. In the end, we can have an

attack detector that raises an alert at every control period.

The detector will discover an attack once it occurs, and thus

the detector has the shortest detection delay. However, this

will give an unmanageable number of false alarms and thus

unacceptably low usability. On the other hand, an alert can be

raised after monitoring multiple control periods to ascertain the

occurrence of an attack. However, this can lead to increased

detection delay. Hence, we argue that there is a need to adapt

the attack detection so that it can make the appropriate trade-

off. For example, if the system is already close to unsafe

states and thus the detection deadline is stringent, reducing

the detection delay will be preferable to lowering the false

alarm rate, and vice versa.

To enable real-time adaptive detection, our attack detection

framework consists of three necessary components: attack

detector, behavior predictor, and drift adaptor, as shown in

Fig. 1. The technical contribution for each component is as

follows.

(i) Attack Detector. As the core of our framework, this

component detects anomalies using a CUSUM algorithm that

monitors the cumulative sum of residuals between the nominal

(estimated by the behavior predictor) and observed sensor

values. The algorithm will raise an alarm when the cumulative

sum of the residuals is greater than a predefined threshold.

Importantly, we augment this algorithm with a drift parameter

that governs both the detection delay and false alarms. That

is, the algorithm can adjust the two metrics by changing the

drift parameter.

(ii) Behavior Predictor. This component estimates nominal

sensor values that are fed to the core component. It uses a

deep learning (DL) model that is offline extracted through

uncovering and exploiting both the local and complex long-

term dependencies in multivariate sequential sensor measure-

ments. Thus this model depends on little knowledge of the

physical system (e.g., dynamics). Further, this model leverages

convolutional neural network (CNN) and recurrent neural

network (RNN) to capture non-linear aspects in sensor data

and uses autoregressive models to capture linear aspects.

This combination results in high robustness and scalability in

handling the sequential sensor data.

(iii) Drift Adaptor. The third component is a drift adaptor

that estimates a detection deadline and then determines the

drift parameter. The detector component uses this parameter

for adjusting the detection delay to ensure timely detection as

the detection deadline varies over time.

We implement our framework and validate it using realistic

sensor data of automotive CPS from the AEGIS Big Data

Project [33]. The results demonstrate that our framework

can detect attacks in a real-time manner. One key insight

here is that tuning the drift parameter has little impact on

false negatives while the detection deadline can be effectively

satisfied.

The rest of this paper is organized as follows. Section II

presents a background and system design overview. Sec-

tions IV, III, and V detail the design for each component

respectively. Section VI validates the proposed framework.

Section VII gives further discussions on the applicability of our

framework. Section VIII presents the related work. Section IX

concludes the paper.

II. BACKGROUND AND SYSTEM OVERVIEW

In this section, we first present the system and threat model,

and then briefly describe our real-time detection framework.

A. System and Threat Model

The CPS model we consider in the paper is a physical

system, also called a plant, controlled by a controller. The

controller operates at every δ unit of time, where δ > 0 is

called a control period. At the beginning of every control

period, the controller first reads the output of the plant or

sensor measurements. Then using a control algorithm, the

controller computes the control signals or inputs that are sent

to the actuators. The actuators will apply the control inputs to

the plant in the current step.

We consider attack scenarios, where the attacker is able to

compromise the integrity and availability of sensor data of

autonomous CPS, as shown in Fig. 1.

(i) Integrity of Sensor Measurements. The adversary is able

to modify the sensor measurements by launching spoofing

attacks in the CPS’s physical environment such as introducing

noise or interference in the signals that the sensor is perceiving.

The attacker may also undertake replay attacks to compromise

data integrity. A successful replay attack enables an attacker to

send previously captured data to the CPS. While the replayed

data was valid data at a particular point in the past, it does

not reflect the current state of the CPS.

(ii) Availability of Sensor Measurements. The adversary is

able to delay the controller from receiving the sensor values.

The received values are out-of-date and reflect a historical state

of the system. Denial of service (DOS) attacks belong to this

kind of attack, where the delay is infinite. Signal jamming is

one typical DOS attack that the attacker can execute in the

CPS’s physical environment.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

Offline phase

data

Online phase

Attack Detector

Physical System SensorController Actuator

Pre-processing

Behavior PredictorDrift Adaptor

LSTNet
(Model Training)

Fig. 1: Design overview of the real-time adaptive sensor attack

detection framework.

This paper is focused only on sensor the attacks mentioned

above. We thus assume that the adversary does not compro-

mise the controller, the actuator, or other cyber components of

the system (cyber attacks). We do not restrict the maximum

number of sensors that can be compromised by an attacker

but assume that the attacker has no knowledge of our attack

detector.

B. Overview of System Design

Fig. 1 shows the overview of the proposed adaptive real-

time attack detection framework. It has two phases: an offline

training phase and an online detection phase.

The offline phase consists of components that function

together to learn the nominal behavior of the system through

training a deep learning model. It leverages both the local and

complex long-term dependencies that exist among sensor data.

To achieve this, the pre-processing component first screens out

sensors that are correlated with each other by calculating their

pairwise correlations. Then, the Long- and Short-Term Time-

Series Network (LSTNet) component captures a consistent

pattern among the correlated sensors, which is referred to as

the nominal behavior.

The online phase handles the real-time attack detection and

is made up of three components. The Behavior Predictor uses

the learned model to predict nominal sensor values. In the

presence of attacks, sensor measurements (observed) will be

different from the predicted values. This difference, called

the residual, is tracked by the Attack Detector to identify

anomalies. It will raise an alarm when the cumulative sum

of residuals becomes larger than a pre-defined threshold.

The Drift Adaptor ensures a usable detection result before

the detection deadline. The deadline may vary over time

as the physical environment changes. This component can

dynamically adjust the detection delay to meet the deadline

via the drift parameter. To be clear, we state the workflow

of the online phase as follows. At each control period, the

Behavior Predictor and Drift Adaptor first produce nominal

sensor values and the drift value, respectively. Then the Attack

Detector uses these values to identify anomalies.

III. DESIGN OF ATTACK DETECTOR

In this section, we present the detailed design of the core

component, Attack Detector, in our framework. This compo-

nent needs predicted sensor values and the drift parameter

from Behavior Predictor and Drift Adaptor respectively. The

latter two components will be detailed in the subsequent

sections.

