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The Dirichlet problem in domains with
lower dimensional boundaries

Joseph Feneuil, Svitlana Mayboroda and Zihui Zhao

Abstract. The present paper pioneers the study of the Dirichlet problem
with L? boundary data for second order operators with complex coeffi-
cients in domains with lower dimensional boundaries, e.g., in 2 := R" \]Rd,
with d < n — 1. Following results of David, Feneuil and Mayboroda, we
introduce an appropriate degenerate elliptic operator and show that the
Dirichlet problem is solvable for all ¢ > 1, provided that the coefficients
satisfy the small Carleson norm condition.

Even in the context of the classical case d = n — 1, (the analogues of)
our results are new. The conditions on the coefficients are more relaxed
than the previously known ones (most notably, we do not impose any
restrictions whatsoever on the first n— 1 rows of the matrix of coefficients)
and the results are more general. We establish local rather than global
estimates between the square function and the non-tangential maximal
function and, perhaps even more importantly, we establish new Moser-
type estimates at the boundary and improve the interior ones.
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1. Introduction

1.1. State of the art

The main objective of the present article is the study of the well-posedness of the
Dirichlet problem. Formally, given an open domain 2 C R"™, an elliptic operator L
in divergence form, and ¢ € (1,400), we say that the Dirichlet problem (Dy) is
well-posed if for any g € LP(912, 0), we can find a unique function u such that

1.1) Lu=0 1in Q,
(1.2) u=g on 0§,
and
(1.3) [N (W)llLao0.0) < CllgllLaog.0):

where N is a non-tangential maximal function and the constant C' > 0 is inde-
pendent of g. Obviously, the statement above is not complete as we need to make
precise the meaning of (1.1)-(1.3). We naturally expect (1.1) to be taken in the
weak sense. But what is the meaning of (1.2) when u is defined on the open set 7
If Q is very irregular, a proper choice of the measure o on 92 and the definition
of N(u) is unclear as well. What (1.1)-(1.3) means in our context will be care-
fully explained later, but first, let us give a brief (and somewhat narrowly focused)
presentation of the relevant history of the Dirichlet problem. Due to the huge
literature on the topic, we will be unable to cite all the works, and we apologize in
advance for the omissions.

We start the history on the topic with a work of Dahlberg (see [8]). Let € be a
bounded Lipschitz domain. Dahlberg proved that the harmonic measure (for the
Laplace operator) defined on the boundary 9 is A>-absolutely continuous! with
respect to the surface measure on 9f). This property is known to imply that the
Dirichlet problem (D), associated with the domain 2 and the elliptic operator A,
is well-posed for large enough ¢. It was proved just a little later that D, is well-
posed for the Laplacian on Lipschitz domains for any 2 —e < ¢ < 0o, and that the
range is sharp in the sense that for any ¢ < 2, we can find a Lipschitz domain such
that (D,) is false [9], [21].

Consider the Laplacian in the domain € lying above the graph of a Lipschitz
function p: z € R" ! — R. Let us keep in mind that a bi-Lipschitz change
of variable p: Q — p(Q2) preserves the well-posedness of the Dirichlet problem.
In [20] Jerison and Kenig use the change of variable

p: (x,t) € R" = (2, — o(x))

that flattens the domain Q and that maps the Laplacian to another elliptic op-
erator £L = —div AgV with bounded, measurable, symmetric, and ¢-independent
coefficient. By using a Rellich identity, they establish that these conditions on £
are sufficient to ensure that (D) is well-posed, and hence, they extend the result

L A% absolute continuity is a quantitative version of the mutual absolute continuity.
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of Dahlberg to the case where the Laplacian is replaced by an elliptic operator
L = —div AV, where A has real, bounded, symmetric, and ¢-independent coeffi-
cients. Analogous results for real non-symmetric operators have been proved much
later in [23], [18] using square function/non-tangential maximal function estimates
and elements of the solution of the Kato problem. The complete situation for
operators with complex coefficients is still not clear, although the solution of the
Kato problem [2] and later developments allowed to treat block matrices and some
of their generalizations [3], [26].

The next breakthrough we shall talk about in the study of the Dirichlet problem
is a result from Kenig and Pipher (see [24], which use methods developed in [23]).
Consider again the Laplacian and ©Q = {t > ¢(z)}, a domain that lies above the
graph of the function ¢: 2 € R"~! — R. The change of variable

p: (z,t) € R™ = (x,ct — (),

where ¢ is a large constant and ¢; is the convolution of ¢ by a smooth molli-
fier, also sends €2 to R’}, but maps now the Laplacian —A to an elliptic operator
L = —divAyV, where Aj satisfies the conditions that |VAg(z,t)] < C/t and
[tV Ag(z,t)|? d dt/t is a Carleson measure. Kenig and Pipher showed that the two
latter conditions are enough to ensure that (D) is well-posed if ¢ is large enough,
hence extending the result of Dahlberg to a new class of elliptic operators.

Dindos, Petermichl, and Pipher studied in [12] the conditions needed for the
well-posedness of (D,;) when ¢ > 1 is small. They established that, for a given
g > 1, the Dirichlet problem (D), associated to the Lipschitz domain © and the
elliptic operator L = —div AV, is well-posed if both the Lipschitz constant of 2
and the Carleson norm of [tV A|? dx dt/t are smaller than e(q) < 1.

One has to also mention a number of perturbation results, in L and in Car-
leson measure norm, which we shall not review here.

Our focus is on operators with coefficients whose gradient satisfies the Carleson
measure condition, as above. All the previous results that we mentioned in this
context were established in the case where L = —div AV has real coefficients.
In [14] Dindo§ and Pipher introduced a notion of g-ellipticity based on a notion
of Le-dissipativity (see [6], [7]), and cleverly used this notion of g-ellipticity to
obtain “g-Cacciopoli’s inequalities” and “reverse Holder inequalities” (see Subsec-
tion 1.4 for the precise statement), which can be seen as a weakened version of
Moser’s estimates. They used these partial estimates to get the well-posedness of
the Dirichlet problem (Dy) whenever the g-ellipticity, in addition to appropriate
Carleson measure estimates and some structural conditions on coefficients, holds.

In all the above works, the boundary of the domain 2 C R" has Hausdorff
dimension n—1. In [10], Guy David and the first two authors of the present article
launched an elliptic theory adapted to domains €2 that are the complement in R™ of
sets I with dimensions d < n—1. Since the boundary I" of the domain €2 is too thin
to be “seen” by the Laplacian (or the general elliptic operators), the operators L :=
—div AV used in this theory are degenerate and satisfy the ellipticity condition
with a different homogeneity. Precise definition are given later, see (1.24), (1.25).
We also mention that similar degenerate operators have been considered before,
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notably in [15], [16] but the well-posedness or any related boundary estimates have
never been attacked.

Subsequently in [11], David, Feneuil, and Mayboroda established that if T' is
the graph of a function ¢: R? — R”~¢ with small Lipschitz constant, we can find
a particular degenerate elliptic operator L := —div AV such that the harmonic
measure on I' (and associated to L) is A>-absolutely continuous with respect to
the d-dimensional Hausdorff measure on I'.  While this operator, being the sim-
plest one that we can treat, can be thought of as an analogue of the Laplacian in
the domains with lower dimensional boundaries, it already carries most of the dif-
ficulties exhibited by the operators whose coefficients satisfy the aforementioned
Carleson condition. Indeed, by necessity, it is not a constant coefficient opera-
tor, and it cannot be t-independent either; a rather delicate dependence of the
coefficients on the distance to the boundary is exactly what makes the problem
well-posed in the higher co-dimensional context. The proof in [11] uses some ideas
from [13], [23], [22], and relies on a new change of variable p that sends Q to
R" \ R? = R? x (R"~¢\ {0}) and that is almost, up to Carleson measure, an
isometry in the last n — d variables. As shown in [27], the A*°-absolute continuity
of the harmonic measure implies the well-posedness of the Dirichlet problem (D,)
when ¢ is large.

The main aim of this article is to prove that, given ¢ > 1 and d < n — 1, the
Dirichlet problem (D,) is well-posed in the domain R™ \ R? for any degenerate
elliptic operator (in the full generality of possibly complex coefficients) with condi-
tions in the spirit of [24]. As a consequence, whenever I is the graph of a function
with small Lipschitz constant and L is given as in [11], the Dirichlet problem (D,)
is well-posed.

