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The Dirichlet problem in domains with

lower dimensional boundaries

Joseph Feneuil, Svitlana Mayboroda and Zihui Zhao

Abstract. The present paper pioneers the study of the Dirichlet problem
with Lq boundary data for second order operators with complex coeffi-
cients in domains with lower dimensional boundaries, e.g., in Ω := R

n\Rd,
with d < n − 1. Following results of David, Feneuil and Mayboroda, we
introduce an appropriate degenerate elliptic operator and show that the
Dirichlet problem is solvable for all q > 1, provided that the coefficients
satisfy the small Carleson norm condition.

Even in the context of the classical case d = n− 1, (the analogues of)
our results are new. The conditions on the coefficients are more relaxed
than the previously known ones (most notably, we do not impose any
restrictions whatsoever on the first n−1 rows of the matrix of coefficients)
and the results are more general. We establish local rather than global
estimates between the square function and the non-tangential maximal
function and, perhaps even more importantly, we establish new Moser-
type estimates at the boundary and improve the interior ones.
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1. Introduction

1.1. State of the art

The main objective of the present article is the study of the well-posedness of the
Dirichlet problem. Formally, given an open domain Ω ⊂ Rn, an elliptic operator L
in divergence form, and q ∈ (1,+∞), we say that the Dirichlet problem (Dq) is
well-posed if for any g ∈ Lp(∂Ω, σ), we can find a unique function u such that

Lu = 0 in Ω,(1.1)

u = g on ∂Ω,(1.2)

and

(1.3) ‖N(u)‖Lq(∂Ω,σ) ≤ C‖g‖Lq(∂Ω,σ),

where N is a non-tangential maximal function and the constant C > 0 is inde-
pendent of g. Obviously, the statement above is not complete as we need to make
precise the meaning of (1.1)–(1.3). We naturally expect (1.1) to be taken in the
weak sense. But what is the meaning of (1.2) when u is defined on the open set Ω?
If Ω is very irregular, a proper choice of the measure σ on ∂Ω and the definition
of N(u) is unclear as well. What (1.1)–(1.3) means in our context will be care-
fully explained later, but first, let us give a brief (and somewhat narrowly focused)
presentation of the relevant history of the Dirichlet problem. Due to the huge
literature on the topic, we will be unable to cite all the works, and we apologize in
advance for the omissions.

We start the history on the topic with a work of Dahlberg (see [8]). Let Ω be a
bounded Lipschitz domain. Dahlberg proved that the harmonic measure (for the
Laplace operator) defined on the boundary ∂Ω is A∞-absolutely continuous1 with
respect to the surface measure on ∂Ω. This property is known to imply that the
Dirichlet problem (Dq), associated with the domain Ω and the elliptic operator ∆,
is well-posed for large enough q. It was proved just a little later that Dq is well-
posed for the Laplacian on Lipschitz domains for any 2− ε < q < ∞, and that the
range is sharp in the sense that for any q < 2, we can find a Lipschitz domain such
that (Dq) is false [9], [21].

Consider the Laplacian in the domain Ω lying above the graph of a Lipschitz
function ϕ : x ∈ R

n−1 → R. Let us keep in mind that a bi-Lipschitz change
of variable ρ : Ω → ρ(Ω) preserves the well-posedness of the Dirichlet problem.
In [20] Jerison and Kenig use the change of variable

ρ : (x, t) ∈ R
n 7→ (x, t − ϕ(x))

that flattens the domain Ω and that maps the Laplacian to another elliptic op-
erator L = − divA0∇ with bounded, measurable, symmetric, and t-independent
coefficient. By using a Rellich identity, they establish that these conditions on L
are sufficient to ensure that (D2) is well-posed, and hence, they extend the result

1A∞ absolute continuity is a quantitative version of the mutual absolute continuity.
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of Dahlberg to the case where the Laplacian is replaced by an elliptic operator
L = − divA∇, where A has real, bounded, symmetric, and t-independent coeffi-
cients. Analogous results for real non-symmetric operators have been proved much
later in [23], [18] using square function/non-tangential maximal function estimates
and elements of the solution of the Kato problem. The complete situation for
operators with complex coefficients is still not clear, although the solution of the
Kato problem [2] and later developments allowed to treat block matrices and some
of their generalizations [3], [26].

The next breakthrough we shall talk about in the study of the Dirichlet problem
is a result from Kenig and Pipher (see [24], which use methods developed in [23]).
Consider again the Laplacian and Ω = {t > ϕ(x)}, a domain that lies above the
graph of the function ϕ : x ∈ Rn−1 → R. The change of variable

ρ : (x, t) ∈ R
n 7→ (x, ct− ϕt(x)),

where c is a large constant and ϕt is the convolution of ϕ by a smooth molli-
fier, also sends Ω to Rn

+, but maps now the Laplacian −∆ to an elliptic operator
L := − divA0∇, where A0 satisfies the conditions that |∇A0(x, t)| ≤ C/t and
|t∇A0(x, t)|

2 dx dt/t is a Carleson measure. Kenig and Pipher showed that the two
latter conditions are enough to ensure that (Dq) is well-posed if q is large enough,
hence extending the result of Dahlberg to a new class of elliptic operators.

Dindoš, Petermichl, and Pipher studied in [12] the conditions needed for the
well-posedness of (Dq) when q > 1 is small. They established that, for a given
q > 1, the Dirichlet problem (Dq), associated to the Lipschitz domain Ω and the
elliptic operator L = − divA∇, is well-posed if both the Lipschitz constant of Ω
and the Carleson norm of |t∇A|2 dx dt/t are smaller than ǫ(q) ≪ 1.

One has to also mention a number of perturbation results, in L∞ and in Car-
leson measure norm, which we shall not review here.

Our focus is on operators with coefficients whose gradient satisfies the Carleson
measure condition, as above. All the previous results that we mentioned in this
context were established in the case where L = − divA∇ has real coefficients.
In [14] Dindoš and Pipher introduced a notion of q-ellipticity based on a notion
of Lq-dissipativity (see [6], [7]), and cleverly used this notion of q-ellipticity to
obtain “q-Cacciopoli’s inequalities” and “reverse Hölder inequalities” (see Subsec-
tion 1.4 for the precise statement), which can be seen as a weakened version of
Moser’s estimates. They used these partial estimates to get the well-posedness of
the Dirichlet problem (Dq) whenever the q-ellipticity, in addition to appropriate
Carleson measure estimates and some structural conditions on coefficients, holds.

In all the above works, the boundary of the domain Ω ⊂ Rn has Hausdorff
dimension n−1. In [10], Guy David and the first two authors of the present article
launched an elliptic theory adapted to domains Ω that are the complement in Rn of
sets Γ with dimensions d < n−1. Since the boundary Γ of the domain Ω is too thin
to be “seen” by the Laplacian (or the general elliptic operators), the operators L :=
− divA∇ used in this theory are degenerate and satisfy the ellipticity condition
with a different homogeneity. Precise definition are given later, see (1.24), (1.25).
We also mention that similar degenerate operators have been considered before,
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notably in [15], [16] but the well-posedness or any related boundary estimates have
never been attacked.

Subsequently in [11], David, Feneuil, and Mayboroda established that if Γ is
the graph of a function ϕ : Rd → Rn−d with small Lipschitz constant, we can find
a particular degenerate elliptic operator L := − divA∇ such that the harmonic
measure on Γ (and associated to L) is A∞-absolutely continuous with respect to
the d-dimensional Hausdorff measure on Γ. While this operator, being the sim-
plest one that we can treat, can be thought of as an analogue of the Laplacian in
the domains with lower dimensional boundaries, it already carries most of the dif-
ficulties exhibited by the operators whose coefficients satisfy the aforementioned
Carleson condition. Indeed, by necessity, it is not a constant coefficient opera-
tor, and it cannot be t-independent either; a rather delicate dependence of the
coefficients on the distance to the boundary is exactly what makes the problem
well-posed in the higher co-dimensional context. The proof in [11] uses some ideas
from [13], [23], [22], and relies on a new change of variable ρ that sends Ω to
Rn \ Rd = Rd × (Rn−d \ {0}) and that is almost, up to Carleson measure, an
isometry in the last n− d variables. As shown in [27], the A∞-absolute continuity
of the harmonic measure implies the well-posedness of the Dirichlet problem (Dq)
when q is large.

The main aim of this article is to prove that, given q > 1 and d < n − 1, the
Dirichlet problem (Dq) is well-posed in the domain Rn \ Rd for any degenerate
elliptic operator (in the full generality of possibly complex coefficients) with condi-
tions in the spirit of [24]. As a consequence, whenever Γ is the graph of a function
with small Lipschitz constant and L is given as in [11], the Dirichlet problem (Dq)
is well-posed.

While the article is written with d < n−1 in mind, all our computations can be
adapted with very light changes to the case where d = n− 1 and the domain is the
upper half plane Rd+1

+ . In that context it can be viewed as an alternative to [14].
We build on their ideas and introduce new tools. As a result, even in the classical
setting, our conditions on the operator are weaker and our results are somewhat
stronger. Most notably, we do not impose any restrictions on the first n− 1 rows
of the coefficient matrix. We will make these statements more precise below.

1.2. Main result

Let d < n − 1 and Ω = Rn \ Rd = {(x, t) ∈ Rn, x ∈ Rd and t ∈ Rn−d \ {0}};
the boundary ∂Ω is assimilated to Rd. We write X = (x, t) or Y = (y, s) for the
running points in Ω. The notation Bl(x) is used for the ball in Rd with center x
and radius l.

First, we introduce the square function and the averaged version of the non-
tangential maximal function. Let a be a positive number. For x ∈ Rd, we define
the regular cones in R

d+1
+ := Rd × (0,+∞) as

Γa(x) := {(z, r) ∈ R
d+1
+ , |z − x| < ar},
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and the higher co-dimensional cones as

Γ̂a(x) := {(y, s) ∈ Ω, |y − x| < a|s|}.

For (z, r) ∈ R
d × (0,∞), we write Wa(z, r) for the Whitney box

Wa(z, r) = {(y, s) ∈ Ω, y ∈ Bar/2(z), r/2 ≤ |s| ≤ 2r}.

If, in addition, q ∈ (1,+∞), we define the q-adapted square function Sa,q as

(1.4) Sa,q(v)(x) :=
(¨

Γ̂a(x)

|∇v(y, s)|2 |v(y, s)|q−2 dy
ds

|s|n−2

)1/q
,

where v is a measurable function that satisfies |v|q/2−1v ∈ W 1,2
loc (Ω). Note that the

definition of Sa,q makes sense even when q < 2, because, in particular, ∇v ≡ 0
almost everywhere on |v| = 0. For any function v ∈ Lq

loc(Ω) and any x ∈ Rd, the
non-tangential maximal function (in the average sense) is

(1.5) Ña,q(v)(x) = sup
Γa(x)

vW,a,q,

where vW,a,q is defined on R
d+1
+ by

(1.6) vW,a,q(z, r) :=
( 1

|Wa(z, r)|

¨

Wa(z,r)

|v(y, s)|q dy ds
)1/q

.

We say that L = − divA∇ is an elliptic operator with weight |t|d+1−n (we will
always omit this weight for brevity) if there exists C > 0 such that the complex
matrix A satisfies

(1.7) Re(A(X)ξ · ξ̄) ≥ C−1|t|d+1−n|ξ|2 for X ∈ R
n \ Rd, ξ ∈ C

n,

and

(1.8) |A(X)ξ · ζ̄| ≤ C|t|d+1−n|ξ| |ζ| for X ∈ R
n \ Rd, ξ, ζ ∈ C

n.

Or alternatively, if the reduced matrix A := |t|n−d−1A satisfies the classical el-
liptic and boundedness condition. We say that L is q-elliptic if the coefficient
matrix A(X) satisfies (1.7)–(1.8) and A(X) satisfies the condition (2.2) given in
the next section. We refer the reader to the next section for the discussion of
q-ellipticity, but let us cite one key property: L is q-elliptic for all q ∈ (1,+∞) if
and only if the matrix A is real-valued. This means that q-ellipticity is a notion
intrinsically linked to matrices with complex coefficients.

The next assumption we put on L will use Carleson measures. Let us first
introduce the following definition.

Definition 1.1. We say that f satisfies the Carleson measure condition if

dµ(x, r) := sup
Wa(x,r)

|f |2 dx
dr

r
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is a Carleson measure, that is, if there exists Ca > 0 such that

‖f‖CM,a := sup
x∈Rd, r>0

 

y∈B(x,r)

ˆ r

0

sup
Wa(y,s)

|f |2 dy
ds

s
≤ Ca.

Let us make a few remarks. It is easy to check that the fact that f satisfies
the Carleson measure condition does not depend on the choice of a, and that for
any a, b > 0,

‖f‖CM,a ≤ Ca,b‖f‖CM,b.

The quantity f in the above definition can be a measurable function, the gradient
of a function, or a matrix-valued function. So |f | is, respectively, the absolute
value, the vector norm, or the matrix norm. Furthermore, the Carleson measure
condition forces f to be locally Lipschitz.

Definition 1.2. An elliptic operator L = − div|t|d+1−nA∇ with complex coeffi-
cient satisfies the hypothesis (H1) if the matrix A can be decomposed as

(1.9) A =

(
A1 A2

B3 bI

)
+ C,

where

(i) I is an (n − d)-identity matrix, b is a real scalar function, and B3 is a real
matrix in M(n−d)×d,

(ii) b is uniformly bounded from above and below,

(iii) the quantities |t|∇xB3, |t|n−d divt[|t|d+1−nB3], |t|∇b and C satisfy the Car-
leson measure condition, that is, there exists C > 0 such that

(1.10) sup
z∈R

d

r>0

 

y∈B(z,r)

ˆ

∞

0

sup
(x,t)∈W1(y,s)

[

|t|2 |∇xB3|
2 + |t|2|∇b|2 + |C|2

] ds

s
dy ≤ C,

and for any j ≤ d,

(1.11) sup
z∈R

d

r>0

 

y∈B(z,r)

ˆ

∞

0

sup
(x,t)∈W1(y,s)

|t|2(n−d)
∣

∣

∣

∑

ℓ>d

∂tℓ [(B3)ℓj |t|
n−d−1]

∣

∣

∣

2 ds

s
dy ≤ C

if we write B3 as (B3)1≤j≤d<i≤n, and ∂tℓ corresponds to the partial derivative
with respect to the ℓ-th coordinate in Rn.

In addition, we say that L satisfies the small Carleson hypothesis (H1
κ) if L

satisfies (H1) and the constant C in (1.10)–(1.11) can be chosen to be smaller
than κ.

Remark 1.3. If the block matrix B3 is not a real matrix, we could include its
imaginary part in C as long as ImB3 satisfies the appropriate Carleson measure
condition. The assumptions that b, B3 are real-valued are used in the proof of
Lemma 5.1, which is the key estimate in proving S < N and S < κN + Tr.
Observe that |t|n−d divt[|t|d+1−nB3] equals 0, and so satisfies the Carleson measure
condition, if for instance B3 = has the form (B3)ij = bi(x)tj/|t|.
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We say that u ∈ W 1,2
loc (R

n \ Rd) is a weak solution to Lu = 0 if we have

¨

(x,t)∈Rn

A∇u · ∇Ψ̄ dx
dt

|t|n−d−1
= 0 for any Ψ ∈ C∞

0 (Rn \ Rd).

Our main theorem is the following result.

Theorem 1.4. Let a > 0, M > 0, and q ∈ (1,+∞). There exists a constant

κ0 := κ0(n, a,M, q) > 0 such that if L := − div|t|d+1−nA∇ is a q-elliptic operator

with the following properties :

(i) it satisfies the hypothesis (H1
κ0
),

(ii) the q-ellipticity constant λq that appears in (2.2) is bigger that M−1,

(iii) ‖A‖∞ + ‖b‖∞ + ‖b−1‖∞ ≤ M , where b is the one that is defined via (1.9),

then the Dirichlet problem (Dq) is well-posed. That is, for any g ∈ Lq(Rd), there

exists a unique weak solution u := ug ∈ W 1,2
loc (R

n \ Rq) to Lu = 0 such that

(1.12) lim
(z,r)∈Γa(x)

r→0

1

Wa(z, r)

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.a. x ∈ R
d,

and

‖Ña,2(u)‖q < +∞.

Furthermore, we have

‖Ña,q(u)‖q ≤ C‖g‖q,

and

‖Ña,q(u)‖q ≈ ‖Sa,q(u)‖q, ‖Ña,2(u)‖q ≈ ‖Ña,q(u)‖q,

with constants that depend only on the dimension n, a, q and M . One also has

the stronger convergence

(1.13) lim
(z,r)∈Γa(x)

r→0

1

Wa(z, r)

¨

Wa(z,r)

|u(y, s)− g(x)|q dy ds = 0 for a.a. x ∈ R
d.

Remark 1.5. In particular (1.13) implies the pointwise non-tangential conver-
gence of the solution u to g:

lim
(z,r)∈Γa(x)

r→0

( 1

Wa(z, r)

¨

Wa(z,r)

|u(y, s)|q dy ds
)1/q

= |g(x)| for a.a. x ∈ R
d.

Except for the main result in [11], the result above is the first treatment of the
well-posedness of the Dirichlet problem for domains with higher co-dimensional
boundary. In particular, in the case where the domain is Ω = Rn \ Rd, the well-
posedness of (Dq) for q small has never been considered before, even in the case
where the operator L = − divA∇ is such that A has real coefficients. At some
point in the proof, we need to use the saw-tooth domains {|t| > h(x)}, where
h : Rd →R+ is some non-negative Lipschitz function. The strategy in codimension 1
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is to use a bi-Lipschitz change of variable that sends {t > h(x)} to the upper half
plane, and to deduce the result on saw-tooth domains from the one in the upper
half plane. This method is not available anymore in higher co-dimension (notice
that even the boundary of the saw-tooth domain becomes an object of mixed
dimensions in this context), and one of the main difficulties here is to establish
desired estimates directly on saw-tooth domains. Fortunately, emerging new ideas
brought considerably stronger results in the “classical” co-dimension 1 setting of
Rn

+ = Rd+1
+ as well.

Indeed, the methods used to prove Theorem 1.4 (and its result) can be easily
adapted to the classical case where the boundary of the domain is of codimension 1,
that is, Ω = Rn

+, with an obvious reformulation. Here are some remarks that are
important even in codimension 1:

• As pointed out above, contrary to [14], we do not impose any conditions on
the first d rows of the matrix of coefficients.

• We allow Carleson measure perturbations (addition of a matrix C). This
is vital in our method and, formally speaking, new even in the classical
scenario. Indeed, known results about the Carleson measure perturbation
are tied up to real coefficients [17] or to perturbing from the t-independence
matrix [1], [19], which is not the setting of the present paper.

• This is the second time to the best of our knowledge (after [14]) that the
Dirichlet problem for elliptic operators with complex coefficients whose gra-
dients are Carleson measures is attacked. We keep the remarkable idea of
Dindoš and Pipher to use a notion of q-ellipticity for elliptic operators, and
we improve it in several ways (see the first two points above and the last two
points below).

• We offer a new proof of the existence of solutions to the Dirichlet problem
in unbounded domains. A general difficulty is to prove that the quantity
‖Ña,qu‖q is actually finite for a large class of solutions. Indeed, the formal

proof of well-posedness consists of showing that ‖Ña,qu‖q ≤ C‖Sa,qu‖q and

then that ‖Sa,qu‖q ≤ η‖Ña,qu‖q + ‖Tru‖q. If η is small, the conclusion

‖Ña,qu‖q ≤ C‖Tru‖q holds, provided that ‖Ña,qu‖q is a priori finite. In the
case of co-dimension 1 one can rely on a plethora of known results for smooth
coefficients, on layer potential techniques, and other methods. The proof in
this paper is self-contained (which partially explains the length).

• We prove local rather than global S < N and N < S estimates. Even in
co-dimension one, such results in full generality are only available for real
coefficients, typically by localization from the global estimates [12], [18], [24].
Unfortunately, localizing the global S < N and N < S estimates requires
sufficient decay of solutions and a maximum principle, generally failing for
complex coefficients. However, the local bounds are important both in the
present argument and for the future use (for instance, in the extrapolation
techniques on uniformly rectifiable domains) – a more detailed discussion will
be presented in the next paragraph.
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• We prove that, when the trace is smooth, the solutions u obtained by the
Lax–Milgram theorem match the solution(s) of the Dirichlet problem (see [4]
and [5] for a discussion of importance and possible failure of this property
under various circumstances). In order to do it, we prove, in particular,
the finiteness of the quantity

´

Ω
|∇u|2 |u|q−2 dm (where dm is the Lebesgue

measure in the co-dimension 1 case, and dm(x) = dist(x,Ω)d+1−n dx when
the boundary has higher codimension) for q ≥ 2. This finiteness is new
even in the codimension 1 case, and holds under the only condition that the
operator is q-elliptic – in particular we do not require L to satisfy (H1) – and
that the domain is the complement of an Ahlfors regular set. Our control on
(the energy of) solutions will allow us to derive the global S < N and N < S
estimates from the local ones (contrary to the classical approach). A more
detailed discussion can be found in Subsection 1.4.

• We improve the reverse Hölder estimates (that can be seen as weak Moser
estimates) proven in Lemmas 2.6 and 2.7 of [14], and we also give a boundary
version. These results hold under the sole assumption of q-ellipticity and will
hopefully be useful in a wide variety of problems. They will be presented in
Subsection 1.4 as well.

If an operator L = − divA∇ has real coefficients, slight modifications of the
argument of Theorem 1.4 gives the result below. Before stating it, let us introduce
some additional notation. Thanks to the classical Moser estimate, we can directly
work with the classical non-tangential maximal function Na (rather than in the
average sense, see (1.5)–(1.6)): For any function v ∈ L∞

loc(Ω) and any x ∈ Rd, we
define

(1.14) Na(v)(x) = sup
Γ̂a(x)

v.

We say that f satisfies the real Carleson measure condition if

dµ(x, t) := |f(x, t)|2 dx
dt

|t|n−d

is a Carleson measure. Note that if the elliptic operator L has real coefficients,
the assumption (H1

κ) is effectively weakened by requiring only the real Carleson
measure condition in (iii). Clearly, the assumption that b and B3 are real becomes
void.

Theorem 1.6 (Analogue of Theorem 1.4 for real coefficients). Let a > 0, M > 0,
and q ∈ (1,+∞). There exists a constant κ0 := κ0(n, a,M, q) > 0 such that if

L := − div|t|d+1−nA∇ is an elliptic operator with real coefficients that satisfies

(i) the hypothesis (H1
κ0
),

(ii) the ellipticity constant is bounded from below by M−1, i.e.,

inf
x∈Ω, ξ∈R

n

|ξ|=1

A(X)ξ · ξ ≥ M−1,
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(iii) ‖A‖∞ + ‖b‖∞ + ‖b−1‖∞ ≤ M , where b is defined as in (1.9),

then the Dirichlet problem (Dq) is well-posed. That is, for any g ∈ Lq(Rd), there

exists a unique weak solution u := ug ∈ W 1,2
loc (R

n \ Rq) to Lu = 0 such that

(1.15) lim
(z,r)∈Γa(x)

r→0

1

Wa(z, r)

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.a. x ∈ R
d,

and

‖Na(u)‖q < +∞.

Furthermore,

‖Sa,q(u)‖q ≈ ‖Na(u)‖q ≤ C‖g‖q,

where the constants depend only on the dimension n, a, q and M .

A corollary of Theorem 1.6 is the well-posedness of the Dirichlet problem (Dq)
when the domain Ω is the complement of the graph of a Lipschitz function with
small Lipschitz constant. Let us be more precise. Let Γ = {(x, ϕ(x)), x ∈ Rd}
be the graph of a Lipschitz function ϕ : Rd → Rn−d, and let Ω = Rn \ Γ. The
non-tangentially maximal function Na,Γ on Γ is the one defined as

Na,Γ(u)(x
′) = Na(v)(x) for x′ = (x, ϕ(x)) ∈ Γ,

where v(y, s) = u(y, s− ϕ(x)). Observe that the definition of Na,Γ makes sense if

either a or the Lipschitz constant of ϕ is small. Indeed, in either case, the set Γ̂a(x)
stays inside the domain of definition of v.

Corollary 1.7. Let Γ := {(x, ϕ(x)), x ∈ Rd}, where ϕ : Rd → Rn−d is a Lipschitz

function, and Ω = Rn \ Γ. Choose α > 0 and define

Dα(X) :=
(ˆ

Γ

|X − y|−d−α dσ(y)
)−1/α

,

with σ being the d-dimensional Hausdorff measure on Γ. Consider the elliptic

operator

L := − divDα(X)d+1−n∇.

Let a > 0 and q ∈ (1,+∞). There exists a constant κ0 := κ0(n, α, a, q) > 0 such

that if ‖∇ϕ‖∞ ≤ κ0, then the Dirichlet problem (Dq) is well-posed. That is, for

any g ∈ Lq(Γ), there exists a unique weak solution u := ug ∈ W 1,2
loc (Ω) to Lu = 0

such that

lim
X∈Γa(x′)

1

|B(X, δ(X)/2)|

¨

B(X,δ(X)/2)

u(Y ) dY = g(x′) for a.a. x′ ∈ Γ,

and

‖Na(u)‖Lq(Γ) < +∞.

Furthermore,

‖Na(u)‖Lq(Γ) ≤ C‖g‖Lq(Γ),

where the constant C > 0 depends only on the dimension n, α, a, and q.



The Dirichlet problem in domains with lower dimensional boundaries 831

Remark 1.8. The operator above is the one for which the A∞ property of the
elliptic measure, and hence the solvability of the Dirichlet problem for some large

q < ∞ was proved in [11]. Clearly, the corollary could be extended to a more
general class of elliptic operators which are tied up to the change of variables
defined below in the proof. However, it does not seem to be possible to work, e.g.,
with the Euclidean distance, and so the precise choice of the coefficients is rather
delicate.

Proof. Assume that ‖∇ϕ‖ ≪ 1. We use the same bi-Lipschitz change of variable ρ
as the one used in equation (3.3) of [11], that is,

(1.16) ρ(x, t) = (x, η|t| ∗ ϕ(x)) + h(x, |t|)Rx,|t|(0, t) for (x, t) ∈ R
n,

where ηr is a mollifier, Rx,r is a linear isometry of Rn, and h(x, r) > 0 is a dilation
factor. We construct Rx,r (with a convolution formula and projections) so that
it maps Rd to the d-plane P (x, r) tangent to Γr := {(x, ηr ∗ ϕ(x)), x ∈ Rd} at
the point Φr(x) := (x, ηr ∗ ϕ(x)), and hence also Rx,r maps Rn−d = (Rd)⊥ to the
orthogonal plane to P (x, r) at Φr(x). The map ρ−1 sends Ω to Rn \ Rd and L
to a (real-coefficient) elliptic operator L = − divA∇. Lemma 3.40 in [11] and
the fact that Dα(X) ≃ dist(X,Γ) prove that A satisfies (1.7)–(1.8). Moreover,
if ‖∇ϕ‖∞ is small enough, Lemma 6.22 in [11] establishes that A := |t|n−d−1A
satisfies assumptions (i)–(iii) of Theorem 1.6.2 Theorem 1.6 implies now that the
Dirichlet problem (Dq) is well-posed when the domain is Rn \Rd and the operator
is L, and therefore, by using again the change of variable ρ, we conclude that the
Dirichlet problem (Dq) is well-posed when the domain is Ω \ Γ and the elliptic
operator is L. ✷

1.3. Local bounds

In this paragraph, we stay with Ω = Rn \Rd and Γ = Rd. We write (x, t) or (y, s)
for a running point of Rn = Rd × Rn−d.

Let a > 0 be fixed. We need local versions of the square function and the
non-tangential maximal function. The following definitions are in parallel to the
previous definitions (1.4), (1.5) and (1.6). If Ψ is a cut-off function, that is, we ask Ψ
to be at least a locally Lipschitz function and to satisfy 0 ≤ Ψ ≤ 1 everywhere,
then we define Sa,q( · |Ψ) and Ña,q( · |Ψ) as

(1.17) Sa,q(v |Ψ)(x) :=
(¨

Γ̂a(x)

|∇v(y, s)|2 |v(y, s)|q−2Ψ(y, s) dy
ds

|s|n−2

)1/q

and

(1.18) Ña,q(v|Ψ)(x) = sup
Γa(x)

(v|Ψ)W,a,q ,

2The smallness of the Carleson measure is not explicitly written in [11], but the smallness
holds as long as the Ahlfors measure σ is close enough to a flat measure, which is the case if ϕ
has a small Lipschitz constant and σ is the d-dimensional Hausdorff measure on Γ.
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where vW is defined on R
d+1
+ := Rd × (0,+∞) by

(1.19) (v|Ψ)W,a,q(z, r) :=
( 1

|Wa(z, r)|

¨

Wa(z,r)

|v(y, s)|qΨ(y, s) dy ds
)1/q

.

Particularly we are interested in the following cut-off functions. Choose a func-
tion φ ∈ C∞

0 (R+) such that 0 ≤ φ ≤ 1, φ ≡ 1 on (0, 1) and φ ≡ 0 on (2,+∞),
φ is non-increasing and |φ′| ≤ 2. If e(x) is a positive a−1-Lipschitz function, we
define Ψe as

Ψe(x, t) = φ
(e(x)

|t|

)
.