A. Problem Formulation

We formulate the attack detection problem as follows. Given

the predicted nominal sensor value ŷt ∈ R
n, observed sensor

value yt ∈ R
n and the drift parameter λ, the problem is to

determine the appropriate time to raise an attack alert talarm
when the observed sensor values deviate from the expected

values such that it exceeds a threshold τ :

talarm = C(yt, ŷt, λ) > τ, (1)

where C is a change detection mechanism.

B. Attack Detection

There are two main strategies that can be used to realize

Eq. (1), that is, to determine the appropriate time to raise

alarm: stateless and stateful. (i) In a stateless strategy, it is

confined to monitor every single period’s residual, and an

alarm is raised for every single deviation, that is, if the residual

exceeds a pre-determined threshold τ i.e, rt > τ . This kind

of strategy has been shown to have increased false positives

[24]. (ii) A stateful strategy, on the other hand, calculates the

statistic St that keeps track of the historical changes of rt. It

raises alarm when there is a persistent deviation over time, i.e.

St > τ . This kind of strategy has been demonstrated to have

decreased false positives [24].

We thus choose to develop a stateful strategy in our frame-

work due to its lower false positive rates. There are usually two

kinds of stateful strategies: time window and cumulative sum

(CUSUM). (i) In a time-window-based method, the detector

looks at the residuals within a time window of multiple control

periods. (ii) A CUSUM-based method, on the other hand,

efficiently tracks the cumulative sum of residuals of the whole

history. The authors in [23] demonstrate that a CUSUM-based

approach tends to be faster and more accurate than a time-

window-based approach. Further, the former is more robust to

attacks that are hard to be detected by other approaches such

as attacks hidden in-between time windows and other stealthy

attacks.

Hence, we present a CUSUM-based attack detection ap-

proach. The algorithm is augmented with a drift parameter,

by tuning which the detection delay and false alarms can be

changed. The algorithm outline is shown in Algorithm 1. We

briefly explain the algorithm as follows.

Line 1 initializes the cumulative sum to zero. Line 2

calculates the residual between the observed sensor value yt
and the predicted sensor value ŷt obtained from the Behavior

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: The CUSUM Algorithm.

Input: threshold τ , drift λ, observed sensor value yt,
predicted sensor value ŷt

Output: alarm time talarm
1 Initialize: S0 = 0;

while t > 0 do
2 rt = yt − ŷt; // the residual of control period t.
3 St = [St−1 + |rt| − λ]+; // the cumulative sum;

// [a]+ = max{a, 0}.
4 if St > τ then
5 talarm = t;
6 St = 0;

7 end
// the cumulative sum is greater than the threshold;

at period t an alarm is raised; rest the sum.

8 end

Predictor. That is, this difference indicates how deviated the

observed value is from the nominal estimate. Line 3 calculates

the cumulative sum St at control period t, which is a non-

negative value. Basically, it equals the cumulative sum at

period t − 1 plus the absolute value of the residual at t
minus the drift parameter. The drift parameter is decided by

the Drift Adaptor. As mentioned, selecting the appropriate

drift parameter is an important aspect of the algorithm. It

can impact both the detection delay and the number of false

positives. Line 4-7 checks if the cumulative sum is larger than

the pre-defined threshold. If yes, an alert talarm is raised, and

St is reset to zero.

IV. DESIGN OF BEHAVIOR PREDICTOR

In this section, we present the detailed design of behavior

predictor. This component builds a data model of the system

that captures physical invariants for the purpose of predicting

sensor measurements.

Physical invariants are properties of the physical system that

should always hold. The invariants are guarded by physical

laws. One method to capture physical invariants is to use a

physical system model. One disadvantage of this method is

the requirement of adequate knowledge of accurate system

dynamics, which may not be easy to attain.

In this paper, we approximate physical invariants using a

deep learning technique instead. The approximated physical

invariant will be used as the nominal behavior of the system.

This technique treats the system as a black box and explores

the correlation of multivariate sensor data. Our insight is that

if the system operates normally and obeys physical laws, then

Behavior
Predictor

CUSUM Alert

Fig. 2: Dataflow in attack detector.

Fig. 3: Example confirming the wheel speed sensors in the

dataset has strong correlation with the wheel speed, engine

speed and boost pressure sensors.Table I shows the available

sensors in the dataset.

the sensor data obtained from the CPS also indirectly obeys

physical laws. Hence, with little knowledge of the system

dynamics, our deep learning approach enables us to learn the

behavior of the system in order to make accurate predictions.

A. Problem Formulation

In order to perform the non-trivial task of predicting

nominal system behavior, we formulate the problem as a

multivariate time series forecasting problem.

Given a fully observable system with n correlated sensors

Y = {y1, y2, ..., yT } where yt ∈ R
n, we want to extract the

natural redundancy that exists among the correlated sensors

using a deep learning model D, so that we can learn the

nominal behavior of the system such that we can predict future

sensor values ŷT+1. It is assumed that {y1, y2, ..., yT } will

always be available whenever we predict ŷT+1. The input

to the behavior predictor at time step T is formulated as

XT = {y1, y2, ..., yT } ∈ R
n×T

ŷT+1 = D(XT) (2)

B. Pre-processing

Sensors on automotive CPS exhibit physical sensor corre-

lation or natural redundancy [25]. We need to ensure the DL

model is trained using only sensor data that are correlated.

This component uses a statistical method to observe the natural

redundancy in the dataset and also finds sensor data that are

correlated but may not be obvious from domain knowledge.

The pre-processing component builds a correlation matrix

based on Pearson’s Correlation Coefficient (PCC) algorithm.

Data variables or features are said to have a positive corre-

lation when both variables move in tandem. That is, if one

variable increases, the other variable also increases. A positive

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

correlation also holds when one variable decreases and the

other variable decreases as well. Conversely, two variables

have a negative correlation when one increases and the other

variable decreases, and vice versa. PCC indicates a strong

positive correlation with coefficient values that are close to

+1.0 whereas a strong negative correlation has coefficients that

are close to -1.0. Coefficient values close to 0 signifies that the

two variables do not have any correlation. We select dataset

features whose PCC values are either greater than 0.5 or less

than -0.5 as input to model training. For example, to observe

the sensors that have natural redundancy with the wheel speed

sensor in the AEGIS CAN dataset (we describe this dataset

in section VI-B), we created the heatmap shown in Fig. 3

based on the PCC values. In the figure, we observe the wheel

speed sensors have a strong positive correlation with vehicle

speed, engine speed, boost pressure, engine torque and oil

temperature sensors.

