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ABSTRACT

To develop code that meets its specification and is verifiably cor-
rect, such as in a software engineering course, students must be
able to understand formal contracts and annotate their code with
assertions such as loop invariants. To assist in developing suitable
instructor and automated tool interventions, this research aims to
go beyond simple pre- and post-conditions and gain insight into
student learning of loop invariants involving objects. As students
develop suitable loop invariants for given code with the aid of
an online system backed by a verification engine, each student
attempt, either correct or incorrect, was collected and analyzed
automatically, and catalogued using an iterative process to cap-
ture common difficulties. Students were also asked to explain their
thought process in arriving at their answer for each submission.
The collected explanations were analyzed manually and found to
be useful to assess their level of understanding as well as to ex-
tract actionable information for instructors and automated tutoring
systems. Qualitative conclusions include the impact of the medium.
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1 INTRODUCTION AND MOTIVATION

One central aspect of software engineering is development of soft-
ware that functions correctly according to its specification. The
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development of correct software requires students to understand
formal contracts and to annotate their code with assertions such as
pre-conditions, post-conditions and loop invariants to show that
their code works informally or verifies formally [7, 10]. Despite
the importance of loop invariants for understanding and debug-
ging of algorithms, few computer science or software engineering
graduates are able to use them effectively [9].

Almost all modern verification tools such as those summarized in
[13] expect software developers to supply suitable invariants. This
is because systems aimed at discovering them automatically (e.g.,
[5,17]), are limited in what they can infer. There is little pedagogical
content knowledge (PCK), not only of content but also of students’
prior knowledge, common difficulties and effective pedagogy[24],
on teaching loop invariants. Automated collection and reporting of
such student difficulties can help instructors with less experience
to more quickly develop this aspect of PCK.

When students learn to write loop invariants for iterative code,
they can achieve a level of understanding not possible otherwise
[8]. Towards helping them achieve this goal, this paper addresses
the following specific educational research questions (ERQs).

ERQ 1: What common difficulties do students face, specifically
as it concerns developing loop invariants?

ERQ 2: With respect to developing loop invariants, a) what do
student responses reveal about their level of understanding of the
concepts and b) how suitable are their responses for identifying
actionable items for intervention?

We answer both questions based on data collected as third year
undergraduate software engineering students performed activities
using an online verification system and developed loop invariants.
ERQ 2 is answered using a qualitative analysis of whether written
responses show holistic, partial, or no understanding. Additionally,
for ERQ 2, we analyze responses from a paper medium and an online
medium. Obviously, the latter is more amenable to automation. The
results are based on an analysis of nearly 250 submissions over
three semesters, from 105 groups comprising 2 or 3 students, with
a grand total of 272 students having given consent.

While post-hoc analysis of student responses guide interven-
tions looking forward, automated analysis can facilitate immediate
feedback by an instructor or a tool. The process and results of
using an automated, online tool to build a catalog of difficulties
and for identifying actionable information for loop invariants are
more generally applicable to other topics such as discrete math and
automata theory, because they also rely on gradual acquisition of
skills required to wield logic and write assertions.
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2 RELATED WORK

Many papers discuss the importance of formal methods despite it
not being particularly well represented in undergraduate course-
work, and sometimes met with student resistance[4, 6, 9, 26, 30].
This has sparked the development of various methods to help teach
students formal methods, which includes loop invariants. A previ-
ous study summarizes some of the most common student attempts
in developing a sufficient loop invariant [22]. Some aspects to con-
sider are the exercises used and making them applicable to the real
world, minimizing the reliance on math, using languages that are
familiar to students, and the use of tools [30].

Studies, such as the one in this paper, are concerned with seman-
tic student difficulties concerning logical reasoning about the behav-
ior of a piece of code. Some of this research is on the topic of student
misconceptions about introductory programming constructs [23].
Whereas Tew’s work focuses on the more basic constructs [28], the
work of [11, 12] focuses on more advanced introductory concepts.
Work has also been conducted on analyzing student ability to write
correct code using iteration and recursion [16, 19].

A topic related to this paper is the use of tracing in student
understanding of code[3, 18], because one approach students use to
identify an invariant for a loop is to trace over the loop code multiple
times. Students who cannot trace code often struggle to explain
code [29]. A tool-based tracing study in [27] has analyzed collected
incorrect responses to categorize various student difficulties with
data structures and language-specific constructs.

