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Abstract—Automobiles continue to become more autonomous
and connected as increasingly integrating with information tech-
nology. Meanwhile, this advance also comes with a higher risk
of various security violations on vehicles. In this paper, we study
how to detect attacks on autonomous vehicles, and specially focus
on physical invariant-based attack detection. A physical invariant
(PI) is defined as a property that a physical system always
holds, i.e., the evolution of system states (usually measured by
sensors) follows immutable physical laws. We first discuss existing
research efforts of PI-based attack detection and classify them
according to the knowledge of physical invariants and sensor
redundancy. Then, we point out several critical challenges on
attack detection research efforts including data sets, benchmark
and testbeds, and evaluation metrics. Finally, we highlight open
problems that offer promising research opportunities.

Index Terms—attack detection, autonomous driving, self-
driving, autonomous vehicles, physical invariant

1. INTRODUCTION

Automobiles have transitioned from once-closed architec-
tures to open architectures due to the integration with in-
formation technology (IT). Increasingly, V2X technologies
are getting modern vehicles more connected to the outside.
The integration has enabled the development of many safety
features such as collision detection, lane departure warning
system, blind-spot information system, adaptive headlights,
night vision, driver fatigue recognition, etc. It has also enabled
convenient features such as parallel park assistance, head-up
display, fingerprint entry/ignition/personalization, infotainment
and telematics apps, internet connection, among others [1].
Utilizing sensor technology, the autonomy of automobiles
continues to increase as seen in adaptive cruise control and
self-driving efforts. The benefits of autonomous driving in-
clude increased traveling speed, decreased traffic, reduced
emissions, and the extra time to perform other tasks during
a commute [2].

However, the integration with IT and sensory technology
has also led to increased system complexity and has exposed
the autonomous vehicle to a number of cyber and physi-
cal attacks. Cyber attacks compromise the computing and
networking components of the autonomous vehicle system
and it includes attacks such as buffer overflow, DNS, and
TCP attacks. Usually, cyber attacks are deployed through the
injection of malware, software, or by unauthorized access

to elements of the communication network [13]. Typical
examples of cyber attacks have been demonstrated in [14]—
[18]. Physical attacks, on the other hand, perturbs the physical
environment of the autonomous vehicle such that it allows the
injection of malicious signals into sensors and actuators. In
most cases, attackers exploit the same physical channels that
the target sensor uses for its operation such that it results in
manipulation or disruption of sensor readings. For example,
researchers in [3] demonstrate a contactless attack that uses
ultrasound against ultrasonic sensors, radio against MMW
radars, and laser against cameras. These sensor attacks caused
Tesla Model S’s blindness” and malfunction. A similar
remote attack on camera and LiDAR is demonstrated in [7].
Shoukry et al. [19] showed how non-invasive attacks on wheel
speed sensors influenced Anti-lock Braking Systems (ABS)
of a vehicle to malfunction. It must be noted that ultrasonic
sensors, MMW radars, cameras, and LiDAR are essential
sensors that enable self-driving vehicles to function. Hence,
successful attacks on sensors can have devastating effects on
the system user, the system itself, and the environment at
large. Table. I provides brief information about environmental
sensors aiding self-driving and also gives references to attacks
on these sensors.

Due to the safety-critical roles that these autonomous sys-
tems play, it is important to provide defense mechanisms for
them. The research community has responded to this need and
has proposed a number of solutions. To this extend, proposed
defense mechanisms have involved (1) attack detection and (2)
attack recovery. The former proposes solutions that raise alerts
when an attack is determined to occur whereas the latter seeks
to mitigate the effects of the attacks by proposing measures
that enable the continuous operation of the system, even in the
midst of attacks. We focus on attack detection in this work.

In this paper, we study how to detect attacks on autonomous
vehicles, and specially focus on physical invariant-based attack
detection. A physical invariant (PI) is defined as a property
that a physical system always holds, i.e., the evolution of
system states (usually measured by sensors) follows immutable
physical laws. We first discuss existing research efforts of
Pl-based attack detection and classify them according to the
knowledge of physical invariants and sensor redundancy. Then,
we point out several critical challenges on attack detection
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TABLE I
A SUMMARY OF SENSORS THAT ENABLE AUTONOMOUS DRIVING SYSTEMS TO PERCEIVE THEIR ENVIRONMENT. ATTACKERS TARGET THESE
ENVIRONMENTAL SENSORS AND OTHER TYPES OF SENSORS TO CAUSE MALFUNCTION AND/OR DAMAGE TO THE AUTONOMOUS VEHICLE.