C. Long- and Short-Term Time-Series Network (LSTNet)

Fig. 4 is an overview of the deep learning architecture used

which is based on [34]. The interested reader is referred to

[34] for details, here, we briefly describe each component.

Mainly, the architecture consists of a convolutional neural

network (CNN), a recurrent neural networks (RNN) as well

as an autoregressive linear model.

CNN Component. The first layer of the deep learning frame-

work is a CNN without pooling. It is tasked to extract

the temporal patterns and the local relationship between the

correlated sensor variables. This CNN layer is made up of

a number of filters of width w and height n (the number

of correlated sensor variables) with each k-th filter passing

through the input matrix X to output a vector hk:

hk = RELU(Wk ∗X + bk) (3)

where ∗ is the convolution operation, Wk and bk denote the

weight parameter and bias respectively. RELU activation

function ensures values stay between 0 and 1. Each vector

hk is zero-padded on the left of the input matrix X to have

a length of T . In the end, the convolutional layer outputs a

matrix of size dc × T , where dc is the number of filters. This

output matrix is inputted into the recurrent component.

Recurrent Component. The recurrent component has two

sub-components namely, gated recurrent unit (GRU) and

recurrent-skip.

GRU is a specialized recurrent neural network (RNN)

that is suited for modeling sequential data such as sensor

readings [35]. Unlike artificial neural networks (ANN), GRU

is able to store past information in addition to current inputs

in order to determine current outputs. The ability to store past

information in GRU is enabled by the state variables that it

introduces i.e. the update and reset gates. At a time t, given

the input minibatch xt ∈ R
m×l (where m is the number of

examples in the minibatch and l is the number of inputs) and

the previous hidden state ht−1 ∈ R
m×s (where s is the number

of hidden states), the reset gate zt ∈ R
m×s and update gate

ut ∈ R
m×s, candidate hidden state ct and final state ht are

computed as,

zt = σ(xtWxr + ht−1Whr + br)
ut = σ(xtWxu + ht−1Whu + bu)
ct = RELU(xtWxc + rt � (ht−1Whc) + bc)
ht = (1− ut)� ct + ut � ht−1

(4)

where � is the element-wise (Hadamard) product, σ is the

sigmoid function, Wxr, Wxu, Wxc, Whr, Whu, Whc are the

weight parameters, and br, bu, bc are bias parameters.

The output of the GRU layer is the hidden state ht at each

time step. Note that the use of GRU in the recurrent component

allows the deep learning model to discard irrelevant previous

sensor information and extract only the important ones that

help to learn the nominal system behavior.

The second sub-component of the recurrent component

is the recurrent skip component. This feature enables the

architecture to memorize the repeated historic periodic pattern

(such as daily, weekly patterns) in time series data. However,

since the automotive CPS sensor data do not exhibit this

periodic pattern, we do not turn it on in our experiment.

The output of the recurrent component is passed to a fully

connected (FC) layer as shown in Fig. 4. FC combines its

input to make a prediction result hD
t is at time step t.

Autoregressive Component. This component addresses a

deficiency found in the non-linear neural network components:

convolutional and recurrent components. The scale of output

in neural networks is known to be insensitive to the scale of its

inputs [34]. Hence, given the non-periodic nature of sensor

data, this deficiency diminishes the forecasting accuracy of

the neural networks. This is solved by decomposing the final

prediction into a linear component by using an autoregressive

(AR) model which is formulated as,

hL
t =

qar−1∑

k=0

W ar
k vt−k + bar (5)

where hL
t ∈ R

n is the forecasting result of the AR

component, W ar ∈ R
qar

and bar ∈ R are the coefficients

of the AR model such that qar is the size of input window

over the input matrix. vt−k is the past series values (lagged

values).

At time step t, the DL model makes a prediction ŷt by

integrating the outputs of the neural network part and the AR

component:

ŷt = hD
t + hL

t (6)

Objective function. We use absolute loss (L1-loss) as the

objective function which is formulated as:

min
Θ

∑

t∈ΩTrain

n−1∑

i=0

|yt,i − ŷt,i| (7)

where Θ denotes the parameter set of our model, ΩTrain is

the set of time stamps used for training.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

CNN for Short-Term
Dependencies

RNN for Long-Term
Dependencies

FC Layer

Non-Linear Aspect

Autoregressive Model

Linear Aspect

Automotive
CPS Data

Prediction

Fig. 4: Architecture of LSTNet model that learns both local and complex long-term dependencies in automotive CPS sensor

values for attack detection.

Although squared error function is an option often used,

experiment results in [34] indicate the absolute loss function

is more robust.

V. DESIGN OF DRIFT ADAPTOR

In this section, we present the design of the drift adaptor.

This component ensures attack detection occurs before a

detection deadline.

The requisite detection deadline for an autonomous CPS

varies with its physical environment. In other words, the

deadline by which the attack has to be detected depends on the

physical environment. The deadline can change as the physical

environment varies. For instance, the deadline for detecting a

wheel speed attack of a vehicle that is 50m away from an

object it can crash into will be different from the situation

where the crashing object is 200m away. Hence, there is a

need for real-time attack detection that adapts its mechanism

based on the physical environment or how the system is close

to unsafe states, such that the detection delay will be less than

the required detection deadline.

Another motivation is the trade-off between detection de-

lay and false alarms in our experiment. The attack detector

discussed above (in Section III) is augmented with a drift

Fig. 5: The relationship between drift parameter and detection

delay for various attack scenarios.

Fig. 6: Relationship between drift parameter and number of

false positives.

parameter λ that can be adjusted to produce varying detection

delays and false positives. Fig. 5 and Fig. 6 show how the

drift parameter affects the detection delay and number of

false positives. We note that as the drift parameter increases,

the time to detection or detection delay increases while the

number of false positives decreases. Hence, adjusting the drift

parameter enables our attack detection mechanism to adapt its

behavior for an appropriate trade-off while meeting the real-

time constraint.