While the article is written with d < n—1 in mind, all our computations can be
adapted with very light changes to the case where d = n — 1 and the domain is the
upper half plane R‘j_“. In that context it can be viewed as an alternative to [14].
We build on their ideas and introduce new tools. As a result, even in the classical
setting, our conditions on the operator are weaker and our results are somewhat
stronger. Most notably, we do not impose any restrictions on the first n — 1 rows
of the coefficient matrix. We will make these statements more precise below.

1.2. Main result

Letd <n—1and Q = R*"\R? = {(z,t) € R, 2 € R? and t € R"~%\ {0}};
the boundary 99 is assimilated to R%. We write X = (z,t) or Y = (y, s) for the
running points in . The notation B;(z) is used for the ball in R? with center x
and radius /.

First, we introduce the square function and the averaged version of the non-
tangential maximal function. Let a be a positive number. For 2 € R%, we define
the regular cones in Riﬂ = R4 x (0,+00) as

Tu(z) = {(z,r) €RU, |2 — 2] <ar),
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and the higher co-dimensional cones as
To(x) = {(y,5) € Q, |y — 2| < als]}.
For (z,7) € R? x (0, 00), we write W,(z,r) for the Whitney box
Walz,r) ={(y,5) € Q, y € Byrja(2), r/2 < |s| < 21}

If, in addition, ¢ € (1, +00), we define the g-adapted square function S, 4 as

(1.4) Sa,q(0)(z) = <//f (w)|Vv(y,s)|2|v(y,s)|q*2 dy |S|Ci8_2 )1/(1’

where v is a measurable function that satisfies [v|?/2~1v € Wlif (). Note that the
definition of S, , makes sense even when ¢ < 2, because, in particular, Vo = 0
almost everywhere on |v| = 0. For any function v € L, (Q) and any z € R?, the
non-tangential maximal function (in the average sense) is

(1.5) Naq(v)(z) = su(p) UW,a,q5
T'y(x

where vy, 4 is defined on Rf‘l by

(1.6) VWa,q(2,7) 1= (m //Wd(z’r)|v(y,8)|q dyds)l/q.

We say that £ = — div AV is an elliptic operator with weight |t|9T'=" (we will
always omit this weight for brevity) if there exists C' > 0 such that the complex
matrix A satisfies

(1.7) Re(A(X)E-€) > O~ g)? for X € R"\RY, € € C™,

and
(18)  AQ)E-C < CI™EIC] for X € RMA\RY, £, ¢ e T
Or alternatively, if the reduced matrix A := [¢|*~9~1A satisfies the classical el-

liptic and boundedness condition. We say that L is g-elliptic if the coefficient
matrix A(X) satisfies (1.7)—(1.8) and A(X) satisfies the condition (2.2) given in
the next section. We refer the reader to the next section for the discussion of
g-ellipticity, but let us cite one key property: L is g-elliptic for all ¢ € (1,+o00) if
and only if the matrix A is real-valued. This means that g-ellipticity is a notion
intrinsically linked to matrices with complex coefficients.

The next assumption we put on £ will use Carleson measures. Let us first
introduce the following definition.

Definition 1.1. We say that f satisfies the Carleson measure condition if

d
du(z,r) :== sup |f|*dax &
W (z,7) r
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is a Carleson measure, that is, if there exists C, > 0 such that

T
ds
| fllcMa :== sup ][ / sup |f|2dy—<C
z€R4, r>0JyeB(x,r) Wa (y,s)

Let us make a few remarks. It is easy to check that the fact that f satisfies
the Carleson measure condition does not depend on the choice of a, and that for
any a,b > 0,

[fllema < Capllflloms-
The quantity f in the above definition can be a measurable function, the gradient
of a function, or a matrix-valued function. So |f| is, respectively, the absolute
value, the vector norm, or the matrix norm. Furthermore, the Carleson measure
condition forces f to be locally Lipschitz.

Definition 1.2. An elliptic operator £ = — div|t|**1=" AV with complex coeffi-
cient satisfies the hypothesis (H!) if the matrix A can be decomposed as

(A A
(1.9) A—(BB b1)+c,

where
(i) I is an (n — d)-identity matrix, b is a real scalar function, and Bs is a real
matrix in M, —qyxds
(ii) b is uniformly bounded from above and below,

(iii) the quantities |t|V,Bs, [t|*~div,[|t|9T1 " B3], [t|Vb and C satisfy the Car-
leson measure condition, that is, there exists C' > 0 such that

(1.10) sup][ / sup [t VaBsl + PIVO] + ] & bw<c
yEB(z,r) JO

ze]Rd (z,t)EWq (y,s)

and for any j < d,

2
(1.11) sup ][ / sup |t|2(”_d)‘ Z@tk [(Bs)ej |t
yEB(z,7) J0O

zERd (z,t)EW1(y,s) >d

@dygc
s

if we write Bz as (B3)1<j<d<i<n, and 0y, corresponds to the partial derivative
with respect to the ¢-th coordinate in R"™.

In addition, we say that £ satisfies the small Carleson hypothesis (HL) if £
satisfies (H!) and the constant C in (1.10)—(1.11) can be chosen to be smaller
than .

Remark 1.3. If the block matrix B3 is not a real matrix, we could include its
imaginary part in C as long as Im B3 satisfies the appropriate Carleson measure
condition. The assumptions that b, B3 are real-valued are used in the proof of
Lemma 5.1, which is the key estimate in proving S < N and S < kN + Tr.
Observe that [t|" 9 div,[[t|%*1 7" B3] equals 0, and so satisfies the Carleson measure
condition, if for instance Bs = has the form (B3);; = b;(x)t;/|¢|.
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We say that u € VVIOC (R™\ R?) is a weak solution to Lu = 0 if we have

// AVu-V\Ildx%d_lzo for any ¥ € C°(R™ \ RY).
z,t)ER™ |t|

Our main theorem is the following result.

Theorem 1.4. Let a > 0, M > 0, and g € (1,+00). There exists a constant
ko = ko(n,a, M,q) > 0 such that if L := —div|t|*T1""AV is a g-elliptic operator
with the following properties:

(i) it satisfies the hypothesis (H},),

(ii) the g-ellipticity constant \, that appears in (2.2) is bigger that M1,

(iii) || Alloo + [[Blloo + 167 |oo < M, where b is the one that is defined via (1.9),

then the Dirichlet problem (D) is well-posed. That is, for any g € LY(R?), there
exists a unique weak solution u := ug € VV]};? (R™\ RY) to Lu =0 such that

1.12 1 e e
(112 (ZT)lErlr“l(x)Wzr//W(zr) uly, s)dyds = g(z) for a.a. x

and B
[Na,2(u)llq < +o0.

Furthermore, we have B
[Na.q(u)llq < Cllgllg;

and _ ~ -
[Na.q(u)llq = 1Sa.q(u)llg: 1 Na2()llg = [[Naq(u)llq,

with constants that depend only on the dimension n, a, ¢ and M. One also has
the stronger convergence

L13 I Tdyds =0 .a. v € R
( ) (zr)lerIE1 (a:)W z, 7“ // zr) y’ (.13)| yas fOTCLa, xr €

Remark 1.5. In particular (1.13) implies the pointwise non-tangential conver-
gence of the solution u to ¢:

hm // u(y, s)|?dy ds) : = |g(z)| for a.a. x € RY.
(z,r)€T( Z 7’ (= r)
r—0

Except for the main result in [11], the result above is the first treatment of the
well-posedness of the Dirichlet problem for domains with higher co-dimensional
boundary. In particular, in the case where the domain is Q = R™ \ R?, the well-
posedness of (D) for ¢ small has never been considered before, even in the case
where the operator L = —div AV is such that A has real coefficients. At some
point in the proof, we need to use the saw-tooth domains {|t| > h(x)}, where
h:R? — R, is some non-negative Lipschitz function. The strategy in codimension 1
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is to use a bi-Lipschitz change of variable that sends {t > h(z)} to the upper half
plane, and to deduce the result on saw-tooth domains from the one in the upper
half plane. This method is not available anymore in higher co-dimension (notice
that even the boundary of the saw-tooth domain becomes an object of mixed
dimensions in this context), and one of the main difficulties here is to establish
desired estimates directly on saw-tooth domains. Fortunately, emerging new ideas
brought considerably stronger results in the “classical” co-dimension 1 setting of
R7% =RI as well.