Student explanations have been analyzed for various purposes.
Difficulties with data structures based on think-aloud transcript
analysis is the focus of [31]. The pioneering work in [1] argues that
an explanation should demonstrate a high level of abstraction, cor-
rectness, and low ambiguity. The potential for automation through
machine learning is explored in [21].

Many tools exist for verification purposes [6, 13, 15]. In [14], an
IDE-based theorem prover is discussed as a means to help students
learn how to write formal mathematical proofs of problems from
theory of computation. This tool provided scaffolding for students
while writing proofs and the authors note that students required
little training, an experience that is similar to ours.

3 DETAILS OF THE EXPERIMENT

3.1 Experimental Overview

The experiment was conducted in a required third year course on
software engineering in which students completed a set of activities
on invariants using the online verifier in a class period. Students
were instructed to “Be deliberate and document your thought pro-
cess every time before you check an invariant on the system." All
attempts collected and analyzed in this paper are self reported.
Data used for analysis in this paper was collected from a total of
272 students over three semesters: Fall 2017 (101 students), Spring
2018 (86), and Fall 2018 (85). Students worked on the activities in
self-selected groups of two or three, totaling 105 groups.

An ANOVA test (Figure 1) performed on the final course grades
across all three semesters indicated no significant difference, so
student performance in course activities in the three semesters are
comparable.
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Figure 1: Oneway ANOVA Boxplot of Final Course Grades
for Three Semesters

3.2 Online Verifier

The online system used in this experiment is backed by the RE-
SOLVE formal verification engine [10, 25]. Using the verifier re-
quires understanding and use of design-by-contract (DbC) asser-
tions [20]. In DbC, the requires clause acts as a precondition
meaning that it is the responsibility of the caller of an operation.
The ensures clause is the corresponding postcondition that tells
the caller what to expect from the operation and tells the called
operation’s implementer what the operation must guarantee.

Figure 2 provides a snapshot of the online verifier. When a user
clicks the MP-Prove button to verify, the verifier generates and
displays the verification conditions (VCs). VCs are assertions that
are necessary and sufficient to prove code correctness. They arise
for a variety of reasons including: that the code’s ensures clause
is met, that the requires clauses of all called operations are met,
and that a programmer-supplied loop invariant is truly an invariant.
For each VC, the verifier shows why it arises and if it is proved.
Every VC needs to be proved for the code to be correct. For the
code in Figure 2, two VCs fail to prove, as explained in Section 5.2.

The use of mathematical strings to model a queue abstractly
enables the queue’s specification to use string notations and the
verifier to use results from a theory of strings to prove code cor-
rectness. This functionality is critical to the formation and use of
loop invariants, which serves as an internal contract necessary to
verify the correctness of operations containing loops.

3.3 An In-class Student Invariant Activity

Before working on invariant activities, students had learned the
basics of using the verifier. Prior to student interaction with the
verifier, the instructor led students through various introductory
verification activities followed by an example verification of code
involving a loop. The RESOLVE language used by the verifier allows
formal specification [10]. Coding in this language has syntactic
differences from popular languages, such as Java, but students at
this level have little difficulty with those differences.
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Figure 2: Verifier in Action Showing Proving and Failing Ver-
ification Conditions (VCs)

An example invariant activity used in the experiment is found in
Listing 1. For this activity, students are given a formal specification
and code for an Append operation whose goal is to append one
queue onto the end of another queue. Only an invariant for proving
correctness is missing. Whereas classical loop invariant activities
involving arrays, for example, involve the use of quantifiers, these
activities are set up to factor out that additional complexity.

Listing 1: Invariant Activity 1
Operation Append (updates P:Queue; clears Q:Queue);
requires |P| + |Q] <= 3;
ensures P = #P o #Q;
Procedure
Var I: Integer;

While ( 1 <= Length(Q) )
maintaining true;
decreasing [Q];

do
Dequeue (I, Q);
Enqueue (I, P);
end;
end Append;

In the description of queues on which the Append operation is
based, mathematical strings are used to model a queue abstractly
and to capture the importance of ordering. Simple string notations
(e.g., concatenation, denoted by o) are used in the specification
and results about those notations (e.g., o is associative) are used in
verification. Importantly, this mathematical modeling has nothing
to do with how queues might be represented and implemented,
such as using arrays, vectors, or linked lists.