The Drift Adaptor component is made up of two sub-

components: Deadline Estimator and Drift Analyzer. The

deadline estimator determines the detection deadline whereas

the drift analyzer determines the appropriate drift parameter.

A. Deadline Estimator

The detection deadline considered in this paper is the time

in the future when the system may touch the unsafe set. We

consider a time that is estimated in a conservative way, i.e.,

at a worst case. The authors of [36] propose a reachability-

based deadline estimation method, but it requires knowing the

system dynamics. By contrast, we propose a pure data-driven

method towards this end.

The core idea of the proposed method is to first calculate

the maximum change rate of the sensor value and then use it

to estimate the shortest time when the system may touch the

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

unsafe set. The proposed method has two phases: offline and

online.

(i) At the offline phase, we consider the collected time series

of each individual sensor i, denoted as {y1(i), y2(i), ...yT (i)}.

The change rate of the sensor value of two adjacent periods

is defined as

Δt(i) =
yt(i)− yt−1(i)

δ
. (8)

Then using the collected time series, we use the following

equations to calculate the maximum (Δ+) and minimum (Δ−)

change rate.

Δ+(i) = [max{Δt(i), 2 ≤ t ≤ T}]+,
Δ−(i) = [min{Δt(i), 2 ≤ t ≤ T}]−, (9)

where [a]+ = max{a, 0} and [a]− = min{a, 0}.

(ii) At the online phase, based on the fastest change rate

given in Eq. (9), we can perform the following reachability

analysis to estimate the detection deadline. At current time t,
we calculate the reachable value for each sensor by

y+d (i) = yt(i)× (1 + Δ+(i)× δ × (d− t)), d > t,
y−d (i) = yt(i)× (1 + Δ−(i)× δ × (d− t)), d > t.

(10)

The earliest time D(i) when the value of sensor i may touch

the unsafe set is

D(i) = min{d|y+d (i) ∈ U(i) ∨ y−d (i) ∈ U(i)}, (11)

where U(i) is the unsafe set associated with sensor i. Finally,

the detection deadline D is calculated by

D = min{D(i)|1 ≤ i ≤ n}. (12)

Note that our framework does not rely on any specific

deadline estimation method, and is always applicable as long

as a detection deadline is outputted.

B. Drift Analyzer

With a detection deadline D as input, the Drift Analyzer

determines the best drift parameter that allows the attack to be

detected before the deadline. For this component to function

properly, we need to first establish the relationship between

the detection delay and the drift parameter. This is achieved

by performing offline profiling. Fig. 5 and Fig. 6 depict that

there is a relationship among the drift parameter, detection

delay and false positives. Armed with this information and the

CUSUM tuning tools provided in [37], we are able to build

a drift-parameter-detection delay pair that ensures we do not

exceed the acceptable false positive rate. In other words, We

build a lookup table based on the offline profiling results. To

perform its online adaptation functionality, the Drift Analyzer

simply queries the lookup table to output the drift parameter

that adjusts the detection delay to meet the given detection

deadline.

TABLE I: Some sensors in the dataset used in experiment.

CAN bus Sensors GPS Sensors IMU Sensors

ASR Acceleration Accelerometer X
AccPedal Current sec Accelerometer Y
AirIntakeTemperature Direction Accelerometer Z
AmbientTemperature Distance Body acceleration X
BoostPressure Velocity Body acceleration Y
BrkVoltage Body acceleration Z
EngineSpeed CAN G force
EngineTemperature Magnetometer X
Kickdown Magnetometer Y
MFS Tip Down Magnetometer Z
MFS Tip Up Velocity X
SteerAngle Velocity Y
Trq FrictionLoss Velocity Z
Trq Indicated
VehicleSpeed
WheelSpeed FL
WheelSpeed FR
WheelSpeed RL
WheelSpeed RR
Yawrate

ASR = Acceleration Slip Regulation, ACC = Acceleration,
BRK = Break, MFS = Misfiring System, TRQ = Torque,
FL = Front Left, FR = Front Right, RL = Rear Left,
RR = Rear Right, G = Gravity

VI. EVALUATION

A. Implementation and Experimental Setup

We implemented our deep learning model in Python, utiliz-

ing PyTorch Deep Learning framework. We train the model on

Ubuntu 18.04 64-bit with sixteen Intel(R) Xeon(R) CPU E5-

2680 v4 @ 2.40GHz CPUs, two Nvidia GeForce GTX 1080

GPUs and 64 GB RAM. We follow a 60/20/20 proportions for

splitting the original dataset into training/validation/test sets.

The experimental model is made up of 100 hidden CNN layers

and 100 hidden RNN layers. The model was trained for 100

epochs. Metrics used for the test accuracy were Root Relative

Square Error (RSE) and Relative Absolute Error (RAE). The

accuracy for our experimental model was 0.0032 (RSE) and

0.0018 (RAE).

B. Dataset Description

We used the publicly-available real-world automotive CAN

bus dataset from the AEGIS Big Data Project [33] 1 for our

experiment. The sensor data, sampled at 20Hz, was collected

during trips in the same passenger vehicle. More than 40

sensor measurements were collected including but not limited

to those listed in Table I. Specifically, the data contains about

2.5 hours of driving data (about 160,000 data points).

C. Attacks

The dataset does not include any anomalous events or

scenarios, hence we manually modify portions of the dataset

to simulate physical attacks that achieve similar goals of a real

attacker. Based on the attacks discussed in section II and the

attacks in [38], we evaluate our work under (1) modification,

(2) delay and (3) replay attacks.

1https://zenodo.org/record/3267184#.X5YtpIhKg2x

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Front-Left wheel speed sensor measurement showing

the predicted and observed values.