Indeed, the methods used to prove Theorem 1.4 (and its result) can be easily
adapted to the classical case where the boundary of the domain is of codimension 1,
that is, Q = R’', with an obvious reformulation. Here are some remarks that are
important even in codimension 1:

e As pointed out above, contrary to [14], we do not impose any conditions on
the first d rows of the matrix of coefficients.

e We allow Carleson measure perturbations (addition of a matrix C). This
is vital in our method and, formally speaking, new even in the classical
scenario. Indeed, known results about the Carleson measure perturbation
are tied up to real coefficients [17] or to perturbing from the ¢-independence
matrix [1], [19], which is not the setting of the present paper.

e This is the second time to the best of our knowledge (after [14]) that the
Dirichlet problem for elliptic operators with complex coefficients whose gra-
dients are Carleson measures is attacked. We keep the remarkable idea of
Dindos and Pipher to use a notion of g-ellipticity for elliptic operators, and
we improve it in several ways (see the first two points above and the last two
points below).

¢ We offer a new proof of the existence of solutions to the Dirichlet problem
in_unbounded domains. A general difficulty is to prove that the quantity
[[Ng,qu|lq is actually finite for a large class of solutions. Indeed, the formal
proof of well-posedness consists of showing that || Ny gullqy < C||Saqull, and
then that |[Ssqully < 7l|Naqulle + [ Trully. If 7 is small, the conclusion
| Na.qullq < C|Trull, holds, provided that || N, qull, is a priori finite. In the
case of co-dimension 1 one can rely on a plethora of known results for smooth
coefficients, on layer potential techniques, and other methods. The proof in
this paper is self-contained (which partially explains the length).

e We prove local rather than global S < N and N < S estimates. Even in
co-dimension one, such results in full generality are only available for real
coefficients, typically by localization from the global estimates [12], [18], [24].
Unfortunately, localizing the global S < N and N < S estimates requires
sufficient decay of solutions and a maximum principle, generally failing for
complex coefficients. However, the local bounds are important both in the
present argument and for the future use (for instance, in the extrapolation
techniques on uniformly rectifiable domains) —a more detailed discussion will
be presented in the next paragraph.
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e We prove that, when the trace is smooth, the solutions u obtained by the
Lax—Milgram theorem match the solution(s) of the Dirichlet problem (see [4]
and [5] for a discussion of importance and possible failure of this property
under various circumstances). In order to do it, we prove, in particular,
the finiteness of the quantity [,,|Vu|?|u[?"2 dm (where dm is the Lebesgue
measure in the co-dimension 1 case, and dm(x) = dist(z, Q)¥+1~" dz when
the boundary has higher codimension) for ¢ > 2. This finiteness is new
even in the codimension 1 case, and holds under the only condition that the
operator is g-elliptic —in particular we do not require £ to satisfy (#!) - and
that the domain is the complement of an Ahlfors regular set. Our control on
(the energy of) solutions will allow us to derive the global S < N and N < S
estimates from the local ones (contrary to the classical approach). A more
detailed discussion can be found in Subsection 1.4.

e We improve the reverse Holder estimates (that can be seen as weak Moser
estimates) proven in Lemmas 2.6 and 2.7 of [14], and we also give a boundary
version. These results hold under the sole assumption of g-ellipticity and will
hopefully be useful in a wide variety of problems. They will be presented in
Subsection 1.4 as well.

If an operator L = —div AV has real coefficients, slight modifications of the
argument of Theorem 1.4 gives the result below. Before stating it, let us introduce
some additional notation. Thanks to the classical Moser estimate, we can directly
work with the classical non-tangential maximal function N, (rather than in the
average sense, see (1.5)~(1.6)): For any function v € L{°,(Q2) and any x € RY, we
define

(1.14) Na(v)(z) = sup v.
Ta(x)

We say that f satisfies the real Carleson measure condition if

dt
o 2
du(z,t) = [f(z,1)[" dz [
is a Carleson measure. Note that if the elliptic operator L has real coefficients,
the assumption (H}) is effectively weakened by requiring only the real Carleson

measure condition in (iii). Clearly, the assumption that b and Bs are real becomes
void.

Theorem 1.6 (Analogue of Theorem 1.4 for real coefficients). Let a > 0, M > 0,
and q € (1,+00). There exists a constant ko = ko(n,a, M,q) > 0 such that if
L = —div[t|*t1=" AV is an elliptic operator with real coefficients that satisfies

(i) the hypothesis (H.,),
(ii) the ellipticity constant is bounded from below by M~1, i.e.,
inf  A(X)E-€> M1,

TEQ, EER™
[€]=1
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(iii) || Alloo + [[blloc + |67 oo < M, where b is defined as in (1.9),

then the Dirichlet problem (D) is well-posed. That is, for any g € LI(R?), there

exists a unique weak solution u := ug € VVI})CZ(]R” \RY) to Lu =0 such that

1.15 lim // ,8)dyds = or a.a. xeRd
( ) (zreF(m)W Z?" W (2,r) y )y g() f

and
[ Nao(u)llqg < +oo.

Furthermore,
[Sa,q(u)llq = [[Na(u)llq < Cligllg,

where the constants depend only on the dimension n, a, ¢ and M.

A corollary of Theorem 1.6 is the well-posedness of the Dirichlet problem (D)
when the domain €2 is the complement of the graph of a Lipschitz function with
small Lipschitz constant. Let us be more precise. Let I' = {(z,¢(z)), z € R4}
be the graph of a Lipschitz function ¢: R? — R"~4 and let Q = R" \ I'. The
non-tangentially maximal function N, r on I' is the one defined as

Nar(u)(@') = Na(v)(x) for 2’ = (2, ¢(x)) €T,

where v(y, s) = u(y, s — ¢(x)). Observe that the definition of N, r makes sense if
either a or the Lipschitz constant of ¢ is small. Indeed, in either case, the set I, ()
stays inside the domain of definition of v.

Corollary 1.7. Let I := {(x,p(z)), z € R}, where p: RY — R"~4 s a Lipschitz
function, and Q@ = R™" \T. Choose o > 0 and define

= (/FIX —y| do(y))_l/a,

with o being the d-dimensional Hausdorff measure on I'. Consider the elliptic
operator
L := —div D, (X)*~"v.

Let a > 0 and q € (1,400). There exists a constant ko := ko(n,a,a,q) > 0 such
that if [|Vel|lse < Ko, then the Dirichlet problem (Dg) is well-posed. That is, for
any g € LYUT), there exists a unique weak solution u := u, € VVI}JCQ(Q) to Lu =0
such that

lim // (Y)dY = g(2') for a.a. 2’ €T,
xer, (=) |B(X,8(X)/2)| /] px, 6(X)/2) )

[[Va(u)|[agry < +o00.

and

Furthermore,
| Na(u)llzary < Cllgllzary,

where the constant C' > 0 depends only on the dimension n, «, a, and q.
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Remark 1.8. The operator above is the one for which the A*° property of the
elliptic measure, and hence the solvability of the Dirichlet problem for some large
g < oo was proved in [11]. Clearly, the corollary could be extended to a more
general class of elliptic operators which are tied up to the change of variables
defined below in the proof. However, it does not seem to be possible to work, e.g.,
with the Euclidean distance, and so the precise choice of the coefficients is rather
delicate.