Sensor Physical Principle / Signal  Range Usage Attack Reference
Ultrasonic ~ Ultrasound Short range/Proximity ~ Parking Assistance [3]-[6]
Traffic sign recognition 3]
Camera Visible light Short range Obstacle recognition [’7]
Lane departure warning
GPS Microwaves Global ?.a‘”ga“o“ (81, [9]
ime
§ Blind-spot warning
Millimeter waves ShorF range Cross-traffic alert
Radar K Medium range .. X [3]
(microwave) Lone ranee Collision avoidance
g rang Adaptive cruise control
LiDAR Infrared Long range Collision avoidance [7], [10]-[12]

Pedestrian detection

including data sets, benchmark and testbeds, and evaluation
metrics. Finally, we highlight open problems that offer promis-
ing research opportunities.

Existing surveys such as [20] considers the use of physical
invariants in detecting attacks in a number of cyber-physical
domains including smart grid, industrial control systems, etc.
Given that each domain has distinct properties, such broad
coverage does not ultimately detail the efforts and challenges
that are unique to autonomous vehicles. We fill in this gap by
focusing on attack detection in autonomous vehicles.

Our contributions include:

« a systematic survey of attack detection research efforts
in autonomous vehicles that is presented using a new
classification. The classification is based on (i) the knowl-
edge of physical invariants required to build a model that
approximates the nominal system behavior and (ii) sensor
redundancy.

« identifying the limitations and challenges in undertaking
attack detection research in autonomous vehicles. The
identified limitation and challenges are not only appli-
cable to attack detection but also other security research
involving AVs.

« identifying and enumerating inadequately explored chal-
lenges or open problems as well as offering possible
solutions.

« enumerate the vision for attack detection in AVs and
present research opportunities.

The remainder of this paper is organized as follows. Section

II provides a brief background information. We describe the
two taxonomies in sections III and IV. The challenges that
researchers face is discussed in section V. We point out open
problems and research opportunities in VI and conclude the
paper in section VII.

II. PRELIMINARIES
A. Scope of study
While the autonomous vehicle faces both cyber attacks
and physical attacks we only focus on the latter. Defenses
against cyber attacks are relatively advanced due to the many
traditional cybersecurity techniques already available. Com-
paratively, proposed solutions for defending against physical
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attacks are few and more challenging. We survey research
efforts that seek to detect physical attacks in autonomous
vehicles. Since the physical properties are often measured with
sensors, we focus on research works that address the detection
of false sensor attacks.

We systematically survey publications in the past ten years
(2010-2020) that appeared in the computer security and system
conferences such as CCS, AsiaCCS, Usenix Security, ACSAC,
S&P, NDSSand ICCPS. In order to increase coverage, we
included relevant papers that were cited by these papers as
well as those which cited these papers. The selection criteria
for including a paper in the survey were papers (to the best of
our knowledge) where the proposed attack detection solution
monitors the evolution of the system states (usually measured
by sensors), actuator and/or control signals, and then raise an
alarm whenever the observed signals digress from a model of
the physical system.

B. Physical invariant

A physical invariant is the property of a physical system
that always holds under some transformation. They remain
unchanged due to immutable physical laws. Compared with
information technology systems, one unique property of phys-
ical systems such as autonomous vehicles is that the physical
evolution of system states has to follow the laws of nature.
For example, when a vehicle is uphill and no brake is applied,
the force of gravity pulls the vehicle downward. The velocity,
acceleration, position, and orientation of the vehicle can be
confirmed or measured by sensors under normal conditions.

Successful attacks on sensors often cause the sensors to
report values that are in violation of the physical invariant
of the physical system. Following the example given above,
a successful spoofing attack on the GPS can cause the GPS
sensor to report values that indicate the vehicle is stationary
although the vehicle is actually moving downwards. Hence
developing mechanisms to detect the violation has been the
basis of many attack detection research efforts. We discuss
details of such mechanisms and provide a classification of
them in section III.
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C. Overview of autonomous vehicles

An autonomous vehicle (AV) can be defined as a machine
that operates and performs missions or tasks under its own
power, without human input or supervision. It is worth
mentioning that autonomous vehicles do not always operate
fully autonomously but can also operate semi-autonomously.
That is, a human operator may maintain control of the ve-
hicle, however, some control functions of the vehicle are au-
tonomous. For example, even though most current automobiles
are not fully autonomous, manufacturers incorporate semi-
autonomous features such as adaptive cruise control and self-
parking assistance.

Autonomous vehicles discover and navigate their environ-
ment by collecting and combining information from various
sensors such as ultrasonic sensors, cameras, GPS, radio detec-
tion and ranging (radar), light detection and ranging (LiDAR),
and on-board computers. Ultrasonic sensors, designed for
low-speed scenarios such as parking assistance, are proximity
sensors that detect objects within several meters from the
vehicle. They detect objects by transmitting and receiving
mechanical waves. While front-looking cameras take images
that allow traffic sign recognition and lane departure warning,
rear-facing cameras assist the driver when reversing or parking.
Cameras rely on visible light to take images. GPS provides
geographical location and timing information. Radars are used
in various scenarios depending on their range [3]. The short-
range radars are used for blind-spot and cross-traffic alerts.
The medium-range radars together with LiDARs are used
for collision avoidance and pedestrian detection. The long-
range radars are useful for high-speed adaptive cruise control.
Radars rely on millimeter waves whereas LiDARs rely on
infrared. Many other sensors are used in autonomous vehicles
to measure various physical phenomena. Table. I shows a
summary of these sensors that enable autonomous driving
systems to perceive and navigate their environment. Also,
a subset of sensors that were extracted from an automotive
dataset [21] are shown in Table II.