We simulate four attack scenarios under modification attacks

and one each for the delay and replay attacks. Attack 1 adds

a fixed value to the sensor readings for a period of time. This

simulates the attacker spoofing the sensor measurement as

done in Fake Data Injection (FDI) attacks. Attack 2 sets the

sensor reading to a fixed value indicating a spoofing attack

that spoofs sensor readings to a specific value. Attack 3
incrementally changes sensor measurement. Here the attacker

has a target value to spoof the sensor, yet he does not set the

value right away. Rather, he gradually adds small values (e.g

0.01 kph) to current sensor readings until the target spoofing

value is reached. In real life, an attacker might use this strategy

with the intent of evading detection mechanisms. Attack 4
sends both normal sensor values and malicious/fake sensor

values alternately and repeatedly. Like Attack 3, a real attack

might use this tactic to mislead attack detection mechanisms.

Attack 5 mimics delay attack where the attacker causes

a 10s delay in sensor data transmission. Attack 6 is a replay

attack where the sensor data from a previous time are replayed.

D. Experiments and Results

We perform various experiments to evaluate the effective-

ness and efficiency of our proposed framework.

Experiment I: The first experiment tests if the behavior

predictor component was able to capture the behavior of the

automotive CPS accurately. Fig. 7 shows the normal behavior

of the front-left wheel speed sensor. It can be seen in the

figure that the behavior predictor’s prediction closely matches

the observed sensor measurement operating under normal

conditions. A similar plot for the engine speed, oil temperature

and boost pressure sensors shown in Fig. 8 further indicate

the behavior predictor is able to capture the system’s nominal

behavior. The error shown in Fig.7 has a close to zero-average,

an indication that the predictor method is not biased. Further

residual analysis shows the residuals follow a normal Gaussian

distribution and do not have any trend, cyclic or seasonal

structure in the error plot.

Experiment II: We evaluate the attack detector component in

this experiment. The component is tasked to detect the attack

Fig. 8: Observed and predicted values for the oil temperature,

engine speed and boost pressure sensors.

scenarios described in VI-C. We randomly placed 10 simulated

attacks in each case. Fig. 9 shows the proposed framework is

effective in detecting various attack scenarios. In the figure, the

red dots indicate the points where the CUSUM-based attack

detector raises an alert for the attacks. It can also be observed

that the detector raises alarm only when the abrupt change is

significant and has persisted for a while thus reducing flagging

transients faults as attacks. For instance, a close-up look at one

of the attack points (see Fig. 10), shows the detector observed

an abrupt change in speed at time 39.95s (indicated by the

green arrow) but did not raise alarm immediately until 42.1s.

Experiment III: In this experiment, we measure and analyze

the false-positive (FP) and false-negative (FN) rates under var-

ious drift and threshold monitoring parameters. FP is measured

by inputting normal data (no attack) into the framework and

counting the number of false alarms rate. We measure FN

by inputting data containing simulated attacks and counting

the number of attacks that the framework missed raising an

alert for. Note here that miss means that an alert was not

raised within the duration of the attack. Therefore, alarms

that occurred shortly after the attack ended were not counted.

The results in Fig. 11 and Fig. 12 show the FP and FN

rates respectively for this experiment. In the legend of the

figures, A1, A2...A6 represent the various attack scenarios

discussed above, the numbers (3, 4, 5) represent the threshold

monitoring parameter. For example, A1-3 represents Attack

1 being monitored with a threshold of 3. In FP analysis, we

observe that the CUSUM drift parameter with value 0 produces

very high FP rates. However, the FP rate plummets with drift

values greater than 0. The FN rate results, on the other hand,

show the drift parameter ranging from 0.2 to 0.8 produce zero

rates for all attack case scenarios. This implies that for most

attacks, the behavior of the detector framework can be adapted

to meet attack deadlines whilst still maintaining very low FN

rates. However, beyond that range (0.2 - 0.8), we observe the

FN increases.

Experiment IV: This experiment measures the detection

delay ϕ i.e. the time it takes to detect the attack after its

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

(a) Attack 1. (b) Attack 2

(c) Attack 3 (d) Attack 4

(e) Attack 5 (f) Attack 6

Fig. 9: Results of the attack detector’s detection of various attack scenarios discussed in section VI-C

Fig. 10: A close-up look at one case of attack 1 detection.

launch. This metric allows us to evaluate the time needed for

our attack detection framework to disclose or alert an attack. If

an attack starts at time ks, and the attack detection mechanism

detects it at time kd, ϕ is defined as: ϕ = kd − ks. The lower

Fig. 11: False positive rate for the various attack scenarios

under different monitoring parameters (drift and threshold).

the value of ϕ, the better the attack detection mechanism and

as such, reduces the impact of the attack.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: False negative rate for the various attack scenarios

under different monitoring parameters (drift and threshold).

Table II shows the results of the detection delay ϕ for

the various simulated attacks (see section VI-C). Note that

the simulated attacks lasted for 10s. The result in the table

suggests the attacks were detected while the system was being

attacked rather than after the attack ended. While this is

desirable, we show in a subsequent experiment that it is more

desirable and important for real-time systems to detect an

attack before a detection deadline. Further, the result shows

the relationship between the CUSUM drift parameter and the

detection delay. The detection delay increases as the drift

parameter increases.

Experiment V: This experiment analyses the effect of adaptive

detection. For real-time systems, it is not only desirable but

required that the attack detection mechanisms are able to detect

attacks before the detection deadline D, 0 ≤ ϕ ≤ D. Fig. 13

shows how the real-time adaptive detection enables Attack 3 to

be detected under different deadlines. In the figure, we observe

that, in order to meet Deadline 1 (1sec), the drift parameter

has to be adjusted to a value not greater than 0.25. Though

Attack 3 can be detected with a drift parameter of say 0.8, it

cannot satisfy Deadline 1 because its corresponding detection

delay is 1.8 seconds.

Experiment VI: This experiment compares a fixed time-

window approach with our real-time adaptive attack detection

approach. The goal is to show how our framework adapts it

behavior based on the drift parameter in order to meet an

attack deadline.

The time-window implementation used in this experiment

is similar to [22]’s attack detector monitoring algorithm. It

sums up the square errors between the observed and the

prediction. When the time window expires, it determines

if the accumulated mean square exceeds a threshold. The

accumulated sum is reset when the time window expires. Note

that the time-window approach can only raise an alarm after

its time-window expiration.

We compare the two approaches based on the attacks

described in Section VI-C and the case scenario depicted in

Fig. 14. In this case scenario, an attack occurs at 40s with

a detection deadline estimated at 45s. The red dots in the

figure represent the alarm raised by our framework whereas the

TABLE II: Detection delay in seconds for the attack scenarios.