Proof. Assume that | V|| < 1. We use the same bi-Lipschitz change of variable p
as the one used in equation (3.3) of [11], that is,

(116) p(xat) = (xvmﬂ * QD({E)) + h(xa |t|) Rx,|t\(07t) for (:U,t) € Rna

where 7, is a mollifier, R, , is a linear isometry of R™, and h(z,r) > 0 is a dilation
factor. We construct R, (with a convolution formula and projections) so that
it maps R? to the d-plane P(z,r) tangent to I', := {(z,n, * ¢(x)), z € R} at
the point ®,.(z) := (z,71, * ¢(x)), and hence also R, , maps R"~¢ = (R?)* to the
orthogonal plane to P(x,r) at ®,(z). The map p~! sends Q to R” \ R? and L
to a (real-coefficient) elliptic operator £ = —div AV. Lemma 3.40 in [11] and
the fact that D, (X) ~ dist(X,I') prove that A satisfies (1.7)—(1.8). Moreover,
if |V¢|loo is small enough, Lemma 6.22 in [11] establishes that A := [¢["~¢"14
satisfies assumptions (i)—(iii) of Theorem 1.6.2 Theorem 1.6 implies now that the
Dirichlet problem (D,) is well-posed when the domain is R™ \ R? and the operator
is £, and therefore, by using again the change of variable p, we conclude that the
Dirichlet problem (Dg) is well-posed when the domain is © \ I" and the elliptic
operator is L. O

1.3. Local bounds

In this paragraph, we stay with Q = R" \ R? and I' = R?. We write (z,t) or (y, s)
for a running point of R = R? x R"~¢,

Let a > 0 be fixed. We need local versions of the square function and the
non-tangential maximal function. The following definitions are in parallel to the
previous definitions (1.4), (1.5) and (1.6). If ¥ is a cut-off function, that is, we ask ¥
to be at least a locally Lipschitz function and to satisfy 0 < ¥ < 1 everywhere,
then we define S, ¢(-|¥) and Ny q(-|V) as

1) Sugl0)@) = ([ oty Ploty 200,y )

and

(1.18) Nag(v]0)(2) = ﬁltp)(v|‘1/)w7a7qv

2The smallness of the Carleson measure is not explicitly written in [11], but the smallness
holds as long as the Ahlfors measure o is close enough to a flat measure, which is the case if ¢
has a small Lipschitz constant and o is the d-dimensional Hausdorff measure on I'.
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where vy is defined on R := R? x (0, +00) by

(1.19) (VW) w,aq(z,7) = (m //WG’(Z T)|v(y, )1 (y,s)dy ds)l/q.

Particularly we are interested in the following cut-off functions. Choose a func-
tion ¢ € C§°(R4) such that 0 < ¢ < 1, ¢ =1 on (0,1) and ¢ = 0 on (2, +00),
¢ is non-increasing and |¢’| < 2. If e(z) is a positive a~!-Lipschitz function, we

define ¥, as
U (z,t) = ¢(%).

If B C R is a ball with radius bigger or equal to [, then
alt dist(x, B
i) = (7 Jo(1+ T,

We keep in mind that the functions ¥, and U ; depend on a, but we do not write
the dependence to lighten the notation. Whatever choice we make for e > 0, [,
and B, observe that ¥.Wp; is a smooth cut-off function which is compactly sup-
ported in R” \ R%. The following results hold.

Theorem 1.9. Let a > 0 and q € (1,+00). Let L = —div[t|4TI""AV be a ¢-
elliptic operator that satisfies (H'). For any a=—!-Lipschitz function e, any | > 0,
any ball B whose radius is bigger than 1, and any weak solution u € W'l(l)f (R™\R9)
to Lu =0, we have

(1) if k>2and 1 <p < oo,
HSa,q(uNﬂ; qﬂfi’,l)”p < CHNa,q(uNﬂ;iQ \Ijgjlz)”pv
(2) if k> 12,

| Naq(ul@g W )7 < Ol Saq(ulTe™* U513

_ _ ds
+ C// |U|q‘1']1§,l38r[‘1’5 ] T W,
(y,s)ER™ |s]

(3) if k> 12,

1 Na.g(ulTE W )G < Ol Saq(ul T2 W)l

_ _ ds
+C// |ul? Uk 3&[_‘1/];3,13] a1 W
(y,5)€R™ 5

where O, represents the derivative in the radial direction of t. The constants in
the above inequalities depend on a, q, n, a lower bound for the value Ay in (2.2),
| Allso, an upper bound for the value C in (1.10), ||b]lcc + [[b7 |00, and k. In (1),
the constant depends also on p.
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The proofs of the three parts of the theorem are in Lemmas 5.5, 6.9 and 6.11,
respectively.
As we will see in the next paragraph, the fact that v € W, 2(R" \ R?) is

loc
enough to ensure that the terms in Theorem 1.9 are finite. On the other hand,

nothing guarantees, for instance, the finiteness of the quantities [|.Sy,q(u ¥’ )|, or
|\Na7q(u|\llgl)|\p that are obtained by taking e — 0, i.e., the boundary behavior.

The above definitions using the functions ¥, and Wp; are smooth versions of
the standard local square function and non-tangential maximal function. They are
more powerful since they will allow us to hide terms from the right-hand side of
an estimate. In order to build the reader’s intuition, let us show some examples of
the use of the theorem above.

If e >0 and [ > 0, we define the g-adapted square function S;:fz and the non-

tangential maximal function N;é in a similar manner to S, 4 and ]\Nfa,q, but with
the truncated cones

TS () = {(y,5) € Ta(2), e < |s| < I/a}

and
rol(z) == {(z,7) € Tulz), e <7 < /a},

respectively. Take a ball B C R? with radius [ and then ¢ > 0. We construct the
Lipschitz function e as e = € on R%. We choose then B’ = 2B and we write ¥
for U, Up/ ;. Due to (1) of Theorem 1.9, we have

HSa,q(uNl?))”p < C|Na,q(u|®)]]p-
However, our choice of ¥ is such that
Sa7q(u|\l'3)(a:) > S;Z(u)(x) for x € B,
and, in addition, one can check that
||Na,q(u|‘l')”p < CpHN;,/qz’zl(u)HLp(élB)-
So Theorem 1.9 implies that
(1.20) 1S54 Wllze(s) < CollNEE? ()| Locap),

which is a more customary statement of the local S < N bound.
By reasoning similar to the above, (3) of Theorem 1.9 gives the bound

(1.21) ||N§Zé(u)”m(3) < CHSE,/qQ’Ql(U)||LP(1OB)

ds
+C / u| T3, [~ RS .
(y7s)ER"| | [ B ,l] |S|n_d_1

Since ¢ is non-increasing and non-negative, the term W53, [—WX 3] is non-

negative. Moreover, by the construction of ¥, and ¥ p: ;, the term yh=3 8,,[—\11%7?]
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is bounded by C'/l and supported in {(y,s) € R", y € 10B, [ < a|s| < 2l}. So the
last term in (1.21) is bounded by CI% times the average of the function |u|? over
a Whitney box Wp associated to the ball B. If we assume that ffWB u = 0, the
Poincaré inequality implies that the average of |u|? over Wp can be bounded by
|\S§,3’2l(u)|\m(103). We obtain then, if the average of u over the Whitney box Wp
is 0, that

(1.22) INGh(@)llzaem) < CISE ™ (W) pagon)-

The latter is a customary statement of the local N < S bound.

1.4. Reverse Holder estimates (weak Moser) and energy solutions

The results in the present paragraph require a lot fewer assumptions than before,
either on the domain or on the elliptic operator L. The ball in R™ with center
X € R" and radius r is denoted by B(X,r). Let d < n — 1 be a positive number
(not necessarily integer), and let T’ be a d-dimensional Ahlfors regular set, that is,
there exists C' > 0 and a measure ¢ on I' such that

(1.23) C ! <o(B(X,r)) <Cr? forany X €T, r > 0.

It is well known that if T' is Ahlfors regular, then (1.23) also holds for ¢ = Hldp,
the d-dimensional Hausdorff measure on I' (and a different constant C'), see The-
orem 6.9 of [25]. Set now @ = R™\ I, (z) = dist(z,I"), and a measure m defined
as

m(E) = /E S(X)H" iy

that is, dm = 09"1~"dX. Note that when I' = R? and Q = R" \ R?, for any
X = (x,t) € R", we have §(X) = |t| and dm(X) = |[¢t|?F17" dt dz, and we recognize
the weight used in the previous subsections.