When conceptualized abstractly as a string, a queue (Q) con-
taining the following entries, ©, & would be seen as Q = <9, &>.
When Enqueue is called with Q and ¢, abstractly it is adding the
diamond to the right side of the string, resulting in Q = <, &, ¢>.
The removal of an entry by Dequeue conceptually will remove an
entry from left side of the string, resulting in Q = <&, ¢>. Together
they uphold the First-In-First-Out nature of a queue.

For this particular example, queues are declared to have a max-
imum length (which happens to be 3 and has no bearing on ver-
ification). The caller is responsible for the requires clause where

the combining of the two queues, P and Q, will not cause the mod-
ified queue P to violate the length constraint of 3. Here, the bars
surrounding a queue variable (e.g., P) denotes the string length
operator. The ensures clause P = #P o #Q states that the value of P
at the end of the operation is the concatenation of the input value
of P, (denoted by #P) with the input value of Q (denoted by #0). Q
is cleared, meaning that it is empty after the call to the operation.

One way to accomplish the task of appending two queues is to
use a While loop to Dequeue one element from Q and Enqueue
it to the end of P as is shown in Listing 1. The code is straight-
forward. The novel elements of this code are the introduction of a
maintaining clause that lets a programmer specify a loop invari-
ant (the focus of this paper) and a decreasing clause that lets
them specify a progress metric that is used to prove termination.
These assertions are automatically checked by the verifier to be
legitimate before it uses them in proving code correctness. The
verifier is sound [2, 25].

In this example, students need to replace the assignment’s default
invariant t rue with a correct invariant—an assertion that will
hold true at the beginning and end of every iteration, and with
this particular implementation, is sufficient to guarantee that the
ensures clause is met after the loop when Append terminates.
This task requires identifying the relationship between input values
#P and #Q and the current values of P and Q, which vary from
iteration to iteration. An example trace is shown in Table 1 to
illustrate how a student might discover an (intended) invariant.

Table 1: Example Trace to Discover and Check an Invariant

Check Invariant

Iteration P Q P60 = #P o #0
0 <1> <2,3> <1> 0 <23> = <1>0 <2,3>
1 <1,2> <3> <1,2> 0 <3> = <1> 0 <2,3>
2 <1,2,3> <> <1,2,3> = <1> 0 <2,3>

4 ERQ 1: BUILDING A CATALOG OF
DIFFICULTIES

We have employed an iterative process to develop a catalog. The
process was complicated for multiple reasons. Due to the various
forms of data collection, all data had to be converted to a digital
format to allow for classification. In doing so, notes were included
such as the number of attempts made. Furthermore, since the re-
search involved collecting student explanations on different types
of response medium, the researcher had to make some judgment
calls to make all data compatible for analysis. A second researcher
then reviewed the transcripts, verifying the data obtained and the
decisions made. This researcher then proceeded to use the Fall 2017
data as the foundation, grouping similar answers together into the
resulting categories found in Table 2. These categories were sub-
sequently used to label the submitted responses from Spring 2018
and Fall 2018. The occurrence of these categories across multiple
semesters presented promising results for the classification.

4.1 A Catalog and Frequency of Difficulties

This initial classification was then shared with a cohort of experts
to receive feedback and was subsequently revised to address poten-
tial needs. The grouping of similar answers was a good start for



Table 2: Activity 1 Example Categories

Table 3: Catalog of Difficulties

Answer Category Fall 17 Spring 18 Fall 18

Q!=0 9 2 2
IP| <=3 4 3 0
[P| is Changing 11 2 6
Use of Substring 11 2 4
Use of String Reverse 5 0 2
Incorrect Concatenation 2 1 2
Requires Clause [P| + |Q| <=3 8 6 7
Ensures Clause P = #P o #Q 6 2 3
#Q0=PoQ 11 0 3
1Pl + Q] = [#B] + [#Q) 7 6 4
Other 21 3 5
Correct #P o #Q =P o Q 31 27 38
Total Attempts 126 54 76

identifying problem areas, but it was found to be inadequate. This
led to a final iteration for developing activity-specific categories

and this is what is reported in the catalog of difficulties in Table 3.
Data from all three semesters were re-categorized using the catalog.