A1 refers to Attack 1, A2 refers to Attack 2 and so on.

Drift A1 A2 A3 A4 A5 A6

0.2 0.3 1.31 1.57 0.30 2.21 0.42
0.3 0.35 1.58 1.75 0.35 2.31 0.60
0.4 0.4 1.78 1.94 0.42 2.37 1.64
0.5 0.53 1.98 2.09 0.52 2.48 2.24
0.6 0.7 2.58 2.26 0.67 2.55 2.72
0.7 0.98 2.82 2.41 0.94 2.66 3.55
0.8 1.40 3.13 2.56 1.54 2.76 4.63

Fig. 13: Adaptive detection for Attack 3.

blue dot refers to the alarm raised by the time-window attack

detector approach. We observe that the time-window approach

rightly determines that an attack occurred in all cases, however,

the alert is raised after the detection deadline. In a real-world

situation, this would mean the attack detection alert is raised

after the damage has occurred. Our framework, on the other,

raises an alarm before the deadline.

Experiment VII: We compare our work with a recent anomaly

detector that closely relates to our work [25]. Like our

work, the researchers exploit the natural redundancy that

exists among heterogeneous sensors and they also employ

deep learning techniques (deep autoencoder) to detect attacks.

Whereas they focus only on the rightness of attack detection,

we focus on detecting attacks before a detection deadline by

adapting the attack detection mechanism. More importantly, in

order to decide to raise an attack alert, their approach monitors

only one control period. Due to the adaptive nature of our

approach to meet a deadline, the number of control periods that

it monitors varies. Their detection mechanism raises an alert

when the reconstruction error of the decoder is above a certain

threshold. We trained a model based on [25] and tuned the

hyper-parameters with our dataset for a fair comparison. The

deep autoencoder attack detector is tasked to detect the same

attack scenarios we subjected our approach to in Experiment

II. Fig. 15 shows the results. The green marks are the data

points that represent the attack. Comparing this results with

our results shown in Fig. 9, the detector in [25] produces high

false alarms.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

(a) Attack 1. (b) Attack 2

(c) Attack 3 (d) Attack 4

(e) Attack 5 (f) Attack 6

Fig. 14: Comparing our framework with a fixed time-window approach. In all attack scenarios (see VI-C), the attack occurs

at 10s and has a deadline set at 45s.

Fig. 15: Attack detection in deep automated [25] attack

detector.

VII. DISCUSSION

A. Stealthy Attacks
While our proposed system effectively detects physical

attacks against automotive CPS we do not rule out completely

the possibility of it being vulnerable to stealthy attacks. In this

attack, the attacker spoofs sensor values that do not exceed

the determined threshold, hence the attack detection system

raises no alarm. Gradually, the attacker is able to deviate the

CPS to his desired target. References [23] and [31] note that

this weakness is also found in physics-based attack detection

(PBAD) systems. In the real world, a stealthy attack is hard to

launch as it requires very detailed knowledge about the system

dynamics and ensuring that all the laws of physics are obeyed

[22]. On one hand, our proposed detection framework provides

some defense as the Behavior Predictor component learns

the system dynamics from multiple heterogeneous sensors. To

evade our framework, the attacker may have to launch spoofing

attacks against all the heterogeneous sensors simultaneously

such that it maintains the natural correlation among the

sensors that the proposed framework also learned. Achieving

such a sophisticated attack in the real world is hard since

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

each sensor attack requires specific tools and equipment to

successfully launch. On the other hand, we agree with [31] that

a combination of detection schemes can also be implemented

to mitigate stealthy attacks. We suggest combining a deep

learning approach like our work with PBAD approaches can

be a viable solution against stealthy attacks.

B. State Estimation and Attack Response

Our work has focused on physical sensor attack detection

without attack response. Once our framework detects an attack,

the behavior predictor can also be used to predict values that

can be used for state estimation. The state estimation can be

forwarded to the controller for recovery control. However,

there are more viable recovery solutions such as [39] that

recovers the CPS from an attack so that continual functioning

is attained.

VIII. RELATED WORK

This section discusses research works related to attack

detection and sensor correlation.

A. Attack detection

Existing works on cyber-physical systems attack detection

can be categorized based on techniques that are used.

Redundancy-based: Works that use this approach [30],

[40]–[42] detect attacks by using multiple system components.

The duplicated system component may be software (e.g con-

troller) or hardware (e.g. sensors). The states or outputs of

each of the duplicated system components are cross-checked

at runtime. In spite of its effectiveness, this approach leads to

increased cost, weight, power, space requirement and system

complexity.

Signature-based: The works that use this approach [43],

[44] monitor runtime patterns and compare them with a pre-

maintained dictionary that contains known attack types or

attack patterns. For it to be effective, the dictionary needs to

have the latest attack patterns. These methods are known to

be fast and have low false positives rates, however, they are

not effective in handling zero-day attacks [22], [28]

Behavioral rule-based: Behavioral rule-based techniques

[45]–[47] models the normal system operations by using a

specification. The program state transitions or execution time

constraints are usually modeled in this approach.

Physics-based: This approach detects attacks by monitoring

the physics of cyber-physical system. It is an area of research

that is attracting a lot of attention. [24] surveys works that use

this approach for cyber-physical systems in general, whereas

[48] surveys works that use this approach specifically for

autonomous vehicles. Recently, [22] and [23] applied this

technique to detect physical sensor attacks. During the first

of its two steps, Physics-Based Attack Detection (PBAD)

approaches extract the physical invariant of the system and use

it to model the system. Although we do not extract the physical

invariant directly, we indirectly use deep learning to learn

about them. Like other approaches, in the second step, PBAD

compares the model predictions with the observed values and

raise alarm when observed states exceed a threshold.

Machine/Deep Learning: Machine Learning (ML) and

Deep learning (DL) techniques have been employed in many

CPS attack detection works lately [25], [27], [28], [38], [49]–

[56]. These solutions build a data model by using the system

data to train a machine or deep learning model. The models are

often used to make predictions of CPS measurements such as

sensors. ML and DL methods require a large amount of data to

build accurate models. While supervised ML methods require

both labeled normal and attack training data, unsupervised

methods often process only normal training data. Our solution

uses an unsupervised deep learning approach. Our work is

distinguished by the incorporation of attack detection deadline

estimation and adaptive attack detection mechanism.