If B ⊂ R
d is a ball with radius bigger or equal to l, then

ΨB,l(x, t) = φ
(a|t|

l

)
φ
(
1 +

dist(x,B)

l

)
.

We keep in mind that the functions Ψe and ΨB,l depend on a, but we do not write
the dependence to lighten the notation. Whatever choice we make for e > 0, l,
and B, observe that ΨeΨB,l is a smooth cut-off function which is compactly sup-
ported in Rn \ Rd. The following results hold.

Theorem 1.9. Let a > 0 and q ∈ (1,+∞). Let L = − div|t|d+1−nA∇ be a q-
elliptic operator that satisfies (H1). For any a−1-Lipschitz function e, any l > 0,
any ball B whose radius is bigger than l, and any weak solution u ∈ W 1,2

loc (R
n \Rd)

to Lu = 0, we have

(1) if k > 2 and 1 < p < ∞,

‖Sa,q(u|Ψ
k
eΨ

k
B,l)‖p ≤ C‖Ña,q(u|Ψ

k−2
e Ψk−2

B,l )‖p,

(2) if k > 12,

‖Ña,q(u|Ψ
k
eΨ

k
B,l)‖

q
q ≤ C‖Sa,q(u|Ψ

k−12
e Ψk−12

B,l )‖qq

+ C

¨

(y,s)∈Rn

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy,

(3) if k > 12,

‖Ña,q(u|Ψ
k
eΨ

k
B,l)‖

q
q ≤ C‖Sa,q(u|Ψ

k−12
e Ψk−12

B,l )‖qq

+ C

¨

(y,s)∈Rn

|u|qΨk−3
e ∂r[−Ψk−3

B,l ]
ds

|s|n−d−1
dy,

where ∂r represents the derivative in the radial direction of t. The constants in

the above inequalities depend on a, q, n, a lower bound for the value λq in (2.2),
‖A‖∞, an upper bound for the value C in (1.10), ‖b‖∞ + ‖b−1‖∞, and k. In (1),
the constant depends also on p.
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The proofs of the three parts of the theorem are in Lemmas 5.5, 6.9 and 6.11,
respectively.

As we will see in the next paragraph, the fact that u ∈ W 1,2
loc (R

n \ Rd) is
enough to ensure that the terms in Theorem 1.9 are finite. On the other hand,
nothing guarantees, for instance, the finiteness of the quantities ‖Sa,q(u|Ψk

B,l)‖p or

‖Ña,q(u|Ψk
B,l)‖p that are obtained by taking e → 0, i.e., the boundary behavior.

The above definitions using the functions Ψe and ΨB,l are smooth versions of
the standard local square function and non-tangential maximal function. They are
more powerful since they will allow us to hide terms from the right-hand side of
an estimate. In order to build the reader’s intuition, let us show some examples of
the use of the theorem above.

If ǫ > 0 and l > 0, we define the q-adapted square function Sǫ,l
a,q and the non-

tangential maximal function Ñ ǫ,l
a,q in a similar manner to Sa,q and Ña,q, but with

the truncated cones

Γ̂ǫ,l
a (x) := {(y, s) ∈ Γ̂a(x), ǫ < |s| < l/a}

and
Γǫ,l
a (x) := {(z, r) ∈ Γa(x), ǫ < r < l/a},

respectively. Take a ball B ⊂ Rd with radius l and then ǫ > 0. We construct the
Lipschitz function e as e ≡ ǫ on R

d. We choose then B′ = 2B and we write Ψ
for ΨeΨB′,l. Due to (1) of Theorem 1.9, we have

‖Sa,q(u|Ψ
3)‖p ≤ C‖Ña,q(u|Ψ)‖p.

However, our choice of Ψ is such that

Sa,q(u|Ψ
3)(x) ≥ Sǫ,l

a,q(u)(x) for x ∈ B,

and, in addition, one can check that

‖Ña,q(u|Ψ)‖p ≤ Cp‖Ñ
ǫ/2,2l
a,q (u)‖Lp(4B).

So Theorem 1.9 implies that

(1.20) ‖Sǫ,l
a,q(u)‖Lp(B) ≤ Cp‖Ñ

ǫ/2,2l
a,q (u)‖Lp(4B),

which is a more customary statement of the local S < N bound.
By reasoning similar to the above, (3) of Theorem 1.9 gives the bound

‖Ñ ǫ,l
a,q(u)‖Lq(B) ≤ C‖Sǫ/2,2l

a,q (u)‖Lp(10B)(1.21)

+ C

¨

(y,s)∈Rn

|u|qΨk−3
e ∂r[−Ψk−3

B′,l ]
ds

|s|n−d−1
dy.

Since φ is non-increasing and non-negative, the term Ψk−3
e ∂r[−Ψk−3

B′,l ] is non-

negative. Moreover, by the construction of Ψe and ΨB′,l, the term Ψk−3
e ∂r[−Ψk−3

B′,l ]
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is bounded by C/l and supported in {(y, s) ∈ Rn, y ∈ 10B, l ≤ a|s| ≤ 2l}. So the
last term in (1.21) is bounded by Cld times the average of the function |u|q over
a Whitney box WB associated to the ball B. If we assume that

˜

WB
u = 0, the

Poincaré inequality implies that the average of |u|q over WB can be bounded by

‖S
ǫ/2,2l
a,q (u)‖Lq(10B). We obtain then, if the average of u over the Whitney box WB

is 0, that

(1.22) ‖Ñ ǫ,l
a,q(u)‖Lq(B) ≤ C‖Sǫ/2,2l

a,q (u)‖Lq(10B).

The latter is a customary statement of the local N < S bound.

1.4. Reverse Hölder estimates (weak Moser) and energy solutions

The results in the present paragraph require a lot fewer assumptions than before,
either on the domain or on the elliptic operator L. The ball in Rn with center
X ∈ R

n and radius r is denoted by B(X, r). Let d < n− 1 be a positive number
(not necessarily integer), and let Γ be a d-dimensional Ahlfors regular set, that is,
there exists C > 0 and a measure σ on Γ such that

(1.23) C−1rd ≤ σ(B(X, r)) ≤ Crd for any X ∈ Γ, r > 0.

It is well known that if Γ is Ahlfors regular, then (1.23) also holds for σ = Hd
|Γ,

the d-dimensional Hausdorff measure on Γ (and a different constant C), see The-
orem 6.9 of [25]. Set now Ω = Rn \ Γ, δ(x) = dist(x,Γ), and a measure m defined
as

m(E) =

ˆ

E

δ(X)d+1−n dx,

that is, dm = δd+1−n dX . Note that when Γ = Rd and Ω = Rn \ Rd, for any
X = (x, t) ∈ Rn, we have δ(X) = |t| and dm(X) = |t|d+1−n dt dx, and we recognize
the weight used in the previous subsections.

We say an operator L = − divA∇ on Ω is elliptic with weight δ(X)d+1−n if
there exists C > 0 such that the complex matrix A satisfies

(1.24) Re(A(X)ξ · ξ̄) ≥ C−1δ(X)d+1−n|ξ|2 for X ∈ Ω, ξ ∈ C
n,

and

(1.25) |A(X)ξ · ζ̄| ≤ Cδ(X)d+1−n|ξ| |ζ| for X ∈ Ω, ξ, ζ ∈ C
n.

These two conditions are the generalization of (1.7)–(1.8) in the case where Γ
is Ahlfors regular. The operator L is said to be q-elliptic if L is elliptic and
A(X) := δn−d−1(X)A(X) satisfies the condition (2.2) given in the next section.
In addition, we say that u is a weak solution to Lu = 0 if

ˆ

Ω

A∇u · ∇Ψ̄ dx =

ˆ

Ω

A∇u · ∇Ψ̄ dm = 0 for any Ψ ∈ C∞
0 (Ω).

In the complex case, the classical Moser’s estimates (i.e., L∞-local bounds) do not
necessarily hold but we have the following weaker version.
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Proposition 1.10. Let L = − divA∇ be a q-elliptic operator. For any ball

B ⊂ R
n of radius r that satisfies 3B ⊂ Ω and any weak solution u ∈ W 1,2

loc (Ω)
to Lu = 0, we have

ˆ

B

|∇u|2 |u|q−2 dm ≤
C

r2

ˆ

2B

|u|q dm.

Moreover, the following reverse Hölder estimates hold:

(i) If q > 2,

( 1

m(B)

ˆ

B

|u|q dm
)1/q

≤ C
( 1

m(2B)

ˆ

2B

|u|2 dm
)1/2

.

(ii) If q < 2,

( 1

m(B)

ˆ

B

|u|2 dm
)1/2

≤ C
( 1

m(2B)

ˆ

2B

|u|q dm
)1/q

.

In all three inequalities, the constant C > 0 depends only on n, q, a lower bound

on constant λq in (2.2), and the ellipticity constant in (1.24)–(1.25).

The proposition validates the fact that the quantities invoked in Theorem 1.9
are indeed finite. The analogue of this result in codimension 1 is written in the
next subsection, and we will see that the bounds (in co-dimension 1) when q > 2
were already stated in Lemma 2.6 of [14], but when q < 2, our proposition is an
improvement of Lemma 2.7 in [14].

Before we state our next result, let us introduce a bit of the theory given
in [10]. We denote by W the weighted Sobolev space of functions u ∈ L1

loc(Ω)
whose distribution gradient in Ω lies in L2(Ω, dm):

W =
{
u ∈ L1

loc(Ω) : ‖u‖W :=
(ˆ

Ω

|∇u|2 dm
)1/2

< +∞
}
.

Clearly W is contained in W 1,2
loc (Ω). Lemma 3.2 and Lemma 4.2 in [10] establish

that
W = {f ∈ L2

loc(R
n, dm), ∇u ∈ L2(Rn, dm)}.

This observation is useful to see that we will not have any problems integrating
u ∈ W across the boundary of Ω. We denote by M(Γ) the set of measurable
functions on Γ, and we set

H :=
{
g ∈ M(Γ),

ˆ

Γ

ˆ

Γ

|g(x)− g(y)|2

|x− y|d+1
dσ(x) dσ(y)

}
.

Now, by Theorem 3.4 in [10], the trace operator Tr : W → H , defined by

Tru(x) = lim
ǫ→0

 

y∈Bǫ(x)

 

|s|≤ǫ

u(y, s) ds dy, x ∈ Γ,

is linear and bounded. We are ready to state a version of Proposition 1.10 at the
boundary.
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Proposition 1.11. Let L := − divA∇ be an q-elliptic operator. For any weak

solution u ∈ W to Lu = 0 and for any ball B of radius r centered on Γ that

satisfies Tru = 0 on 3B, we have

ˆ

B

|u|q−2 |∇u|2 dm ≤
C

r2

ˆ

2B\B

|u|q dm.

Furthermore, if q > 2,

( 1

m(B)

ˆ

B

|u|q dm
)1/q

≤ C
( 1

m(2B)

ˆ

2B

|u|2 dm
)1/2

,

and if q < 2,

( 1

m(B)

ˆ

B

|u|2 dm
)1/2

≤ C
( 1

m(2B)

ˆ

2B

|u|q dm
)1/q

.

The constant C > 0 depends only on n, q, a lower bound on constant λq in (2.2),
and ‖A‖∞.

The following result (proved as Lemma 9.1 in [10] in the case where A has real
coefficients but valid with the same proof in the present setting) gives the existence
of weak solutions in W .

Lemma 1.12. Let L := − divA∇ be an elliptic operator. For any g ∈ H, there

exists a unique ug ∈ W such that

ˆ

Ω

A∇ug · ∇ϕ̄ dx = 0 for any ϕ ∈ C∞
0 (Ω)

and Tr ug = g σ-a.e. on Γ. Moreover, ‖u‖W ≤ C‖g‖H .

A weak solution u ∈ W 1,2
loc (Ω) is called an energy solution to Lu = 0 if u ∈ W

and Tru ∈ C∞
0 (Γ). Since Γ is a closed set in Rn, by an extension theorem of

Whitney type (see Chapter VI, Section 2.2 of [29]), the assumption Tru ∈ C∞
0 (Γ)

implies that there exists g ∈ C∞
0 (Rn) such that Tr u = Tr g = g for a.e. x ∈ Γ.

Since Tr g ∈ H , Lemma 1.12 shows that there exists a unique energy solution
u := ug to Lu = 0 that satisfies Tr u = Tr g.

Theorem 1.13. Let L be a q-elliptic operator. For any energy solution u ∈ W to

Lu = 0, we have

(i) if q ≥ 2,
ˆ

Ω

|∇u|2 |u|q−2 dm < +∞,

(ii) if q ∈ (1, 2), there exists a ball B such that

ˆ

Ω\B

|∇u|2 |u|q−2 dm < +∞.



The Dirichlet problem in domains with lower dimensional boundaries 837

As we have previously mentioned, we prove the existence in the Dirichlet prob-
lem by proving that the energy solutions satisfy ‖Na,q(u)‖q < +∞ whenever L is
q-elliptic (the range of such q is, as discussed in the next section, an open subset
of (1,+∞) which is symmetric around 2). Thanks to the a-priori finiteness proved
in Theorem 1.13, we will be able to pass the local estimates in Theorem 1.9 to
global estimates by taking e → 0, B ր Rd, and l → +∞, whenever u is an energy
solution (see Section 7).

1.5. The analogues of the results from the previous section in domains
with co-dimension 1 boundaries

As mentioned above, all our results have analogues in the upper half space or,
respectively, a domain above an (n − 1)-dimensional Lipschitz graph in Rn. This
statement is also valid for results of the previous section, but the geometric condi-
tions become slightly more involved, and for that reason, we choose to restate the
results carefully.

In this subsection, we say that L = − divA∇ is a q-elliptic operator if the
matrix A lies in L∞(Ω) and A satisfies (2.2).

Proposition 1.14. Let Ω be a domain in R
n and let L = − divA∇ be a q-elliptic

operator. For any ball B ⊂ Rn of radius r that satisfies 2B ⊂ Ω and any weak

solution u ∈ W 1,2
loc (Ω) to Lu = 0, we have

ˆ

B

|∇u|2 |u|q−2 dX ≤
C

r2

ˆ

2B

|u|q dX.

Moreover, the following reverse Hölder estimates hold :

(i) If q > 2, ( 1

|B|

ˆ

B

|u|q dX
)1/q

≤ C
( 1

|2B|

ˆ

2B

|u|2 dX
)1/2

.

(ii) If q < 2, ( 1

|B|

ˆ

B

|u|2 dX
)1/2

≤ C
( 1

|2B|

ˆ

2B

|u|q dX
)1/q

.

In all three inequalities, the constant C > 0 depends only on n, q, a lower bound

on constant λq in (2.2), and ‖A‖∞.

Observe that when q ≥ 2, the above result is the same as Lemma 2.6 of [14].
However, when q < 2 and under the assumptions of Proposition 1.14, Lemma 2.7
of [14] states that for any ǫ > 0, we can find Cǫ > 0 such that

ˆ

B

|∇u|2 |u|q−2 dX ≤
Cǫ

r2

ˆ

2B

|u|q dX +
ǫ

r2

(ˆ

2B

|u|2 dX
)q/2

and

( 1

|B|

ˆ

B

|u|2 dX
)1/2

≤ Cǫ

( 1

|2B|

ˆ

2B

|u|q dX
)1/q

+ ǫ
( 1

|2B|

ˆ

2B

|u|2 dX
)1/2

.
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Our result is stronger than the one in [14] because we can remove the second terms
of the two right-hand sides above.

For the sequel, let us introduce three topological conditions on Ω. We say that Ω
satisfies the interior Corkscrew point condition when there exists a constant C1 > 0
such that for x ∈ ∂Ω and 0 < r < diam(∂Ω),

(1.26) one can find a point Ax,r ∈ Ω ∩B(x, r) such that B(Ax,r, C
−1
1 r) ⊂ Ω.

Similarly, we say that Ω satisfies the exterior Corkscrew point condition if the
complement Ωc satisfies the interior Corkscrew condition. We also say that Ω
satisfies the Harnack chain condition if there is a constant C2 ≥ 1 and, for each
Λ ≥ 1, an integer N ≥ 1 such that, whenever X,Y ∈ Ω and r ∈ (0, diam(∂Ω)) are
such that

(1.27) min{dist(X, ∂Ω), dist(Y, ∂Ω)} ≥ r and |X − Y | ≤ Λr,

we can find a chain of N + 1 points Z0 = X,Z1, . . . , ZN = Y in Ω such that

(1.28) C−1
2 r ≤ dist(Zi, ∂Ω) ≤ C2Λr and |Zi+1 − Zi| ≤ dist(Zi, ∂Ω)/2

for 1 ≤ i ≤ N .

Similar to the higher codimension case, we define the space

W :=
{
u ∈ L1

loc(Ω) : ‖u‖W :=
( ˆ

Ω

|∇u|2 dX
)1/2

< +∞
}
,

which is clearly contained in W 1,2
loc (Ω). If Ω satisfies the interior Corkscrew point

condition, the exterior Corkscrew point condition, and the Harnack chain condi-
tion, and if the boundary ∂Ω is Ahlfors regular, i.e., verifies (1.23) with d = n− 1,
then we can define notion of trace on W , that is, there exists a bounded operator
Tr from W to L2

loc(Γ, σ) such that Tr u = u if u ∈ W ∩ C0(Ω).
We are now ready for the analogue of Proposition 1.14 at the boundary, which

is completely new.

Proposition 1.15. Let Ω satisfy the Corkscrew point condition and the Harnack

chain condition, and assume that its boundary ∂Ω is Ahlfors regular of dimension

n − 1. Let L := − divA∇ be a q-elliptic operator. Let u ∈ W be a weak solution

to Lu = 0 in Ω and let B be a ball of radius r, centered on ∂Ω, such that Tru = 0
on 2B ∩ ∂Ω. We have

ˆ

B∩Ω

|u|q−2 |∇u|2 dx ≤
C

r2

ˆ

(2B∩\B)∩Ω

|u|q dx.

Furthermore, if q > 2,

( 1

|B ∩ Ω|

ˆ

B∩Ω

|u|q dx
)1/q

≤ C
( 1

|2B ∩ Ω|

ˆ

2B∩Ω

|u|2 dx
)1/2

,

and if q < 2,

( 1

|B ∩ Ω|

ˆ

B∩Ω

|u|2 dx
)1/2

≤ C
( 1

|2B ∩ Ω|

ˆ

2B∩Ω

|u|q dx
)1/q

.



The Dirichlet problem in domains with lower dimensional boundaries 839

The constant C > 0 depends only on n, q, a smaller bound on constant λq in (2.2),
and ‖A‖∞.

This result, along with a few others that we did not recall here, can be used to
establish the finiteness of the following integrals.

Theorem 1.16. Retain the assumptions of Proposition 1.11. For any solution

u ∈ W to Lu = 0 whose trace Tr u is a restriction to ∂Ω of a function in C∞
0 (Rn),

we have

(i) if q ≥ 2,
ˆ

Ω

|∇u|2 |u|q−2 dx < +∞,

(ii) if q ∈ (1, 2), there exists a ball B centered on ∂Ω such that

ˆ

Ω\B

|∇u|2 |u|q−2 dx < +∞.

1.6. Plan of the article

Section 2 is devoted to the presentation of the q-ellipticity. In Section 3, we prove
the results stated in Subsection 1.4, which hold in the general context when Ω is
the complement in Rn of an Ahlfors regular set. Section 4 serves as an introduction
to the work with the square function and the non-tangential maximal function, for
instance, we establish there the equivalence ‖Ña,q(u)‖p ≈ ‖Ñ1,2(u)‖p whenever u
is a weak solution to Lu = 0, a > 0, and q is in the range of ellipticity of L.
Sections 5 and 6 are devoted to, respectively, the local S < N and N < S bounds,
so altogether, these sections contain the proof of Theorem 1.9. Finally, in Sections 7
and 8, we prove, respectively, the existence and uniqueness of the solutions to the
Dirichlet problem (Dq), and the combination of Lemma 7.9 (existence), Lemma 8.1
(equivalence between S and N), Lemma 8.2 (improvement (1.13)), and Lemma 8.7
(uniqueness) gives Theorem 1.4.

2. The q-ellipticity and its consequences

Throughout this section, we assume that Γ ⊂ Rn is an Ahlfors–David regular set
of dimension d < n− 1 and Ω := Rn \ Γ. For x ∈ Ω, define δ(x) = dist(x,Γ), and
we write dm(x) for δd+1−n(x) dx.

Consider a matrix A(X) with complex coefficients, the usual ellipticity assump-
tion is that there exist constants λ = λA > 0 and Λ = ‖A‖∞ < ∞ such that for
almost every x ∈ Ω and every ξ, ζ ∈ Cn,

(2.1) λ|ξ|2 ≤ Re(A(X)ξ · ξ) and |A(X)ξ · η| ≤ Λ|ξ| |η|.

A stronger form of ellipticity was introduced in [6] and [14], and see also [7] where
you can find the older, but related, notion of Lp dissipativity. For q > 1, we say
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that the matrix A is q-elliptic if there exists λq(A) > 0 such that for almost every
X ∈ Ω and every ξ, ζ ∈ C

n,

(2.2) λq|ξ|
2 ≤ Re(A(X)ξ · Jqξ) and |A(X)ξ · η| ≤ Λ|ξ| |η|,

where Jq : C
n → Cn is defined as

(2.3) Jq(α+ iβ) =
1

q
α+

i

q′
β and

1

q
+

1

q′
= 1.

Let us make a few simple remarks on q-ellipticity. First, a matrix A is elliptic
in the usual sense (i.e., it satisfies (2.1)) if and only if A is 2-elliptic. Second, a
matrix A can be q-elliptic only if q ∈ (1,+∞), and, moreover, A is q-elliptic if and
only if A is q′ elliptic. In Proposition 5.17 of [6] (see also the discussions in [14])
the following nice result can be found.

Proposition 2.1. Let A ∈ L∞(Ω,C) be an elliptic matrix, i.e., a matrix satisfy-

ing (2.1). Then A is q-elliptic if and only if

(2.4) µ(A) = ess inf
X∈Ω

min
ξ∈Cn\{0}

Re
A(X)ξ · ξ

|A(X)ξ · ξ|
>

∣∣∣1− 2

q

∣∣∣.

In other words, A is q-elliptic if and only if q ∈ (q0, q
′
0), where q0 = 2/(1+µ(A)).

Moreover, we can find λq satisfying (2.2) such that

C−1λq ≤ µ(A)− |1− 2/q| ≤ Cλq,

where C depends only on µ(A), λA and ‖A‖∞.

Again, let us make a few comments. The minimum in ξ shall be taken over the ξ
such that |A(X)ξ · ξ| 6= 0. Writing |A(X)ξ · ξ| is not a mistake for |A(X)ξ · ξ|.
By taking ξ ∈ Rn, it is easy to check that µ(A) ≤ 1, and thus q0 ∈ [1, 2]; and
since the ellipticity condition on A implies µ(A) ≥ λ/‖A‖∞, we have q0 < 2. If
A ∈ L∞(Ω,C) is elliptic, we also have the following (not completely immediate)
equivalence: A is real valued if and only if q0 = 1. This means that the notion of
q-ellipticity is not relevant when A has real coefficients, and that being complex-
valued prevents A to be q-elliptic on the full range of q ∈ (1,+∞).

The notion of q-ellipticity will be used via the following result (whose proof is
completely identical to the one of Theorem 2.4 in [14]).

Proposition 2.2. Assume that A ∈ L∞(Ω) is a q-elliptic matrix. Then there

exists λ′
q := λ′

q(λ, ‖A‖∞, λq) = λ′
q(λA, ‖A‖∞, µ(A), q) > 0 such that for any

nonnegative function χ ∈ L∞(Ω), and any function u such that |u|q−2|∇u|2χ ∈
L2(Ω, dm), one has

Re

ˆ

Ω

A∇u · ∇[|u|q−2 u]χdm ≥ λ′
q

ˆ

Ω

|u|q−2 |∇u|2χdm.

In particular, the right-hand side above is finite.
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We finish the section with a last observation. We will use repeatedly the follow-
ing fact (see Lemma 2.5 in [14]). For any q > 1, any u such that v := |u|q/2−1u ∈
W 1,2

loc (Ω,C), and any X for which u(X) 6= 0, we have ∇|u| = |u|−1 Re(u∇u), and
thus

(2.5) C−1|u(X)|q−2 |∇u(X)|2 ≤ |∇v(X)|2 ≤ C|u(X)|q−2 |∇u(X)|2,

where C > 0 depends only on q.

3. Moser and energy estimates

The goal of this section is to prove Moser’s estimates and the energy estimates, i.e.,
the estimates of the gradient of solutions. We will start with interior estimates,
and then prove boundary estimates for solutions with vanishing or non-vanishing
traces. Meanwhile, we will use these estimates to show the a priori finiteness of
the square function, that is, we will prove Theorem 1.16 for energy solutions. We
keep the same assumption on Γ as the ones given in Subsection 1.4 and Section 2.

3.1. Interior estimates

We aim to prove the following result, which easily implies Proposition 1.10. The
notation

ffl

E
f dm is used to denote m(E)−1

´

E
f dm.

Lemma 3.1. Let L = − divA∇ be an elliptic operator, that is, assume that L
satisfies (1.24)–(1.25). Set A(X) := δ(X)n−d−1A(X) and let q0 ∈ [1, 2) be given

by (2.4). Suppose that u ∈ W 1,2
loc (Ω) is a weak solution to Lu = 0 and B is a ball

of radius r that satisfies 3B ⊂ Ω.

(i) Let Ψ be a smooth function satisfying 0 ≤ Ψ ≤ 1 and |∇Ψ(X)| ≤ 100/δ(X),
and let k > 2. For q ∈ (q0, q

′
0), we have

(3.1)

ˆ

B

|u|q−2 |∇u|2Ψk dm ≤
C

r2

ˆ

2B

|u|qΨk−2 dm.

(ii) For q ∈ (2, q′0n/(n− 2)), we have

(3.2)
(  

B

|u|q dm
)1/q

≤ C
(  

2B

|u|2 dm
)1/2

.

(iii) For q ∈ (q0, 2), we have

(3.3)
(  

B

|u|2 dm
)1/2

≤ C
(  

2B

|u|q dm
)1/q

.

Each of the above constants C > 0 depends on n, q, λA, ‖A‖∞, µ(A), and in

case (i), it depends also on k.
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Remark 3.2. The above lemma and its proof are inspired by Lemmas 2.6 and 2.7
of [14]. However, our Lemma is stronger than Lemmas 2.6 and 2.7 of [14] in the
case q < 2. In addition, our proof is direct, that is, contrary to the proof in [14],
we do not approximate L by some elliptic operators Lj with smooth coefficients.

Proof. We set Φ = ΨηB, where ηB ∈ C∞
0 (2B) is a smooth function satisfying

0 ≤ ηB ≤ 1, ηB ≡ 1 on B, and |∇ηB | ≤ C/r.

Step 1: estimate of the gradient. For the purpose of a priori finiteness
which will be used later, we also define uN = min{|u|, N} if q ≥ 2, and uN =
max{|u|, 1/N} if q < 2. Note that uN is a real-valued and non-negative function,
and for all X ∈ Ω, uN converges monotonically to |u| as N → ∞. It is also easy

to see that u
q/2−1
N |u| ∈ W 1,2

loc (Ω), and this guarantees a priori boundedness of the
following integrals.

For the case q ≥ 2, let E1 = {X ∈ Ω : |u| ≤ N} and E2 = {X ∈ Ω : |u| > N}.
Then

ˆ

Ω

uq−2
N |∇u|2Φk dm =

ˆ

E1

|u|q−2 |∇u|2Φk dm+

ˆ

E2

N q−2 |∇u|2Φk dm.

By the q-ellipticity, we can apply Proposition 2.2 to χ = Φk
1E1 and get

Re

ˆ

E1

A∇u · ∇[|u|q−2 u]Φk dm ≥ λ′
q

ˆ

E1

|u|q−2 |∇u|2Φk dm.

Similarly, by the 2-ellipticity, we have

Re

ˆ

E2

A∇u · ∇uΦk dm ≥ λ′
2

ˆ

E2

|∇u|2Φk dm.

Therefore,

ˆ

Ω

uq−2
N |∇u|2Φk dm . Re

ˆ

Ω

A∇u · ∇[uq−2
N ū]Φk dm(3.4)

= Re

ˆ

Ω

A∇u · ∇[uq−2
N ūΦk] dm

− Re

ˆ

Ω

A∇u · ∇[Φk]uq−2
N ū dm

=: T1 + T2.

A similar argument gives (3.4) in the case q < 2.

Observe that |∇uN | ≤ |∇u|, so if q ≥ 2,

(3.5) |∇[uq−2
N ū]| ≤ (q − 1)uq−2

N |∇u| ≤ (q − 1)N q−2 |∇u|,

and if q < 2,

(3.6) |∇[uq−2
N ū]| ≤ (3− q)uq−2

N |∇u| ≤ (3 − q)N2−q|∇u|.



The Dirichlet problem in domains with lower dimensional boundaries 843

In any case, uq−2
N ū ∈ W 1,2

loc , hence, since Φ is compactly supported in Ω, we have

that uq−2
N ūΦk lies in W0 and is compactly supported in Ω. Lemma 8.3 in [10]

shows that uq−2
N ūΦk is a valid test function for u ∈ W 1,2

loc (Ω), and hence T1 = 0.
As for T2, by Hölder’s inequality,

|T2| .