Autonomous vehicles may also manage communication
from other autonomous vehicles. [22]. This is enabled by
wireless networking around the vicinity of the vehicle known
as vehicle to vehicle (V2V). One of the reasons for connecting
vehicles is to rapidly share a vehicle’s data such as speed,
location, activity, camera images, etc so that collisions can be
prevented. For instance, the cameras in nearby cars can take
different angles of the environment, which when put together,
can assist a vehicle’s self-driving system to make better
decisions than images from only its cameras. Making a good
decision based on rich environmental information can prevent
many collisions. Also, to prevent accidents, one vehicle can
send a warning to nearby vehicles that it is experiencing a
brake failure. Upon receiving such a warning signal, the nearby
vehicles may stop or take other precautionary measures to
prevent a collision.

The advancement in technologies such as multi-core,
sensor technologies, artificial intelligence, and robotics have
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TABLE 11
SOME SENSORS THAT USED IN VEHICLES TO MEASURE VARIOUS
PHYSICAL PHENOMENA.

CAN bus Sensors IMU Sensors

GPS Sensors |

ASR Acceleration Accelerometer_X
AccPedal Current_sec Accelerometer_Y
AirIntakeTemperature | Direction Accelerometer_Z
AmbientTemperature Distance Body_acceleration_X
BoostPressure Velocity Body_acceleration_Y
BrkVoltage Body_acceleration_Z

EngineSpeed_CAN
EngineTemperature

G_force
Magnetometer_X

Kickdown Magnetometer_Y
MFS_Tip_Down Magnetometer_7Z
MFS_Tip_Up Velocity_X
SteerAngle Velocity_Y
Trq_FrictionLoss Velocity_Z

Trq_Indicated
VehicleSpeed
WheelSpeed_FL
WheelSpeed_FR
WheelSpeed_RL
WheelSpeed_RR
Yawrate

ASR = Acceleration Slip Regulation, ACC = Acceleration,
BRK = Break, MFS = Misfiring System, TRQ = Torque,
FL = Front Left, FR = Front Right, RL = Rear Left,

RR = Rear Right, G = Gravity

allowed autonomous vehicles to perform computations and
analysis that enables self-driving or autonomous driving. The
autonomous driving system consists of various components
such as real-time operating systems, machine and deep learn-
ing models, and sensors.

D. Control systems

Generally, feedback control systems have four components
namely (1) plant, (2) sensors, (3) controller and (4) actuator.
Fig. 1 shows the feedback control system. The plant is
the physical system. Sensors monitor or measure physical
phenomenon such as speed, temperature, orientation among
others. Sensor measurements () are transmitted to the con-
troller. The controller, based on yy, issues control commands
(ug) to the actuator. In an auto-cruise system, an example
control command is “increment speed/throttle by 2 mph”. An
actuator is a device that physically carries out the command.
A motor that turns the wheels in an autonomous vehicle is an
example actuator.

E. Threat model

The papers that we reviewed have a general threat model
like the one shown in Fig 2. The attacker compromises the
integrity and availability of physical components (sensor and
actuator).

(1)Integrity: the attacker is able to create interference in the
autonomous vehicle’s physical environment such that it alters
the sensor readings. Hence, the transmitted readings do not
reflect the actual state of the system, that is, yj is no longer
equal to z; as shown in the figure. Typical examples of
such attacks are spoofing, data injection attacks (transduction
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Fig. 1. The general feedback control system. y; represent sensor reading,
uj represent controller input. zj and vy are the actuator output and actual
physical state respectively.

attacks) [23]. The attacker may also launch replay attacks,
thereby transmitting sensor values that were valid at an earlier
time but no longer reflect the current state. Similarly, in a
successful actuator attack, the command input issued by the
controller w; is manipulated by the attacker such that the
action vy performed by the actuator is not the same as uy.
(2)Availability: these are the attacks that may thwart the state
measurements from reaching the controller. Denial of Service
(DoS)attacks are typical examples. It is worth noting that
transduction attacks began as DoS attacks [24].

We note that although signal injection is often assumed
in the solutions that we surveyed, it may also be done
through software attacks (malware) [25]. Either way, in the
end, all the attacks considered replace the sensor signal yy
and actuator signal wj with an attacked signal y, and wu,
respectively. Since y; and wy represent the physics of the
system, security monitoring architectures incorporate them in
their attack detection solutions.