Figure 3 provides a visual breakdown of the frequency of each
difficulty across each attempt for Activity 1 (Listing 1) in the Fall
2017 semester. The horizontal axis is the attempt number and the
colors indicate categories. The blue color at the top corresponds to
the correct invariant. With each attempt, more students arrived at
the correct invariant as can be seen as we move from left to right in
the figure. Almost everyone had completed the assignment by the
seventh attempt. We also note that not every difficulty appeared
in each attempt as seen, for example, by the disappearance of the
orange bar for [P| is Changing after the third attempt.
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Figure 3: Frequency of Difficulties Across Fall 2017 Attempts

4.2 Verifier Feedback and Discussion

Figure 4 contains the feedback students get for verifying with the
default invariant true.

Structure Incorrect

Operations (e.g., Concatenation QoP=#Po#Q
Stacks vs Queues)

Use of Requires Requires _
Clause as Invariant Clause* ** [Pl +1Ql <=3

Use of Ensure.:s Ensures Clause P=#P o #Q
Clause as Invariant

Ignoring Some Assumes #P is

#0 =
Input Possibilities Empty Q=PoQ
. . Total Size is
Underspecification Conserved* [P| + Q| = |#P| + [#Q]
Other

* Students were likely to provide a sufficient invariant on the next attempt
** Students submitted similar answers multiple times
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Figure 4: Verifier Feedback Using true as Invariant

The feedback explains why students who submitted either the
Invariant Total Size is Conserved or Requires Clause (marked in Table
3 by an asterisk), they were more likely to get the correct answer
on the next attempt. The first one is an invariant, but just not a
sufficient one. The reason for the latter, if any, is not obvious.



The first failed VC (1_2) indicates that the requires clause for a
call within the loop to Enqueue is not met. It is the second failed
VC (2_1) that concerns the ensures clause of the Append operation.
If we assume that students follow traditional debugging techniques
they would normally begin with resolving the first unproved VC.
Previously mentioned invariants, Total Size is Conserved and Re-
quires Clause, satisfy the requires clause of Enqueue. When the
students attempt to verify the code with either of these invariants,
only the ensures clause of the code fails to prove, focusing their
attention on where it needs to be focused. So the verification pro-
cess works as might be expected, and may explain why these two
invariants preceded a successful attempt.

5 ERQ 2: STUDENT CONCEPTIONS

ERQ 2 focuses on analysis of student responses to determine their
level of understanding and to identify any actionable information.

5.1 Response Medium

In the Fall 17 and Spring 18 experiments, a total of 62 student groups
received a piece of paper at the start of the activity that contained
a table to use as a scaffold, as seen in Figure 5. We found that the
scaffolding encouraged students to record each attempt. Students
also showed tracing as in Table 1.

For the Fall 18 experiment, 43 student groups received the same
prompt as seen in Figure 5 but used a free response text box for
online submission as seen in Figure 6. While easier for automated
analysis, a reasonable question is what impact the online medium
has on student response.
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Figure 5: Paper Response

5.2 Level of Understanding

When the medium for response changed, we observed that stu-
dent responses appeared to shift from explaining what individual
pieces of invariant attempts meant to a reflective analysis of their
work, often explaining why a sufficient invariant worked. Figure
6 demonstrates this shift in focus for the response. Rather than

Our thought process was that this one will empty g and put each value
into P during the loop. We started off by using a tracing approach and
started by saying it maintains that #Q = Q o P, but then we realized this
was only true in the case when P was empty so we came to the correct
conclusion that maintaining #P o #Q = P o Q and this proved everything

Figure 6: Online Response

stating what “should" be happening “now", this response reflects
upon attempts made and explaining why they did not work. We
believe the removal of the scaffolding is the reason for this change
because there were no significant changes in instructors, materials,
or student performance across semesters.