ˆ

Ω

|∇u|Φk−1|∇Φ|uq−2
N |u| dm(3.7)

≤
(ˆ

Ω

|∇u|2Φkuq−2
N dm

)1/2(ˆ

Ω

uq−2
N |u|2Φk−2 |∇Φ|2 dm

)1/2
.

Combining (3.4), T1 = 0 and (3.7), we conclude

ˆ

Ω

uq−2
N |∇u|2Φk dm(3.8)

.
(ˆ

Ω

uq−2
N |∇u|2Φk dm

)1/2(ˆ

Ω

uq−2
N |u|2Φk−2 |∇Φ|2 dm

)1/2
.

Note that by the definition of uN ,

ˆ

Ω

uq−2
N |∇u|2Φk dm ≤ N |q−2|

ˆ

Ω

|∇u|2Φk dm < ∞,

hence we may divide the same term on both sides of (3.8) and obtain

(3.9)

ˆ

Ω

uq−2
N |∇u|2Φk dm .

ˆ

Ω

uq−2
N |u|2Φk−2 |∇Φ|2 dm,

with a constant depending on q.

Since uN → |u| pointwise, by Fatou’s lemma and the observation that uq−2
N ≤

|u|q−2 for both q ≤ 2 and q ≥ 2, we have

ˆ

Ω

|u|q−2 |∇u|2Φk dm ≤ lim inf
N→∞

ˆ

Ω

uq−2
N |∇u|2Φk dm(3.10)

. lim inf
N→∞

ˆ

Ω

uq−2
N |u|2Φk−2 |∇Φ|2 dm

≤

ˆ

Ω

|u|qΦk−2 |∇Φ|2 dm.

Now, observe that Φk ≥ Ψk
1B and Φk−2 ≤ Ψk−2

12B. In addition, on 2B, we have

(3.11) |∇Φ| ≤ |∇Ψ|+ |∇ηB | . δ−1 + r−1 .
1

r
,

since δ(X) ≥ r on 2B. The bound (3.1) follows. However, we remark that the
estimate (3.1) could be an empty statement unless we prove that its right-hand
side is finite.
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Step 2: Moser estimate. Case q ≥ 2. Let 2 < k′ ∈ R. Since uN =
min{|u|, N} ≤ |u|, for any p such that q ≤ p ≤ qn/(n− 2), we have

( ˆ

2B

up−2
N |u|2Φk′

dm
)1/p

≤
( ˆ

2B

u
p−2p/q
N |u|2p/qΦk′

dm
)1/p

(3.12)

=
( ˆ

2B

(
u
q/2−1
N |u|Φk′q/2p

)2p/q
dm

)1/p
.

We remark that the first inequality is not true for the case q < 2. By the Sobolev–
Poincaré inequality, see Lemma 4.2 and the following Remark 4.3 of [10], there is
a constant C, independent of q, p, such that

( 

2B

(
u
q/2−1
N |u|Φk′q/2p

)2p/q
dm

)q/2p
(3.13)

≤ Cr
(  

2B

∣∣∇(u
q/2−1
N |u|Φk′q/2p)

∣∣2 dm
)1/2

.

Here we used that the power 2p/q is less or equal to the Sobolev exponent 2n/(n−2)
(and ∞ if n = 2). Therefore, by combining (3.12) and (3.13), we get

( 

2B

up−2
N |u|2Φk′

dm
)1/p

. r2/q
( 

2B

uq−2
N |∇u|2Φk′q/p dm

)1/q
(3.14)

+
(  

2B

uq−2
N |u|2Φk′q/p−2 |∇Φ|2 dm

)1/q
.

Suppose k′q/p ≥ 2. Then we can apply the gradient estimate (3.9) and get
ˆ

2B

uq−2
N |∇u|2Φk′q/p dm .

ˆ

2B

uq−2
N |u|2Φk′q/p−2 |∇Φ|2 dm.

Combining this with (3.14), we obtain

(3.15)
(  

2B

up−2
N |u|2Φk′

dm
)1/p

.
(
r2
 

2B

uq−2
N |u|2Φk′q/p−2 |∇Φ|2 dm

)1/q
.

Recall the definition Φ = ΨηB and (3.11). We have

( 

B

up−2
N |u|2Ψk′

dm
)1/p

.
(  

2B

up−2
N |u|2Φk′

dm
)1/p

(3.16)

.
(  

2B

uq−2
N |u|2Ψk′q/p−2 dm

)1/q
.

In particular, if we choose Ψ ≡ 1 and k′ big enough (depending only on n), the
estimate above becomes

(3.17)
(  

B

up−2
N |u|2 dm

)1/p
.

(  

2B

uq−2
N |u|2 dm

)1/q
< ∞,

whenever q ∈ [2, q′0) and q ≤ p ≤ qn/(n− 2).
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Iteration. By the same argument, if we replace 2B by λB, with λ ∈ (1, 2],
then (3.17) also holds, namely,

(3.18)
( 

B

up−2
N |u|2 dm

)1/p
.

( 

λB

uq−2
N |u|2 dm

)1/q
,

with a constant depending on the value of λ (as well as q, ‖A‖∞ and the q-ellipticity
of A). In particular, (3.18) holds for any q ∈ [2, q′0) and p = qn/(n− 2) (for n > 2;
any p < ∞ for n = 2). Now let p ∈ (2, q′0n/(n− 2)) be fixed. Let ℓ ∈ N be the first
integer so that p((n− 2)/n)ℓ ≤ 2, and λ = 21/ℓ ∈ (1, 2). We can iterate (3.18) ℓ
times and obtain

(  

B

up−2
N |u|2 dm

)1/p
.

(  

2B

|u|2 dm
)1/2

.

Note that the right-hand side is finite if u ∈ W 1,2
loc (Ω). Therefore, by passing

N → ∞, we conclude

(3.19)
(  

B

|u|p dm
)1/p

≤ Cp

(  

2B

|u|2 dm
)1/2

,

for any p ∈ (2, q′0n/(n − 2)). Note that in the iterative process, we get esti-
mates with ℓ constants depending on the powers p(n− 2)/n, p((n− 2)/n)2, . . . ,
((n− 2)/n)ℓ−1, and we combine them into one constant Cp depending on p and n.
This is Moser’s estimate for p > 2. It also justifies the right-hand side of (3.1) is
finite when q ≥ 2.

Step 3: Moser estimate. Case q ≤ 2. By Hölder’s inequality, if u ∈ W 1,2
loc (Ω),

we have u ∈ Lq(2B, dm) for all q ≤ 2. Hence we do not need to use uN to
approximate |u| in this case. Similar to the previous case, for any q ∈ (q0, 2] and
q ≤ p ≤ qn/(n− 2), we have

(  

B

|u|pΨk′

dm
)1/p

=
( 

B

(|u|q/2Ψk′q/2p)2p/q dm
)1/p

≤ C
(
r2
 

B

|∇(|u|q/2Ψk′q/2p)
∣∣2 dm

)1/q

.
(
r2
 

B

|u|q−2 |∇u|2Ψk′q/p dm
)1/q

+
(
r2
 

B

|u|qΨk′q/p−2 |∇Ψ|2 dm
)1/q

.

We have |∇Ψ| . 1/r on B. Furthermore, since u ∈ Lq(2B, dm) for q ≤ 2, the
right-hand side of (3.1) is finite, thus we can plug (3.1) in the above estimate.
Therefore, we get

(3.20)
( 

B

|u|pΨk′

dm
)1/p

.
(  

2B

|u|qΨk′q/p−2 dm
)1/q

,
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whenever q ∈ (q0, 2] and q ≤ p ≤ qn/(n − 2). Again, we take Ψ ≡ 1 and k′ large
and we obtain

(3.21)
( 

B

|u|p dm
)1/p

.
( 

2B

|u|q dm
)1/q

,

with q ∈ (q0, 2] and q ≤ p ≤ qn/(n− 2).

Iteration. Applying a similar iterative process as in the previous case, we
conclude that

(3.22)
( 

B

|u|2 dm
)1/2

≤ Cq

( 

2B

|u|q dm
)1/q

,

for any q ∈ (q0, 2). ✷

Here is a side product of Lemma 3.1, that will be useful later on.

Lemma 3.3. Let L = − divA∇ be an elliptic operator, that is, assume that L
satisfies (1.24)–(1.25). Set A(X) := δ(X)n−d−1A(X) and let q0 ∈ [1, 2) be given

by (2.4). Take k > 3.
For any q ∈ (q0, q

′
0), there exists ǫ := ǫ(n, k, q) > 0 such that if u ∈ W 1,2

loc (Ω) is

a weak solution to Lu = 0, if B is a ball of radius r that satisfies 3B ⊂ Ω, and
if Ψ is a smooth function satisfying 0 ≤ Ψ ≤ 1 and |∇Ψ(X)| ≤ 100/δ(X), then
we have

(3.23)
(  

B

|u|qΨk dm
)1/q

≤ C
( 

2B

|u|q−ǫΨk−3 dm
)1/q−ǫ

,

where the constant C > 0 depends on n, q, λA, ‖A‖∞, µ(A), and k.

Proof. Actually, this lemma is almost already proven. We just need to find the
constant ǫ.

Indeed, the estimate (3.16) gives that (here we switch the roles of p and q) for
2 ≤ p < q′0, p ≤ q ≤ pn/(n− 2), and k > 2q/p,

(  

B

uq−2
N |u|2Ψk dm

)1/q
.

( 

2B

up−2
N |u|2Ψkp/q−2 dm

)1/p
.

Thanks to Lemma 3.1, the right-hand side above is bounded uniformly in N , and
by taking N → +∞, we get

(  

B

|u|qΨk dm
)1/q

.
( 

2B

|u|pΨkp/q−2 dm
)1/p

.

Given q ∈ (2, q′0), we choose p = q−ǫ, where ǫ = 1
2 min{q−2, 2q/n, q(1−2/k)}> 0,

and we obtain (3.23) in the case q > 2.

As for the case q ≤ 2, we use (3.20), and we have
(  

B

|u|qΨk dm
)1/q

.
( 

2B

|u|pΨkp/q−2 dm
)1/p

,

whenever q ∈ (q0, 2], p ≤ q ≤ pn/(n− 2) and k > 2q/p. We choose again p = q− ǫ,
but where ǫ is now 1

2 min{q − q0, 2q/n, q(1 − 2/k)} > 0, and we obtain (3.23) in
the case q ≤ 2. ✷
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3.2. Boundary estimates

We want now to prove Theorem 1.13. In Theorem 1.13, we assume a stronger
assumption, that is, we assume that u ∈ W is an energy solution. Taking u ∈ W
instead of u ∈ W 1,2

loc (Ω) allows us to define a trace on the boundary, and then to
get estimates similar to the ones in Lemma 3.1 at the boundary.

We introduce the space W0 defined as

W0 := {v ∈ W, Tr v = 0}.

Recall that the space W0 is the completion of C∞
0 (Ω) under the norm ‖ · ‖W , see

Lemma 5.5 of [10].

Lemma 3.4 (Boundary estimates with vanishing trace). Let L = − divA∇ be

an elliptic operator, that is, assume that L satisfies (1.24)–(1.25). Set A(X) :=
δ(X)n−d−1A(X) and let q0 ∈ [1, 2) be given by (2.4). Let u ∈ W be a weak solution

to Lu = 0 such that for a ball B of radius r centered on Γ, we have Tru = 0 on 3B.

(i) For q ∈ (q0, q
′
0),

(3.24)

ˆ

B

|u|q−2 |∇u|2 dm ≤
C

r2

ˆ

2B\B

|u|q dm.

(ii) For q ∈ (2, q′0n/(n− 2)),

(3.25)
(  

B

|u|q dm
)1/q

≤ C
(  

2B

|u|2 dm
)1/2

.

(iii) For q ∈ (q0, 2),

(3.26)
(  

B

|u|2 dm
)1/2

≤ C
(  

2B

|u|q dm
)1/q

.

Each of the above constant C > 0 depends on n, q, λA, ‖A‖∞, and µ(A).

Proof. The proof of this lemma is similar to the one of Lemma 3.1 and we will
only talk about the differences.

Step 1: estimate of the gradient. Here, we take Ψ ≡ 1 and thus Φ = ηB , where
ηB ∈ C∞

0 (2B), 0 ≤ ηB ≤ 1, ηB ≡ 1 on B, and |∇ηB| ≤ C/r. We take k = 3 (k has
no importance as long as it is bigger than 2). The function uN is defined as in
step 1 of the proof of Lemma 3.1.

The proof of (3.24) is then done as the one of (3.1). The only delicate point is
to verify

(3.27) T1 := Re

ˆ

Ω

A∇u · ∇[uq−2
N ūΦk] dm = 0.

Since u ∈ W is a solution, according to Lemma 8.3 in [10], it suffices to show that
uq−2
N ūΦk ∈ W0. The bounds (3.5)–(3.6) prove that uq−2

N ū ∈ W . The fact that

uq−2
N ūΦk lies in W0 is then a consequence of Tru ≡ 0 on 3B, suppΦ ⊂ 2B, and

Lemmas 5.4 and 6.1 in [10].
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Step 2: Moser estimate. The proof of both (3.25) and (3.26) is identical of
the ones of respectively (3.2) and (3.3), and is based on (3.24) and the boundary
Poincaré’s inequality given in Lemma 4.2 of [10]. ✷

Now we set out to prove Theorem 1.13.

Lemma 3.5. Let L := − divA∇ be an elliptic operator. Set A(X) to be the

quantity δ(X)n−d−1A(X), let q0 ∈ [1, 2) be given by (2.4) and q ∈ (q0, q
′
0). For

any energy solution u ∈ W to Lu = 0, there exists a ball B centered on Γ such

that
ˆ

Ω\B

|∇u|2 |u|q−2 dm < +∞.

Proof. If u ∈ W is an energy solution, there exists g ∈ C∞
0 (Rn) such that Tru = g

on Γ. So we can find a ball B′ centered on Γ such that supp g ⊂ B′, that is, the
support of Tru is in B′ ∩ Γ. We choose B = 10B′, and let r be the radius of B.

We take k = 3 and then Φ ∈ C∞(Rn) such that 0 ≤ Φ ≤ 1, Φ ≡ 1 outside B,
Φ ≡ 0 in 1

2B, and |∇Φ| ≤ C/r. We can apply the argument in step 1 of Lemma 3.1
to Φ and get an estimate similar to (3.10):

(3.28)

ˆ

Ω

|u|q−2 |∇u|2Φk dm .

ˆ

Ω

|u|qΦk−2 |∇Φ|2 dm.

The only delicate point in the proof of (3.28) is the proof of the fact that

(3.29) Re

ˆ

Ω

A∇u · ∇[uq−2
N ūΦk] dm = 0,

that can be established with the same reasoning used to prove (3.27). By using
the properties of Φ, the bound (3.28) becomes

(3.30)

ˆ

Ω\B

|u|q−2 |∇u|2 dm .
1

r2

ˆ

B\ 1
2B

|u|q dm.

The annulus B \ 1
2B can be covered by a finite number of balls (Di)i∈I of radius

r/100 that does not intersect 2B′. Due to the Moser estimates (3.2) and (3.25)
(if q > 2) or simply by Hölder’s inequality (if q ≤ 2), we have

( 

Di

|u|q dm
)1/q

.
(  

Di

|u|2 dm
)1/2

.

Therefore, we deduce from (3.30) that
ˆ

Ω\B

|u|q−2 |∇u|2 dm . r(1+d)(1−q/2)−2
( ˆ

2B\2B′

|u|2 dm
)q/2

,

where CB depends on the ball B (and, in particular, its radius r). But we omit the
dependence since B is fixed. The Poincaré inequality implies now, since Tr u = 0
on 2B \ 2B′,

ˆ

2B\2B′

|u|2 dm . r2
ˆ

2B\2B′

|∇u|2 dm.
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Therefore,
ˆ

Ω\B

|u|q−2 |∇u|2 dm . r(d−1)(1−q/2)
(ˆ

2B\2B′

|∇u|2 dm
)q/2

< +∞.

The lemma follows. ✷

When the trace does not vanish, we can still apply similar argument in Lem-
ma 3.1 to u − g ∈ W0. As long as q ≥ 2, we can morally speaking bound the
integral of |u|q−2 |∇u|2 by that of u−g and g. We make it rigorous in the following
lemma.

Lemma 3.6 (Boundary estimates with non-vanishing trace: case q ≥ 2). Let

L := − divA∇ be an elliptic operator. Set A(X) := δ(X)n−d−1A(X), let q0 ∈ [1, 2)
given by (2.4), and take q ∈ [2, q′0), p ∈ [2, q′0n/(n− 2)).

Choose g ∈ C∞
0 (Rn) and set u ∈ W to be the (unique) energy solution to

Lu = 0 satisfying Tr u = g. For any ball B of radius r centered on Γ, we have

(3.31)

ˆ

B

|∇u|2 |u|q−2 dm .
1

r2

ˆ

2B

|u|q dm+ rq−2

ˆ

2B

|∇g|q + rd−1‖g‖qL∞(2B)

and

( 

B

|u|p dm
)1/p

.
( 

2B

|u|2 dm
)1/2

+
( 

2B

|g|p dm
)1/p

(3.32)

+ r
(  

2B

|∇g|p∗ dm
)1/p∗

,

where p∗ = max{2, p(n − 2)/n}, and where the constant depends only on n, λA,

µ(A), ‖A‖∞, and, respectively, q and p.
As a consequence, for any energy solution u ∈ W to Lu = 0 and any ball

B ⊂ Rn centered on Γ, one has

(3.33)

ˆ

B

|∇u|2 |u|q−2 dm < +∞.

Proof. We define v = u − g ∈ W0. The proof follows the same arguments as the
ones given in Lemma 3.1, step 1 and 2 or Lemma 3.4, the only difference being
that here we have Lv = −Lg instead.

Step 1: estimate of the gradient. We set k large, say k = 100, and then
Φ ∈ C∞

0 (2B), 0 ≤ Φ ≤ 1, Φ ≡ 1 on B, and |∇Φ| ≤ C/r. We also define
vN = min{|v|, N} to ensure the a priori finiteness of the integrals we work with.

Using q-ellipticity and 2-ellipticity, we obtain similarly to (3.4) that
ˆ

Ω

vq−2
N |∇v|2Φk dm . Re

ˆ

Ω

A∇v · ∇[vq−2
N v̄]Φk dm

= Re

ˆ

Ω

A∇v · ∇[vq−2
N v̄Φk] dm− Re

ˆ

Ω

A∇v · ∇[Φk]vq−2
N v̄ dm

=: T1 + T2.(3.34)
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Since q ≥ 2, we have

|∇[vq−2
N v̄]| ≤ (q − 1)vq−2

N |∇v| ≤ (q − 1)N q−2 |∇v|,

which ensures that vq−2
N v̄ ∈ W . Moreover, since Tr v = 0, Lemma 6.1 in [10] gives

that Tr[vq−2
N v̄] = 0 and then Lemma 5.24 gives that ϕ := vq−2

N v̄Φk ∈ W0. So the
term T1 is v tested against the function ϕ ∈ W0. Since v = u−g and u is a solution
to Lu = 0, we deduce

|T1| =
∣∣∣
ˆ

Ω

A∇g · ∇[vq−2
N v̄Φk] dm

∣∣∣ .
ˆ

Ω

|∇g| |∇[vq−2
N v̄Φk]| dm

.

ˆ

Ω

|∇g| |∇v|vq−2
N Φk dm+

ˆ

Ω

|∇g| |∇Φ|vq−2
N |v|Φk−1 dm

.
[(ˆ

Ω

vq−2
N |∇v|2Φk dm

)1/2
+
(ˆ

Ω

vq−2
N |v|2Φk−2 |∇Φ|2 dm

)1/2 ]

×
( ˆ

Ω

|∇g|2 vq−2
N Φk dm

)1/2
.

The last term in the last inequality can be treated as follows: Using the fact that
aθb1−θ . a+ b, where in our case θ = 1− 2/q, a = r−2 vqN and b = rq−2 |∇g|q, we
have

ˆ

Ω

vq−2
N |∇g|2Φk dm .

1

r2

ˆ

Ω

vqN Φk dm+ rq−2

ˆ

Ω

|∇g|qΦk dm(3.35)

.
1

r2

ˆ

Ω

vq−2
N |v|2Φk dm+ rq−2

ˆ

Ω

|∇g|qΦk dm.

Therefore, together with the fact that |∇Φ| ≤ C/r, the bound on T1 becomes

|T1| .
( ˆ

Ω

vq−2
N |∇v|2Φk dm

)1/2
(3.36)

×
[ 1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm+ rq−2

ˆ

Ω

|∇g|qΦk dm
]1/2

+
1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm+ rq−2

ˆ

Ω

|∇g|qΦk dm.

We turn to the estimate of T2. One has, by Cauchy–Schwarz’s inequality,

|T2| .

ˆ

Ω

|∇v|vq−2
N |v| |∇Φ|Φk−1(3.37)

.
(ˆ

Ω

vq−2
N |∇v|2Φk dm

)1/2( ˆ

Ω

vq−2
N |v|2Φk−2 |∇Φ|2 dm

)1/2

.
(ˆ

Ω

vq−2
N |∇v|2Φk dm

)1/2( 1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm

)1/2
,
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where we use the fact that |∇Φ| . r−1 in the last line. The combination of (3.34),
(3.36), and (3.37) implies that

ˆ

Ω

vq−2
N |∇v|2Φk dm .

(ˆ

Ω

vq−2
N |∇v|2Φk dm

)1/2

×
[ 1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm+ rq−2

ˆ

Ω

|∇g|qΦk dm
]1/2

+
1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm+ rq−2

ˆ

Ω

|∇g|qΦk dm,

which self-improves, since
´

Ω
vq−2
N |∇v|2Φk dm is finite, to

(3.38)

ˆ

Ω

vq−2
N |∇v|2Φk dm .

1

r2

ˆ

Ω

vq−2
N |v|2Φk−2 dm+ rq−2

ˆ

Ω

|∇g|qΦk dm.

Recall that Φ ≡ 1 on B and Φ ≡ 0 outside 2B, hence

(3.39)

ˆ

B

vq−2
N |∇v|2 dm .

1

r2

ˆ

2B

vq−2
N |v|2 dm+ rq−2

ˆ

2B

|∇g|q dm.

Step 2: Moser estimate. Using similar arguments as the ones invoked in step 2
of the proof of Lemma 3.1 (mainly based on the Poincaré inequality), we obtain
an analogue of (3.14), that is,

(  

2B

vp−2
N |v|2Φk′

dm
)1/p

. r2/q
(  

2B

vq−2
N |∇v|2Φk′q/p dm+

 

2B

vq−2
N |v|2Φk′q/p−2 |∇Φ|2 dm

)1/q
,

whenever 2 ≤ q ≤ p ≤ qn/(n − 2). Assuming that k′ is such that k′q/p − 2 > 0
and using (3.38) with k = k′q/p for the first term in the right-hand side, we obtain
that

(  

2B

vp−2
N |v|2Φk′

dm
)1/p

. r2/q
( 1

r2

 

2B

vq−2
N |v|2Φk′q/p−2 dm

+ rq−2

 

2B

|∇g|qΦk′q/p dm

+

 

2B

vq−2
N |v|2Φk′q/p−2|∇Φ|2 dm

)1/q
,

whenever 2 ≤ q < q′0. Now, use the fact that |∇Φ| ≤ C/r, Ψ ≡ 1 on B, and Ψ ≤ 1,
to get

(  

B

vp−2
N |v|2 dm

)1/p
. r2/q

( 1

r2

 

2B

vq−2
N |v|2 dm+ rq−2

 

2B

|∇g|q dm
)1/q

or ( 

B

vp−2
N |v|2 dm

)1/p
.

(  

2B

vq−2
N |v|2 dm

)1/q
+ r

(  

2B

|∇g|q dm
)1/q

.
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The arguments can be slightly modified to get

( 

B

vp−2
N |v|2 dm

)1/p
≤ Cλ

( 

λB

vq−2
N |v|2 dm

)1/q
+ Cλr

(  

λB

|∇g|q dm
)1/q

,

where λ ∈ (1, 2) and Cλ depends on λ. We use then an iterative argument as the
one given page 845 and we get, if p ∈ [2, q′0n/(n−2)) and p∗ = max{2, p(n−2)/n},

(3.40)
( 

B

vp−2
N |v|2 dm

)1/p
.

( 

2B

|v|2 dm
)1/2

+ r
(  

2B

|∇g|p∗ dm
)1/p∗

.

Step 3: Conclusion. The estimate (3.40) gives a uniform (and finite) bound on

( 

B

vp−2
N |v|2 dm

)1/p
,

so, taking N → +∞, we obtain, if p∈ [2, q′0n/(n−2)) and p∗=max{2, p(n−2)/n},

(3.41)
( 

B

|v|p dm
)1/p

.
(  

2B

|v|2 dm
)1/2

+ r
(  

2B

|∇g|p∗ dm
)1/p∗

.

The inequality above is not (3.32), because the estimate is on v = u − g and not
on u. But by the triangle inequality

(  

B

|u|p dm
)1/p

≤
( 

B

|v|p dm
)1/p

+
(  

B

|g|p dm
)1/p

,

and Hölder’s inequality

(  

2B

|v|2 dm
)1/2

≤
( 

2B

|u|2 dm
)1/2

+
(  

2B

|g|p dm
)1/p

,

we easily obtain the desired estimate (3.32).

Thanks to (3.41), the right-hand side of (3.39) is uniformly bounded in N .
Thus we may take N → +∞ in (3.39) and get

(3.42)

ˆ

B

|v|q−2 |∇v|2 dm .
1

r2

ˆ

2B

|v|q dm+ rq−2

ˆ

2B

|∇g|q dm.

Again, we want to turn (3.42) into an estimate on u = v + g. Yet, observe that

(3.43)
1

r2

ˆ

2B

|v|q dm .
1

r2

ˆ

2B

|u|q dm+ rd−1‖g‖qL∞(2B).

Besides, we have
ˆ

B

|u|q−2 |∇u|2 dm .

ˆ

B

|v|q−2 |∇v|2 dm+

ˆ

B

|v|q−2 |∇g|2 dm

+

ˆ

B

|g|q−2 |∇v|2 dm+

ˆ

B

|g|q−2 |∇g|2 dm

=: I1 + I2 + I3 + I4.
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We do not change I1. We use the fact that aq−2b2 . rd−1aq + r(d−1)(1−q/2)bq and
we get

I3 ≤ ‖g‖q−2
L∞(B)

ˆ

B

|∇v|2 dm

. rd−1‖g‖qL∞(B) + r(d−1)(1−q/2)
(ˆ

B

|∇v|2 dm
)q/2

. rd−1‖g‖qL∞(B) + r(d−1)(1−q/2)
( 1

r2

ˆ

2B

|v|2 dm+

ˆ

2B

|∇g|2 dm
)q/2

. rd−1‖g‖qL∞(B) +
1

r2

ˆ

2B

|v|q dm+ rq−2

ˆ

2B

|∇g|q dm.

Similarly, since aq−2b2 . r−2aq + rq−2bq, we have

I2 .
1

r2

ˆ

B

|v|q dm+ rq−2

ˆ

B

|∇g|q dm

and

I4 .
1

r2

ˆ

B

|g|q dm+ rq−2

ˆ

B

|∇g|q dm . rd−1‖g‖qL∞(B) + rq−2

ˆ

B

|∇g|q dm.

Altogether, we deduce
ˆ

B

|u|q−2 |∇u|2 dm .

ˆ

B

|v|q−2 |∇v|2 dm+
1

r2

ˆ

B

|v|q dm+ rd−1‖g‖qL∞(B)(3.44)

+ rq−2

ˆ

B

|∇g|q dm.

The combination of (3.42), (3.43), and (3.44) gives (3.31).

Eventually, by combining (3.31) and (3.32), we obtain
ˆ

B

|∇u|2 |u|q−2 dm

.
1

r2

ˆ

2B

|u|q dm+ rq−2

ˆ

2B

|∇g|q + rd−1‖g‖qL∞(2B)

. r(d+1)(1−q/2)−2
(ˆ

4B

|u|2 dm
)q/2

+ rq−2

ˆ

4B

|∇g|q + rd−1‖g‖qL∞(2B) < +∞

because g ∈ C∞
0 (Rn) and u ∈ W (recall that the latter forces u ∈ L2

loc(R
n, dm),

see Lemma 3.1 in [10]). The lemma follows. ✷

Combining the Lemmas 3.5 and 3.6, we easily prove Theorem 1.13.

4. Preliminaries to the local estimates

In this section, and for the rest of the article, we take Ω = Rn \Rd = {(x, t) ∈ Rn,
x ∈ R

d and t ∈ R
n−d \ {0}}; the boundary Γ is assimilated to R

d. We also
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write X = (x, t) or Y = (y, s) for the running points in Ω, and we write Bl(x) for
the ball in R

d with center x and radius l. In this particular case, the measure m
satisfies

dm(X) =
dt

|t|n−d−1
dx.

4.1. Properties of the non-tangential maximal function N

Lemma 4.1. Let a, b > 0, p ∈ [1,+∞], and let L be an elliptic operator. Set

q0 ∈ (1, 2) given by Proposition 2.1 and choose q1, q2 ∈ (q0, q
′
0). Then for any weak

solution u ∈ W 1,2
loc (Ω) to Lu = 0 that satisfies ‖Ña,q1(u)‖p < +∞, we have

‖Ñb,q2(u)‖p ≤ C‖Ña,q1(u)‖p < +∞,

where C > 0 depends only on n, a, b, q1, q2, λA, ‖A‖∞ and µ(A).