E General Security Monitoring

Fig.3 shows the general security monitoring architecture that
is used by attack detection papers that leverage the physics of
the system for detection. The input to the detector is either
the sensor readings y; or the control commands wug. Some
solutions also receive both y; and uy as input. The detector
uses various algorithms (which we discuss below) to identify
anomalous sensor measurements or control commands.

Authors in [20] note that the idea of monitoring y; and
uy has been applied in the dynamical systems fault-tolerance
domain for decades. We must, however, distinguish that fault-
tolerance theory does not focus on attack detection, rather, it

Yk 7 2k

Controller

Actuator

2% Physical System % 7 Ur

Fig. 2. Attacks that compromise the sensor reading and actuator output are
considered.

Detector

Tk

Sensor Actuator

Physical Process

Uk 2k

Fig. 3. General architecture for security monitoring. The input to the detector
may be yi, up or both

is aimed at detecting and responding to equipment failures and
random faults.

IITI. CLASSIFICATION BASED ON PHYSICAL INVARIANT
KNOWLEDGE

Physical systems have properties that are guarded by
immutable physical laws. When attacks are successfully
launched, they violate these laws. In order to determine such
a violation, it is essential to have a model that accurately
approximates the nominal system behavior. The observed
behavior can then be compared with the expected behavior
(based on the model) to determine a violation of the physical
invariant. This has been the general idea behind many attack
detection publications in recent years.

Building an accurate model to approximate the nominal
system behavior requires knowledge about the system and its
dynamics. Modeling the complete system dynamics requires
in-depth knowledge and expertise which may not always
be available. Hence, recent publications have used two ap-
proaches to learn system dynamics. We group publications into
two groups namely (1) black box and (2) grey box based on
how they capture the system dynamics or physical invariants
in their model. Further, we discuss how the model is used for
attack detection.

A. Black-box approach

Publications in this category treat the system as a black box
and build a model from the system data, such as sensor read-
ings, control input and output, and system logs. The insight of
this approach is that, when the system operating in a normal
state, the data or readings captured by the sensor are directly
proportional to the system obeying physical laws. Therefore,
the data model that is built from the system data reflects the
physical invariant of the system. The popular tools that have
been employed in publications to learn system behavior from
system data are machine and deep learning techniques. The
techniques mine for relevant information and/or relationships
among nominal system data.

The black box attack detection approach often has two
phases: online and offline phases. The offline and online
phases are summarized in Fig. 4 and Fig. 6 respectively. The
offline phase or the model training phase starts with collecting
data about the system usually consisting of sensor or actuator
data. The data collected is pre-processed in order to improve
the quality of the data as well as transform it into a form that
is required by the chosen machine or deep learning model.
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TABLE III
TAXONOMY BASED ON PHYSICAL INVARIANT.

Black Box Grey Box Correlation

He et. al [26] He et. al [26]

Li et. al [27] . Ganesan et. al [32]
Quinonez et. al [25] .

Van et. al [28] Choi et. al [31] Li et. al [27]

Javed et. al [29] Parker et. al [33]

Shin et. al [30] Guo et. al [34]

The data pre-processing step may include one or more of the
following: handling null values, handling categorical values,
standardization, and one-hot encoding. The pre-processed data
is fed into the machine or deep learning model such as a
convolutional neural network (CNN), recurrent neural network
(RNN), autoencoder, regression model, etc. The researchers
in the papers we selected make different contributions at this
stage. Some combine two or more DL/ML models so their
trained models can learn certain patterns of interest. Others
also reuse existing DL/ML architectures or make simple
changes to existing ones. During model training, the output
data of the DL/ML model is compared with ground truth data
and a loss function calculates a score such as the reconstruction
error, prediction error or assigns a label. The training process
continues by optimizing and updating the model using the
score obtained in the previous step. The output of the offline
phase is a trained model that is capable of predicting or
classifying observed system behavior.

The online phase deploys the trained model so that it
can make predictions or classifications when the system is
running. The anomaly detection algorithm, in most of the
papers surveyed, compares the output of the trained model
with the observed signals and then calculates an anomaly score
using time-window approaches or statistical methods such as
cumulative sum (CUSUM), chi-square, etc. The detector raises
an alert whenever the anomaly score exceeds a certain pre-
determined threshold.

B. Grey-box approach

Attack detection solutions in this category have some
knowledge about the system and even know the physical
invariant. Instead of learning the structure of the model, such
papers make their contributions by learning the parameters of
the invariants utilizing techniques such as system identification
(SI). Such solution is provided in [25] and [31]. Generally,
these solutions also have two phases: offline and online phases
as shown in Fig. 5. The offline phase extracts the physical
invariants that are used to build a model that captures the
underlying or expected relationships between the sensors and
actuators. In other words, the model captures the expected
inputs and outputs of the system. The techniques used at
this phase may also capture the expected relationship among
Sensors.