B. Sensor correlation

Researchers have explored the correlations among sensors

in their solutions especially for anomaly detection. The authors

in [57] utilize pairwise correlation between vehicle sensors to

detect anomalies caused by sensor faults or attacks. [58] builds

on the idea of [57] by modeling the subtle nonlinear relation-

ships in CAN data without knowing its functional meaning.

[38] demonstrates an in-vehicle intrusion detection system

(IDS) for detecting data spoofing attacks. The solution uses

a regression learning approach to learn CAN bus sensor data

correlation. Liu et.al [59] extract causal interactions among the

sub-systems of a CPS and present a spatio-temporal graphical

modeling approach to detect anomalies for a heating system.

Other works that explore sensor correlation include [60]–

[62]. Our work also exploits the correlation among sensors,

however, our work is unique. All of these works focused on

detecting the attacks instead of when the attack is detected. We

provide a real-time attack detection that adjusts the detection

delay so that it meets the detection deadline.

IX. CONCLUSION

The safety-critical roles that autonomous CPS play require

that they are protected from physical sensor attacks in a

timely manner. In this paper, we have presented a novel deep

learning-based real-time adaptive attack detection framework.

The framework dynamically adjusts the detection delay via

the drift parameter so that the detection deadline can be

satisfied. We achieve this through the three main components:

behavior predictor, attack detector and drift adaptor. Behav-

ior Predictor uses a deep learning technique to approximate

the system’s physical invariant for the purpose of predicting

nominal sensor values. Attack Detector employs the CUSUM

algorithm for attack detection. We have introduced a detection

deadline estimation method in the drift adaptor component.

We evaluated our proposed framework using a real-world

dataset. We compared our work with a time-window attack

detector approach and a recent deep learning-based solution.

The results show that while our work is not free from false

alarms, it is able to adjust its behavior to meet attack deadlines.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was supported in part by NSF CCF-1720579 and

NSF CCF-2028740. We would like to thank the anonymous

reviewers for their constructive comments. We also would like

to thank Kenneth Fletcher, Romesh Satish Prasad and Carlos

Omar Espinoza Zelaya for their assistance in undertaking this

project.

REFERENCES

[1] Amazon, Amazon Prime Air, 2020 (accessed June 29, 2020).
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=
8037720011s.

[2] DroneUp, Best aerial photography drones for business in 2020: DJI,
Freefly, Skydio, and more, 2020 (accessed June 29, 2020). https://www.
zdnet.com/article/best-aerial-photography-drones/.

[3] DroneFly, Police Drone Infographic, 2020 (accessed June 29, 2020).
https://www.dronefly.com/police-drone-infographic/.

[4] S. Haley, How Police Forces Are Using Drones to Keep
Officers Out of The Line of Fire, 2020 (accessed June
29, 2020). https://securitytoday.com/articles/2019/07/25/how-police-forces-are-using-drones-to-keep-officers-out-of-the-line-of-fire.

aspx?admgarea=mag&m=1.
[5] P. Gutierrez, Infrastructure Inspection - UAS Are All Over It,

2020 (accessed June 29, 2020). https://insideunmannedsystems.com/
infrastructure-inspection-uas-are-all-over-it/.

[6] DroneUp, Complete Drone Solutions, 2020 (accessed June 29, 2020).
https://www.droneup.com/.

[7] T. Higgins and M. Grossman, Amazon to Acquire Self-Driving Startup
Zoox, 2020 (accessed June 29, 2020). https://www.wsj.com/articles/
amazon-to-acquire-self-driving-startup-zoox-11593183986.

[8] K. Piper, It’s 2020. Where are our self-driving cars?, 2020
(accessed June 29, 2020). https://www.wsj.com/articles/
amazon-to-acquire-self-driving-startup-zoox-11593183986.

[9] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing real-time microcontroller systems through customized memory
view switching.,” in NDSS, 2018.

[10] F. B. Cohen, “Operating system protection through program evolution.,”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.,” in USENIX secu-
rity symposium, vol. 98, pp. 63–78, San Antonio, TX, 1998.

[12] A. Cui and S. J. Stolfo, “Defending embedded systems with software
symbiotes,” in International Workshop on Recent Advances in Intrusion
Detection, pp. 358–377, Springer, 2011.

[13] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security,
pp. 298–307, 2004.

[14] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in 2017 IEEE Symposium on Security and Privacy
(SP), pp. 289–303, IEEE, 2017.

[15] L. Pike, P. Hickey, T. Elliott, E. Mertens, and A. Tomb, “Trackos: A
security-aware real-time operating system,” in International Conference
on Runtime Verification, pp. 302–317, Springer, 2016.

[16] A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013.

[17] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International Work-
shop on Cryptographic Hardware and Embedded Systems, pp. 55–72,
Springer, 2013.

[18] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and lidar,” Black
Hat Europe, vol. 11, p. 2015, 2015.

[19] K. Marzullo, “Tolerating failures of continuous-valued sensors,” ACM
Transactions on Computer Systems, vol. 8, no. 4, pp. 284–304, 1990.

[20] P. Lu, L. Zhang, B. B. Park, and L. Feng, “Attack-resilient sensor fusion
for cooperative adaptive cruise control,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 3955–
3960, 2018.

[21] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion for
safety-critical cyber-physical systems,” ACM Transactions in Embedded
Computing Systems, vol. 15, no. 1, p. 21, 2016.

[22] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 801–816, 2018.

[23] R. Quinonez, J. Giraldo, L. Salazar, and E. Bauman, “Savior: Securing
autonomous vehicles with robust physical invariants,” Usenix, 2020.

[24] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[25] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” DAC2020, 2020.

[26] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Exploiting
physical dynamics to detect actuator and sensor attacks in mobile
robots,” arXiv preprint arXiv:1708.01834, 2017.

[27] A. Abbaspour, K. K. Yen, S. Noei, and A. Sargolzaei, “Detection of fault
data injection attack on uav using adaptive neural network,” Procedia
computer science, vol. 95, pp. 193–200, 2016.