Proof. We use the notation introduced in Subsection 1.2. The proof of Lemma 3.1
can be easily adapted to get (3.2)–(3.3), where the ball B is replaced by Wb(z, r)
and 2B is replaced by

{(y, s) ∈ Ω, y ∈ Bbr(z), r/4 ≤ |s| ≤ 4r} ⊂ W4b(z, r/2) ∪W4b(z, 2r).

So we obtain, for any (z, r) ∈ R
d+1
+ , that

(4.1)
( 

Wb(z,r)

|u|q2 dm
)1/q2

.
( 

W4b(z,r/2)∪W4b(z,2r)

|u|q1 dm
)1/q1

.

In addition, we have

|W4b(z, r/2)| ≃ bdrn ≃ |W4b(z, 2r)|

and

dm(X) ≃ rd+1−n dx dt for any X = (x, t) ∈ W4b(z, r/2) ∪W4b(z, 2r).

We deduce that (4.1) becomes

uW,b,q2(z, r) . uW,4b,q1(z, r/2) + uW,4b,q1(z, 2r).

By taking the supremum on (z, r) ∈ Γb(x), where x ∈ Rd, we get the pointwise
bound

Ñb,q′(u)(x) ≤ CÑ4b,q(u)(x),

with a constant C independent of x. We take the Lp-norm of the inequality above
to obtain

‖Ñb,q2(u)‖p . ‖Ñ4b,q1(u)‖p . ‖Ña,q1(u)‖p,

where the last inequality is obtained by a classical real variable method argument
(see Chapter II, equation (25) in [28]). ✷
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We also have the following corollary of Lemma 3.3, that will be useful in Sec-
tion 6.

Lemma 4.2. Let a > 0 and L := − div|t|d+1−nA∇ be an elliptic operator. Set

q0 ∈ (1, 2) given by Proposition 2.1 and choose q ∈ (q0, q
′
0). Take also k > 3.

There exists ǫ := ǫ(n, k, q, q0) such that for any weak solution u ∈ W 1,2
loc (Ω) to

Lu = 0, and for any smooth function Ψ ∈ C∞
0 (Rn) that satisfies 0 ≤ Ψ ≤ 1 and

|∇Ψ| ≤ 100/|t|, we have

‖Ña,q(u|Ψ
k)‖q ≤ C‖Ña,q−ǫ(u|Ψ

k−3)‖q,

where C > 0 depends only on n, a, q, λA, ‖A‖∞, µ(A) and k. In particular, if the

right-hand side above is finite, so is the left-hand side.

Proof. As in the previous lemma, the use of Lemma 3.3 with the sets Wa(z, r)
instead of balls gives that

(u|Ψk)W,a,q(z, r) . (u|Ψk−3)W,4a,q−ǫ(z, r/2) + (u|Ψk−3)W,4a,q−ǫ(z, 2r).

By taking the supremum on the cones Γa(x), and then the Lq norm on x ∈ Rd, we
get

‖Ña,q(u|Ψ
k)‖q . ‖Ñ4a,q−ǫ(u|Ψ

k−3)‖q.

We can upgrade Ñ4a,q−ǫ into Ña,q−ǫ by using, as in the proof of Lemma 4.1, a real
variable argument. The lemma follows. ✷

4.2. The Carleson inequality and good cut-off functions

Proposition 4.3 (Carleson inequality). Let a > 0 and q ∈ (1,+∞). Let f be

a measurable function (scalar, vector-valued, or matrix-valued) that satisfies the

Carleson measure condition (see Definition 1.1). For any function u ∈ Lq
loc(Ω)

and any non-negative function Ψ ∈ C∞
0 (Ω), we have

ˆ

(x,t)∈Ω

|f |2 |u|qΨ
dt

|t|n−d
dx ≤ C‖f‖CM,a‖Ña,q(u|Ψ)‖qq,

where the constant C depends only on the dimensions n and d.

Proof. Observe that
¨

(x,t)∈Ω

|f |2 |u|qΨ
dt

|t|n−d
dx

.

¨

(x,r)∈R
d+1
+

1

|Wa(x, r)|

¨

(y,s)∈Wa(x,r)

|f |2 |u|qΨ ds dy
dr

r
dx

.

¨

(x,r)∈R
d+1
+

(u|Ψ)qW,a,q

(
sup

(y,s)∈Wa(x,r)

|f |2
) dr

r
dx

. ‖f‖CM,a‖Ña,q(u|Ψ)‖qq,

where we used the classical Carleson inequality, see, for instance, Chapter II, Sec-
tion 2.2 of [28]. ✷
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Let us define ‘good’ cut-off functions.

Definition 4.4. Let a > 0. A function Ψ satisfies (H2
a) if Ψ is locally Lipschitz

on Ω and there exists M > 0 such that

(i) 0 ≤ Ψ ≤ 1 on Ω,

(ii) |∇Ψ(x, t)| ≤ C/|t| for any (x, t) ∈ Ω,

(iii) for any x ∈ Rd,

(4.2)

¨

(z,r)∈Γb(x)

(
sup

Wb(z,r)

|∇Ψ|
)dr
rd

dz ≤ M,

where b = a/100.

We say that Ψ satisfies (H2
a,M ) if Ψ satisfies (iii) with the constant M .

On first read it appears that the condition (H2
a,M ) depends on the constant C

in (ii); however, it can be shown that condition (iii) implies (ii), with a constant C
depending on a,M, d, and condition (ii) is only here to simplify the reading. Indeed,
a point (x, t) ∈ Ω belongs to Wb(z, r) for any z ∈ Rd, r > 0, which satisfies
|t|/2 ≤ r ≤ 2|t| and z ∈ Bb|t|/4(x), so

|∇Ψ(x, t)| .
1

|t|

ˆ

Bb|t|/4

ˆ

|t|/2≤r≤2|t|

sup
Wb(z,r)

|∇Ψ|
dr

rd
dz

≤
1

|t|

¨

(z,r)∈Γb(x)

(
sup

Wb(z,r)

|∇Ψ|
)dr
rd

dz .
M

|t|

if (iii) is satisfied.

The following observations are crucial.

Lemma 4.5. Let φ ∈ C∞
0 (R+) be such that 0 ≤ φ ≤ 1, φ ≡ 1 on [0, 1], φ ≡ 0 on

[2,+∞), and |φ′| ≤ 2.

(1) If e(x) is a positive a−1-Lipschitz function and

Ψe(x, t) = φ
(e(x)

|t|

)
,

then Ψe satisfies (H2
a,M ) for an M that depends only on a and the dimen-

sions n, d.

(2) If B ⊂ Rd is a (boundary) ball of radius bigger than or equal to l, and

ΨB,l(x, t) = φ
(a|t|

l

)
φ
(
1 +

dist(x,B)

l

)
,

then ΨB,l satisfies (H2
a,M ) for an M that depends only on a, n.

(3) If Ψ1 and Ψ2 are two functions satisfying (H2
a,M1

) and (H2
a,M2

), respectively,

then Ψ1Ψ2 satisfies (H2
a,M1+M2

).
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Proof. Part (3) follows easily from Definition 4.4. We shall only prove (1), and the
proof for (2) is similar. The assertion (i) of Definition 4.4 is trivial, and as we said,
(ii) follows from (iii), so we only need to verify (iii).

Let b = a/100 and take x ∈ Rd. We want to show that

¨

(z,r)∈Γb(x)

(
sup

Wb(z,r)

|∇Ψe|
)dr
rd

dz ≤ M.

By the properties of φ, we first observe that |∇Ψe(y, s)| ≤ C/|s|, and thus
supWb(z,r)

|∇Ψe| ≤ C′/r. Another simple observation is that

{(y, s) ∈ R
n, |∇Ψe(y, s)| 6= 0} ⊂ {(y, s) ∈ R

n, e(y)/2 ≤ |s| ≤ e(y)}.

If (y, s) ∈ Wb(z, r) for some (z, r) ∈ Γb(x), then necessarily (y, s) ∈ Γ̂3b(x). So

we want to find for which values of (y, s) ∈ Γ̂3b(x), we have |∇Ψe(y, s)| 6= 0. If
y = x, then we have

Sx := {s ∈ R
n−d, |∇Ψe(x, s)| 6= 0} ⊂ {s ∈ R

n−d, e(x)/2 ≤ |s| ≤ e(x)}.

Besides, if (y, s) ∈ Γ̂3b(x) is such that |∇Ψe(y, s)| 6= 0, since e is a−1-Lipschitz, we
can find sx ∈ Sx such that

|s− sx| ≤
1

a
|y − x| ≤

3b

a
|s| ≤

|s|

2
.

We deduce that
e(x)

3
≤

2

3
|sx| ≤ |s| ≤ 2sx ≤ 2e(x),

and then the values (z, r) ∈ Γb(x) for which Wb(z, r) contains such (y, s) satisfy

e(x)

6
≤

|s|

2
≤ r ≤ 2|s| ≤ 4e(x).

Therefore,

¨

(z,r)∈Γb(x)

(
sup

Wb(z,r)

|∇Ψe|
) dr
rd

dz .

ˆ

e(x)/6≤r≤4e(x)

ˆ

Bbr(x)

dz
dr

rd+1
. 1.

Part (1) of the lemma follows. ✷

Now, let us state another important property of functions which satisfy (H2
a).

Lemma 4.6. Let a > 0 and q ∈ (1,+∞). Let Ψ satisfy (H2
a,M ). If v ∈ Lq

loc(Ω)
and 0 ≤ Φ ∈ C∞

0 (Ω), then

(4.3)

¨

Ω

|v|qΦ |∇Ψ|2
dt

|t|n−d−2
dx+

¨

Ω

|v|qΦ |∇Ψ|
dt

|t|n−d−1
dx≤CM‖Ña,q(v|Φ)‖

q
q,

with a constant C > 0 that depends only on n, a.
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Proof. The proof is almost straightforward. Let b = a/100. First, due to (ii) in
Definition 4.4, we have

¨

Ω

|v|qΦ |∇Ψ|2
dt

|t|n−d−2
dx ≤ C

¨

Ω

|v|qΦ |∇Ψ|
dt

|t|n−d−1
dx,

so we only need to bound the second term in the left-hand side of (4.3). By Fubini’s
lemma, for any non-negative function f ,

¨

(z,r)∈Rd×(0,∞)

( 1

|Wb(z, r)|

¨

Wb(z,r)

f dt dx
)
dz dr

≈

¨

(x,t)∈Ω

f
(¨

(z,r)∈R
d×(0,∞)

s.t. (x,t)∈Wb(z,r)

dz
dr

rn

)
dt dx

≥

¨

Ω

f
(ˆ 2|t|

|t|/2

ˆ

z∈Bb|t|/2(x)

dz
dr

rn

)
dt dx ≈

¨

Ω

f
dt

|t|n−d−1
dx,

where the constants depend on b and the dimension d. Thus
¨

Ω

|v|qΦ |∇Ψ|
dt

|t|n−d−1
dx

.

¨

(z,r)∈Rd×(0,∞)

( 1

|Wb(z, r)|

¨

Wb(z,r)

|v|qΦ |∇Ψ|
)
dz dr

.

¨

(z,r)∈Rd×(0,∞)

|(v|Φ)W,b,q(z, r)|
q
(

sup
Wb(z,r)

|∇Ψ|
)
dz dr

.

ˆ

x∈Rd

¨

(z,r)∈Γa(x)

|(v|Φ)W,b,q(z, r)|
q
(

sup
Wb(z,r)

|∇Ψ|
)
dz

dr

rd
dx

.

ˆ

x∈Rd

|Ñb,q(v|Φ)(x)|
q

¨

(z,r)∈Γb(x)

(
sup

Wb(z,r)

|∇Ψ|
)
dz

dr

rd
dx

. M

ˆ

Rd

|Ña,q(v|Φ)|
q dx,

by (iii) in Definition 4.4. ✷

5. The local estimate S < N

In this section, we estimate the q-adapted functional Sa,q by the functional Ña,q,
by using methods similar to the ones in [12] and Section 7 of [11]. In fact, the
general method was pioneered in [24]. To get boundary estimates, the derivative(s)
in the transversal t-direction clearly plays an essential role. To estimate the t-
derivative(s), it is convenient to tweak the elliptic matrix A so that its lower left
corner becomes zero:

(5.1) A =

(
A1 A2

B3 bI

)
+ C → A′ :=

(
A1 A2 + (B3)

T

0 bI

)
+ C.

By simple algebra, such an A′ satisfies the following:
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• For X = (0, t) and Y = (y, s) ∈ Rn, we have

(5.2) A′Y ·X = bs · t+ CY ·X.

If Y denotes the full derivative, then roughly speaking A′ highlights the
t-derivative(s).

• The difference between the two elliptic operators − div|t|d+1−nA∇ and
−div|t|d+1−nA′∇ is of first-order; to be more precise,

(5.3) L = − div|t|d+1−nA∇ = − div|t|d+1−nA′∇+ |t|d+1−nD′ · ∇,

where, for any 1 ≤ j ≤ d < i ≤ n,

(5.4) (D′)j = −
∑

ℓ>d

|t|n−d−1∂tℓ [(B3)ℓj |t|
d+1−n], (D′)i =

∑

ℓ≤d

∂xℓ
(B3)iℓ.

Observe that the condition (H1) imposes, in particular, that |t|D′ satisfies
the Carleson measure condition.

• Moreover, if we assume that the matrix B3 is real-valued, then A′ξ ·ξ has the
same real part as Aξ · ξ (and we have A′ξ · ξ = Aξ · ξ without even assuming
that B3 is real). Hence, by Proposition 2.4, A′ is q-elliptic if and only if A is
q-elliptic; more precisely, λq(A′) = λq(A).

Lemma 5.1 (Local S < κN). Let L = − div|t|d+1−nA∇ be an elliptic operator

that satisfies (H1
κ) for some constant κ ≥ 0 (see Definition 1.2). We define A′ as

in (5.1). Let a > 0 and q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Take

k > 2 and a function Ψ ∈ C∞
0 (Ω) which verifies 0 ≤ Ψ ≤ 1 and |∇Ψ| ≤ 100/|t|

everywhere. Then for any weak solution u ∈ W 1,2
loc (Ω) to Lu = 0, we have

c‖Sa,q(u|Ψ
k)‖qq ≤

1

2
Re

¨

Ω

A′∇u · ∇[|u|q−2 ū]
Ψk

b

dt

|t|n−d−2
dx

≤ Cκ‖Ña,q(u|Ψ
k−2)‖qq − Re

¨

Ω

A′∇u · ∇x[Ψ
k]

|u|q−2 ū

b

dt

|t|n−d−2
dx

+
1

q

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t[Ψ

k]
dt

|t|n−d−2
dx,

(5.5)

where the constants c, C depend on a, q, n, k, ‖A‖∞, λq(A) and ‖b‖∞ + ‖b−1‖∞.

Remark 5.2. (i) In (5.5) the differential operators ∇x and ∇t denote an n-
dimensional vector, where the missing derivatives are taken to be zero.

(ii) This lemma is a key step in proving the S < N estimates. The corollaries
of this lemma are Lemma 5.3, and with some additional a priori estimate,
Lemma 7.6. In fact, the second and last terms on the right-hand side can

be roughly bounded by ‖Ña,q(u|Ψk−1)‖qq+‖Sa,q(u|Ψk)‖
q/2
q ‖Ña,q(u|Ψk−2)‖

q/2
q

(see Lemma 5.3); with an appropriate choice of cut-off function they can be
bounded more precisely by ‖Tru‖qq (see Lemmas 7.5 and 7.8).
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Proof. First of all, Proposition 1.10 guarantees that |u|q and |∇u|2 |u|q−2 lie in
L1
loc(Ω). Therefore, since A′ and b−1 are bounded and

|∇u|2 |u|q−2 ≃ |∇u||∇[uq−2 ū]|,

by (2.5), all the quantities invoked in (5.5) are well defined and finite.

Let T be the quantity

T := Re

¨

Ω

A′∇u · ∇[|u|q−2 ū]
Ψk

b

dt

|t|n−d−2
dx.

Since A is q-elliptic and B3 is real-valued, we know A′ is also q-elliptic, and, more
precisely, that λq(A′) = λq(A). Together with Proposition 2.2 and the fact that b
is uniformly bounded from above, we obtain

‖Sa,q(u|Ψ
k)‖qq ≃

¨

(x,t)∈Rn

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx . T,

which is exactly the first estimate in (5.5). Here we use the assumption that b is
a real-valued scalar.

We claim that

T ≤ Cκ1/2T 1/2‖Ñq,a(u|Ψ
k−2)‖

q/2
Lq(B)(5.6)

− Re

¨

Ω

A′∇u · ∇x[Ψ
k]

|u|q−2 ū

b

dt

|t|n−d−2
dx

+
1

q

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t[Ψ

k]
dt

|t|n−d−2
dx,

which easily implies the second inequality in (5.5) since T is finite. So let us prove
the claim.

First, check that we can write

T = Re

¨

Ω

A′∇u · ∇[|u|q−2 ū]
|t|Ψk

b

dt

|t|n−d−1
dx

= Re

¨

Ω

A′∇u · ∇
[ |t||u|q−2 ūΨk

b

] dt

|t|n−d−1
dx

− Re

¨

Ω

A′∇u · ∇[Ψk]
|u|q−2 ū

b

dt

|t|n−d−2
dx

+Re

¨

Ω

A′∇u · ∇b
|u|q−2 ūΨk

b2
dt

|t|n−d−2
dx

− Re

¨

Ω

A′∇u · ∇|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

=: T1 + T2 + T3 + T4.
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Let us start with T2. The term T2 is similar to the second term in the right-hand
side of (5.6), except that ∇[Ψk] is replaced by ∇x[Ψ

k]. We write

T2 = −Re

¨

Ω

A′∇u · ∇x[Ψ
k]

|u|q−2 ū

b

dt

|t|n−d−2
dx

− Re

¨

Ω

A′∇u · ∇t[Ψ
k]

|u|q−2 ū

b

dt

|t|n−d−2
dx

=: T21 + T22.

The term T21 is the second term in the right-hand side of (5.6). As for T22, by (5.2)
we know that

T22 ≤ −Re

¨

Ω

∇tu · ∇t[Ψ
k] |u|q−2 ū

dt

|t|n−d−2
dx

+ C

¨

Ω

|C| |∇u| |∇t[Ψ
k]| |u|q−1 dt

|t|n−d−2
dx

=: T221 + T222,

where T222 was obtained by using the fact that b−1 is uniformly bounded. Notice
that ∇|u|q = qRe(∇u |u|q−2 ū), which gives that T221 is part of the last term in
the right-hand side of (5.6). Observe now that by the assumption on Ψ, we have

|∇t[Ψ
k]| ≤

C

|t|
Ψk−1,

hence

T222 ≤ C

ˆ

Ω

|C| |∇u|Ψk−1 |u|q−1 dt

|t|n−d−1
dx

≤ C
(ˆ

Ω

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx

)1/2(ˆ

Ω

|C|2 |u|qΨk−2 dt

|t|n−d
dx

)1/2
.

Since the matrix A′ is q-elliptic and b−1 ≤ C, the first integral in the right-hand
side above is thus bounded by

Re

ˆ

Ω

A′∇u · ∇[|u|q−2 ū]
Ψk

b

dt

|t|n−d−2
dx = T,

while we bound the second integral by using Proposition 4.3 (the Carleson inequal-
ity) and the fact that C satisfies the Carleson measure condition. We obtain

T222 . T 1/2κ1/2 ‖Ña,q(u|Ψ
k−2)‖q/2q .

The bound of T2 follows.

We turn to the estimate of T3. We use the boundedness of A′ and b−1, and
then Cauchy–Schwarz’s inequality to obtain

|T3| .

¨

Ω

|∇u| |∇b|Ψk |u|q−1 dt

|t|n−d−2
dx

.
( ˆ

Ω

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx

)1/2(¨

Ω

|∇b|2Ψk |u|q
dt

|t|n−d−2
dx

)1/2
.
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As we did for T222, the q-ellipticity of A′ and the fact that |t| |∇b| satisfies the
Carleson measure condition give that

|T3| . T 1/2κ1/2‖Ña,q(u|Ψ
k)‖q/2q ≤ T 1/2κ1/2 ‖Ña,q(u|Ψ

k−2)‖q/2q ,

where the last inequality stands because Ψ ≤ 1.

The term T4 is a bit more complicated. By (5.1), the bottom left corner of A′

is a zero matrix. Thus, similar to (5.2), we have

T4 = −Re

¨

Ω

b∇tu · ∇t|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

−Re

¨

Ω

C∇u · ∇t|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

= −Re

¨

Ω

C∇u · ∇t|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

−Re

¨

Ω

∇tu · ∇t|t| |u|
q−2 ūΨk dt

|t|n−d−1
dx

=: T41 + T42.

The term T41 can be dealt as T222 or T3. By using Cauchy–Schwarz’s inequality
and then Carleson inequality (Proposition 4.3), we have

|T41| . T 1/2κ1/2‖Ña,q(u|Ψ
k)‖q/2q ≤ T 1/2 κ1/2‖Ña,q(u|Ψ

k−2)‖q/2q .

As for T42, recall that ∇t|u|q = q|u|q−2 Re(ū∇tu), hence

T42 = −
1

q

¨

Ω

∇t[|u|
qΨk] · ∇t|t|

dt

|t|n−d−1
dx

+
1

q

¨

Ω

∇t[Ψ
k] · ∇t|t| |u|

q dt

|t|n−d−1
dx

=: T421 + T422.

The first term T421 is 0. Indeed, for any function v, ∇tv · ∇t|t| equals ∂rv, the
derivative in the radial direction. We switch then to polar coordinates, and T421

is the integral of a derivative. The last term T422 is part of the last term in the
right-hand side of (5.6).

It remains to treat T1. As stated in (5.3), we know that if u is a weak solution of
Lu = 0, then it is also a weak solution to L′u = 0, L′ = − div|t|d+1−nA′∇+D′ ·∇,
where the matrix A′ is defined in (5.1), and D′ is as in (5.4). Note that |t| |D′| .
|t| |∇B3|, so |t|D′ lies in L∞

loc(Ω) and satisfies the Carleson measure condition.

Now, set v := |t|
b |u|q−2 ūΨk. We want to find the value of

(5.7)

¨

(x,t)∈Rn

A′∇u · ∇v
dt

|t|n−d−1
dx+

¨

(x,t)∈Rn

D′ · ∇uv
dt

|t|n−d−1
dx,
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which is formally 0, because (5.7) is only L′u tested against a test function v.
The problem is that the test function v is not smooth, and not even necessarily in
W 1,2

loc (Ω), so the fact that (5.7) equals 0 needs to be proven.

The function Ψ is compactly supported in Ω, hence is v; besides, since the
functions Ψ, b−1,∇Ψ,∇b are all in L∞

loc(Ω), we have |v| . |u|q−1 and |∇v| .

|∇u||u|q−2 + |u|q−1 uniformly on the support of Ψ. Due to Proposition 1.10, the
function A′∇u ·∇v+D′ ·∇uv is now in L1(Ω, dt/|t|n−d−1 dx) and we will see that
an argument similar to the Lebesgue domination convergence proves that (5.7)
is 0. We separate two cases: if q ≥ 2, then we set uN = min{N, |u|} and

vN :=
|t|

b
uq−2
N ūΨk.

The function vN is in W 1,2
loc (Ω), because |t|Ψ2q is Lipschitz, uq−2

N ū ∈ W 1,2
loc (Ω),

since |∇[uq−2
N ū]| ≤ (q − 1)uq−2

N |∇ū| ∈ L2
loc(Ω), and |b| ≥ C−1, b ∈ W 1,∞

loc (Ω), by
assumption. Moreover, vN is compactly supported in Ω, so by Lemma 8.3 of [10],
for any N ∈ N,

¨

(x,t)∈Rn

A′∇u · ∇vN
dt

|t|n−d−1
dx +

¨

(x,t)∈Rn

D′ · ∇uvN
dt

|t|n−d−1
dx = 0.

In addition, we have

A′∇u · ∇v +D′ · ∇uv = A′∇u · ∇vN +D′ · ∇uvN in {|u| < N}.

It follows that
∣∣∣
¨

(x,t)∈Rn

[A′∇u · ∇v +D′ · ∇uv]
dt

|t|n−d−1
dx

∣∣∣

≤

ˆ

{|u|≥N}

(
|A′∇u · ∇v +D′ · ∇uv|+ |A′∇u · ∇vN +D′ · ∇uvN |

) dt

|t|n−d−1
dx → 0

as N → +∞, because A′∇u · ∇v + D′ · ∇uv and A′∇u · ∇vN + D′ · ∇uvN are
integrable.

We turn now to the case where q < 2. We define uǫ := max{|u|, ǫ}, vǫ :=
|t|
b u

q−2
ǫ ūΨk. Check, similarly, as before, that vǫ ∈ W 1,2

loc (Ω), which gives
¨

(x,t)∈Rn

A′∇u · ∇vǫ
dt

|t|n−d−1
dx+

¨

(x,t)∈Rn

D′ · ∇uvǫ
dt

|t|n−d−1
dx = 0

and, by the Lebesgue domination theorem, since A′∇u ·∇v+D′ ·∇uv and A′∇u ·
∇vǫ +D′ · ∇uvǫ are integrable,
∣∣∣
¨

(x,t)∈Rn

[A′∇u · ∇v +D′ · ∇uv]
dt

|t|n−d−1
dx

∣∣∣

≤

ˆ

{|u|≤ǫ}

(
|A′∇u · ∇v +D′ · ∇uv|+ |A′∇u · ∇vǫ +D′ · ∇uvǫ|

) dt

|t|n−d−1
dx

→

ˆ

{|u|=0}

(
|A′∇u · ∇v +D′ · ∇uv|+ |A′∇u · ∇vǫ +D′ · ∇uvǫ|

) dt

|t|n−d−1
dx
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as ǫ → 0. However, ∇u = 0 almost everywhere on {|u| = 0}. We deduce
¨

(x,t)∈Rn

[A′∇u · ∇v +D′ · ∇uv]
dt

|t|n−d−1
dx = 0.

We just have shown that the term in (5.7) is zero, thus our term T1 becomes

|T1| .
∣∣∣
¨

(x,t)∈Rn

D′ · ∇uv
dt

|t|n−d−1
dx

∣∣∣

.

¨

(x,t)∈Rn

|t| |D′| |∇u| |u|q−1Ψk dt

|t|n−d−1
dx.

Recall that |t|D′ satisfies the Carleson measure condition. So, using Cauchy–
Schwarz’s inequality and then Carleson’s inequality (Proposition 4.3), similar to
T222, T3 or T41,

|T1| . T 1/2κ1/2‖Ña,q(u|Ψ
k−2)‖

q/2
Lq(B).

The estimate (5.6) and then the lemma follows. ✷

From Lemma 5.1, we can easily deduce the local bounds given in the following
lemma.

Lemma 5.3. Let L = − div|t|d+1−nA∇ be an elliptic operator that satisfies (H1
κ)

for some constant κ ≥ 0. Let a > 0 and q ∈ (q0, q
′
0), where q0 is given by Propo-

sition 2.1. Choose a function Ψ ∈ C∞
0 (Ω) that satisfies (H2

a,M ) and k > 2. Then,

for any weak solution u ∈ W 1,2
loc (Ω), we have

(5.8) ‖Sa,q(u|Ψ
k)‖qq ≤ C(κ+M)‖Ña,q(u|Ψ

k−2)‖qq,

where the constant C depends on a, q, n, ‖A‖∞, λq(A), ‖b‖∞ + ‖b−1‖∞, and k.

Proof. First, recall that

(5.9) ‖Sl
a,q,e(u|Ψ

k)‖qq ≃ T :=

¨

Rn

|∇u|2 |u|q−2Ψk ds

|s|n−d−2
dy.

By Lemma 5.1, we have

‖Sa,q(u|Ψ
k)‖qq ≤ Cκ‖Ñq,a(u|Ψ

k−2)‖qLq(4B)

− Re

¨

Ω

A′∇u · ∇x[Ψ
k]

|u|q−2 ū

b

dt

|t|n−d−2
dx

+
1

q
Re

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t [Ψ

k]
dt

|t|n−d−2
dx

=: T1 + T2 + T3.

We claim

(5.10) |T2 + T3| . M‖Ñq,a(u|Ψ
k−1)‖qq + T 1/2M1/2‖Ñq,a(u|Ψ

k−2)‖q/2q .

From the claim, we deduce that T . (κ + M)‖Ñq,a(u|Ψk−2)‖qLq(4B). From this
and (5.9), the lemma follows.
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So it remains to prove (5.10). By using the fact that ∇t|u|q = q|u|q−2 Re(ū∇tu)
and that A′/b is bounded, we get

|T2 + T3| .

¨

Ω

|∇u| |∇[Ψk]| |u|q−1 dt

|t|n−d−2
dx +

¨

Ω

|u|q |∇[Ψk]|
dt

|t|n−d−1
dx

.

¨

Ω

|∇u|Ψk−1|∇Ψ||u|q−1 dt

|t|n−d−2
dx+

¨

Ω

|u|qΨk−1|∇Ψ|
dt

|t|n−d−1
dx

=: T4 + T5.

Applying Lemma 4.6 to Φ = Ψk−1, we get

T5 . M‖Ñq,a(u|Ψ
k−1)‖qq.