We say an operator L = —div AV on ) is elliptic with weight 6(X)4+1—n if
there exists C' > 0 such that the complex matrix A satisfies

(1.24) Re(A(X)E-€) > C715(X) ¢ for X € Q, € € C™,
and
(1.25) JA(X)E -] < CS(X)Tmgl|¢] for X € Q, &, ¢ eC™

These two conditions are the generalization of (1.7)—(1.8) in the case where T
is Ahlfors regular. The operator L is said to be g-elliptic if L is elliptic and
A(X) := "4 1(X)A(X) satisfies the condition (2.2) given in the next section.
In addition, we say that u is a weak solution to Lu = 0 if

/AVu'V\Tldxz/AVu'V\I/dmzo for any ¥ € C5°(Q).
Q Q

In the complex case, the classical Moser’s estimates (i.e., L>-local bounds) do not
necessarily hold but we have the following weaker version.
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Proposition 1.10. Let L = —div AV be a g-elliptic operator. For any ball
B C R" of radius r that satisfies 3B C € and any weak solution u € W 2(Q)

loc
to Lu = 0, we have
C
/|Vu|2|u|q*2 dm < —2/ |u|? dm.
B " J2B

Moreover, the following reverse Hélder estimates hold:

(i) If ¢>2,
1 1/q
q <
B) /B|u| dm) <C

]_ 9 1/2 ]_ 1/
- < _ - q
gy [t am) < (g [ Jattam)

In all three inequalities, the constant C > 0 depends only on n, q, a lower bound
on constant A\ in (2.2), and the ellipticity constant in (1.24)—(1.25).

(i) If ¢ <2,

The proposition validates the fact that the quantities invoked in Theorem 1.9
are indeed finite. The analogue of this result in codimension 1 is written in the
next subsection, and we will see that the bounds (in co-dimension 1) when ¢ > 2
were already stated in Lemma 2.6 of [14], but when ¢ < 2, our proposition is an
improvement of Lemma 2.7 in [14].

Before we state our next result, let us introduce a bit of the theory given
n [10]. We denote by W the weighted Sobolev space of functions u € L] ()
whose distribution gradient in € lies in L?(2, dm):

W= {u e LL (Q): |ullw = (/Q|vu|2dm)1/2 < +oo}.

Clearly W is contained in WW," (Q) Lemma 3.2 and Lemma 4.2 in [10] establish

loc
that
W = {f € L .(R",dm), Vu € L*(R",dm)}.

This observation is useful to see that we will not have any problems integrating
u € W across the boundary of . We denote by M(T) the set of measurable
functions on I', and we set

o= {gemm, [ [HI0E 450y a0t}

Now, by Theorem 3.4 in [10], the trace operator Tr: W — H, defined by

Tru(x) = hm][ ][ u(y,s)dsdy, x €T,
0 yeB(2) J|s|<e

is linear and bounded. We are ready to state a version of Proposition 1.10 at the
boundary.
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Proposition 1.11. Let L := —div AV be an q-elliptic operator. For any weak

solution w € W to Lu = 0 and for any ball B of radius r centered on T that
satisfies Tru = 0 on 3B, we have

/|u|q*2|Vu|2 dm < %/ |u]? dm.
B " J2B\B

Furthermore, if q > 2,

(ﬁ/BMq dm)l/q < C(m(;B) /ZB|u|2dm)1/2,

and if q <2,

1/2 1/q
(ﬁ/BMzdm)/ Sc(m(;B) /QB|u|qdm) .

The constant C > 0 depends only on n, q, a lower bound on constant A\ in (2.2),
and || A]|oo-

The following result (proved as Lemma 9.1 in [10] in the case where A has real
coefficients but valid with the same proof in the present setting) gives the existence
of weak solutions in W.

Lemma 1.12. Let L := —div AV be an elliptic operator. For any g € H, there
exists a unique ug € W such that

/ AVugy -Vodr =0 for any ¢ € C5°(Q)
Q

and Trugy = g o-a.e. on I'. Moreover, ||ullw < C||g|la-

A weak solution u € I/Vhljf (Q) is called an energy solution to Lu = 0 if u € W
and Tru € C§°(T"). Since T is a closed set in R", by an extension theorem of
Whitney type (see Chapter VI, Section 2.2 of [29]), the assumption Tru € C§°(T)
implies that there exists g € C§°(R™) such that Tru = Trg = g for a.e. z € T
Since Trg € H, Lemma 1.12 shows that there exists a unique energy solution

u = ug to Lu = 0 that satisfies Tru = Trg.

Theorem 1.13. Let L be a g-elliptic operator. For any energy solution w € W to
Lu =0, we have

(i) if =2,
/|Vu|2 lu|972 dm < +o0,
Q

(i) of q € (1,2), there exists a ball B such that

/ |Vul?|u|?2? dm < 4o0.
O\B
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As we have previously mentioned, we prove the existence in the Dirichlet prob-
lem by proving that the energy solutions satisfy ||Ng 4(u)|q < +00 whenever L is
g-elliptic (the range of such ¢ is, as discussed in the next section, an open subset
of (1, +00) which is symmetric around 2). Thanks to the a-priori finiteness proved
in Theorem 1.13, we will be able to pass the local estimates in Theorem 1.9 to
global estimates by taking e — 0, B " R?, and | — 400, whenever u is an energy
solution (see Section 7).

1.5. The analogues of the results from the previous section in domains
with co-dimension 1 boundaries

As mentioned above, all our results have analogues in the upper half space or,
respectively, a domain above an (n — 1)-dimensional Lipschitz graph in R™. This
statement is also valid for results of the previous section, but the geometric condi-
tions become slightly more involved, and for that reason, we choose to restate the
results carefully.

In this subsection, we say that L = —div AV is a g-elliptic operator if the
matrix A lies in L>°(Q2) and A satisfies (2.2).

Proposition 1.14. Let Q) be a domain in R™ and let L = — div AV be a g-elliptic
operator. For any ball B C R™ of radius r that satisfies 2B C  and any weak
solution u € W,22(Q) to Lu = 0, we have

loc
C
/|VUJ|2|u|q_2 dX < —2/ |ul?dX.
B ™ JoB

Moreover, the following reverse Hélder estimates hold:

(i) If ¢>2,
1 1/q 1
_ ‘e - 20X
<BLéM(i) SCQﬂﬂA;Md )

(o) (s )

In all three inequalities, the constant C > 0 depends only on n, q, a lower bound
on constant A\g in (2.2), and || Al|sc-

1/2

(i) If ¢ <2,

Observe that when g > 2, the above result is the same as Lemma 2.6 of [14].
However, when ¢ < 2 and under the assumptions of Proposition 1.14, Lemma 2.7
of [14] states that for any € > 0, we can find C. > 0 such that

/WVM|uP2dXKi—i/|uP¢Y+ ./ deX

and

2dx) R vax)"’ 2qx)"*
(121 J 1o ax) ™ < (i e )™ + (g [ o)™
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Our result is stronger than the one in [14] because we can remove the second terms
of the two right-hand sides above.

For the sequel, let us introduce three topological conditions on §2. We say that
satisfies the interior Corkscrew point condition when there exists a constant C7 > 0
such that for z € 90 and 0 < r < diam(0%?),

1.26 one can find a point A, , € QN B(x,r) such that B(A, ., crirycQ.
( : s C1

Similarly, we say that () satisfies the exterior Corkscrew point condition if the
complement ¢ satisfies the interior Corkscrew condition. We also say that
satisfies the Harnack chain condition if there is a constant Co > 1 and, for each
A > 1, an integer N > 1 such that, whenever X, Y € Q and r € (0, diam(92)) are
such that

(1.27) min{dist(X,0Q),dist(Y,0Q)} > r and |X —Y|<Ar,
we can find a chain of N + 1 points Zg = X, Z1,...,Zxy =Y in Q such that
(1.28) Cylr < dist(Z;,00) < CoAr  and | Ziyq — Z;| < dist(Z;,09)/2

for 1 <i<N.
Similar to the higher codimension case, we define the space

W= {u € Lioo(Q) : |lullw := (/Q|Vu|2dX>l/2 < +oo},

which is clearly contained in VVI}DC2 (Q). If Q satisfies the interior Corkscrew point
condition, the exterior Corkscrew point condition, and the Harnack chain condi-
tion, and if the boundary 9 is Ahlfors regular, i.e., verifies (1.23) with d =n —1,
then we can define notion of trace on W, that is, there exists a bounded operator
Tr from W to L2 (T',0) such that Tru = u if u € W N CO(Q).

loc
We are now ready for the analogue of Proposition 1.14 at the boundary, which

is completely new.