The solutions in this category have explored both linear [31]
and non-linear approaches [25] to describe the physical invari-
ants of AVs. The linear approach assumes a Linear Dynamical
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Data Collection Output Layer

Ground Truth

Deep/Machine
Learning Architecture
A

Prediction error,
Reconstruction error, Label

Data pre-processing

Fig. 4. The offline phase

State-space (LDS) system which is widely used in system
dynamics and control. LDS is given as:

Axy, + Buyg,
ka

Th41

Yk )

where x;, € R™ denotes the autonomous vehicle’s physical-
state vectors; ur € R™ is the control input vectors; yr €
RP denotes the AV’s output vectors from measurements of
sensors. A, B, and C' are the system matrices that are unique
for each physical process. Hence, each AV has unique values
for A, B and C. The proposed solutions in this category use
various techniques to learn these system matrices’ parameters,
popular among them is system identification.

System identification (SI) is a control system engineering
methodology that is used to learn the parameters for the system
matrices. The two inputs to the SI method are (1) a control
invariant template i.e. equation of a certain degree/form with
unknown coefficients/parameters and (2) a vehicle profiling
measurement data set including the system inputs, outputs, and
states. The vehicle profiling measurement data set is obtained
by letting the subject autonomous vehicle perform a set of
missions or rides. The runtime inputs (target states) and system
states are measured and recorded during the execution of the
missions. When the needed inputs are provided, the ST method
then performs computations that instantiate the unknown sys-
tem matrices (A, B, and C). The resultant equation, therefore,
becomes the model for the system which is used in the online
phase to predict the behaviors of the autonomous vehicle based
on inputs and states. Essentially, the resultant equation serves
as the control invariants of the vehicle [31].

Although the linear invariant approach works for a wide
number of dynamical systems, autonomous vehicles tend to
follow a non-linear invariant as noted in [25], [35]-[37]. This

Model / Control 0:“"9
Invariant LLELL
Offline phase
Control template
uninstantiated egn Anomaly Detection Normal
System Identification | | Algorithm >
Anomaly
AV profile information
Observed signals

Fig. 5. The general workflow for the grey-box approach. It consists of (1)
offline phase where parameters of the control template are learned and (2)
online phase where the anomaly detection algorithm uses model predictions
and observed signals to determine presence or absence of anomaly
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approach requires more complex equations than LDS. Authors
in [25] indicate that the physical invariants of the quad-copter
used in their experiment can be described with 12 non-linear
differential equations “that exploit Newton and Euler equations
for the 3D motion of a rigid body”. The equations oversee the
position, speed, angles, and angular speed of the quad-copter.
Note here that each type of autonomous vehicle will have
its own set of non-linear differential equations that describe
its physical invariants. The parameters of these equations are
learned using the SI method discussed above for linear sys-
tems. Besides the non-linear equations’ input, the parameters
are learned in the same way. Particularly, the learning of non-
linear parameters is formulated as an optimization problem
which is given as [25]:

T
ngn;mt(P,Ut) - Yy)? @
where U and Y are the input and output data respectively; P
refer to the set of unknown parameters {p1,ps...}. H (P, Uy)
denote the estimated output at each sampling instant ¢ for the
given parameters P and the input U;. Note that H(P,U,)
is the solution the differential equations F'(-). The goal of
Eqn. 2 is to find the parameters P that better fit the data. In
other words, Eqn. 2 seeks to find the set of parameters P that
minimize the least square error between the estimated output
H(P,U;) and the measured output Y. Once the unknown
parameters are computed, the resultant equations, therefore,
become the model for the system which is used in the online
phase to predict the behaviors of the autonomous vehicle based
on inputs and states.

The online phase consists of an anomaly detection mech-
anism or algorithm that simply compares the predictions of
the model that was built during the offline phase with ob-
served signals or states. The difference between the predictions
and the observed states, also called the residual error, are
accumulated in two ways. The first approach accumulates
the residual error as long as no attack has been detected
as was done in [25]. The accumulation is reset whenever
an attack is detected. The second approach accumulates the
residual error for a set period of time (window) and then resets
whenever the time window expires [31]. Either way, an alarm
is raised whenever the accumulated residual error exceeds a
predetermined threshold.

While the solutions in this category are robust in their
attack detection role, they remain weak against stealthy attacks
mainly due to perturbations and uncertainties in the model.
Stealthy attacks create small deviations over time by spoofing
or creating malicious data that allow the system to behave
seemingly normally. Stealthy attacks are hard to defend against
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and remain an open problem in autonomous vehicle attack
detection. Researchers in [25] are the first to propose a solution
to stealthy attacks in autonomous vehicles. We discuss this
further in section VI.