As for T4, we use Cauchy–Schwarz’s inequality to get
¨

Ω

|∇u|Ψk−1|∇Ψ||u|q−1 dt

|t|n−d−2
dx ≤ T 1/2

(¨

Ω

|u|qΨk−2 |∇Ψ|2
dt

|t|n−d−2
dx

)

. T 1/2M1/2‖Ñq,a(u|Ψ
k−2)‖qq,

by applying Lemma 4.6 again to Φ = Ψk−2. The claim (5.10) and then the lemma
follows. ✷

We denote by M the Hardy–Littlewood maximal function on Rd, that is, if f
is a locally integrable function on Rd,

Mf(x) := sup
ballsB∋x

 

B

|f |.

As it will be useful later on, we also introduce here the maximal operator Mq

defined for any q ∈ (1,+∞) on Lq
loc(R

d) as

Mq[f ](x) = [M[f q](x)]1/q .

It is well known that the operator Mq is weak type (q, q) and strong type (p, p)
for p > q.

A key result of our paper is Lemma 5.5, which states that the Lq bounds for
the q-adapted square function given in Lemma 5.3 self-improve to Lp bounds for
all p > 0. We start by proving a preliminary good-λ inequality.

Lemma 5.4. Let L = − div|t|d+1−nA∇ be an elliptic operator that satisfies (H1
κ)

for some constant κ ≥ 0. Let a > 0 and q ∈ (q0, q
′
0), where q0 is given by Propo-

sition 2.1. Choose a function Ψ ∈ C∞
0 (Ω) that satisfies (H2

a,M ) and k > 2. Then

there exists η ∈ (0, 1) that depends only on d and q such that for any weak solution

u ∈ W 1,2
loc (Ω), any ν > 0 and any γ ∈ (0, 1),

∣∣{x ∈ R
d, Sa,q(u|Ψ

k)(x) > ν, M[Ña,q(u|Ψ
k−2)](x) ≤ γν

}∣∣(5.11)

≤ Cγq |{x ∈ R
d, M[Sa,q(u|Ψ

k)](x) > ην}|,

where the constant C depends on a, q, n, ‖A‖∞, λq(A), ‖b‖∞ + ‖b−1‖∞, κ, k
and M .
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Proof. Let η to be chosen later on. Take ν > 0. We define the set

S := {x ∈ R
d, M[Sa,q(u|Ψ

k)](x) > ην},

which is open (Ψ is compactly supported in Ω, which makes Sa,q(u|Ψk) continuous)
and bounded. Indeed, S is bounded because Ψk is compactly supported, so we
have Sa,q(u|Ψk) ≡ 0 outside of a big ball.

We construct a Whitney decomposition of S in the following manner. For
any x ∈ S, we set Bx as the ball of center x and radius dist(x,Sc)/10. The balls
(Bx)x∈S clearly cover S. Moreover, the radii of the balls are uniformly bounded,
since S is bounded. So, by Vitali’s lemma, there exists a non-overlapping sub-
collection of balls (Bxi)i∈I such that

⋃
i∈I 5Bxi ⊃ S. We write Bi = 10Bxi and li

for its radius. By construction, for every i ∈ I,

(5.12) there exists yi ∈ R
d such that |xi − yi| = li and M[Sa,q(u|Ψ

k)](yi) ≤ ην.

The balls Bxi = Bi/10 are mutually disjoint sets contained in S, so we deduce

(5.13)
∑

i∈I

|Bi| = 10d
∑

i∈I

|Bxi | . 10d |S|.

Thanks to (5.13), the estimate (5.11) will be obtained if we can prove that

(5.14) F i
γ :={x ∈ Bi, Sa,q(u|Ψ

k)(x) > ν, M[Ña,q(u|Ψ
k−2)](x) ≤ γν} ≤ Cγq |Bi|,

where C is independent of γ ∈ (0, 1). If F i
γ = ∅, there is nothing to prove, so we

can assume F i
γ 6= ∅. Set the function Φi as

Φi(x, t) = φ
(a|t|

li

)
φ
( |x− xi|

2li

)
,

where φ ∈ C∞
0 (R) is such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1], φ ≡ 0 outside [−2, 2],

and |φ′| ≤ 2. We claim that we can find η small such that

(5.15) Sa,q(u|Ψ
kΦk

i )(z) ≥
ν

2
for z ∈ F i

γ .

Indeed, for any z ∈ Rd, one has, by definition,

(5.16) Sa,q(u|Ψ
k[1−Φk

i ])(z) =
(¨

(y,s)∈Γ̂a(z)

|∇u|2 |u|q−2Ψk[1−Φk
i ]

ds

|s|n−2
dy

)1/q
.

By definition, 1 − Φk
i ≡ 0 if |s| ≤ li/a, thus in the above integral (5.16) we only

need to consider the integration region Γ̂a(z) above the level of li/a. Note that we
can find N points (zj)j≤N ∈ Bli(z), with N depending only on d (for example, by
taking each zj to be at least li/3a-distance away from all the other zj ’s), such that

Γ̂a(z) ∩ {|s| > li/a} ⊂
N⋃

i=1

Γ̂a(zj , li/2a).



The Dirichlet problem in domains with lower dimensional boundaries 867

Here we define

(5.17) Γ̂a(x, ρ) := {(y, s) ∈ Ω, |y − x| < a(|s| − ρ)},

which are cones raised to the level ρ. Hence

Sa,q(u|Ψ
k[1−Φk

i ])(z) ≤
N∑

j=1

(¨

(y,s)∈Γ̂a(zj ,li/2a)

|∇u|2 |u|q−2Ψk [1−Φk
i ]

ds

|s|n−2
dy

)1/q
.

By simple geometry, we observe that

Γ̂a(zj , li/2a) ⊂ Γ̂a(z
′) for any z′ ∈ Bli/2(zj);

if the point z belongs to F i
γ ⊂ Bi = B(xi, li) and |xi − yi| = li (see (5.12)), we

have Bli/2(zj) ⊂ B4li(yi). We conclude that

Sa,q(u|Ψ
k[1− Φk

i ])(z)

≤
N∑

j=1

 

z′∈Bli/2
(zj)

(¨

(y,s)∈Γ̂a(z′)

|∇u|2 |u|q−2Ψk [1− Φk
i ]

ds

|s|n−2
dy

)1/q
dz′

.

N∑

j=1

 

z′∈B4li
(yi)

|Sa,q(u|Ψ
k)(z′)| dz′

≤ CdM[Sa,q(u|Ψ
k)](yi) ≤ Cd ην,

where we used (5.12) in the last inequality. We choose η := η(d) such that (Cdη)
q ≤

(1− 2−q). Consequently, |Sa,q(u|Ψk[1− Φk
i ])(z)|

q ≤ ν(1− 2−q) and then

|Sa,q(u|Ψ
kΦk

i )(z)|
q = |Sa,q(u|Ψ

k)(z)|q − |Sa,q(u|Ψ
k[1− Φk

i ])(z)|
q ≥

νq

2q
,

which is the desired claim (5.15).
We define now the cut-off function χi as

χi(x, t) = φ
(dist(x, F i

γ)

a|t|

)
.

It is easy to check that for any z ∈ F i
γ , we have Γ̂a(z) ⊂ {dist(x, F i

γ) ≤ a|t|}, and
thus χi ≡ 1 on Γ̂a(z). In fact χi describes a smooth version of the classic sawtooth
domain on top of F i

γ . Therefore,

Sa,q(u|Ψ
kΦk

i χ
k
i )(z) = Sa,q(u|Ψ

kΦk
i ) ≥

ν

2
for z ∈ F i

γ

and

|F i
γ | ≤

2q

νq

ˆ

Rd

|Sa,q(u|Ψ
kΦk

i χ
k
i )(z)|

q dz.
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Since Ψ satisfies (H2
a,M ), by Lemma 4.5, ΨΦiχi satisfies (H2

M+M ′ ), with M ′ de-
pending only on a and n. Lemma 5.3 entails that

(5.18) |F i
γ | . ν−q

ˆ

Rd

|Ña,q(u|Ψ
k−2Φk−2

i χk−2
i )(z)|q dz.

The function Φi is supported in {(x, t) ∈ Ω, x ∈ 4Bi, |t| ≤ 2li/a}. It forces

Ña,q(u|Ψk−2Φk−2
i χk−2

i ) to be supported in, say, 20Bi. So (5.18) becomes

(5.19) |F i
γ | . ν−q

ˆ

20Bi

|Ña,q(u|Ψ
k−2χk−2

i )(x)|q dx.

For (z, r) ∈ Rd× (0,∞), we want to compute (u|Ψk−2χk−2
i )W,a,q(z, r). On the one

hand, for any z′′ ∈ Bar(z), we have (z, r) ∈ Γa(z
′′), and thus

(u|Ψk−2χk−2
i )W,a,q(z, r) ≤ Ña,q(u|Ψ

k−2χk−2
i )(z′′) ≤ Ña,q(u|Ψ

k−2)(z′′).

Hence

(5.20) (u|Ψk−2χk−2
i )W,a,q(z, r) ≤

 

Bar(z)

Ña,q(u|Ψ
k−2)(z′′)dz′′.

On the other hand, if (u|Ψk−2χk−2
i )W,a,q(z, r) is not 0, it means that Wa(z, r) ∩

suppχi 6= ∅, and so that there exists z′ ∈ F i
γ such that |z − z′| ≤ 6ar. Combining

this with (5.20), we get

(u|Ψk−2χk−2
i )W,a,q(z, r) .

 

B7ar(z′)

Ña,q(u|Ψ
k−2)(z′′) dz′′(5.21)

≤ M[Ña,q(u|Ψ
k−2)](z′) ≤ γν.

The last inequality is by the definition of F i
γ . Since the estimate (5.21) holds for

all (z, r) ∈ Rd × (0,∞), we deduce that Ña,q(u|Ψk−2χk−2
i )(x) . γν for all x ∈ Rd.

Therefore, one can rewrite (5.19) as

(5.22) |F i
γ | . ν−q|20Bi|(γν)

q . γq |Bi|.

The claim (5.14) and then the lemma follows. ✷

Lemma 5.5. Let L = − div|t|d+1−nA∇ be an elliptic operator that satisfies (H1
κ)

for some constant κ ≥ 0. Let a > 0, 1 < p < ∞, and q ∈ (q0, q
′
0), where q0

is given by Proposition 2.1. Choose a function Ψ ∈ C∞
0 (Ω) that satisfies (H2

a,M )
and k > 2. Then, for any weak solution u ∈ W 1,2

loc (Ω),

(5.23) ‖Sa,q(u|Ψ
k)‖p ≤ C‖Ña,q(u|Ψ

k−2)‖p,

where the constant C depends on a, p, q, n, ‖A‖∞, λq(A), ‖b‖∞ + ‖b−1‖∞, κ, k
and M .



The Dirichlet problem in domains with lower dimensional boundaries 869

Remark 5.6. The result is proven for p > 1, but can be easily extended to p > 0
if, in Lemma 5.4, we replace the Hardy–Littlewood maximal function M by Mr

with 0 < r < 1.

Proof. We have
ˆ

Rd

|Sa,q(u|Ψ
k)|p dx

= cp

ˆ ∞

0

νp−1|{x ∈ R
d, Sa,q(u|Ψ

k)(x) > ν}| dν

≤ C

ˆ ∞

0

νp−1
∣∣{x ∈ R

d, Sa,q(u|Ψ
k)(x) > ν, M[Ña,q(u|Ψ

k−2)](x) ≤ γν
}∣∣ dν

+ C

ˆ ∞

0

νp−1|{x ∈ R
d, M[Ña,q(u|Ψ

k−2)](x) > γν}| dν.

Lemma 5.4 implies the existence of η := η(d) such that
ˆ

Rd

|Sa,q(u|Ψ
k)|p dx

≤ Cγq

ˆ ∞

0

νp−1|{x ∈ R
d, M[Sa,q(u|Ψ

k)](x) > ην}| dν

+ Cγ1−p

ˆ ∞

0

(γν)p−1|{x ∈ R
d, M[Ña,q(u|Ψ

k−2)](x) > γν}| dν

≤ Cγq

ˆ

Rd

|M[Sa,q(u|Ψ
k)]|p dx+ Cγ1−p

ˆ

Rd

|M[Ña,q(u|Ψ
k−2)]|p dx

≤ Cγq

ˆ

Rd

|Sa,q(u|Ψ
k)|p dx + Cγ1−p

ˆ

Rd

|Ña,q(u|Ψ
k−2)|p dx,

where the last inequality is due to the Hardy–Littlewood maximal inequality. We
choose γ such that Cγq = 1/2. On the other hand, since Ψ is compactly supported
in Ω, we know ‖Sa,q(u|Ψ

k)‖p < +∞. Therefore,
ˆ

Rd

|Sa,q(u|Ψ
k)|p dx ≤ C

ˆ

Rd

|Ña,q(u|Ψ
k−2)|p dx.

The lemma follows. ✷

6. The local estimate N < S

First, for ρ > 0, we introduce similarly to (5.17) the new set defined as

Γa(x, ρ) := {(z, r) ∈ R
d+1
+ , |z − x| < a(r − ρ)},

which is a (d + 1)-dimensional cone raised to the level ρ. Let a > 0. For
ν > 0 and v, a continuous and compactly supported function, we define the map
hν,a(v) : R

d → R as

hν(x) := hν,a(v)(x) = inf
{
r > 0 : sup

Y ∈Γa(x,r)

v(Y ) < ν
}
.
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Since v is compactly supported, it is clear that {r > 0 : supY ∈Γa(x,r) v(Y ) < ν}

is non-empty and then that hν(x) is well defined for all x ∈ R
d.

The function hν will play a very important role in the future, so it is important
to understand its purpose. The original idea (see [23], [14]) is the following: we

want to get rid of the supremum in the quantity Ña,q(v)(x), so we would like to

replace Ña,q(v)(x) by vW,a,q(x, hν(x)) for some ‘good’ function hν . The function hν

is defined so that it captures, roughly, the level sets of Ña,q(v) (see Lemma 6.2). In

Lemma 6.4, we prove local Lq estimates on uW,a,q( · , hν( ·)) when u ∈ W 1,2
loc (Ω) is a

weak solution to Lu = 0. Lemma 6.6 gathers Lemmas 6.2 and 6.4 to prove a good
λ-inequality for the bound Ña,q . Sa,q; Lemma 6.7 transforms this weak estimate
into one in Lp, p > q; Lemma 6.9 proves that Lemma 6.7 can self-improve, which
allows us to get an estimate in Lq. Lemma 6.11 is the aim of the section, and is
an easy consequence of Lemma 6.7 and Lemma 6.4.

We start by proving some basic properties of the function hν .

Lemma 6.1. Let a > 0. Let v be a continuous and compactly supported function.

Choose a positive number ν. Then the following properties hold :

(i) The function hν = hν,a(v) is Lipschitz with Lipschitz constant a−1, that is,

for x, y ∈ Rd,

|hν(x)− hν(y)| ≤
|x− y|

a
.

(ii) For an arbitrary x ∈ {y ∈ Rd : supΓa(y) v > ν}, we set rx := hν(x) > 0.
Then there exists a point (z, rz) ∈ ∂Γa(x, rx) such that v(z, rz) = ν and

hν(z) = rz.

Proof. Let us prove (i). Pick a pair of points x, y ∈ Rd and set rx = hν(x) and
ry = hν(y). Without loss of generality, we can assume that rx < ry . We want to
argue by contradiction, hence we also assume

(6.1) |x− y| < a(ry − rx),

which can be rewritten (y, ry) ∈ Γa(x, rx). As a consequence, Γa(y, ry) is a subset

of Γa(x, rx). Now, it is easy to improve the inclusion Γa(y, ry) ⊂ Γa(x, rx) to

Γa(y, ry − η) ⊂ Γa(x, rx + η),

with η > 0 small enough. We deduce that

sup
Γa(y,ry−η)

v ≤ sup
Γa(x,rx+η)

v < ν,

the last inequality being true by the definition of rx. It follows that

ry − η ≥ hν(y) = ry,

which is a contradiction. We deduce that (6.1) is false and thus part (i) of the
lemma follows.
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We turn now to the proof of part (ii). For any x ∈ Rd, the function r 7→
supΓa(x,r) v is continuous (and non-increasing). By the definition of rx := hν(x), for
any m ∈ N big enough, the quantity supΓa(x,rx−1/m) v is bigger than or equal to ν,
and the aformentioned continuity implies then the existence of Zm ∈ Γa(x, rx −
1/m) such that v(Zm) = ν. Besides, again by definition of rx, none of the Zm

lies in Γa(x, rx). Obviously, the sequence (Zm)m lies in the compact set supp vW ,
so Zm has at least one accumulation point Z. Such accumulation point Z has to
lie in

⋂
m Γa(x, rx − 1/m) \ Γa(x, rx) = ∂Γa(x, rx), and has to satisfy v(Z) = ν by

the continuity of v. Hence, rz = hν,a(z). ✷

The function hν has the following interesting property.

Lemma 6.2. Let a > 0 and q ∈ (1,+∞). Choose a function v ∈ Lq
loc(Ω), a

smooth function Ψ which satisfies 0 ≤ Ψ ≤ 1, and k > 2. For any ν > 0 and any

point x satisfying Ña,q(v|Ψ
k)(x) > ν, one has

(6.2) M

[( 

y∈Bahν (·)/2(·)

ˆ

s∈Rn−d

|v|qΨk∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q]
(x) ≥ cν,

where c depends only on k and n, hν := hν,a((v|Ψk)W,a,q), and χν is a cut-off

function defined as

(6.3) χν(y, s) = φ
( |s|

hν(y)

)
, where φ(r) =





1 if 0 ≤ r < 1/5,
25
24 − 5

24r if 1/5 ≤ r ≤ 5,

0 if r > 5,

and χν(y, ·) ≡ 0 if hν(y) = 0.

Remark 6.3. (i) Since ∂r[−χk
ν ] ≈ 1/hν(y) is supported in {(y, s), hν(y)/5 ≤

|s| ≤ 5hν(y)}, and for y ∈ Bahν(x)/2(x), we have hν(y) ≈ hν(x), we have
that (roughly speaking)

( 

y∈Bahν (x)/2(x)

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q
≈ (v|Ψk)W,a,q(x, hν(x)).

(ii) Since we define the non-tangential maximal function by the average of |v|qΨk,

instead of the pointwise values, the assumption Ña,q(v|Ψk)(x) > ν can only
give us information about the average value of |v|qΨk on the level of hν(y).
Therefore, we use a function χν such that ∂r[−χk

ν ] is supported in a band of
width ≈ hν(y).

Proof. First, observe that vW,a,q is the Lq average of a locally Lq function, so
(v|Ψk)W,a,q is continuous and the function hν := hν,a((v|Ψk)W,a,q) is well defined.

Fix x ∈ Rd such that Ña,q(v|Ψk)(x) > ν. Set rx := hν(x) > 0. From
part (ii) of Lemma 6.1, there exists Z = (z, rz) ∈ ∂Γa(x, rx) ⊂ Γa(x) such that
(v|Ψk)W,a,q(z, rz) = ν and hν(z) = rz . Define now B as the ball Barz/2(z) ⊂ Rd.
Since Z belongs to the boundary of Γa(x, rx), we deduce |x−z| = a(rz−rx) < arz ,



872 J. Feneuil, S. Mayboroda and Z. Zhao

and thus x ∈ 2B. Besides, due to Lemma 6.1, the function hν is a−1-Lipschitz and
we obtain that

(6.4) 0 <
rz
2

≤ ry := hν(y) ≤
3rz
2

for y ∈ B,

and, in particular,

rz
2

≥
ry
3

and 2rz ≤ 4ry for y ∈ B.

The inequalities above imply that Wa(z, rz) ⊂ {(y, s) ∈ Ω, y ∈ B, hν(y)/3 ≤ |s| ≤
4hν(y)}. Besides, notice that, by the definition of χν ,

∂r[−χk
ν ] &

1

rz
on {(y, s) ∈ Ω, y ∈ R, hν(y)/3 ≤ |s| ≤ 4hν(y)} ⊃ W (z, rz).

This yields that
 

y∈B

ˆ

s∈Rn−d

|v|qΨk∂r[−χk
ν ]

ds

|s|n−d−1
dy & |(v|Ψk)W,a,q(z, rz)|

q = νq.

(It is also easy to see that the left-hand side is finite). For any y ∈ B, we define
By = Bary/100(y). By Vitali’s covering lemma, we can find N points (yi)i≤N such
that the balls Byi are non-overlapping and

⋃
5Byi ⊃ B. We deduce first that,

since ry ≃ rz for any y ∈ B, the value N depends only on the dimension d, and
second that there exists at least one i ≤ N such that

 

y∈5Byi

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν ]

ds

|s|n−d−1
dy

&

 

y∈B

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν]

ds

|s|n−d−1
dy & νq.

For any y′ ∈ Barz/10(yi) ⊂ 2B, we let ry′ = hν(y
′). By Lemma 6.1 and (6.4), we

get
2

5
rz ≤ ry′ ≤

8

5
rz ,

and thus ry′ ≃ rz ≃ ryi . And, moreover, simple computations show that 5Byi =
Baryi/20

(yi) ⊂ Bary′/2
(y′). Therefore,

ν .
(  

y∈5Byi

ˆ

s∈Rn−d

|v|qΨk∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q

.

 

y′∈Barz/10(yi)

(  

y∈Bar
y′

/2(y′)

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q
dy′

.

 

y′∈2B

( 

y∈Bar
y′

/2(y′)

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q
dy′.

Since x ∈ 2B, we conclude that

M
[(  

y∈Bahν (·)/2(·)

ˆ

s∈Rn−d

|v|qΨk ∂r[−χk
ν ]

ds

|s|n−d−1
dy

)1/q ]
(x) & ν.

The lemma follows. ✷
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Lemma 6.4. Let L = − div|t|d+1−nA∇ be an elliptic operator that satisfies (H1
κ).

Let a > 0 and q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Choose k > 2 and

a function Ψ compactly supported in Ω and that satisfies (H2
a,M ). Then for any

weak solution u ∈ W 1,2
loc (Ω) to Lu = 0, we have

∣∣∣
¨

Ω

|u|q ∂r[Ψ
k]

dt

|t|n−d−1
dx

∣∣∣(6.5)

. ‖Sa,q(u|Ψ
k)‖qq + ‖Sa,q(u|Ψ

k−2)‖q/2q ‖Ña,q(u|Ψ
k)‖q/2q ,

where the constant depends only on a, q and n, ‖A‖∞, ‖b−1‖∞, κ and M .

Remark 6.5. A careful reader will notice that the constants do not depend on
the ellipticity constants, or on an upper bound on |b|. In addition, we do not need
for the proof of this lemma to assume that b and B3 are real-valued.

Observe also that if u is a constant function (and since Ψ has to be compactly
supported in Ω), both the right-hand term and the left-hand term in (6.5) are zero.

Proof. First, Proposition 1.10 ensures that |u|q and |∇u|2 |u|q−2 both lie in L1
loc(Ω),

and so all the quantities in (6.5) are well defined and finite.
We also use the same trick as in Lemma 5.1, which says that u is also a weak

solution to L′u = 0, where L′ = − divA′∇+D′ · ∇,

(6.6) A′ =

(
A1 A2 + (B3)

T

0 bI

)
+ C,

and for any 1 ≤ j ≤ d < i ≤ n,

(6.7) (D′)j = −
∑

k>d

|t|n−d−1∂tk [(B3)kj |t|
d+1−n] and (D′)i =

∑

k≤d

∂xk
(B3)ik.

Note in particular that |t|D′ satisfies the Carleson measure condition. Unless we
assume B3 is real-valued, nothing guarantees here that the matrix A′ is elliptic,
but we shall not use this assumption.

Let us denote

T :=

¨

Ω

|u|q∂r[Ψ
k]

dt

|t|n−d−1
dx.

By using the product rule and the fact that ∂r[|u|
q] = q

2 |u|
q−2[ū∂ru + u∂rū], one

obtains

T =

¨

Ω

∂r[|u|
qΨk]

dt

|t|n−d−1
dx−

q

2

¨

Ω

∂r[u] |u|
q−2 ūΨk dt

|t|n−d−1
dx

−
q

2

¨

Ω

∂r[ū] |u|
q−2uΨk dt

|t|n−d−1
dx

=: T1 + T2 + T3.

The term T1 is 0. Indeed, we switch to cylindrical coordinates, and we have

T1 =

ˆ

x∈Rd

ˆ

θ∈Sn−d−1

ˆ ∞

0

∂r[|u|
qΨk] dr dθ dx = 0,

since Ψ is compactly supported in Ω.
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We need to bound T2 and T3. Since, T3 = T2, we only need to treat T2. We
remark that the estimate of T2 is in some sense the reverse of the estimate of the
term T4 in Lemma 5.1. Observe that

T2 = −
q

2

¨

(x,t)∈Ω

b∇tu · ∇t|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx,

and so with (6.6), we have

T2 = −
q

2

¨

(x,t)∈Ω

A′∇u · ∇|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

+
q

2

¨

(x,t)∈Ω

C∇u · ∇|t|
|u|q−2 ūΨk

b

dt

|t|n−d−1
dx

=: T21 + T22.

We use the fact that |b| & 1, and then Cauchy–Schwarz’s inequality to bound T22

as follows:

|T22| .

¨

(x,t)∈Ω

|C| |∇u|
|u|q−1Ψk

|b|

dt

|t|n−d−1
dx

.

¨

(x,t)∈Ω

|C| |∇u| |u|q−1Ψk dt

|t|n−d−1
dx

.
(¨

(x,t)∈Ω

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx

)1/2(¨

(x,t)∈Ω

|C|2 |u|qΨk dt

|t|n−d
dx

)1/2
.

The first integral in the right-hand side above can be bounded by ‖Sa,q(u|Ψk)‖qq ≤

‖Sa,q(u|Ψk−2)‖qq. Since C satisfies the Carleson measure condition, we use the
Proposition 4.3 (Carleson inequality) to bound the second integral as follows:

¨

(x,t)∈Ω

|C|2 |u|qΨk dt

|t|n−d
dx ≤ κ‖Ña,q(u|Ψ

k)‖qq.

As a consequence,

|T22| . ‖Sa,q(u|Ψ
k−2)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q .

Now, we deal with T21. We write

T21 = −
q

2

¨

(x,t)∈Ω

A′∇u · ∇
[ |t| |u|q−2 ūΨk

b

] dt

|t|n−d−1
dx

+
q

2

¨

(x,t)∈Ω

A′∇u · ∇[|u|q−2 ū]
Ψk

b

dt

|t|n−d−2
dx

+
q

2

¨

(x,t)∈Ω

A′∇u · ∇[Ψk]
|u|q−2 ū

b

dt

|t|n−d−2
dx

−
q

2

¨

(x,t)∈Ω

A′∇u · ∇b
|u|q−2 ūΨk

b2
dt

|t|n−d−2
dx

=: T211 + T212 + T213 + T214.
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By using the boundedness of A′/b, the term T212 can be bounded as follows:

|T212| .

¨

(x,t)∈Ω

|∇u| |∇[|u|q−2 ū]|Ψk dt

|t|n−d−2
dx.

But using the product rule and the fact that |∇|u|| ≤ |∇u|, one has |∇[|u|q−2 ū]| ≤
(q − 1)|u|q−2 |∇u| if q ≤ 2 and |∇[|u|q−2 ū]| ≤ (3 − q)|u|q−2 |∇u| if q ≥ 2. Hence
one can bound

|T212| .

¨

(x,t)∈Ω

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx . ‖Sa,q(u|Ψ

k)‖qq.

The terms T213 and T214 are bounded in a similar manner as T22. Let us start
with T213. Since A′/b is uniformly bounded,

|T213| .

¨

(x,t)∈Ω

|∇u| |∇[Ψk]| |u|q−1 dt

|t|n−d−2
dx

.

¨

(x,t)∈Ω

|∇u| |∇Ψ|Ψk−1 |u|q−1 dt

|t|n−d−2
dx

.
(¨

(x,t)∈Ω

|∇u|2 |u|q−2Ψk−2 dt

|t|n−d−2
dx

)1/2

×
(¨

(x,t)∈Ω

|u|qΨk |∇Ψ|2
dt

|t|n−d−2
dx

)1/2
,

by Cauchy–Schwarz’s inequality. The first integral in the right-hand side above is
bounded by ‖Sa,q(u|Ψk−2)‖qq. As for the second one, Lemma 4.6 gives that

¨

(x,t)∈Ω

|u|qΨk |∇Ψ|2
dt

|t|n−d−2
dx . M‖Ña,q(u|Ψ

k)‖qq.

We conclude that

|T213| . ‖Sa,q(u|Ψ
k−2)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q .

Then we deal with T214. Using the fact that A′/b is uniformly bounded,
Cauchy–Schwarz’s inequality and the fact that |t|∇b satisfies the Carleson measure
condition, similar to the bound on T22 or T213, we obtain

|T214| .