Proposition 1.15. Let Q) satisfy the Corkscrew point condition and the Harnack
chain condition, and assume that its boundary 0N) is Ahlfors reqular of dimension
n—1. Let L := —div AV be a q-elliptic operator. Let u € W be a weak solution
to Lu =0 in Q and let B be a ball of radius r, centered on 02, such that Tru =0
on 2B NOQY. We have

C
lu|?™2 | Vul|? de < = |u|? dz.
2
BNQ ™ J(2Bn\B)nQ

Furthermore, if q > 2,

1 1/q 1 1/2
uqu) §C<7/ qux) ,
<|BQQ| BnQ' | 12BN Q| QBr‘nQ| |

and if q <2,

1 9 1/2 1 1/q
_ d <Of(—— adar) .
(|Brm| Bm'“' ”“") = (|2Brm| /QBOQ“" ”“")
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The constant C > 0 depends only onn, q, a smaller bound on constant A\, in (2.2),
and || Ao -

This result, along with a few others that we did not recall here, can be used to
establish the finiteness of the following integrals.

Theorem 1.16. Retain the assumptions of Proposition 1.11. For any solution
u € W to Lu = 0 whose trace Tru is a restriction to 0Q of a function in C§°(R™),
we have

(i) if ¢>2,
/|Vu|2 lu|?772 dz < +o0,
Q

(i) of q € (1,2), there exists a ball B centered on 0 such that

/ |Vu|? [u|?72 de < 4o0.
O\B

1.6. Plan of the article

Section 2 is devoted to the presentation of the g-ellipticity. In Section 3, we prove
the results stated in Subsection 1.4, which hold in the general context when €2 is
the complement in R” of an Ahlfors regular set. Section 4 serves as an introduction
to the work with the square function and the non-tangential maximal function, for
instance, we establish there the equivalence || N, 4(u)||, = || N12(u)||, whenever u
is a weak solution to Lu = 0, a > 0, and ¢ is in the range of ellipticity of L.
Sections 5 and 6 are devoted to, respectively, the local S < N and N < S bounds,
so altogether, these sections contain the proof of Theorem 1.9. Finally, in Sections 7
and 8, we prove, respectively, the existence and uniqueness of the solutions to the
Dirichlet problem (D), and the combination of Lemma 7.9 (existence), Lemma 8.1
(equivalence between S and N), Lemma 8.2 (improvement (1.13)), and Lemma 8.7
(uniqueness) gives Theorem 1.4.

2. The g-ellipticity and its consequences

Throughout this section, we assume that I' C R™ is an Ahlfors—David regular set
of dimension d < n —1 and  :=R™\ T'. For « € Q, define ¢(x) = dist(x,T"), and
we write dm(z) for §4T1"(z) da.

Consider a matrix A(X) with complex coefficients, the usual ellipticity assump-
tion is that there exist constants A = Agq > 0 and A = || Al| < oo such that for
almost every z €  and every &, € C",

(2.1) MNE* < Re(A(X)€-€) and  JAX)E 7| < Al¢llnl.

A stronger form of ellipticity was introduced in [6] and [14], and see also [7] where
you can find the older, but related, notion of LP dissipativity. For ¢ > 1, we say
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that the matrix A is g-elliptic if there exists A\;(A) > 0 such that for almost every
X € Q and every £, € C™,

(2.2) Aglél* < Re(A(X)E - Tg€)  and  [A(X)E 7] < Alg]In],

where J,: C" — C" is defined as

1 .
(2.3) Jg(a+1iB) = Ea—i— éﬁ and +—==1

1
q

| =

Let us make a few simple remarks on g-ellipticity. First, a matrix A is elliptic
in the usual sense (i.e., it satisfies (2.1)) if and only if A is 2-elliptic. Second, a
matrix A can be g-elliptic only if ¢ € (1, +00), and, moreover, A is g-elliptic if and
only if A is ¢’ elliptic. In Proposition 5.17 of [6] (see also the discussions in [14])
the following nice result can be found.

Proposition 2.1. Let A € L*>(2,C) be an elliptic matriz, i.e., a matriz satisfy-
ing (2.1). Then A is g-elliptic if and only if

e AEE
(2.4) ulA) = essdpt i B TR e

In other words, A is g-elliptic if and only if q € (qo,q(), where go = 2/(1+ p(A)).
Moreover, we can find Ny satisfying (2.2) such that

9
>’1——’.
q

O™y < u(A) —[1 - 2/q] < OA,
where C' depends only on ju(A), Aa and || Al -

Again, let us make a few comments. The minimum in £ shall be taken over the &
such that |A(X)¢ - €| # 0. Writing |A(X)€ - €] is not a mistake for [A(X)¢ - €|,
By taking £ € R™, it is easy to check that p(A) < 1, and thus ¢o € [1,2]; and
since the ellipticity condition on A implies p1(A) > A/||Al|oc, we have qo < 2. If
A € L>(Q,C) is elliptic, we also have the following (not completely immediate)
equivalence: A is real valued if and only if go = 1. This means that the notion of
g-ellipticity is not relevant when A has real coefficients, and that being complex-
valued prevents A to be g-elliptic on the full range of ¢ € (1, +00).

The notion of g-ellipticity will be used via the following result (whose proof is
completely identical to the one of Theorem 2.4 in [14]).

Proposition 2.2. Assume that A € L>®(Q) is a g-elliptic matriz. Then there
exists Ay = A(A [[Alloo, Ag) = A, (A4, [[Alloos #(A), @) > 0 such that for any
nonnegative function x € L>(2), and any function u such that |u|9=2|Vu|*x €
L?(Q2,dm), one has

Re /Q AV - V[uft2 ) dm > X, /Q |2 | Vuf2x dm.

In particular, the right-hand side above is finite.
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We finish the section with a last observation. We will use repeatedly the follow-
ing fact (see Lemma 2.5 in [14]). For any ¢ > 1, any u such that v := |u|?/? 1y €
W 2(Q,C), and any X for which u(X) # 0, we have V|u| = |u|~! Re(@Vu), and

loc

thus
(2.5) C™Hu(X)]77? [Vu(X) P < [Vo(X)|* < Clu(X)|7? [Vu(X)[,

where C' > 0 depends only on g.

3. Moser and energy estimates

The goal of this section is to prove Moser’s estimates and the energy estimates, i.e.,
the estimates of the gradient of solutions. We will start with interior estimates,
and then prove boundary estimates for solutions with vanishing or non-vanishing
traces. Meanwhile, we will use these estimates to show the a priori finiteness of
the square function, that is, we will prove Theorem 1.16 for energy solutions. We
keep the same assumption on I' as the ones given in Subsection 1.4 and Section 2.

3.1. Interior estimates

We aim to prove the following result, which easily implies Proposition 1.10. The
notation f,. f dm is used to denote m(E)~! [, f dm.

Lemma 3.1. Let L = —div AV be an elliptic operator, that is, assume that L
satisfies (1.24)—(1.25). Set A(X) := §(X)""4"LA(X) and let qo € [1,2) be given
by (2.4). Suppose that u € VVéf(Q) is a weak solution to Lu = 0 and B is a ball
of radius r that satisfies 3B C ).

(i) Let ¥ be a smooth function satisfying 0 < ¥ <1 and [VP(X)| < 100/6(X),
and let k > 2. For q € (qo,4q}), we have

(3.1) /|u|q*2|vu|2\1/k dm < 92/ |u|TW*=2 dm.
B " J2B

(il) For q € (2,qyn/(n —2)), we have

(3.2) (]{B|u|qdm>1/q < C’(]iB|u|2 dm)l/Q.

(iii) For q € (qo,2), we have

(3.3) (7{3|u|2 alm)l/2 < C<]£B|u|q dm)l/q.