IV. CLASSIFICATION BASED ON CORRELATION

Immutable physical laws cause multiple sensors to exhibit
correlations that can be exploited for attack detection. The
multiple sensors could be measuring the same system state or
not. Multiple sensors measuring the same physical state are
called homogeneous sensors whereas those measuring differ-
ent physical system states are referred to as heterogeneous
sensors. We classify publications that exploit correlation that
naturally exists among sensors for attack detection purposes
into two groups: (1) homogeneous sensors and (2) heteroge-
neous sensors attack detection.

A. Homogeneous sensors attack detection

Multiple sensors measuring the same physical phenomenon
are expected to have their measurements correlating. When this
natural redundancy is not observed, it could be an indication of
a possible attack, and this has been the basis for publications
in this category. For instance, when four wheel speed sensors
are used to monitor the speed of a vehicle’s wheel, they should
all report similar readings under normal operation.

Researchers in [38] propose a switching algorithm that
searches for a combination of sensors that have not been
compromised and generates estimates that are insensitive to
sparse malicious attacks. The algorithm assumes that some of
the redundant sensors have been compromised.

Although this is a good approach to attack detection, it
has some limitations. First, it increases the cost of production
as multiple sensors of the same type have to be deployed.
This leads to increased power consumption. Also, more space
will be required to accommodate the multiple sensors leading
to increased weight. In applications where a lighter weight
is desired, this approach may be impractical. On the other
hand, fooling the attack detection may be easier since the
same attack strategy and equipment can be used to attack
the multiple sensors simultaneously. For example, the attacker
may successfully cause all speed sensors to report Smph
thereby preserving the correlation.

B. Heterogeneous attack detection

The attack detection solutions in this category hinge on the
observation that some set of sensors within an autonomous
vehicle are correlated in terms of their readings [26], [27],
[32], [34]. Remember that this observation is guided by
physical laws. For instance, as a car moves faster, naturally,
the wheels spin faster, the engine speed increases, and the
pressure applied to the pedals also increases. Therefore, this
natural phenomenon causes effects on sensors that monitor the
wheel speed, engine speed, and pedal. Given that this natural
redundancy holds all the time due to physical laws, a violation
of the observation to some degree could be an indication
of an attack. Hence, the proposed solutions in this category
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capture this physical invariant by using various methods that
exploit the correlation or the natural redundancy that exists
among the different sensors. Generally, the detector raises an
alert whenever the natural redundancy no longer holds due to
attacks.

The methods used to exploit the correlation are varied
including cluster analysis [32], Pearson correlation analy-
sis [39], autoencoders [26], regression [27]. In cluster analysis,
researchers first build tools to determine the context and the
cluster that the identified context belongs to. This is done
for each time window. Then, a pairwise cross-correlation is
performed and the results are compared with the expected cor-
relation values for that cluster. The calculated deviation from
the cluster’s mean correlation value is reported as standard
deviation from the mean.

In the regression method, the authors formulate the problem
as a machine learning regression problem. The regression
model uses statistical processes to estimate the relationships
among correlated sensors. The model predicts sensor values
which are then compared with the observed sensor values. A
deviation is calculated and if it exceeds a threshold, an alert
is raised.

EVAD [34] utilizes the frequency domain to detect attacked
sensors after Fourier transform. They also organize the corre-
lations of sensors into a ring architecture in order to reduce the
computation overhead. EVAD exploits both the time domain
and the frequency domain property of sensor data as the
criterion to detect anomalies.

Researchers in [33] also considered a system where multi-
ple sensors measure the same physical variable. The solution
assumes that some of the redundant sensors are attacked. The
work develops a resilient sensor fusion algorithm for attack
detection.

Unlike the homogeneous approach discussed above, this
approach does not increase the cost of production since no
extra sensors are needed. Therefore, the power consumption,
space, and weight remain the same for these solutions. Also,
this approach tends to be more robust to attack since, to fool
the detection and maintain the correlation, the attacker has
to launch attacks against multiple types of sensors. Based on
the fact that each type of sensor relies on different physical
principles to operate, the attacker needs multiple strategies,
equipment, and varying proximity to the sensor in order to
launch a successful attack simultaneously.

V. CHALLENGES

In this section, we discuss some of the challenges that re-
searchers proposing attack detection methods face. We do not
discuss the challenges in any particular order of importance.

A. Training data for data models

From our discussion above, we see that machine and deep
learning techniques are valuable for building attack detection
solutions. These tools, however, require enormous training
data. The first challenge is that the publicly-available datasets
are sparse and they contain no or very few attack datapoints.

One of the reasons for this is that, especially for real-life
datasets, attacks rarely occurred in the past because vehicles
were then closed system [26]. Even with modern-day vehicles
that are becoming open systems, successful attacks do not
happen often. Hence, with such limited attack scenarios in the
dataset, the machine and deep learning models are constrained
in learning the attack patterns as expected to build robust
models that are able to recognize attacks. In other words, CPS
attack monitoring models that are trained with insufficient data
tend to respond unfavorably to events or scenarios that they
have not been seen before [40]. This data sparsity problem
was one of the causes of the 2016 Tesla crash [41].