¨

(x,t)∈Ω

|∇u| |∇b| |u|q−1Ψk dt

|t|n−d−2
dx(6.8)

.
(¨

(x,t)∈Ω

|∇u|2 |u|q−2Ψk dt

|t|n−d−2
dx

)1/2

×
(¨

(x,t)∈Ω

(|t| |∇b|)2 |u|qΨk dt

|t|n−d
dx

)1/2

. κ1/2‖Sa,q(u|Ψ
k)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q

. ‖Sa,q(u|Ψ
k−2)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q .
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It remains to bound T211. However, T211 can be treated as the term T1 in
Lemma 5.1, by using the fact that u is a weak solution to L′u = 0, and we will
eventually obtain that

|T211| .
∣∣∣
¨

(x,t)∈Rn

D′ · ∇u
|t| |u|q−2 ūΨk

b

dt

|t|n−d−1
dx

∣∣∣

.

¨

(x,t)∈Rn

|t| |D′| |∇u| |u|q−1Ψk dt

|t|n−d−1
dx.

However, recall that |D′| . |∇B3|, so |t|D
′ satisfies the Carleson measure condition.

By using Cauchy–Schwarz’s inequality and then Carleson’s inequality (Proposi-
tion 4.3), similar to T22,

|T111| . κ1/2‖Sa,q(u|Ψ
k−2)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q .

The lemma follows. ✷

Lemma 6.6. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a, l > 0 and q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Choose k > 2,

a positive a−1-Lipschitz function e and a ball B := Bl′(xB) ⊂ Rd of radius l′ ≥ l.
Then there exists η ∈ (0, 1) that depends only on d such that for any weak solution

u ∈ W 1,2
loc (Ω), any ν > 0 and any γ ∈ (0, 1),

∣∣{x ∈ R
d, Ña,q(u|Ψ

k
eΨ

k
B,l)(x) > ν} ∩ Eν,γ

∣∣(6.9)

≤ Cγq
∣∣{x ∈ R

d, M[Ña,q(u|Ψ
k
eΨ

k
B,l)](x) > ην

}∣∣,

where Ψe,ΨB,l are defined as in Lemma 4.5,

Eν,γ :=

{
x ∈ R

d, Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q ]
(x)≤ γν

and Mq[Ña,q(u|Ψ
k
eΨ

k
B,l)](x)Mq [Sa,q(u|Ψ

k−2
e Ψk−2

B,l )](x) ≤ γ2ν2
}
,

and the constant C > 0 depends on a, q, n, ‖A‖∞, ‖b−1‖∞, κ and k.

Proof. Take some η to be fixed later. Choose ν > 0. To lighten the notation, we
write Ψ for ΨeΨB,l. We define

S := {x ∈ R
d, M[Ña,q(u|Ψ

k)](x) > ην},

which is open and bounded. Indeed, S is bounded because Ψ is compactly sup-
ported, and then Ña,q(u|Ψk)] ≡ 0 outside a big ball, and S is open because (u|Ψk)W
is continuous.

We construct a Whitney decomposition as follows (the construction is classical,
and we only aim to prove that (6.10) is possible). For any x ∈ S, we set Bx ⊂ Rd

the ball of center x and radius dist(x,Sc)/10. The balls Bx have uniformly bounded
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radius (because |Bx| ≤ |S| < +∞) and therefore Vitali’s covering lemma entails the
existence of a non-overlapping collection of balls (Bxi)i∈I such that

⋃
i∈I 5Bxi = S.

We write Bi for 10Bxi and li for its radius, so by construction,

(6.10)
⋃

i∈I

Bi = S,
∑

i∈I

|Bi| ≤ 10d |S| and for i ∈ I, there exists yi in Bi ∩ Sc.

Then the point yi satisfies

(6.11) |xi − yi| = li and M[Ña,q(u|Ψ
k)](yi) ≤ ην.

Since
∑

i∈I |Bi| . |S|, the estimate (6.9) will be proven if we establish that

(6.12) F i
γ := {x ∈ R

d, Ña,q(u|Ψ
k)(x) > ν} ∩ Eν,γ ∩Bi ≤ Cγq |Bi|,

where C is independent of γ ∈ (0, 1). If F i
γ = ∅, there is nothing to prove, so we

can assume that F i
γ contains some point zi.

Similar to Lemma 4.5 (2), we denote

(6.13) Φi = Ψ3Bi,2li(x, t) = φ
(a|t|
2li

)
φ
(
1 +

dist(x, 3Bi)

2li

)
.

We claim that we can find η small enough such that

(6.14) Ña,q(u|Ψ
kΦk

i )(z) > η for z ∈ F i
γ .

Indeed, letting z ∈ Bi, for any (z′, r′) ∈ Γa(z) such that r′ ≥ li/a,

(u|Ψk)W,a,q(z
′, r′) ≤ Ña,q(u|Ψ

k)(z′′) for z′′ ∈ Bar′(z
′).

Now, since
|z′ − yi| ≤ |z′ − z|+ |z − yi| < ar′ + 2li ≤ 3ar′,

we deduce

(u|Ψk)W,a,q(z
′, r′) ≤

 

Bar′ (z
′)

Ña,q(u|Ψ
k)(z′′) dz′′

≤ Cd

 

B3ar′ (z
′)

Ña,q(u|Ψ
k)(z′′) dz′′

≤ CdM[Ña,q(u|Ψ
k)](yi) ≤ Cd ην,

by (6.11). We choose η such that Cd η ≤ 1 and we obtain that

(6.15) (u|Ψk)W,a,q(z
′, r′) ≤ ν for (z′, r′) ∈ Γa(z), r

′ ≥ li/a.

We observe that Φi ≡ 1 on Wa(z
′′, r′′) if (z′′, r′′) ∈ Γa(z) and r′′ ≤ li/a, and thus

(u|Ψk)W,a,q(z
′′, r′′) = (u|ΨkΦk

i )W,a,q(z
′′, r′′).
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Recall that Ña,q(u|Ψk)(z) > ν for z ∈ F i
γ and (6.15), so we necessarily have

Ña,q(u|Ψ
kΦk

i )(z) > ν.

The claim (6.14) follows.

We are now ready to use Lemma 6.2. Set hν := hν,a((u|ΨkΦk
i )W,a,q) and χν as

in (6.3). Lemma 6.2 gives that, for any z ∈ F i
γ ,

M
[(  

y∈Bahν (·)/2(·)

ˆ

s∈Rn−d

|u|qΨkΦk
i ∂r[−χk

ν ]
ds

|s|n−d−1
dy

)1/q ]
(z) & ν,

and so, if we integrate with respect to z ∈ Rd,

|F i
γ |.

1

νq

ˆ

z∈Rd

∣∣∣M
[( 

y∈Bahν(·)/2(·)

ˆ

s∈R
n−d

|u|qΨkΦk
i ∂r[−χk

ν ]
ds

|s|n−d−1
dy

)1/q ]
(z)

∣∣∣
q

dz.

The Hardy–Littlewood maximal inequality entails that

(6.16) |F i
γ | .

1

νq

ˆ

z∈Rd

 

y∈Bahν (z)/2(z)

ˆ

s∈Rn−d

|u|qΨkΦk
i ∂r[−χk

ν ]
ds

|s|n−d−1
dy dz.

If y ∈ Bahν(z)/2(z), then |y − z| ≤ ahν(z)/2, and since hν is a−1-Lipschitz,

(6.17)
1

2
hν(z) ≤ hν(y) ≤

3

2
hν(z),

in other words hν(z) ≤ 2hν(y). It follows that z ∈ Bahν(y)(y), and so, by Fubini’s
theorem and (6.17),

|F i
γ | .

1

νq

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨkΦk
i ∂r[−χk

ν ]
ds

|s|n−d−1
(6.18)

×
(ˆ

z∈Bahν (y)(y)

(ahν(z))
−d dz

)
dy

.
1

νq

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨkΦk
i ∂r[−χk

ν ]
ds

|s|n−d−1
dy.

Now we estimate the right-hand side of (6.18). By the product rule,

ΨkΦk
i ∂r[−χk

ν ] = −∂r[Ψ
kΦk

i χ
k
ν ] + χk

ν ∂r[Ψ
kΦk

i ]

= −∂r[Ψ
kΦk

i χ
k
ν ] + χk

ν(Ψ
k
e ∂r[Ψ

k
B,lΦ

k
i ] + Ψk

B,lΦ
k
i ∂r[Ψ

k
e ])

≤ −∂r[Ψ
kΦk

i χ
k
ν ] + χk

νΨ
k
B,lΦ

k
i ∂r[Ψ

k
e ],

where the last line holds because ΨB,lΦi is decreasing in r (because we build ΨB,l

and Φi with the help of φ which is decreasing). Set

T1 := −

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q∂r[Ψ
kΦk

i χ
k
ν ]

ds

|s|n−d−1
dy
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and

T2 :=

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
νΦ

k
i Ψ

k
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy.

We have

(6.19) |F i
γ | . ν−q(T1 + T2),

and we want to bound T1 and T2. Let us start with T2. Let y ∈ Rd and z ∈
Bae(y)/4(y). Since e is a−1-Lipschitz, similar to (6.17), one has

(6.20)
3

4
e(y) ≤ e(z) ≤

5

4
e(y).

In particular, y ∈ Bae(z)/3(z) and for any y ∈ R
d,

1 .

ˆ

z∈Bae(y)/4

(ae(z))−d dz.

The bound on T2 then becomes

T2 .

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
νΦ

k
i Ψ

k
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

ˆ

z∈Bae(y)/4

(ae(z))−d dz dy

.

ˆ

z∈Rd

 

y∈Bae(z)/3(z)

ˆ

s∈Rn−d

|u|qχk
νΦ

k
i Ψ

k
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy dz,

by Fubini’s lemma. We want to see for which z ∈ Rd, the quantity

 

y∈Bae(z)/3(z)

ˆ

s∈Rn−d

|u|qχk
νΦ

k
i Ψ

k
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy

is non-zero. First, by the definition (6.13), we know

suppΦi ⊂ {(y, s) ∈ R
n, |s| ≤ 4li/a, y ∈ 5Bi}.

Thus we need e(z) ≤ 10li/a, because otherwise Φk
i ∂r[Ψ

k
e ] ≡ 0 (we also use (6.20)

here). We also need Bae(z)/3(z) ∩ 5Bi 6= ∅ to guarantee Φi 6= 0. Altogether, z
needs to lie in, say, 10Bi. Recall that there exists some zi ∈ F i

γ ⊂ 10Bi, so we
conclude

T2 .

ˆ

z∈10Bi

 

y∈Bae(z)/3(z)

ˆ

s∈Rn−d

|u|qχk
νΦ

k
i Ψ

k
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy dz(6.21)

.

ˆ

z∈10Bi

 

y∈Bae(z)/3(z)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy dz

. |10Bi|
∣∣∣Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q ]
(zi)

∣∣∣
q

. |Bi|γ
qνq.
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We turn now to the treatment of T1. Observe that, by invoking the same
argument as the one used to prove Lemma 4.5 (1), we can prove that χν satisfies
(H2

a,M ) with M that depends only on a and n, d. (Note, in particular, that the

Lipschitz constant for hν is a−1, independent of ν.) Therefore, Lemma 6.4 entails
that

|T1| . ‖Sa,q(u|Ψ
kΦk

i χ
k
ν)‖

q
q + ‖Sa,q(u|Ψ

k−2Φk−2
i χk−2

ν )‖q/2q ‖Ña,q(u|Ψ
kΦk

i χ
k
i )‖

q/2
q

. ‖Sa,q(u|Ψ
kΦk

i )‖
q
q + ‖Sa,q(u|Ψ

k−2Φk−2
i )‖q/2q ‖Ña,q(u|Ψ

kΦk
i )‖

q/2
q .

Since Φi is supported in {(x, t) ∈ Ω, x ∈ 5Bi, |t| ≤ 4li/a}, we have that the
functions Sa,q(u|Ψk−2Φk−2

i ) and Ña,q(u|ΨkΦk
i ) are supported in, say, 10Bi. The

bound on T1 then becomes

|T1| . ‖Sa,q(u|Ψ
k)‖qLq(10Bi)

+ ‖Sa,q(u|Ψ
k−2)‖

q/2
Lq(10Bi)

‖Ña,q(u|Ψ
k)‖

q/2
Lq(10Bi)

. |Bi| ·
(
|Mq[Sa,q(u|Ψ

k)](zi)|
q

+ |Mq[Sa,q(u|Ψ
k)](zi)|

q/2 |Mq[Ña,q(u|Ψ
k)](zi)|

q/2
)
.

Since zi ∈ F i
γ , we have

|Mq[Sa,q(u|Ψ
k)](zi)|

q/2 |Mq[Ña,q(u|Ψ
k)](zi)|

q/2 ≤ γqνq.

In addition,

|Mq[Sa,q(u|Ψ
k)](zi)|

q =
( |Mq[Sa,q(u|Ψk)](zi)| |Mq[Ña,q(u|Ψk)](zi)|

|Mq[Ña,q(u|Ψk)](zi)|

)q

≤
γ2qν2q

νq
≤ γ2qνq ≤ γqνq.

For the first inequality we also used the fact that Ña,q(u|Ψk)(zi) ≥ ν and that

Ña,q(u|Ψk) is continuous. We deduce

(6.22) |T1| . |Bi|γ
qνq.

The combination of (6.19), (6.21) and (6.22) proves (6.12). The lemma follows. ✷

Lemma 6.7. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a, l > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1, and p > q. Choose

k > 2, a positive a−1-Lipschitz function e and a ball B ⊂ Rd of radius l′ ≥ l. Then
for any weak solution u ∈ W 1,2

loc (Ω),

‖Ña,q(u|Ψ
k
eΨ

k
B,l)‖

p
p(6.23)

. ‖Sa,q(u|Ψ
k−2
e Ψk−2

B,l )‖
p
p +

∥∥∥
(  

y∈Bae(·)/2(·)

ˆ

s∈R
n−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy

)1/q∥∥∥
p

p
,

where the constant depends on a, q, n, ‖A‖∞, ‖b−1‖∞, κ, k.
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Remark 6.8. The reader may think of the last term as the average of u in the
local region in consideration (determined by B and e). It appears on the right side
because, roughly speaking, we are estimating u by its gradient.

The aforementioned region is close to boundary, and the reader may be used to
see it lying in a Whitney region of the boundary ball B. However, we find it easier
to get the self-improvement given by Lemma 6.9 with the estimate (6.23), and
Lemma 6.4 will be used (again) in Lemma 6.11 to recover a “classical” right-hand
term.

Proof. As in the previous proof, we write Ψ for ΨeΨB,l. Besides, Eν,γ denotes the
set

Eν,γ :=
{
x ∈ R

d, Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q ]
(x)≤γ ν

and Mq[Ña,q(u|Ψ
k
eΨ

k
B,l)](x)Mq [Sa,q(u|Ψ

k−2
e Ψk−2

B,l )](x) ≤ γ2ν2
}

By Lemma 6.6, there exists η = η(d) such that for any γ ∈ (0, 1),

‖Ña,q(u|Ψ
k)‖pp = cp

ˆ ∞

0

νp−1|{x ∈ R
d, Ña,q(u|Ψ

k)(x) > ν}| dν

≤ C

ˆ ∞

0

νp−1

(
|{x ∈ R

d, Ña,q(u|Ψ
k)(x) > ν} ∩ Eν,γ |

+
∣∣∣
{
x ∈ R

d, Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1
dy

)1/q ]
> γν

}∣∣∣

+
∣∣∣
{
x ∈ R

d, M1/2
q [Ña,q(u|Ψ

k)](x)M1/2
q [Sa,q(u|Ψ

k−2)](x) > γν
}∣∣∣
)
dν

≤ Cγq

ˆ ∞

0

νp−1|{x ∈ R
d, Mq[Ña,q(u|Ψ

k)](x) > ην}| dν

+ Cγ1−p
∥∥∥Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q ]∥∥∥
p

p

+ Cγ1−p
∥∥M1/2

q [Ña,q(u|Ψ
k)] M1/2

q [Sa,q(u|Ψ
k−2)]

∥∥p

p
.

Now applying the Hardy–Littlewood maximal theorem with power p/q > 1 to each
term, and using also Cauchy–Schwarz’s inequality for the last term, we get

‖Ña,q(u|Ψ
k)‖pp ≤ Cγq‖Mq[Ña,q(u|Ψ

k)]‖pp

+ Cγ1−p
∥∥∥Mq

[( 

y∈Bae(·)/2(·)

ˆ

s∈R
n−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q ]∥∥∥
p

p

+ Cγ1−p‖Mq[Ña,q(u|Ψ
k)]‖1/2p ‖Mp/2

q [Sa,q(u|Ψ
k−2)]‖p/2p

≤ Cγq‖Ña,q(u|Ψ
k)‖pp

+ Cγ1−p
∥∥∥
(  

y∈Bae(·)/2(·)

ˆ

s∈Rn−d

|u|qΨk
B,l∂r[Ψ

k
e ]

ds

|s|n−d−1

)1/q∥∥∥
p

p

+ Cγ1−p‖Ña,q(u|Ψ
k)‖p/2p ‖Sa,q(u|Ψ

k−2)‖p/2p .
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The last term in the above inequality can be bounded by

1

4
‖Ña,q(u|Ψ

k)‖pp + C‖Sa,q(u|Ψ
k−2)‖pp.

We choose γ such that Cγq = 1/4. So all the term ‖Ña,q(u|Ψk)‖pp in the right-hand
side can be hidden in the left-hand side. The estimate (6.23) and then the lemma
follows. ✷

Combined with Moser’s estimate and Lemma 5.5, we can improve Lemma 6.7.

Lemma 6.9 (Self-improvement). Let L be an elliptic operator satisfying (H1
κ) for

some constant κ ≥ 0. Let a > 0, l > 0, and q ∈ (q0, q
′
0), where q0 is given by

Proposition 2.1. Choose k > 12, a positive a−1-Lipschitz function e and a ball

B ⊂ Rd of radius l′ ≥ l. Then for any weak solution u ∈ W 1,2
loc (Ω),

‖Ña,q(u|Ψ
k
eΨ

k
B,l)‖

q
q . ‖Sa,q(u|Ψ

k−12
e Ψk−12

B,l )‖qq(6.24)

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy,

where the constant depends on a, q, n, λq(A), ‖A‖∞, ‖b−1‖∞ + ‖b‖∞, κ and k.

Remark 6.10. The last term is bounded by the Lq average on a local region
compactly contained in Ω, so it is finite. Thus this integral has no singularity at
the boundary Rd × {0}, and in fact it is the same as

¨

Ω

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy.

Proof. As before, we write Ψ for ΨeΨB,l. Lemma 4.2 entails that there exists ǫ
sufficiently small (depending on n, k, q, q0 and, without loss of generality, we can
assume q − 2ǫ > q0) such that

‖Ña,q(u|Ψ
k)‖qq . ‖Ña,q−ǫ(u|Ψ

k−3)‖qq.

Now, since q − ǫ < q, we can use Lemma 6.7 to get

‖Ña,q(u|Ψ
k)‖qq . ‖Ña,q−ǫ(u|Ψ

k−3)‖qq

. ‖Sa,q−ǫ(u|Ψ
k−5)‖qq

+
∥∥∥
( 

y∈Bae(·)/2(·)

ˆ

s∈R
n−d

|u|q−ǫΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy

)1/(q−ǫ)∥∥∥
q

q

=: T1 + T2.

(6.25)

We first estimate T2. By Hölder’s inequality, for any x ∈ Rd,
( 

y∈Bae(x)/2(x)

ˆ

s∈Rn−d

|u|q−ǫΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy

)1/(q−ǫ)

(6.26)

≤
( 

y∈Bae(x)/2(x)

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy

)1/q

×
(  

y∈Bae(x)/2(x)

ˆ

s∈Rn−d

Ψk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy

)ǫ/[q(q−ǫ)]

.
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Note that 0 ≤ Ψk−3
B,l ∂r[Ψ

k−3
e ] ≤ (k − 3)∂rΨe, ∂rΨe ≤ 2e(x)/|s|2, and it is non-

zero only if e(y)/2 ≤ |s| ≤ e(y). For any y ∈ Bae(x)/2(x), since |e(y) − e(x)| ≤
|y − x|/a < e(x)/2, it follows that

e(x)

2
< e(y) <

3e(x)

2
.

Hence
 

y∈Bae(x)/2(x)

ˆ

s∈Rn−d

Ψk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy(6.27)

.

 

y∈Bae(x)/2(x)

ˆ

e(x)/4≤|s|≤3e(x)/2

e(x)

|s|2
ds

|s|n−d−1
dy . 1.

Combining (6.27) with (6.26), we deduce that

T2 .

ˆ

x∈Rd

 

y∈Bae(x)/2(x)

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy dx(6.28)

.

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy,

where, in the last line, we use the same argument as the one used to go from (6.16)
to (6.18).

It remains to bound T1. For any x ∈ Rd,

|Sa,q−ǫ(u|Ψ
k−5)(x)|q =

¨

(y,s)∈Γ̂a(x)

|∇u|2 |u|q−2−ǫΨk−5 ds

|s|n−2
dy

≤
(¨

(y,s)∈Γ̂a(x)

|∇u|2 |u|q−2−2ǫΨk+2 ds

|s|n−2
dy

)1/2

×
(¨

(y,s)∈Γ̂a(x)

|∇u|2 |u|q−2Ψk−12 ds

|s|n−2
dy

)1/2

≤ |Sa,q−2ǫ(u|Ψ
k+2)(x)|q/2|Sa,q(u|Ψ

k−12)(x)|q/2.

So, using Cauchy–Schwarz’s inequality, we can bound T1 as follows:

T1 ≤ ‖Sa,q−2ǫ(u|Ψ
k+2)‖q/2q ‖Sa,q(u|Ψ

k−12)‖q/2q .

The use of Lemma 5.5 and then Hölder’s inequality gives that

T1 . ‖Ña,q−2ǫ(u|Ψ
k)‖q/2q ‖Sa,q(u|Ψ

k−12)‖q/2q(6.29)

. ‖Ña,q(u|Ψ
k)‖q/2q ‖Sa,q(u|Ψ

k−12)‖q/2q .

The combination of (6.25), (6.28), and (6.29) proves that

‖Ña,q(u|Ψ
k)‖qq ≤ C‖Ña,q(u|Ψ

k)‖q/2q ‖Sa,q(u|Ψ
k−12)‖q/2q

+ C

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy,

which can be easily improved into (6.24). The lemma follows. ✷
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Lemma 6.11. Let L be an elliptic operator satisfying (H1
κ) for some constant κ≥0.

Let a, l > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Choose k > 12, a

positive a−1-Lipschitz function e and a ball B := Bl′(xB) ⊂ Rd of radius l′ ≥ l.
Then for any weak solution u ∈ W 1,2

loc (Ω),

‖Ña,q(u|Ψ
k
eΨ

k
B,l)‖

q
q . ‖Sa,q(u|Ψ

k−12
e Ψk−12

B,l )‖qq(6.30)

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
e ∂r[−Ψk−3

B,l ]
ds

|s|n−d−1
dy,

where the constant depends on a, q, n, λq(A), ‖A‖∞, ‖b−1‖∞ + ‖b‖∞, κ and k.

Proof. Let Ψ be the product ΨeΨB,l. By Lemma 6.9,

‖Ña,q(u|Ψ
k)‖qq . ‖Sa,q(u|Ψ

k−12)‖qq +

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
B,l ∂r[Ψ

k−3
e ]

ds

|s|n−d−1
dy.

It follows by the product rule that

‖Ña,q(u|Ψ
k)‖qq . ‖Sa,q(u|Ψ

k−12)‖qq(6.31)

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
e ∂r[−Ψk−3

B,l ]
ds

|s|n−d−1
dy

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q ∂r[Ψ
k−3]

ds

|s|n−d−1
dy.

So it remains to bound the last term in the right-hand side of (6.31). By simply
using Hölder’s inequality with different powers, the proof of Lemma 6.4 can be
easily adapted to obtain

∣∣∣
¨

Ω

|u|q∂r[Ψ
k−3]

dt

|t|n−d−1
dx

∣∣∣ . ‖Sa,q(u|Ψ
k−3)‖qq(6.32)

+ ‖Sa,q(u|Ψ
k−8)‖q/2q ‖Ña,q(u|Ψ

k)‖q/2q

≤ Cη‖Sa,q(u|Ψ
k−8)‖qq + η‖Ña,q(u|Ψ

k)‖qq

≤ Cη‖Sa,q(u|Ψ
k−12)‖qq + η‖Ña,q(u|Ψ

k)‖qq

for all η > 0. By choosing η small enough, the combination of (6.31) and (6.32)
gives (6.30). The lemma follows. ✷

7. From local estimates to global ones and existence of solu-

tions to the Dirichlet problem

By Lemma 1.12, for any g ∈ C∞
0 (Rd) ⊂ H , there is a (unique) energy solution

u ∈ W to Lu = 0 such that Tr u = g. The idea of this section is to first prove that
if L satisfies (H1

κ) with κ sufficiently small, then any energy solution satisfies

(7.1) ‖Ña,q(u)‖q ≤ C‖Tr u‖q,
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with a universal constant C > 0. Then, for any g ∈ Lq(Rd), the existence of a
weak solution u to Lu = 0, whose non-tangential limit on R

d is given by g, can
be obtained by a density argument; moreover, we can show that this solution u
satisfies ‖Ña,q(u)‖q . ‖g‖q.

The local inequalities proven in Lemmas 5.1 and 6.11 increase the integral
regions from left to right. Actually, we use some cut-off functions and we lose
power on these cut-off functions, but the idea is the same: by combining Lem-
ma 6.11 and Lemma 5.1, we do not loop back to the same local non-tangential
function, so even if κ is small, we cannot hide the term on the right-hand side to
the left-hand side at the local level, where we are sure that everything is finite.
The idea to prove (7.1) is then to pass the local estimates to infinity. The main
obstacle however is that we do not know a priori that the energy solutions satisfy
that ‖Ña,q(u)‖q, or even ‖Sa,q(u)‖q, is finite.

For the sequel we use the following notations for cut-off functions. Choose the
same function φ ∈ C∞

0 ([0,∞)) such that 0 ≤ φ ≤ 1, φ ≡ 1 on [0, 1], φ ≡ 0 outside
[0, 2], φ decreasing, and |φ′| ≤ 2. For ǫ > 0, we define Ψǫ as

Ψǫ(x, t) = Ψǫ(t) = φ
( ǫ

|t|

)
.

For l > 0, we define χl as

χl(x, t) = χl(t) = φ
(a|t|

l

)
,

and if B ⊂ Rd is a ball, we define

ΦB,l(x, t) = ΦB,l(x) = φ
(
1 +

dist(x,B)

l

)
.

The reader may recall Lemma 4.5 and recognize that Ψǫ is the function Ψe there
with e(x) ≡ ǫ, and the product χlΦB,l is the function ΨB,l there. These cut-off
functions correspond to smooth cut-off away from the boundary, at infinity in the t
and x variables, respectively. Also recall that, when the radius of B is bigger than l,
the function ΨǫχlΦB,l satisfies (H2

a,M0
) for some M0 depending only on a and the

dimensions d, n (see Lemma 4.5).

Lemma 7.1 (N < S + Tr when q ≥ 2). Let L be an elliptic operator satisfying

(H1
κ) for some constant κ ≥ 0. Let a, l > 0, 2 ≤ q < q′0, where q′0 is the conjugate

of q0 given by Proposition 2.1. Choose k > 12. Then for any energy solution

u ∈ W to Lu = 0,

(7.2) ‖Ña,q(u|χ
k
l )‖

q
q . ‖Sa,q(u|χ

k−12
l )‖qq + ‖Tru‖qq < +∞,

where the constant of the first inequality depends on a, q, n, d, λq(A), ‖A‖∞,

‖b−1‖∞ + ‖b‖∞, κ and k.
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Remark 7.2. An immediate consequence of the lemma is that if u ∈ W is an
energy solution to Lu = 0, then ‖Ña,q(u|χ

k
l )‖q is finite for any k > 0 (not only for

k > 12). Indeed, since χk
l ≤ χ20

2l for all k > 0, l > 0, we have

‖Ña,q(u|χ
k
l )‖q ≤ ‖Ña,q(u|χ

20
2l )‖q < +∞.

The same remark holds for Lemma 7.4

Proof. We start by proving finiteness. First, if u is an energy solution and q ≥ 2,
we have that

´

Ω|∇u|2 |u|q−2 |t|d+1−n dt dx < +∞, by Theorem 1.13 (i), and also

that Tru ∈ C∞
0 (Rd) ⊂ Lq(Rd). Then, since χl ≤ 1 is supported in {(x, t) ∈ Ω,

|t| ≤ 2l/a}, we have

‖Sa,q(u|χ
k−12
l )‖qq ≃

¨

(x,t)∈Ω

|∇u|2 |u|q−2χk−12
l

dt

|t|n−d−2
dx

≤
2l

a

¨

(x,t)∈Ω

|∇u|2 |u|q−2 dt

|t|n−d−1
dx < +∞.(7.3)

So, indeed, we have

‖Sa,q(u|χ
k−12
l )‖qq + ‖Tru‖qq < +∞.

The proof of the first inequality in (7.2), in simple words, is by passing to the
limit the estimate in Lemma 6.9.

Step 1. We claim that for any ball B with radius l′ ≥ l and for any k > 12,

(7.4) ‖Ña,q(u|χ
k
l Φ

k
B,l)‖

q
q < +∞.

We take ǫ > 0 sufficiently small (ǫ < l/a). We write Ψ for χlΦB,lΨǫ. According
to Lemma 6.11,

‖Ña,q(u|Ψ
k)‖qq . ‖Sa,q(u|Ψ

k−12)‖qq

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
ǫ Φk−3

B,l ∂r[−χk−3
l ]

ds

|s|n−d−1
dy.