Each of the above constants C' > 0 depends on n, q, Aa, [|Allco, p(A), and in
case (i), it depends also on k.
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Remark 3.2. The above lemma and its proof are inspired by Lemmas 2.6 and 2.7
of [14]. However, our Lemma is stronger than Lemmas 2.6 and 2.7 of [14] in the
case ¢ < 2. In addition, our proof is direct, that is, contrary to the proof in [14],
we do not approximate L by some elliptic operators L; with smooth coefficients.

Proof. We set ® = Unp, where ng € C§°(2B) is a smooth function satisfying
0<np <1,mpp=1on B, and |[Vng| < C/r.

Step 1: estimate of the gradient. For the purpose of a priori finiteness
which will be used later, we also define uy = min{|u|, N} if ¢ > 2, and uy =
max{|ul,1/N} if ¢ < 2. Note that uy is a real-valued and non-negative function,

and for all X € Q, uy converges monotonically to |u| as N — co. It is also easy

to see that u}]\{271|u| € W2(Q), and this guarantees a priori boundedness of the

loc
following integrals.
For the case ¢ > 2, let By ={X € Q: Ju| < N} and E; = {X € Q: |u| > N}.
Then

/U%’QIVUI%’“dm:/ |72 [Vu2®F dm + | N2 [Vul? @ dm.
Q E; E>

By the g-ellipticity, we can apply Proposition 2.2 to x = ®*1 5, and get

Re [ AVu-V[ju*27] ®* dm > A;/ |12 | V2 BF dm.
E1 El

Similarly, by the 2-ellipticity, we have

Re | AVu-Vad dm >N, [ |Vul?®* dm.
Eg E2

Therefore,
(3.4) /Qu?\fQ |Vu|>®* dm < Re /Q AVu - V[ul ? a)®F dm
=Re /Q AVu - V[u > a®* dm
—Re /Q AVu - V[0 ud* adm
=T +1T5.

A similar argument gives (3.4) in the case ¢ < 2.
Observe that [Vuy| < |Vul, so if ¢ > 2,

(3.5) Vg 24| < (q— 1)ul ?|Vul < (¢ — 1)N"?|Vul,
and if ¢ < 2,

(3.6) IVIug *all < 3 — q)uly *[Vul < (3 = )N*7|Vul.
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In any case, u?\,‘Qa € VVl‘ljf, hence, since ® is compactly supported in 2, we have
that u?\,fzﬂ@k lies in Wy and is compactly supported in . Lemma 8.3 in [10]
shows that u‘}{QGCI)k is a valid test function for u € W'l(l)f (), and hence T1 = 0.
As for Ty, by Holder’s inequality,
(3.7) |Ty| < / |Vu| & V| ud ? [ul dm
Q
1/2 1/2
< (/|Vu|2<1>ku?\,_2 dm) (/ uly ? u? ok =2 |V o2 dm) :
Q Q
Combining (3.4), T3 = 0 and (3.7), we conclude
(3.8) /ng? |Vul2®* dm

1/2 1
< (/ u§v—2|vu|2¢>kdm) (/ u§v—2|u|2¢>k*2|v¢|2dm)
Q Q

Note that by the definition of uy,

/2

/ ul; 2 [ Vul?®F dm < N2 / |Vaul? ®F dm < oo,
Q Q
hence we may divide the same term on both sides of (3.8) and obtain
(3.9) / W2 (Va2 o dm < / w2 02 52 | VD2 dim,
Q Q

with a constant depending on gq.
Since uy — |u| pointwise, by Fatou’s lemma and the observation that u?\;z <
|u|?=2 for both ¢ < 2 and ¢ > 2, we have

(3.10) /|u|q_2|Vu|2<I)k dm gnmmf/ w2 (VU2 0" dm
Q N—o0 O
gnminf/ uly ? [u? @52 |V o[ dm
N—oo [o
< /|u|qq>k*2 VD[ dm.
Q
Now, observe that ®* > ¥*1 5 and &¥~2 < UF~21,p5. In addition, on 2B, we have

(3.11) [VO| < [VU|+|Vnp| 67 +77" S

Y

= | =

since 6(X) > r on 2B. The bound (3.1) follows. However, we remark that the
estimate (3.1) could be an empty statement unless we prove that its right-hand
side is finite.
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Step 2: Moser estimate. Case g > 2. Let 2 < k/ € R. Since uy =
min{|u|, N} < |ul, for any p such that ¢ < p < gn/(n — 2), we have

/ 1/p / 1/p
(3.12) (/ 2 [uf? B dm) < (/ B 2P/ 20/ gk dm)
2B 2B

_ (/ (u(fv/2ﬂ|u|<1>’“/‘”2p)2p/q dm)l/p.
2B

We remark that the first inequality is not true for the case ¢ < 2. By the Sobolev—
Poincaré inequality, see Lemma 4.2 and the following Remark 4.3 of [10], there is
a constant C, independent of ¢, p, such that

(3.13) (]23 (w2 u| @k 2/2p) 2P/ dm)q/%
/ 2
< C?”(][ |v(u%271|u|¢k q/2p)‘2 dm)l/ .
2B

Here we used that the power 2p/q is less or equal to the Sobolev exponent 2n/(n—2)
(and oo if n = 2). Therefore, by combining (3.12) and (3.13), we get

’ 1/ ’ 1/
(3.14) (][ ub? |uf? oF dm) 3 < rz/q(][ ud | Vul? ok /P dm) !
2B 2B

/ 1/q
+ (][ uly ? jul? @ a/p=2 |V<I>|2dm)
2B
Suppose k'q/p > 2. Then we can apply the gradient estimate (3.9) and get
/ u(}v_2|Vu|2<I>kI‘I/p dmﬁ/ UJ?\,_Q|u|2<1>qu/p*2|V<I>|2 dm.
2B 2B

Combining this with (3.14), we obtain
/ 1/p /
(3.15) (][ o2 et dm) " 5 (7«2][ g 2802 (VB i
2B 2B
Recall the definition ® = ¥np and (3.11). We have
/ 1/p / 1/p

(3.16) (][ Ul |uf? ok dm) < (][ U2 |uf? oF dm)

B 2B

< (][ u?v72|u|2\11k’q/p72 dm)l/q.
2B

In particular, if we choose ¥ = 1 and k' big enough (depending only on n), the
estimate above becomes

1/ 1/q
(3.17) (]iuﬁ,_Q |u|? dm) 3 < (]iB ud 2 ul? dm) < o0,

whenever ¢ € [2,¢() and ¢ < p < gn/(n — 2).

1/q
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Iteration. By the same argument, if we replace 2B by AB, with A € (1,2],
then (3.17) also holds, namely,

.18 (f w e am) ™ < (£ g pupam)”
B AB

with a constant depending on the value of A (as well as ¢, || A||o and the g-ellipticity
of A). In particular, (3.18) holds for any ¢ € [2,¢() and p = gn/(n —2) (for n > 2;
any p < oo for n = 2). Now let p € (2,¢(n/(n—2)) be fixed. Let £ € N be the first
integer so that p((n —2)/n)’ < 2, and A = 21/¢ € (1,2). We can iterate (3.18) ¢

times and obtain
1/p 1/2
(][ w2 ul? dm) < (][ |u|2dm> .
B 2B

Note that the right-hand side is finite if u € VV&)C2 (©). Therefore, by passing
N — 00, we conclude

(3.19) (7{3|u|pdm)1/p < cp(]i3|u|2 dm)l/Q,

for any p € (2,¢jn/(n — 2)). Note that in the iterative process, we get esti-
mates with ¢ constants depending on the powers p(n — 2)/n,p((n —2)/n)?, ...,
((n —2)/n)*"!, and we combine them into one constant C,, depending on p and n.
This is Moser’s estimate for p > 2. It also justifies the right-hand side of (3.1) is
finite when ¢ > 2.