It is worth mentioning that some proposed methods [26]
have responded to this data sparsity challenge by leveraging
unsupervised machine/deep learning techniques. The models
are trained to learn the nominal behavior of the plant under
study from only normal data. Then using the principle of
inclusion-exclusion, an alarm is raised whenever the sensor
under scrutiny does not produce data that are indications of
normal activity. However, the false positive and false negative
rates are not promising for practical applications.

Further, the normal data available are not sufficient since
they usually do not contain all the normal behavior scenarios.
For instance, during the data collection stage, if the au-
tonomous vehicle does not perform certain activities, maneu-
vers, or tasks, the data associated with these normal behaviors
will not be captured in the dataset. Hence, unsupervised
learning techniques/models which only learn from normal
data are misled to classify even normal autonomous vehicle
activities as abnormal.

Lastly, the sensor data obtained from autonomous vehicles
can be corrupted, noisy, faulty, missing, and may contain
redundant data [40], [42]. Sensors tend to be sensitive to
interference in their environment which can lead to data
corruption. In most situations or applications, such interference
is inevitable and in others, some measures can be taken to
reduce the noise. Data may also be corrupted due to the
interactions occurring among system components. Lossy com-
munication channels especially those between the sensor and
data collection point contribute to data corruption. Identifying
that a dataset is corrupted may require some system expertise
and can be challenging. The consequences of building an
attack monitor on corrupt data are quite obvious.

B. Testbeds

The availability or access to rich/practical autonomous
vehicle testbed is another challenge that researchers face. In
most of the papers reviewed, evaluations are not performed
on systems that mimic the resources that are available on
real autonomous vehicles thereby reducing the practicality of
the proposed solutions. Rather, experiments are carried out
using simulated data that were run on computing resources that
differ a lot from resources available on autonomous vehicles.
For instance, the operating systems that the experiments are
simulated are not a real-time OS. Also, the CPU/GPU capabil-
ities and memory capacity available on experimental systems
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are higher compared with what is available on autonomous
vehicles.

In part, high-end autonomous vehicle testbeds are expen-
sive to acquire, limiting research groups, especially those
in developing countries, from testing out their novel ideas
and designs. Although cheaper testbeds are available, usually,
they do not possess all the sensors that may be required
for the particular research. It is also possible to custom-
build autonomous vehicle testbeds, however, assembling all
the components requires expertise that may not be available in
the research group or the university at large. Even in instances
where the expertise is available, the process of building the
testbed can be time-consuming. From our own experience, it
has taken more than a year to build an autonomous vehicle
testbed. Further, the sharing of testbeds amongst research
groups especially those whose physical geography is farther
apart may be hampered by travel restrictions by governments,
a pandemic, or other factors.

C. Benchmark for comparing related work

It is difficult to fairly and accurately compare the effective-
ness and efficiency of the various proposed attack detection
methods due to the absence of “standardized” benchmark data.
Given that each research effort evaluates their work on the
data that the researchers generate or simulate, it is difficult
to tell if the proposed solutions are applicable to only their
data or work with other new data. A common benchmark can
facilitate result comparison as well inspire research proposals
that perform better than existing solutions.

Also, many researchers who have access to good testbeds
or even simulate good autonomous vehicle data often do not
make their data and source code publicly available. Such
availability to the public not only aids the repeatability of the
research method but also allows others to use the data and
compare the results.

D. Standard evaluation metrics

Another challenge regarding research result comparison is
the lack of standard evaluation metrics. Usually, different
metrics are used for evaluating the proposed attack detection
method. This makes it difficult to know which proposal is
better and even how an existing solution should be improved
based on a metric. A standard evaluation metric can guide
the current as well as the future development of evaluative
metrics for attack detection methods in autonomous vehicles.
A common metric can also help the peer review process so
that reviewers can make a better judgment of papers under
review and/or make suggestions that improve research efforts.

VI. OPEN PROBLEMS AND RESEARCH OPPORTUNITIES

Although the research community has responded to the need
for viable attack detection methods to protect autonomous
vehicles due to the safety-critical roles that they play, a
number of problems still remain, thereby offering research
opportunities. In this section, we discuss some of these open
problems.
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A. Real-time detection and usability

Many of the research efforts have focused on the accuracy
of detecting the attacks, however, they have not adequately
addressed the real-time constraints of the attack detection and
the usability of the attack detector [43].

The timing constraint we are referring to is what we call
detection deadline. It is the time before which the attack must
be detected. Ultimately, an untimely attack detection is equally
damaging as no detection at all. It is important that attack
detectors raise an alarm before any damaging effects occur.
For instance, an alarm should be raised before the autonomous
vehicle hits an object and not after. The usability of a detector
refers to the false alarm rate, and a lower rate is desirable
since that translates to better usability.