To evaluate this observation, student responses were analyzed
for the level of understanding communicated. We identified three
levels of understanding; None, Partial, and Holistic. Figures 5 and 6
demonstrate what would be considered holistic understanding for
each response medium.
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Figure 7: Proportion of Responses Showing Understanding

We conducted an analysis of the significance of medium on
observed student understanding. Due to the validity conditions
for the Chi-Square test not being met (not every option has at
least 10 observations), simulations of the MAD statistic for 100,000
shuffles were run to determine an approximate p-value. The higher
proportion of student responses displaying holistic understanding
in the online medium is significant with a p-value of 0.0095.

Table 4 illustrates that students who showed some understand-
ing for Activity 1 made good progress on subsequent, slightly more
complex activities, also involving queues. The importance of inter-
vention during the first activity for students who need it is clear.

Table 4: Completed Additional Activities for Fall 18 (Online)

Understanding Count  Activity 2 Activity 3
Holistic 11 9/11 = 81.2% 9/11 = 81%
Partial 24 21/24 = 87.5% 19/24 =79.2%

None 8 4/8 = 50% 3/8 =37.5%




5.3 Actionable Information

A central reason for transitioning to online collection of student
responses is the potential to collect and use actionable information
to provide immediate feedback to students. If online responses
showed a more holistic understanding but contained less actionable
information, that would be problematic for automated feedback.

Actionable Information
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Figure 8: Actionable Information from Student Responses

The identification of actionable information for automation strongly

mirrored the Catalog of Difficulties in (Table 3) under ERQ 1. Key
words were identified such as Length, Size, Requires, Ensures, and
even Guess. Key words for which similar feedback is appropriate
were then consolidated, resulting in the distribution seen in Figure
8. Each bar represents the proportion of responses that contained
that keyword. For example, approximately 35% of responses on
paper referred to queue sizes.
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Figure 9: Proportion of Student Responses that Contained
Actionable Information

The relative risk of students providing actionable information

on paper medium is 1.26 times that of students reporting online.
However, with a p-value of 0.192, this difference is not significant.

Based on these findings, we plan to proceed with collecting stu-
dent responses online to facilitate automated processing to provide
tailored feedback for students.

6 DISCUSSION AND CONCLUSION

The current state of instruction on such topics as writing invariants—
in the absence of automation—for developing correct iterative code
relies on instructor experience to identify common student difficul-
ties and to know how to address these difficulties. Student learning
requires direct instruction or the creation of exercises that guide
a student to discover previously unknown aspects of the formal
verification process, discover holes in their reasoning process or to
confront misconceptions.

For automated tutoring systems to be successful, they must be
able to detect student difficulties and be able to respond with ap-
propriate interventions. If students display holistic understanding
of the topic, the tutor would move on to the next topic. Unable to
detect a holistic understanding, the tutor would have the student
continue working on the current topic. Knowing the nature of the
difficulty through keywords in their explanations and classification
of their answers, will assist the tutor for providing appropriate
feedback, or select remedial lessons on the current topic.

In this work, we have analyzed expressions of student reasoning
to identify student difficulties. By identifying these difficulties, we
can provide better support for students. For example, size was
identified to be a popular keyword (Figure 8), and five of the ten
categories of difficulties involves queue sizes (Table 3). Often these
students would repeatedly submit similar answers, resulting in
48% of all incorrect answers to be size-related. In this scenario, an
automated tutor could identify the keyword size as being actionable,
and then further evaluate the answer to determine the specific
difficulty, allowing us to help students earlier (Table 4). For an
instructor, the catalog is helpful for identifying where students may
be struggling and for re-designing subsequent lessons.

Analysis of the paper and online versions allow us to reach a
qualitative conclusion that the medium impacts the response, and
both kinds of responses are of interest. While we have found more
responses in the online medium to show a holistic understanding
through a subjective analysis, that does not mean that others lacked
such an understanding. Rather, this is what we are able to say from
the responses. The online medium, more suitable for automation,
is also an effective option for collecting actionable information. A
threat to validity is that our results depend on students accurately
reporting their attempts and reasons. Few studies exist that ex-
amine finer-level and higher-level student difficulties in writing
formal assertions. This paper discusses a process to identify these
difficulties with regard to loop invariants in a manner that can aid
both automated tools and instructors. The process is done in a way
to generalize and possibly guide the design of other systems for
helping students learn formal topics, such as discrete structures
and automata theory.
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