Note that ΦB,l is independent of t, so we can pull it out of the r-derivative. Since
Ψ ≤ χl, Ψǫ ≡ 1 on supp ∂rχl ⊂ {l/a ≤ |t| ≤ 2l/a}, and |∂rχl(s)| . 1/|s|, we
deduce

‖Ña,q(u|Ψ
k)‖qq . ‖Sa,q(u|χ

k−12
l )‖qq +

¨

(y,s)∈ suppΦB,l∂rχl

|u|q
ds

|s|n−d
dy.

Notice that the right-hand side is independent of ǫ, and it is finite. Indeed, by (7.3),
‖Sa,q(u|χ

k−12
l )‖qq < +∞; moreover, ΦB,l∂rχl is compactly supported in Ω and by

Lemma 3.1 u ∈ Lq
loc(Ω). We deduce that

‖Ña,q(u|Ψ
k)‖qq = ‖Ña,q(u|χ

k
l Φ

k
B,lΨ

k
ǫ )‖

q
q

is uniformly bounded in ǫ, and so the claim (7.4) follows by passing ǫ → 0.
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Step 2: We want to prove that for any k ≥ 1 and any ball B with radius l′ ≥ l,
we have

(7.5) lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
l Φ

k
B,l∂r[Ψ

k
ǫ ]

ds

|s|n−d−1
dy .

ˆ

x∈4B

|Tru|q dx.

Note that supp ∂rΨǫ ⊂ {(x, t) ∈ Ω, ǫ/2 ≤ |t| ≤ ǫ}, 0 ≤ ∂rΨǫ . 1/ǫ. Hence
ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
l Φ

k
B,l∂r[Ψ

k
ǫ ]

ds

|s|n−d−1
dy(7.6)

.

ˆ

y∈2B

 

ǫ/2≤|s|≤ǫ

|u|qχk
l Φ

k
B,l ds dy

.

ˆ

x∈3B

 

y∈Baǫ/2(x)

 

ǫ/2≤|s|≤ǫ

|u|qχk
l Φ

k
B,l ds dy dx.

For the last inequality, we use Fubini’s lemma. By (7.4) of step 1,
 

y∈Baǫ/2(x)

 

ǫ/2≤|s|≤ǫ

|u|qχk
l Φ

k
B,l ds dy =

∣∣(u|χk
l Φ

k
B,l)W,a,q(x, ǫ)

∣∣k(7.7)

≤ |Ña,q(u|χ
k
l Φ

k
B,l)(x)|

q

is integrable uniformly in ǫ. When q ≥ 2, Moser’s estimate (Lemma 3.1 (ii)) gives
that

(7.8)
(  

y∈Baǫ(x)

 

ǫ/2≤|s|≤ǫ

|u|qds dy
)1/q

.
( 

y∈B2aǫ(x)

 

ǫ/4≤|s|≤2ǫ

|u|2 ds dy
)1/2

.

(We remark that when q < 2, the above estimate also holds by Hölder’s inequality.)
We claim that

(7.9) lim sup
ǫ→0

(  

y∈B2aǫ(x)

 

ǫ/4≤|s|≤2ǫ

|u|2 ds dy
)1/2

. |Tr u(x)|,

for σ-almost every x ∈ Γ. Then, by the reverse Fatou lemma and the pointwise
domination (7.7), we get

lim sup
ǫ→0

ˆ

x∈4B

( 

y∈B2aǫ(x)

 

ǫ/4≤|s|≤2ǫ

|u|2ds dy
)q/2

dx .

ˆ

x∈4B

|Tru|q dx.

This estimate, combined with (7.6) and (7.8), proves (7.5).
By the triangle inequality,

 

y∈B2aǫ(x)

 

ǫ/4≤|s|≤2ǫ

|u|2 ds dy(7.10)

.

 

y∈B2aǫ(x)

 

ǫ/4≤|s|≤2ǫ

|u− Tru(x)|2 ds dy + |Tr u(x)|2

.

 

y∈B2aǫ(x)

 

|s|≤2ǫ

|u− Tr u(x)|2 ds dy + |Tru(x)|2.
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Recall the Lebesgue density property in Theorem 3.4 of [10] guarantees the first
term above tends to 0 as ǫ → 0, if we replace the power two by one. We claim that
a similar L2 Lebesgue density property holds, and thus (7.9) follows immediately.
In fact,

 

y∈B2aǫ(x)

 

|s|≤2ǫ

|u− Tru(x)|2 ds dy(7.11)

≤ 2|ux,ǫ − Tr u(x)|2 + 2

 

y∈B2aǫ(x)

 

|s|≤2ǫ

|u − ux,ǫ|
2 ds dy.

The first term goes to 0 as ǫ → 0, thanks to (3.23) in [10]. We use (2.13) and
Lemma 4.2, both from [10], to bound the second term as follows:

 

y∈B2aǫ(x)

 

|s|≤2ǫ

|u− ux,ǫ|
2 ds dy(7.12)

. Gǫ(x) := ǫ1−d

ˆ

y∈B2aǫ(x)

ˆ

|s|≤2ǫ

|∇u|2
ds

|s|n−d−1
dy.

But since ∇u ∈ L2(Rn \ Γ, w) implies

ˆ

Γ

Gǫ(x) dx = ǫ ·

ˆ

y∈Γ

ˆ

|s|≤2ǫ

|∇u|2
ds

|s|n−d−1
dy → 0,

we deduce that Gǫ(x) → 0 for a.e. x ∈ Γ. The latter convergence, combined
with (7.11) and (7.12), gives the L2 Lebesgue density property, i.e., the left-hand
side of (7.11) converges to 0 as ǫ → 0 for σ-almost every x ∈ Γ.

Step 3: Conclusion. Let B = Bl′ be a ball with center 0 and radius l′ ≥ l
and ǫ > 0. Applying Lemma 6.9 to the function Ψ = χlΦB,lΨǫ, we get

‖Ña,q(u|Ψ
k)‖qq . ‖Sa,q(u|Ψ

k−12)‖qq

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk−3
l Φk−3

B,l ∂r[Ψ
k−3
ǫ ]

ds

|s|n−d−1
dy.

By step 2, taking the limit as ǫ goes to 0 gives that

‖Ña,q(u|χ
k
l Φ

k
B,l)‖

q
q . ‖Sa,q(u|χ

k−12
l Φk−12

B,l )‖qq +

ˆ

x∈4B

|Tru|q dx.

We take now the limit as the radius l′ goes to +∞ and we obtain (7.2). ✷

Remark 7.3. We remark that the above proof does not use q ≥ 2 per se: We
only need this assumption to guarantee that ‖Sa,q(u|χ

k−12
l )‖q is finite (see step 1).

That is to say, we can use the same argument for the case q < 2, if we know a
priori the corresponding square function is integrable.
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Lemma 7.4 (N < S + Tr when q < 2). Let L be an elliptic operator satisfy-

ing (H1
κ) for some constant κ ≥ 0. Let a, l > 0, q ∈ (q0, q

′
0), where q0 is given by

Proposition 2.1. Choose k > 12. Then for any energy solution u ∈ W to Lu = 0,

(7.13) ‖Ña,q(u|χ
k
l )‖

q
q . ‖Sa,q(u|χ

k−12
l )‖qq + ‖Tru‖qq < +∞,

where the constant of the first inequality depends on a, q, n, d, λq(A), ‖A‖∞,

‖b−1‖∞ + ‖b‖∞, κ and k.

Proof. We start by proving a priori finiteness.

Step 1. We claim that if l is sufficiently large (depending only on a and the
support of Tru) and B ⊂ R

d is any ball centered at zero with radius greater than l,
then

‖Ña,q(u|χ
k
l (1 − ΦB,l)

k)‖qq(7.14)

. ‖Sa,q(u|χ
k−12
l (1 − ΦB,l)

k−12)‖qq + ‖Tru‖qq < +∞.

We choose l so that the ball in R
n centered at zero with radius l/a contains

two times the ball B0 ⊂ Rn given by Theorem 1.13 (ii). (Recall that B0 depends
on the support of Tr u.) Recall that

‖Sa,q(u|χ
k−12
l (1− ΦB,l)

k−12)‖qq

≃

¨

(x,t)∈Ω

|∇u|2 |u|q−2χk−12
l (1− ΦB,l)

k−12 dt

|t|n−d−2
dx

. l

¨

(x,t)∈Ω

|∇u|2 |u|q−2(1− ΦB,l)
k−12 dt

|t|n−d−1
dx,

because |t| ≤ 2l in the support of χl. In addition, the support of (1 − ΦB,l)
k−12

is contained in the complement of a cylinder of radius ∼ l/a, thus by the choice
of l it is contained in Rn \ B0. Lemma 3.5 then allows us to conclude that the
right-hand side above, and so the left-hand side, is finite. Again by Remark 7.3,
once we know ‖Sa,q(u|χ

k−12
l (1 − ΦB,l)

k−2)‖q < +∞, (7.14) follows by the same
argument as in the proof of Lemma 7.1.

Step 2. We claim that for any k > 2,

(7.15) ‖Sa,q(u|χ
k
l )‖q . ‖Ña,q(u|χ

k−2
l )‖q < +∞.

On the one hand we observe that for any l > 0 and any ball B′ of radius at least l,
one has

(7.16) ‖Ña,q(u|χ
k−2
l Φk−2

B′,l )‖q < +∞.

Indeed, the above finiteness is an immediate consequence of Hölder’s inequality,
since

Ña,q(u|χ
k−2
l Φk−2

B′,l ) ≤ Ña,2(u|χ
k−2
l ),
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where Ña,q(u|χ
k−2
l Φk−2

B′,l ) has compact support, and ‖Ña,2(u|χ
k−2
l )‖2 < +∞ by

Lemma 7.1. On the other hand, by step 1, ‖Ña,q(u|χ
k−2
l (1 − ΦB,l)

k−2)‖q < +∞
if l is sufficiently large. (A priori we only have finiteness when k − 2 > 12, but
since 0 ≤ χl ≤ 1, the finiteness clearly holds for any k > 2.) A simple computation
shows that 1 ≤ Φk−2

2B,l + (1 − ΦB,l)
k−2, and hence

‖Ña,q(u|χ
k−2
l )‖q . ‖Ña,q(u|χ

k−2
l Φk−2

2B,l)‖q + ‖Ña,q(u|χ
k−2
l (1− ΦB,l)

k−2)‖q < +∞.

Now take an increasing sequence of balls (Bi)i≥1 such that B1 is of radius l,
Bi ⊂ Bi+1 and

⋃
Bi = Rd. We apply Lemma 5.3 to the functions Ψ = χlΦBi,lΨ1/i,

which gives that

‖Sa,q(u|Ψ
k)‖q . ‖Ña,q(u|Ψ

k−2)‖q.

By the finiteness of ‖Ña,q(u|χ
k−2
l )‖q, we may take the limit as i → +∞ and

obtain (7.15).

Step 3: Conclusion. Having shown the finiteness of ‖Sa,q(u|χ
k−12
l )‖q, by Re-

mark 7.3, the same argument in the proof of Lemma 7.1 gives (7.13). ✷

The following estimate is a byproduct of Lemma 7.1, in particular, of (7.5). It
will be used later in the proof of Lemma 7.6.

Corollary 7.5. Let L be an elliptic operator satisfying (H1
κ) for some constant

κ ≥ 0. Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Choose k ≥ 1.

Then for any energy solution u ∈ W to Lu = 0,

(7.17) lim sup
ǫ→0

¨

Ω

|u|q ∂r[Ψ
k
ǫ ]

ds

|s|n−d−1
dy . ‖Tru‖qq,

where the constant depends on a, q, n, d, λq(A), ‖A‖∞, ‖b−1‖∞+ ‖b‖∞, κ and k.

Proof. Let l > 0 be fixed. Since |Ña,q(u|χk
l )|

q is integrable, the same argument in
step 2 of Lemma 7.1 allows us to conclude

lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
l ∂r[Ψ

k
ǫ ]

ds

|s|n−d−1
dy .

ˆ

x∈Rd

|Tru|q dx.

Since χl ≡ 1 on supp ∂[Ψk
ǫ ] if ǫ is small enough (ǫ < l/a), it follows that

lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q∂r[Ψ
k
ǫ ]

ds

|s|n−d−1
dy

= lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qχk
l ∂r[Ψ

k
ǫ ]

ds

|s|n−d−1
dy

.

ˆ

x∈Rd

|Tru|q dx. ✷

The next lemma can be seen as the analogue of Lemma 5.1 for energy solutions.
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Lemma 7.6 (S < κN+Tr). Let L be an elliptic operator satisfying (H1
κ) for some

constant κ ≥ 0. Let a, l > 0, q ∈ (q0, q
′
0) where q0 is given by Proposition 2.1.

Choose k > 2. Then for any energy solution u ∈ W to Lu = 0,

c‖Sa,q(u|χ
k
l )‖

q
q ≤ Cκ‖Ña,q(u|χ

k−2
l )‖qq + C‖Tru‖qq(7.18)

+
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx,

where the constants c, C > 0 depend on a, q, n, λq(A), ‖A‖∞, ‖b‖∞ + ‖b−1‖∞, k
and (the upper bound of ) κ.

Proof. We take ǫ > 0 and a sequence of balls (Bi)i≥1 such that B1 is of radius 100l,
Bi ⊂ Bi+1,

⋃
Bi = Rd. We apply Lemma 5.1 with the function Ψi = χlΦBi,lΨǫ,

which gives that

c‖Sa,q(u|Ψ
k
i )‖

q
q ≤

1

2
Re

¨

Ω

A′∇u · ∇[|u|q−2 ū]
Ψk

i

b

dt

|t|n−d−2
dx

≤ Cκ‖Ñq,a(u|Ψ
k−2
i )‖qq − Re

¨

Ω

A′∇u · ∇x[Ψ
k
i ]

|u|q−2 ū

b

dt

|t|n−d−2
dx

+
1

q

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t[Ψ

k
i ]

dt

|t|n−d−2
dx.

(7.19)

Passing i → +∞ and then ǫ → 0, the left-hand side converges to c‖Sa,q(u|χk
l )‖

q
q,

which is finite by Lemmas 7.1 and 7.4. Clearly we have that ‖Ñq,a(u|Ψ
k−2
i )‖q ≤

‖Ñq,a(u|χ
k−2
l )‖q. So to prove (7.18), it suffices to establish

(7.20) lim
i→∞

Re

¨

Ω

A′∇u · ∇x[Ψ
k
i ]

|u|q−2 ū

b

dt

|t|n−d−2
dx = 0

and

lim sup
ǫ→0

lim
i→∞

1

q

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t[Ψ

k
i ]

dt

|t|n−d−2
dx(7.21)

≤ C‖Tru‖q/2q ‖Sa,q(u|χ
k
l )‖

q/2
q + C‖Tr u‖qq

+
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx.

In the last inequality, we have the additional term C‖Tru‖
q/2
q ‖Sa,q(u|χk

l )‖
q/2
q ,

which does not appear in the right-hand side of (7.18), but this term can be
bounded by Cη‖Tru‖qq + η‖Sa,q(u|χk

l )‖
q
q, and then we can hide η‖Sa,q(u|χk

l )‖
q
q in

the left-hand side by taking η small enough.

Let us start with (7.20). Since χl and Ψǫ are x-independent, we have

∇x[Ψ
k
i ] = kΨk−1

i · χlΨǫ∇xΦBi,l.
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But ∇xΦBi,l is supported outside the ball Bi, and ΦBi/2,l ≡ 0 on supp∇xΦBi,l

if li ≥ 2l. So ∇xΦBi,l = (1− ΦBi/2,l)
k∇xΦBi,l and

T1 :=
∣∣∣Re

¨

Ω

A′∇u · ∇x[Ψ
k
i ]

|u|q−2 ū

b

dt

|t|n−d−2
dx

∣∣∣(7.22)

.

¨

Ω

|∇u|(1− ΦBi/2,l)
kΨk−1

i χlΨǫ|∇xΦBi,l| |u|
q−1 dt

|t|n−d−2
dx

.
(¨

Ω

|∇u|2 |u|q−2(1 − ΦBi/2,l)
kΨk

i

dt

|t|n−d−2
dx

)1/2

×
(¨

Ω

|u|q(1− ΦBi/2,l)
kΨk−2

i |∇x[ΦBi,lχl]|
2 dt

|t|n−d−2
dx

)1/2

. ‖Sa,q(u|Ψ
k
i (1− ΦBi/2,l)

k)‖q/2q ‖Ña,q(u|Ψ
k−2
i (1 − ΦBi/2,l)

k)‖q/2q ,

by Lemma 4.6 and the fact that ΦBi,lχl satisfies (H2
a). It then follows from Lem-

ma 5.3 that

(7.23) T1 . ‖Ña,q(u|Ψ
k−2
i (1 − ΦBi/2,l)

k−2)‖qq.

By the construction of Ψi, Ña,q(u|Ψ
k−2
i (1−ΦBi/2,l)

k−2) is supported in Rd\(Bi/4),

so the right-hand side of (7.23) is bounded by ‖Ña,q(u|χ
k−2
l )‖qLq(Rd\Bi/4)

. Lem-

mas 7.1 and 7.4 imply that Ña,q(u|χ
k−2
l ) is integrable in Lq(Rd). Therefore, since

the balls Bi increase to Rd, we have

lim
i→∞

T1 = 0.

The claim (7.20) follows.
We turn to the proof of (7.21). First, since Ψi depends only on x, |t| and not

on t/|t|, by simple algebra, we have
∣∣∣
( |u|q

|t|
∇|t| − ∇t[|u|

q]
)
· ∇t[Ψ

k
i ]
∣∣∣ =

∣∣∣
( |u|q

|t|
− ∂r[|u|

q]
)
∂r[Ψ

k
i ]
∣∣∣

≤
∣∣∣
( |u|q

|t|
− ∂r[|u|

q]
)
∂r[χ

k
l Ψ

k
ǫ ]
∣∣∣.

That is, the integrand is bounded by a function independent of i. Moreover, we
let the reader check that the latter is integrable:

¨

Ω

∣∣∣
( |u|q

|t|
− ∂r[|u|

q]
)
∂r[χ

k
l Ψ

k
ǫ ]
∣∣∣ dt

|t|n−d−2
dx

. ‖Ña,q(u|Ψ
k−1
i )‖qq + ‖Ña,q(u|Ψ

k−2
i )‖q/2q ‖Sa,q(u|Ψ

k
i )‖

q/2
q

. ‖Ña,q(u|Ψ
k−2
i )‖qq . ‖Ña,q(u|χ

k−2
l )‖qq < +∞.

Therefore, by the Lebesgue dominated convergence theorem,

lim
i→∞

1

q

¨

Ω

( |u|q
|t|

∇|t| − ∇t[|u|
q]
)
· ∇t[Ψ

k
i ]

dt

|t|n−d−2
dx

=
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l Ψ

k
ǫ ]

dt

|t|n−d−2
dx < +∞.
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We denote the second integral as T2. If ǫ is small (ǫ < l/a), then Ψǫ ≡ 1 on
supp ∂rχl and χl ≡ 1 on supp ∂rΨǫ. Hence

∂r[χ
k
l Ψ

k
ǫ ] = ∂r[Ψ

k
ǫ ] + ∂r[χ

k
l ],

which implies that

T2 =
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[Ψ

k
ǫ ]

dt

|t|n−d−2
dx

+
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx

=: T3 + T4.

Both T3 and T4 are finite when ǫ is small, because T3 and T4 are just the de-
composition of the integral T2 into two integrals on disjoint sets supp ∂rΨǫ and
supp ∂rχl (and the function under the integral of T2 is integrable). The term T4 is
independent of ǫ, so we do not need to touch it anymore. Now, we consider

Uǫ :=

¨

Ω

|u|q∂r[Ψ
k
ǫ ]

dt

|t|n−d−1
dx ≥ 0.

Since |∂r[|u|q]| . |u|q−1|∇u| and ∂r[Ψ
k
ǫ ] ≥ 0 by construction, by Hölder’s inequal-

ity, we have

T3 . Uǫ + U1/2
ǫ

(¨

Ω

|∇u|2 |u|q−2∂r[Ψ
k
ǫ ]

dt

|t|n−d−3
dx

)1/2
.

Observe now that ∂r[Ψǫ] . 1/|t|, and if ǫ is small, then χl ≡ 1 on supp ∂r[Ψ
k
ǫ ]. We

deduce

T3 . Uǫ + U1/2
ǫ

(¨

Ω

|∇u|2 |u|q−2χk
l

dt

|t|n−d−2
dx

)1/2
. Uǫ + U1/2

ǫ ‖Sa,q(u|χ
k
l )‖

q/2
q .

By taking the limit as ǫ → 0, and recalling that Lemma 7.5 shows lim supǫ→0 Uǫ .

‖Tru‖qq, it follows that

lim sup
ǫ→0

T3 . ‖Tru‖qq + ‖Tru‖q/2q ‖Sa,q(u|χ
k
l )‖

q/2
q .

The claim (7.21) and then the lemma follows. ✷

The next step is to prove a bound on the growth of the energy solution u. It
will be used to get a global estimate in the proof of Lemma 7.8.

Lemma 7.7. Let L be an elliptic operator. Let q ∈ (q0, q
′
0), where q0 is given by

Proposition 2.1. Choose k ≥ 1. Then for any energy solution u ∈ W to Lu = 0,

(7.24) lim
l→+∞

1

l

¨

Ω

|u|q∂r[−χk
l ]

dt

|t|n−d−1
dx = 0.
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Proof. First, by the definition of χl and φ, we have 0 ≤ ∂r[−χk
l ] . 1/l and

supp ∂r[−χk
l ] ⊂ {(x, t) ∈ Ω, l ≤ a|t| ≤ 2l}. Therefore,

(7.25)
1

l

¨

Ω

|u|q∂r[−χk
l ]

dt

|t|n−d−1
dx .

1

l2

ˆ

x∈Rd

ˆ

l≤a|t|≤2l

|u|q
dt

|t|n−d−1
dx.

Let (Bi)i∈I be balls of radius l that form a finitely overlapping covering of Rd \
B4l(0). Without loss of generality, we only consider balls that intersect Rd \B4l(0),
thus

R
d \B4l(0) ⊂

⋃

i∈I

Bi ⊂ R
d \B2l(0).

Let D0 be a cylindrical annulus:

D0 := {(x, t) ∈ R
n, x ∈ B4l \B2l, a|t| ≤ 2l} ∪ {(x, t) ∈ R

n, x ∈ B2l, l ≤ a|t| ≤ 2l}.

The bound (7.25) then becomes

1

l

¨

Ω

|u|q ∂r[−χk
l ]

dt

|t|n−d−1
dx(7.26)

.
1

l2

¨

(x,t)∈D0

|u|q
dt

|t|n−d−1
dx+

1

l2

∑

i∈I

ˆ

x∈Bi

ˆ

a|t|≤2l

|u|q
dt

|t|n−d−1
dx

=
1

l2

¨

(x,t)∈D0

||u|q/2−1u|2
dt

|t|n−d−1
dx

+
1

l2

∑

i∈I

ˆ

x∈Bi

ˆ

a|t|≤2l

||u|q/2−1u|2
dt

|t|n−d−1
dx.

Now, since u is an energy solution, there exists l0 such that suppTru ⊂ B2l0(0).
If l ≥ l0, all the cubes {(x, t) ∈ Rn, x ∈ Bi, a|t| ≤ 2l} and the domain D0

intersect the boundary ∂Ω = Rd, where Tru is 0. Thus Tr |u|q/2−1u = 0 by
boundary Moser’s estimate (when q > 2) or Holder’s inequality (when q < 2). So
by Poincaré’s inequality (see Lemma 4.2 in [10] (the proof there is written when
the domains are balls but it goes through for our domains), we have

1

l

¨

Ω

|u|q ∂r[−χk
l ]

dt

|t|n−d−1
dx .

¨

(x,t)∈D0

|∇[|u|q/2−1u]|2
dt

|t|n−d−1
dx

+
∑

i∈I

ˆ

x∈Bi

ˆ

a|t|≤2l

|∇[|u|q/2−1u]|2
dt

|t|n−d−1
dx

.

¨

(x,t)∈D0

|∇u|2 |u|q−2 dt

|t|n−d−1
dx

+
∑

i∈I

ˆ

x∈Bi

ˆ

a|t|≤2l

|∇u|2 |u|q−2 dt

|t|n−d−1
dx,

where the last line is due to (2.5). Due to the finite overlapping of the covering
(Bi)i∈I and the fact that we always avoid {(x, t) ∈ Ω, x ∈ B2l(0), a|t| ≤ l} in the
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integrations, we have, when l ≥ l0,

1

l

¨

Ω

|u|q ∂r[−χk
l ]

dt

|t|n−d−1
dx

.

¨

Ω\{(x,t)∈Ω, x∈B2l(0), a|t|≤l}

|∇u|2 |u|q−2 dt

|t|n−d−1
dx.

Thanks to Lemma 3.5, the right-hand side above converges to 0 as l goes to +∞.
The lemma follows. ✷

The following lemma is the key point in proving the existence of solutions to
the Dirichlet problem, when the boundary function (trace) is smooth.

Lemma 7.8 (Global estimate N < Tr for energy solutions). Let L be an elliptic

operator satisfying (H1
κ) for some constant κ ≥ 0. Let a > 0, q ∈ (q0, q

′
0), where q0

is given by Proposition 2.1. There exist two values κ0 > 0 and C > 0, both

depending only on a, q, n, λq(A), ‖A‖∞, ‖b‖∞ + ‖b−1‖∞, such that if κ ≤ κ0,

then for any energy solution u ∈ W to Lu = 0,

(7.27) ‖Ña,q(u)‖q ≤ C‖Tr u‖q.

Proof. Let us fix for the proof some k large, say k = 20. In addition, we always
consider κ0 smaller than 1 and κ ≤ κ0. Assume that u is not trivially zero,
otherwise there is nothing to prove.

The combination of Lemma 7.1 and Lemma 7.6 gives that for l > 0,

‖Ña,q(u|χ
k+12
l )‖qq ≤ Cκ‖Ña,q(u|χ

k−2
l )‖qq + C‖Tr u‖qq(7.28)

+
C

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx,

where the constant C > 0 depends only on a, q, n, λq(A), ‖A‖∞, ‖b‖∞+ ‖b−1‖∞.
In particular, note that k = 20 is fixed and κ ≤ κ0 ≤ 1, the constant C does not
depend κ and l.

In order to control ‖Ña,q(u|χ
k−2
l )‖q by ‖Ña,q(u|χ

k+12
l )‖q, we make an addi-

tional assumption on φ, the smooth function from which χl is defined. Recall that
φ ∈ C∞

0 ([0,∞)), 0 ≤ φ ≤ 1, φ ≡ 1 on [0, 1], φ ≡ 0 outside [0, 2], φ is decreasing
and |φ′| ≤ 2. We assume, in addition, that

(7.29) φ(x) = 2− x when x ∈ (9/8, 15/8).

With this additional assumption, it is not hard to verify that

χk−2
l . χk+12

l + l∂r[−χk
3l/2],

where the constant is universal (recall k = 20 is fixed). Indeed, observe that the
assumption (7.29), in particular, implies that ∂r[−χk

3l/2] has a strictly positive
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lower bound on the interval 3l
2a (9/8, 15/8) ⊃ [15l/(8a), 2l/a], where the value of χl

is very small. It then follows that

‖Ña,q(u|χ
k−2
l )‖qq(7.30)

. ‖Ña,q(u|χ
k+12
l )‖qq + l

ˆ

x∈Rd

∣∣ sup
Γa(x)

(u|∂r[−χk
3l/2])W,a,q

∣∣q dx.

Since ∂r[−χk
3l/2] is supported in a domain, where |s| ≈ l/a, we deduce

∣∣ sup
Γa(x)

(u|∂r[−χk
3l/2])W,a,q

∣∣q .
∣∣(u|∂r[−χk

3l/2])W,10a,q(x, 3l/2a)
∣∣q

. l−n

ˆ

y∈B8l(x)

ˆ

3l/4≤a|s|≤3l

|u|q ∂r[−χk
3l/2] ds dy

. l−d−1

ˆ

y∈B8l(x)

ˆ

s∈Rn−d

|u|q ∂r[−χk
3l/2]

ds

|s|n−d−1
dy.

And then, by Fubini’s lemma,

ˆ

x∈Rd

∣∣ sup
Γa(x)

(u|∂r[−χk
3l/2])W,a,q

∣∣q dx . l−1

¨

(y,s)∈Ω

|u|q ∂r[−χk
3l/2]

ds

|s|n−d−1
dy.

The estimate (7.30) becomes

(7.31) ‖Ña,q(u|χ
k−2
l )‖qq . ‖Ña,q(u|χ

k+12
l )‖qq+

¨

(x,t)∈Ω

|u|q ∂r[−χk
3l/2]

dt

|t|n−d−1
dx.

We eventually want to estimate the last term by ‖Ña,q(u|χ
k+12
l )‖qq. Notice that

for any l′ ≤ (2/3)2l < l/2, we have

¨

(x,t)∈Ω

|u|q ∂r[−χk
l′ ]

dt

|t|n−d−1
dx(7.32)

. (l′)d−n

ˆ

x∈Rd

ˆ

l′/2≤a|t|≤2l′
|u|q dt dx

.