Meeting both the timing and usability constraints is non-
trivial. This calls for techniques or solutions that will be able to
calculate the accurate detection deadline before which attacks
must be detected and at the same time achieve lower false
alarms. In other words, adaptive attack detection solutions that
balance timing and usability constraints are needed to protect
autonomous vehicles.

B. Recovery after attack detection

As important as it is to detect attacks when they occur, it is
also essential to provide mitigation measures that respond to
the attack after it has been detected. We refer to these measures
as attack recovery. While many research efforts have focused
on attack detection, comparatively, very few have addressed
attack recovery such as [44] [45] [46] [47] and [48]. Authors
in [13] who reviewed 32 security survey papers indicated that
only 8 addressed some form of response to detected attacks.

As an effective way of improving attack-resilience, attack
recovery solutions should be able to develop mechanisms that
can estimate system states that are accurate enough to con-
trol the autonomous vehicle irrespective of the compromised
components. The recovery measures should also meet timing
constraints and must be usable. Similar to our discussion
above, any response to an attack should complete before the
damage is caused. This means recovery solutions should not
only be able to estimate system states but also be able to
calculate recovery deadline before which the system enters
an unsafe state. Zhang et al. [46] have started this research
direction but we believe more adaptive real-time solutions can
be pursued in order adequately improve attack-resilience.

C. Distinguishing between faults and attacks

Abnormal behavior in autonomous vehicles may not always
be a result of an attack. For instance, an autonomous sensor
may produce anomalous readings for a number of such as
poor weather and other environmental conditions, magnetic
field interferences or even sensor aging [28]. Obviously, the
response to an attack should be different from the response
to a fault. Failure to rightly classify an attack or vice-versa
may result in serious operational failure [49] [SO]. Sometimes
replacing a faulty component is all that is required to resume
normal behavior.
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Hence, it is important for the proposed solution to be
able to distinguish between faults and attacks so that the
right response is applied. Fault detection and attack detection
to a greater extent, remain two separate domains. This gap
needs to be bridged in order to produce robust and usable
attack detection solutions. An attack detection solution that
incorporates fault detection can improve its usability. Some
attempts in this direction have been made in other cyber-
physical domains [50] but remain inadequately addressed in
autonomous vehicles which are more dynamic than the static
system addressed in [50].

D. Context-aware attack detectors

Attack detectors can include contextual information in con-
cluding that an actual attack is occurring which leads to
building usable and robust detectors. Ref [51] defines context
as the “additional information that is not directly used as
measurement data but is related to the measurements in an
unknown but structured way”. The environmental conditions
in which the autonomous vehicle is placed have varied effects
on the state of the system. For example, potholes can cause
speed sensor readings to briefly break sensor correlation as
well as exceed detector residual thresholds thereby raising
false attack alerts. If the detector can harness the contextual
information of the pothole presence, it can make a more
accurate decision of not raising an alert in this scenario. None
of the papers that met our survey criteria considers the context
in their solutions. Given the complexity of cyber-physical
systems such as autonomous vehicles, ignoring its context
information completely in attack detection solutions is an
indication that the solution could fail in real-world scenarios.
More research efforts that incorporate contextual information
in sensor attack detectors are therefore needed. Context-aware
detectors have been discussed in other CPS domains [51]-
[56]. [57] investigates the extent to which context informa-
tion may be used to improve the security and survivability
of CPS in general. Comparatively, specific contextual-aware
physical invariant-based attack detectors for autonomous CPS
are limited. Wasicek et al. [58] propose a context-aware
intrusion detection in automotive control systems, however,
their solution targets controller protection rather than sensor
attack detection. RAID [59] is one work that attempts to
incorporate road context in the proposed intrusion detection
system. RAID extracts road contexts from sensory information
using a lightweight machine learning model. The extracted
road context and the corresponding in-vehicle network frames
are validated to ensure there is no significant deviation.

VII. CONCLUSION

Autonomous vehicles play important and safety-critical
roles in modern society. Defending these systems is not only
desirable but indispensable. In this paper, we have system-
atically surveyed publications that specifically monitor the
physics of the system for attack detection purposes. We present
two taxonomies that are based on (1) how physical invariants
are captured to build a model and (2) the correlation among
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sensors. We discussed the general techniques that are used
in each category. Further, we highlighted the challenges
that researchers face when undertaking attack detection for
autonomous vehicles. Such challenges include data set, bench-
mark, testbed, and evaluation metrics. Lastly, we discussed
some open problems that offer research opportunities including
real-time adaptive attack detection, real-time recovery systems,
contextual-aware attack detectors, and detectors that accurately
distinguish between faults and attacks.
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