[28] K. N. Junejo and J. Goh, “Behaviour-based attack detection and classifi-
cation in cyber physical systems using machine learning,” in Proceedings
of the 2nd ACM International Workshop on Cyber-Physical System
Security, pp. 34–43, 2016.

[29] J. Shin, Y. Baek, Y. Eun, and S. H. Son, “Intelligent sensor attack
detection and identification for automotive cyber-physical systems,” in
2017 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1–8, IEEE, 2017.

[30] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee, “Sensor attack
detection in the presence of transient faults,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
pp. 1–10, 2015.

[31] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1092–1105, 2016.

[32] R. Tunga, C. Murguia, and J. Ruths, “Tuning windowed chi-squared de-
tectors for sensor attacks,” in 2018 Annual American Control Conference
(ACC), pp. 1752–1757, IEEE, 2018.

[33] C. Kaiser, A. Stocker, and A. Festl, Automotive CAN bus data: An
Example Dataset from the AEGIS Big Data Project, July 2019.

[34] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and
short-term temporal patterns with deep neural networks,” in The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval, pp. 95–104, 2018.

[35] B. A. Kwapong, R. Anarfi, and K. K. Fletcher, “Personalized service
recommendation based on user dynamic preferences,” in International
Conference on Services Computing, pp. 77–91, Springer, 2019.

[36] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 41st IEEE
Real-Time Systems Symposium (RTSS), IEEE, 2020.

[37] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA), pp. 474–480, IEEE, 2016.

[38] H. Li, L. Zhao, M. Juliato, S. Ahmed, M. R. Sastry, and L. L. Yang,
“Poster: Intrusion detection system for in-vehicle networks using sensor
correlation and integration,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2531–2533,
ACM, 2017.

[39] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Inter-
national Conference on Cyber-Physical Systems (ICCPS), pp. 22–31,
IEEE, 2018.

[40] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha, “Virtualdrone: virtual
sensing, actuation, and communication for attack-resilient unmanned
aerial systems,” in Proceedings of the 8th International Conference on
Cyber-Physical Systems, pp. 143–154, 2017.

[41] F. Fei, Z. Tu, R. Yu, T. Kim, X. Zhang, D. Xu, and X. Deng, “Cross-
layer retrofitting of uavs against cyber-physical attacks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 550–
557, IEEE, 2018.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

[42] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 21–32, IEEE, 2013.

[43] W. Gao and T. H. Morris, “On cyber attacks and signature based
intrusion detection for modbus based industrial control systems,” Journal
of Digital Forensics, Security and Law, vol. 9, no. 1, p. 3, 2014.

[44] S. Kaur and M. Singh, “Automatic attack signature generation systems:
A review,” IEEE Security & Privacy, vol. 11, no. 6, pp. 54–61, 2013.

[45] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing
controllers for cyber-physical systems,” in 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, pp. 3–12, IEEE,
2011.

[46] R. Mitchell and R. Chen, “Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 5,
pp. 593–604, 2013.

[47] R. Mitchell and R. Chen, “Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 1,
pp. 16–30, 2014.

[48] F. Akowuah and F. Kong, “Physical invariant based attack detec-
tion for autonomous vehicles: Survey, vision, and challenges,” in The
Fourth International Conference on Connected and Autonomous Driving
(MetroCAD 2021), IEEE, 2021.

[49] Q. Shen, B. Jiang, P. Shi, and C.-C. Lim, “Novel neural networks-based
fault tolerant control scheme with fault alarm,” IEEE transactions on
cybernetics, vol. 44, no. 11, pp. 2190–2201, 2014.

[50] K. Paridari, N. O’Mahony, A. E.-D. Mady, R. Chabukswar,
M. Boubekeur, and H. Sandberg, “A framework for attack-resilient
industrial control systems: Attack detection and controller reconfigu-
ration,” Proceedings of the IEEE, vol. 106, no. 1, pp. 113–128, 2017.

[51] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial
control systems using convolutional neural networks,” in Proceedings of
the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy,
pp. 72–83, 2018.

[52] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in
cyber physical systems using recurrent neural networks,” in 2017 IEEE
18th International Symposium on High Assurance Systems Engineering
(HASE), pp. 140–145, IEEE, 2017.

[53] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly
detection for a water treatment system using unsupervised machine
learning,” in 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 1058–1065, IEEE, 2017.

[54] P. Nader, P. Honeine, and P. Beauseroy, “Mahalanobis-based one-
class classification,” in 2014 IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2014.

[55] O. Al-Jarrah and A. Arafat, “Network intrusion detection system using
neural network classification of attack behavior,” Journal of Advances
in Information Technology Vol, vol. 6, no. 1, 2015.

[56] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings,
vol. 89, Presses universitaires de Louvain, 2015.

[57] A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” tech. rep., SAE
Technical Paper, 2017.

[58] Z. Tyree, R. A. Bridges, F. L. Combs, and M. R. Moore, “Exploiting the
shape of can data for in-vehicle intrusion detection,” in 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall), pp. 1–5, IEEE, 2018.

[59] C. Liu, S. Ghosal, Z. Jiang, and S. Sarkar, “An unsupervised spatiotem-
poral graphical modeling approach to anomaly detection in distributed
cps,” in Proceedings of the 7th International Conference on Cyber-
Physical Systems, ICCPS ’16, IEEE Press, 2016.

[60] Z. Wang, F. Guo, Y. Meng, H. Li, H. Zhu, and Z. Cao, “Detecting vehicle
anomaly by sensor consistency: An edge computing based mechanism,”
in 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–7, IEEE, 2018.

[61] F. Guo, Z. Wang, S. Du, H. Li, H. Zhu, Q. Pei, Z. Cao, and J. Zhao,
“Detecting vehicle anomaly in the edge via sensor consistency and
frequency characteristic,” IEEE Transactions on Vehicular Technology,
2019.

[62] P. Sharma, J. Petit, and H. Liu, “Pearson correlation analysis to detect
misbehavior in vanet,” in 2018 IEEE 88th Vehicular Technology Con-
ference (VTC-Fall), pp. 1–5, IEEE, 2018.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 13,2021 at 02:47:01 UTC from IEEE Xplore. Restrictions apply.