ˆ

x∈Rd

(
(l′)−n

ˆ

y∈Bl′/2(x)

ˆ

l′/2≤a|t|≤2l′
|u|q dt dy

)
dx

.

ˆ

x∈Rd

|Ña,q(u|χ
k+12
l )|q dx = ‖Ña,q(u|χ

k+12
l )‖qq.

The last inequality is because χl ≡ 1 when a|t| ≤ l, so, in particular, when a|t| ≤
2l′ < l. Let w : (0,∞) → R denote the continuous function

w(l) =

¨

(x,t)∈Ω

|u|q ∂r[−χk
l ]

dt

|t|n−d−1
dx.
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Then the combination of (7.28), (7.31), and (7.32) gives that

sup
l′≤4l/9

w(l′) . ‖Ña,q(u|χ
k+12
l )‖qq(7.33)

≤ Cκ‖Ña,q(u|χ
k+12
l )‖qq + Cκw(3l/2) + C‖Tru‖qq

+
C

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx,

where the constant C > 0 is independent of κ.

The last term of the above estimate (7.33) can also be written in terms of the
function w(l). In fact, we define

v(r) =

ˆ

x∈Rd

ˆ

θ∈Sn−d−1

|u(x, rθ)|q dθ dx,

which is finite for almost every r > 0, since u ∈ Lq
loc(Ω). On the one hand, the last

term of (7.33) can be rewritten by polar coordinates:

(7.34)

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx =

ˆ ∞

0

[rv′(r) − v(r)]∂r [−χk
l ] dr.

On the other hand, we have

(7.35) w(l) =

¨

(x,t)∈Ω

|u|q∂r[−χk
l ]

dt

|t|n−d−1
dx =

ˆ ∞

0

v(r)∂r [−χk
l ] dr.

By the construction of χl, we can write ∂r[−χk
l ] as

a
l ξ(

ar
l ) with a non-negative

function ξ = −φkΦ′ ∈ C∞
0 ([0,∞)), and hence

w′(l) =

ˆ +∞

0

v(r)∂l

[a
l
ξ
(ar

l

)]
dr(7.36)

= −
1

l

ˆ +∞

0

v(r)
a

l
ξ
(ar

l

)
dr −

1

l

ˆ +∞

0

rv(r)
a2

l2
ξ′
(ar

l

)
dr

= −
1

l

ˆ +∞

0

v(r)
a

l
ξ
(ar

l

)
dr −

1

l

ˆ +∞

0

rv(r)
a

l
∂r

[
ξ
(ar

l

)]
dr

= −
1

l

ˆ +∞

0

v(r)
a

l
ξ
(ar

l

)
dr +

1

l

ˆ +∞

0

∂r[rv(r)]
a

l
ξ
(ar

l

)
dr

=
1

l

ˆ +∞

0

rv′(r)
a

l
ξ
(ar

l

)
dr

=
1

l

ˆ +∞

0

rv′(r)∂r [−χk
l ] dr,

where we use integration by parts and the fact that ξ has compact support. By
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combining (7.34), (7.35) and (7.36), we can rewrite (7.33) as

sup
l′≤4l/9

w(l′) . ‖Ña,q(u|χ
k+12
l )‖qq(7.37)

≤ Cκ‖Ña,q(u|χ
k+12
l )‖qq + Cκw(3l/2)

+
C

q
(lw′(l)− w(l)) + C‖Tru‖qq.

We claim that for any l0 > 0, there exists l ≥ l0 such that

(7.38) w
(3
2
l
)
≤

(3
2

)5

sup
l′≤4l/9

w(l′) and lw′(l)− w(l) ≤ 0.

Assume the claim holds. Then there is a sequence li → ∞ such that

Cκw
(3
2
li

)
≤ Cκ

(3
2

)5

sup
l′≤4li/9

w(l′) ≤
1

3
‖Ña,q(u|χ

k+12
li

)‖qq.

Thus, by choosing κ sufficiently small satisfying Cκ(3/2)5 ≤ 1/3, we obtain (7.27)
by combining (7.37) and (7.38).

Recall in Lemma 7.7 we proved (7.24), which says w(l)/l → 0 as l → +∞. Thus,
it is not difficult to show each estimate of the claim (7.38) holds for infinitely many l
individually. But we need to find a sequence li → ∞ such that both estimates hold
at the same time. We prove the claim by contradiction. Assume not, then there
exists l0 > 0 such that for all l ≥ l0, either

(7.39) w
(3
2
l
)
>

(3
2

)5

sup
l′≤4l/9

w(l′)

or

(7.40) lw′(l)− w(l) > 0.

We define M as the positive quantity

M := inf
[(2/3)4l0,l0]

w > 0.

Indeed, note that w(l) is continuous, and if M is zero, then there exists l ∈
[16l0/81, l0] such that w(l) = 0. Hence u(x, t) ≡ 0 almost everywhere whenever t
lies in supp ∂r(−χk

l ), which is a non-trivial band contained in {l ≤ a|t| ≤ 2l}.
Extending u by zero outside of this band, we get another weak solution in W to
Lu = 0 with the same boundary value. By the uniqueness of weak solutions (see
Lemma 1.12), we conclude that u(x, t) ≡ 0 almost everywhere beyond the band, in
particular, whenever |t| ≥ 2l0/a. Then (7.39) and (7.40) clearly fail, and thus M
is strictly positive.

Let Ik denote the interval [(3/2)k−4l0, (3/2)
k−3l0). We will show by induction

that the following property holds for all k ∈ N:

P(k) : there exists l ∈ Ik such that w(l) ≥
l

l0
M.
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The base steps when k = 0, 1, 2, 3 are immediate by the definition of M . Assume
that P(k) and P(k+3) hold, that is, there exists l1 ∈ Ik such that w(l1) ≥ l1M/l0,
and there exists l2 ∈ Ik+3 such that w(l2) ≥ l2M/l0. We want to prove that
P(k+4) holds. Let l3 = (3/2)kl0 denote the upper endpoint for the interval Ik+3.
We distinguish two cases. Either there exists l ∈ [l2, l3) ⊂ Ik+3 such that (7.39) is
satisfied, that is,

w
(3
2
l
)
>

(3
2

)5

sup
l′≤4l/9

w(l′).

Since 4l/9 ≥ sup Ik ≥ l1, 3l/2 ∈ Ik+4 and (3/2)5l1 ≥ sup Ik+4 > 3l/2, it follows
that

w
(3
2
l
)
>

(3
2

)5
w(l1) ≥

(3
2

)5 l1
l0

M ≥
3l/2

l0
M.

Therefore, P(k+4) holds for 3l/2 ∈ Ik+4. Alternatively, in the second case, (7.39)
is never satisfied on the interval [l2, l3) and so by assumption (7.40) is always
satisfied on the same interval, that is,

lw′(l)− w(l) > 0 for all l ∈ [l2, l3).

By Grönwall’s inequality and the continuity of w, this implies

w(l3) ≥
l3
l2

w(l2) ≥
l3
l0

M,

i.e., P(k+4) holds for l3 ∈ Ik+4. The induction step follows, and we conclude that
P(k) holds for all k ∈ N. Thus, in particular, we have

lim sup
l→∞

w(l)

l
≥

M

l0
> 0,

contradicting Lemma 7.7. Therefore, the claim (7.38) holds. ✷

The next result proves the existence of a solution to the Dirichlet problem with
boundary value in Lq(Rd), by approximating using energy solutions.

Lemma 7.9. Let L be an elliptic operator satisfying (H1
κ) for some constant κ≥0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. There exists two values

κ0 > 0 and C > 0, both depending only on a, q, n, λq(A), ‖A‖∞, ‖b‖∞+ ‖b−1‖∞,

such that if κ ≤ κ0, then for any g ∈ Lq(Rd), there exists a weak solution u ∈
W 1,2

loc (Ω) to Lu = 0 such that

(7.41) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

|u(y, s)− g(x)|q dy ds = 0

for almost every x ∈ Rd, and

(7.42) ‖Ña,q(u)‖q ≤ C‖g‖q,

where the constant depends only on a, q, n, λq(A), ‖A‖∞, and ‖b‖∞ + ‖b−1‖∞.
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Remark 7.10. (i) The trace operator is defined for functions in W . In general,
for functions in W 1,2

loc (Ω), we use the equality (7.41) as a weaker version or
an adaptation of Tr u = g almost everywhere on Rd.

(ii) By Moser’s estimate or Hölder’s inequality, the Lebesgue density property,
i.e. (7.41), with power q is equivalent to that of power 2.

Proof. Since C∞
0 (Rd) is dense in Lq(Rd), we can find a collection (gi)i of functions

in C∞
0 (Rd) such that gi → g in Lq(Rd). In particular, (gi)i is a Cauchy sequence

in Lq(Rd). By passing to a subsequence if necessary, we may assume that ‖gi −
gi+1‖q ≤ 2−2i for all i. Since C∞

0 (Rd) ⊂ H , Lemma 1.12 guarantees the existence
of an energy solution ui ∈ W such that Trui = gi.

Lemma 1.12 also guarantees that for boundary value gi − gj ∈ H , the corre-
sponding solution in W is unique, so by the linearity of the operator L the solution
is ui − uj . Thus, by Lemma 7.8, we have, for all i, j,

(7.43) ‖Ña,q(ui)‖q . ‖gi‖q

and

(7.44) ‖Ña,q(ui − uj)‖q . ‖gi − gj‖q.

We claim that Ña,q(ui − ui+1)(x) → 0 as i → ∞, for almost every x ∈ Rd. In fact,
for any λ > 0, denote

Eλ = {x ∈ R
d, Ña,q(ui − ui+1)(x) < λ/2i for all i}.

Then, by (7.44) and the assumption on (gi)i, we have

|Ec
λ| ≤

∑

i

∣∣{x ∈ R
d, Ña,q(ui − ui+1)(x) ≥ λ/2i}

∣∣

≤
∑

i

(2i
λ

)q ˆ

x∈Rd

|Ña,q(ui − ui+1)(x)|
q dx

≤
∑

i

(2i
λ
2−2i

)q
≤

C

λq
.

Consider an arbitrary sequence λj → ∞, the above estimate implies
⋂

λj
Ec

λj
has

measure zero, and thus its complement
⋃

λj
Eλj has full measure in Rd. Therefore,

for almost every x ∈ Rd, there exists some λ > 0 (depending on x) such that

Ña,q(ui − ui+1)(x) <
λ

2i
for all i.

Thus, by the triangle inequality for the Lq norm, we have that for any j > i,

Ña,q(ui − uj)(x) ≤
2λ

2i
,

and by the definition of Ña,q, this means that for any (z, r) ∈ Γa(x),

(7.45) ‖ui − uj‖Lq(Wa(z,r)) =
(¨

Wa(z,r)

|ui − uj |
q dy ds

)1/q
≤

2λ

2i
|Wa(z, r)|

1/q .
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That is to say (ui)i is a Cauchy sequence in Lq(Wa(z, r)), and thus it converges to
a function u. Since this holds for almost every x ∈ R

d and any (z, r) ∈ Γa(x), this
function u is well defined on all of Ω and ui → u in Lq

loc. Moreover, by passing
j → ∞ in (7.45), we have

(7.46) Ña,q(ui − u)(x) = sup
(z,r)∈Γa(x)

( 1

|Wa(z, r)|

¨

Wa(z,r)

|ui − u|q dy ds
)1/q

≤
2λ

2i
,

which converges to zero as i → ∞. In particular, for any (z, r) ∈ Γa(x),

∣∣(ui)W,a,q(z, r)− (u)W,a,q(z, r)
∣∣ ≤ Ña,q(ui − u)(x) ≤

2λ

2i
.

We deduce that

(7.47) lim
i→∞

Ña,q(ui)(x) = Ña,q(u)(x)

for almost every x ∈ Rd. The estimate (7.42) follows by (7.47), Fatou’s lemma
and (7.43).

We recall the interior Cacciopoli inequality (see Lemma 8.6 in [10]): Let B be
a fixed ball with radius r > 0 such that the distance from 4B to the boundary is
roughly r. We know

¨

B

|∇(ui − uj)|
2 dm .

1

r2

¨

2B

|ui − uj |
2 dm < +∞.

By assumption, the distances from B and 2B to the boundary are roughly r, so
the above estimate is equivalent to

(7.48)

¨

B

|∇ui −∇uj|
2 dx dt .

1

r2

¨

2B

|ui − uj|
2 dx dt.

We have shown that (ui)i is a Cauchy sequence in Lq(4B). Either by Hölder’s
inequality (in the case of q ≥ 2) or by Moser’s estimate (in the case of q ≤ 2),
see (3.26), it follows that (ui)i is a Cauchy sequence in L2(2B). Therefore, (7.48)
implies that (∇ui)i is also a Cauchy sequence in L2(B), and thus it converges
in L2(B). By the uniqueness of the limit, ∇ui → ∇u in L2

loc(Ω). The convergence
forces u to be, like the ui’s, a weak solution to Lu = 0.

We now turn to the proof of (7.41). Since ui ∈ W , by Theorem 3.4 of [10] (see
also step 2 of Lemma 7.1), we have

(7.49) sup
(z,r)∈Γa(x)

r<δ

1

|Wa(z, r)|

¨

Wa(z,r)

|ui(y, s)− gi(x)|
2 dy ds → 0 as δ → 0,

for almost every x ∈ Rd. The set such that (7.49) holds depends a priori on i, but
since a countable union of sets of zero measure is still a set of measure zero, we
have (7.49) for every i ∈ N and almost every x ∈ R

d. Either by Hölder’s inequality
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(when q ≤ 2) or by Moser’s estimate (when q ≥ 2, see (3.2)) applied to the weak
solution ui − gi(x), it follows that

(7.50) sup
(z,r)∈Γa(x)

r<δ

1

|Wa(z, r)|

¨

Wa(z,r)

|ui(y, s)− gi(x)|
q dy ds → 0 as δ → 0,

for any i ∈ N and almost every x ∈ Rd. Since gi → g in Lq(Rd), by passing to a
subsequence, gi(x) → g(x) for almost every x ∈ Rd. Recall also that (7.47) holds
for almost every x ∈ Rd. As a consequence, (7.41) is obtained by taking the limit
as i → ∞ in (7.50). ✷

8. Uniqueness in the Dirichlet problem

In this section, we assume that u ∈ W 1,2
loc (Ω) is a weak solution to Lu = 0, where L

satisfies (H1
κ), and that u satisfies ‖Ña,q(u)‖q < +∞. We want to prove that if κ

is sufficiently small and that

(8.1) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u(y, s) dy ds = 0 for a.e. x ∈ R
d,

then u has to be 0. This, in turn, proves the uniqueness of solution.

Lemma 8.1. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. For any weak solution

u ∈ W 1,2
loc (Ω) to Lu = 0 that satisfies ‖Ña,q(u)‖q < +∞, we have

(8.2) ‖Ña,q(u)‖q ≈ ‖Sa,q(u)‖q,

where the constants depend only on a, q, n, λq(A), ‖A‖∞, ‖b‖∞ + ‖b−1‖∞ and κ.

Proof. Since ‖Ña,q(u)‖q is finite, the proof of

‖Sa,q(u)‖q ≤ C‖Ña,q(u)‖q < +∞

can be achieved by using Lemma 5.5 with an increasing sequence of cut-off func-
tions Ψi(x) such that Ψi(x) → 1 for all x ∈ Ω.

With the notation of Section 6, for a fixed k = 15, for any ǫ > 0, l > 0, and
any ball B of radius l′ ≥ l, Lemma 6.11 shows that

‖Ña,q(u|Ψ
k
ǫ Ψ

k
B,l)‖

q
q . ‖Sa,q(u|Ψ

k−12
ǫ Ψk−12

B,l )‖qq(8.3)

+

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|qΨk−3
ǫ ∂r[−Ψk−3

B,l ]
ds

|s|n−d−1
dy.
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By Fubini’s lemma and the fact that B has radius l′ ≥ l, the second term in the
right-hand side is bounded by

ˆ

y∈Rd

 

l≤a|s|≤2l

|u|q ds dy .

ˆ

x∈Rd

( 1

|Wa(x, l/a)|

¨

(y,s)∈Wa(x,l/a)

|u|q ds dy
)
dx

≤ ‖Na,q(u)‖
q
Lq(Rd\B/2)

→ 0,

which tends to zero as the ball B ր Rd. By taking the limit as l → ∞ and ǫ → 0,
we obtain then

‖Ña,q(u)‖q ≤ C‖Sa,q(u)‖q.

The lemma follows. ✷

Lemma 8.2. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Suppose that g

lies in Lq(Rd) and u ∈ W 1,2
loc (Ω) is weak solution to Lu = 0 that satisfy both

‖Ña,q(u)‖q < ∞ and

(8.4) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.e. x ∈ R
d.

Then (8.4) self-improves itself into the q-Lebesgue property

(8.5) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

|u(y, s)− g(x)|q dy ds = 0 for a.e. x ∈ R
d.

Proof. Let us write ū(z, r) for 1
|Wa(z,r)|

˜

Wa(z,r)
u(y, s) dy ds. Observe that

( 1

|Wa(z, r)|

¨

Wa(z,r)

|u(y, s)− g(x)|q dy ds
)1/q

≤
( 1

|Wa(z, r)|

¨

Wa(z,r)

|u(y, s)− ū(z, r)|q dy ds
)1/q

+ |ū(z, r)− g(x)| =: T1 + T2.

Due to (8.4), the quantity T2 tends to 0 as (z, r) ∈ Γa(x), r → 0 for almost every
x ∈ Rd. It remains to prove that

(8.6) lim
(z,r)∈Γa(x)

r→0

( 1

|Wa(z, r)|

¨

Wa(z,r)

|u(y, s)− ū(z, r)|q dy ds
)1/q

= 0

for a.e. x ∈ Rd. We split the proof of the claim into two cases: q ≥ 2 and q ≤ 2.

First, let us treat the case q ≥ 2. Thanks to Proposition 1.10 and then the
Poincaré inequality, we obtain that

T1 .
( 1

|W4a(z, r/2) ∪W4a(z, 2r)|

¨

W4a(z,r/2)∪W4a(z,2r)

|u(y, s)− ū(z, r)|2 dy ds
)1/2

. r
( 1

|W4a(z, r/2) ∪W4a(z, 2r)|

¨

W4a(z,r/2)∪W4a(z,2r)

|∇u(y, s)|2 dy ds
)1/2

.
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Notice that W4a(z, r/2) ≃ ad rn ≃ W4a(z, 2r), from which we deduce that

T1 .
(¨

W4a(z,r/2)

|∇u(y, s)|2 dy
ds

|s|n−2
+

¨

W4a(z,2r)

|∇u(y, s)|2 dy
ds

|s|n−2

)1/2

.
(¨

W8a(x,r/2)

|∇u(y, s)|2 dy
ds

|s|n−2

)1/2
+
(¨

W8a(x,2r)

|∇u(y, s)|2 dy
ds

|s|n−2

)1/2
.

Therefore, the convergence of T1 to 0 will be established if we can show that

lim
r→0

¨

W16a(x,r)

|∇u(y, s)|2 dy
ds

|s|n−2
= 0 for a.e. x ∈ R

d,

which is a consequence of the fact that for any ball B ⊂ Rd,

(8.7) lim
r→0

ˆ

x∈B

¨

W16a(x,r)

|∇u(y, s)|2 dy
ds

|s|n−2
dx = 0.

Since, for r small enough,

ˆ

x∈B

¨

W16a(x,r)

|∇u(y, s)|2 dy
ds

|s|n−2
dx ≤

ˆ

2B

ˆ

|t|≤r

|∇u(y, s)|2 dy
ds

|s|n−d−2
dx,

the convergence (8.7) is an immediate byproduct of the fact that

ˆ

2B

ˆ

|t|≤r

|∇u(y, s)|2 dy
ds

|s|n−d−2
dx ≤

ˆ

2B

|Sa,2(u)|
2 dx

is finite. Thanks to Lemma 5.5 and an increasing sequence of compactly supported
cut-off functions Ψi ↑ 1, it is easy to obtain that

(8.8) ‖Sa,2(u)‖L2(2B) ≤ CB‖Sa,2(u)‖q . ‖Ña,2(u)‖q ≤ ‖Ña,q(u)‖q < +∞.

The claim (8.6), in the case q ≥ 2, follows.

Let us turn to the proof of the claim in the case q ≤ 2. By Poincaré’s inequality,

T1 . r
( 1

|Wa(z, r)|

¨

Wa(z,r)

|∇u(y, s)|q dy ds
)1/q

.
(¨

W2a(x,r)

|∇u(y, s)|q dy
ds

|s|n−2

)1/q
.

Then, the use of Hölder’s inequality with α = 2/q ≥ 1 gives that

T1 .
(¨

W2a(x,r)

|∇u|2 |u|q−2 dy
ds

|s|n−2

)1/2(¨

W2a(x,r)

|u|q dy
ds

|s|n−2

)(1−q/2)/q

≤
(¨

W2a(x,r)

|∇u|2 |u|q−2 dy
ds

|s|n−2

)1/2
|Ñ2a,q(u)|

1−q/2.
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In order to prove the claim (8.6), we will show that T1 converges to 0 in Lq(Rd).
We have, by Hölder’s inequality again,

ˆ

x∈Rd

T1 dx .

ˆ

x∈Rd

(¨

W2a(x,r)

|∇u|2 |u|q−2 dy
ds

|s|n−2

)q/2
|Ñ2a,q(u)|

q(1−q/2) dx

.
∥∥∥
(¨

W2a(·,r)

|∇u|2 |u|q−2 dy
ds

|s|n−2

)1/q ∥∥∥
q/2

Lq
‖Ñ2a,q(u)‖

1−q/2
q

.
( ˆ

x∈Rd

ˆ

|t|≤2r

|∇u|2 |u|q−2 dx
dt

|t|n−d−2

)1/2
‖Ñ2a,q(u)‖

1−q/2
q .

The right-hand term above converges to 0 as r → 0. Indeed, due to Lemma 4.1,

‖Ñ2a,q(u)‖q . ‖Ña,q(u)‖q < +∞

and
ˆ

x∈Rd

ˆ

|t|≤2r

|∇u|2 |u|q−2 dx
dt

|t|n−d−2
→ 0 as r → 0

is an easy consequence of the fact that, thanks to Lemma 5.5, one has ‖Sa,q(u)‖q .

‖Ña,q(u)‖q < +∞. The claim (8.6) when q ≤ 2 follows. ✷

Lemma 8.3. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. Choose k ≥ 1.

Let g ∈ Lq and u ∈ W 1,2
loc (Ω) be a weak solution to Lu = 0 that satisfies both

‖Ña,q(u)‖q < ∞ and

(8.9) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.e. x ∈ R
d.

We have

(8.10) lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q ∂r[Ψ
k
ǫ ]

ds

|s|n−d−1
dy . ‖g‖qq,

where the constant depends on a, q, n, λq(A), ‖A‖∞, ‖b−1‖∞ + ‖b‖∞, κ and k.

Remark 8.4. (i) The existence of such a u is guaranteed by Lemma 7.9.

(ii) Here the solution u is only assumed to lie in W 1,2
loc (Ω), so its trace may not

be defined. Instead we use the assumption (8.9) to describe “u = g on the
boundary”. In particular, if u ∈ W is a weak solution to Lu = 0 such that
Tru = g, then u satisfies the assumption (8.9).

(iii) This lemma is an analogue and a generalization of Lemma 7.5, which only
holds for energy solutions in W .
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Proof. Observe first that we have the uniform bound
ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q ∂r[Ψ
k
ǫ ]

ds

|s|n−d−1
dy(8.11)

.

ˆ

y∈Rd

1

|Wa(y, ǫ)|

¨

Wa(y,ǫ)

|u(x, t)|q dx dt dy

.

ˆ

y∈Rd

|Ña,q(u)(y)|
q dy < +∞.

By (8.9) and Lemma 8.2, we have

1

|Wa(y, ǫ)|

¨

Wa(y,ǫ)

|u(x, t)|q dx dt → |g(y)|q as ǫ → 0,

for almost every y ∈ Rd. Therefore, the reverse Fatou lemma and the pointwise
domination (8.11) imply that

lim sup
ǫ→0

ˆ

y∈Rd

ˆ

s∈Rn−d

|u|q ∂r[Ψ
k
ǫ ]

ds

|s|n−d−1
dy

. lim sup
ǫ→0

ˆ

y∈Rd

1

Wa(y, ǫ)

¨

Wa(y,ǫ)

|u(x, t)|q dx dt dy .

ˆ

y∈Rd

|g(y)|q dy.

The lemma follows. ✷

Lemma 8.5. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. For any g ∈ Lq, let

u ∈ W 1,2
loc (Ω) be a weak solution to Lu = 0 that satisfies both ‖Ña,q(u)‖q < ∞ and

(8.12) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.e. x ∈ R
d.

Then

(8.13) ‖Sa,q(u)‖
q
q ≤ Cκ‖Ña,q(u)‖

q
q + C‖g‖qq,

where the constant C > 0 depends only on a, q, n, λq(A), ‖A‖∞, ‖b−1‖∞+ ‖b‖∞.

Proof. Let χl be the function defined in the beginning of Section 7. By Lemma 5.3,

(8.14) ‖Sa,q(u|χ
k
l )‖q . ‖Ña,q(u|χ

k−2
l )‖q ≤ ‖Ña,q(u)‖q < +∞.

We only proved Lemma 7.6 for energy solutions in W such that the trace operator
is defined. But by the a priori estimate (8.14), in a similar manner, we can get

c‖Sa,q(u|χ
k
l )‖

q
q ≤ Cκ‖Ñq,a(u|χ

k−2
l )‖qq + C‖g‖qq(8.15)

+
1

q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx.
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Note that we use Lemma 8.3 for the second term on the right. The last term can
be bounded as follows:
∣∣∣1
q

¨

Ω

( |u|q
|t|

− ∂r[|u|
q]
)
∂r[χ

k
l ]

dt

|t|n−d−2
dx

∣∣∣

.

ˆ

x∈Rd

 

l≤a|t|≤2l

|u|q dt dx +

ˆ

x∈Rd

ˆ

l≤a|t|≤2l

|u|q−1|∇u|
dt

|t|n−d−1
dx

.

ˆ

x∈Rd

 

l≤a|t|≤2l

|u|q dt dx

+
( ˆ

x∈Rd

 

l≤a|t|≤2l

|u|q dt dx
)1/2(¨

(x,t)∈Ω

|∇u|2 |u|q−2 dt

|t|n−d−2
dx

)1/2

.

ˆ

x∈Rd\Bl/4(0)

|Ña,q(u)|
q dx+

( ˆ

x∈Rd\Bl/4(0)

|Ña,q(u)|
q dx

)1/2
‖Sa,q(u)‖

q/2
q → 0

as l → +∞. Hence the lemma follows by taking l → +∞ in (8.15). ✷

Lemma 8.6. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. There exist two

values κ0 > 0 and C > 0, both depending only on a, q, n, λq(A), ‖A‖∞ and

‖b−1‖∞ + ‖b‖∞, such that if κ ≤ κ0, then for any g ∈ Lq and any weak solution

u ∈ W 1,2
loc (Ω) to Lu = 0 that satisfy both ‖Ña,q(u)‖q < ∞ and

(8.16) lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u(y, s) dy ds = g(x) for a.e. x ∈ R
d,

we have ‖Ña,q(u)‖q ≤ C‖g‖q.

Proof. Let κ0 ≤ 1 to be fixed later and κ ≤ κ0. Lemmas 8.5 and 8.1 give that

‖Ña,q(u)‖
q
q ≤ Cκ‖Ña,q(u)‖

q
q + C‖g‖qq,

where the constant C does not depend on κ anymore (since κ ≤ 1). We choose κ0

such that Cκ0 ≤ 1/2 and the lemma follows. ✷

Lemma 8.7. Let L be an elliptic operator satisfying (H1
κ) for some constant κ ≥ 0.

Let a > 0, q ∈ (q0, q
′
0), where q0 is given by Proposition 2.1. There exists κ0 > 0

depending only on a, q, n, λq(A), ‖A‖∞ and ‖b−1‖∞ + ‖b‖∞ such that if κ ≤ κ0,

then for any couple of weak solution u1, u2 ∈ W 1,2
loc (Ω) to Lu1 = Lu2 = 0 that

satisfy

‖Ña,q(u1)‖q + ‖Ña,q(u2)‖q < ∞

and

lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u1(y, s) dy ds(8.17)

= lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

u2(y, s) dy ds

for almost every x ∈ R
d, we have u1 = u2 almost everywhere in R

n.
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Proof. Set the weak solution v = u1 − u2 ∈ W 1,2
loc (Ω). The function v satisfies

lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

|v(y, s)|q dy = 0 for a.e. x ∈ R
d

and
‖Ña,q(v)‖q < +∞.

So if κ0 is chosen as in Lemma 8.6, we have ‖Ña,q(v)‖q = 0 and so v ≡ 0. The
lemma follows. ✷

Remark 8.8. It is easy to see that the same conclusion holds if we assume, in
place of (8.17), that

lim
(z,r)∈Γa(x)

r→0

1

|Wa(z, r)|

¨

Wa(z,r)

ui(y, s) dy ds = g(x) for a.e. x ∈ R
d,

with i = 1, 2. Moreover, by Proposition 4.1, ‖Ña,q(ui)‖q < +∞ if and only if

‖Ña,2(ui)‖q < +∞. Therefore, we finish the proof of the uniqueness of solutions
to Dirichlet problem with given boundary value g.
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