Step 3: Moser estimate. Case g < 2. By Holder’s inequality, if u € I/Vhljf (Q),
we have v € LY(2B,dm) for all ¢ < 2. Hence we do not need to use uy to
approximate |u| in this case. Similar to the previous case, for any ¢ € (qo, 2] and
qg<p<gn/(n-—2), we have

’ 1/ ’7 1/
(][ |u|p\pk dm) b — (][ (|u|q/2 Pk q/2p)2p/q dm) P
B B
/ 1/
< C(TQ][ |V (|u|?/? T* ‘1/2’7)|2 dm) !
B
’ 1/
< (7“2][ lu|?™2 | Vu|* O* a/p dm) !
B
’ 1/
+ (7"2][ |7 Wk ‘Z/p’2|V\Il|2dm) !
B

We have |V¥| < 1/r on B. Furthermore, since v € L9(2B,dm) for ¢ < 2, the
right-hand side of (3.1) is finite, thus we can plug (3.1) in the above estimate.
Therefore, we get

(3.20) ( 7{3 fufP UF dm)l/ 7 < (]i3|u|w’f/q/p—2 dm)l/ !
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whenever ¢ € (qo,2] and ¢ < p < gqn/(n — 2). Again, we take ¥ = 1 and k' large
and we obtain

1/q
(3.21) ][|u|pdm ][ |u|? dm ,

with ¢ € (¢o,2] and ¢ < p < gn/(n —2).

Iteration. Applying a similar iterative process as in the previous case, we
conclude that

(3.22) (][B|u|2 dm)1/2 < C, ( ]£B|u|q dm)l/q,

for any ¢q € (qo, 2). O
Here is a side product of Lemma 3.1, that will be useful later on.

Lemma 3.3. Let L = —div AV be an elliptic operator, that is, assume that L
satisfies (1.24)~(1.25). Set A(X) := §(X)"~41A(X) and let qo € [1,2) be given
by (2.4). Take k > 3.

For any q € (qo, q(), there exists € := e(n, k,q) > 0 such that if u € VVéf(Q) 18
a weak solution to Lu = 0, if B is a ball of radius r that satisfies 3B C 2, and
if W is a smooth function satisfying 0 < ¥ < 1 and |[VU(X)| < 100/0(X), then
we have

(3.23) ][|u|q\1'kdm ][ = ) fime

where the constant C > 0 depends on n, q, Aa, || Allco, p(A), and k.

Proof. Actually, this lemma is almost already proven. We just need to find the
constant e.

Indeed, the estimate (3.16) gives that (here we switch the roles of p and ¢) for
2<p<qlyp<qg<pn/(n—2),and k > 2q/p,

1/q 1/p
(][ ud? u)? O dm) < (][ U |u|? whr/a—2 dm) :
B 2B

Thanks to Lemma 3.1, the right-hand side above is bounded uniformly in N, and
by taking N — 400, we get

(]i|u|q‘l’k dm)l/q S (]£B|u|p\11kp/q—2 dm)l/P.

Given ¢ € (2,¢]), we choose p = g—¢, where € = % min{q—2,2q/n,q(1—2/k)} > 0,
and we obtain (3.23) in the case ¢ > 2.
As for the case ¢ < 2, we use (3.20), and we have

(]i|u|q‘l’k dm)l/q S (]iB|u|p\I/kp/q72 dm)l/P’

whenever ¢ € (qo,2], p < ¢ < pn/(n—2) and k > 2q/p. We choose again p = ¢ —e,
but where € is now %min{q - qo,2q/n,q(1 —2/k)} > 0, and we obtain (3.23) in
the case ¢ < 2. O
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3.2. Boundary estimates

We want now to prove Theorem 1.13. In Theorem 1.13, we assume a stronger
assumption, that is, we assume that © € W is an energy solution. Taking u € W

instead of u € VVli)C2 (Q) allows us to define a trace on the boundary, and then to

get estimates similar to the ones in Lemma 3.1 at the boundary.
We introduce the space Wy defined as

Wo :={ve W, Trv=0}.

Recall that the space Wy is the completion of C§°(£2) under the norm || - [|w, see
Lemma 5.5 of [10].

Lemma 3.4 (Boundary estimates with vanishing trace). Let L = —div AV be
an elliptic operator, that is, assume that L satisfies (1.24)-(1.25). Set A(X) :=
(X)L A(X) and let qo € [1,2) be given by (2.4). Letu € W be a weak solution
to Lu = 0 such that for a ball B of radius r centered on I', we have Tru = 0 on 3B.

(i) For q € (q0,40),
(3.24) /|u|q*2|Vu|2dm < %/ |u|? dm.
B ™ J2B\B

(i) For q € (2,qyn/(n —2)),

(3.25) (]i|u|qdm>1/q < C’(]iB|u|2 dm)l/Q.

(iii) For q € (qo,2),

(3.26) (]i|u|2 dm)1/2 < c(]iB|u|qczm)1/q.

Each of the above constant C' > 0 depends on n, q, Aa, || Alls, and p(A).

Proof. The proof of this lemma is similar to the one of Lemma 3.1 and we will
only talk about the differences.

Step 1: estimate of the gradient. Here, we take ¥ = 1 and thus ® = np, where
np € C§°(2B),0<np <1,np =1on B, and |Vnp| < C/r. We take k = 3 (k has
no importance as long as it is bigger than 2). The function uy is defined as in
step 1 of the proof of Lemma 3.1.

The proof of (3.24) is then done as the one of (3.1). The only delicate point is
to verify

(3.27) Ty = Re/ AVu - V[ud ?ad*] dm = 0.
Q

Since u € W is a solution, according to Lemma 8.3 in [10], it suffices to show that
u?\,fzﬂ@k € Wy. The bounds (3.5)~(3.6) prove that ud 2@ € W. The fact that
u?\,fzﬂék lies in W, is then a consequence of Tru = 0 on 3B, supp® C 2B, and
Lemmas 5.4 and 6.1 in [10].
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Step 2: Moser estimate. The proof of both (3.25) and (3.26) is identical of
the ones of respectively (3.2) and (3.3), and is based on (3.24) and the boundary
Poincaré’s inequality given in Lemma 4.2 of [10]. O

Now we set out to prove Theorem 1.13.

Lemma 3.5. Let L := —div AV be an elliptic operator. Set A(X) to be the
quantity §(X)""9"LA(X), let qo € [1,2) be given by (2.4) and q € (qo,q,). For
any energy solution w € W to Lu = 0, there exists a ball B centered on I such
that

/ |Vu|? [u|97% dm < +oo.
Q\B

Proof. If u € W is an energy solution, there exists g € C§°(R™) such that Tru =g
on I'. So we can find a ball B’ centered on I' such that suppg C B’, that is, the
support of Tru is in B’ NT. We choose B = 10B’, and let r be the radius of B.

We take k£ = 3 and then ® € C°(R"™) such that 0 < ® < 1, & = 1 outside B,
®=0in %B, and |V®| < C/r. We can apply the argument in step 1 of Lemma 3.1
to @ and get an estimate similar to (3.10):

(3.28) / 12|Vl BF dm < / |7 52 [V D[2 dm.
Q Q
The only delicate point in the proof of (3.28) is the proof of the fact that
(3.29) Re / AV - Vul ? a®* dm = 0,
Q

that can be established with the same reasoning used to prove (3.27). By using
the properties of ®, the bound (3.28) becomes

1
(3.30) / ]2 | Vul2 dm < —2/ luf? dm.
O\B T JB\iB

The annulus B\ 3B can be covered by a finite number of balls (D;);c; of radius
r/100 that does not intersect 2B’. Due to the Moser estimates (3.2) and (3.25)
(if ¢ > 2) or simply by Holder’s inequality (if ¢ < 2), we have

(][Di|u|q dm)l/q < (][D|u|2 dm)l/Q.

Therefore, we deduce from (3.30) that

/ |u|q72 |vu|2 dm. g 7,.(1+d)(17q/2)72</
o\B

q/2
[udm)",
2B\2B’

where C'p depends on the ball B (and, in particular, its radius ). But we omit the
dependence since B is fixed. The Poincaré inequality implies now, since Tru = 0

on 2B\ 2B/,
/ lul? dm < r? / |Vu|? dm.
2B\2B’ 2B\2B’
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Therefore,
q/2
/ |U|q_2|Vu|2 dm < r(d—l)(l—q/Q)(/ |Vu|2 dm) < +00.
Q\B 2B\2B’

The lemma follows. O

When the trace does not vanish, we can still apply similar argument in Lem-
ma 3.1 to u — g € Wy. As long as ¢ > 2, we can morally speaking bound the
integral of |u|9=2 |Vu|? by that of u — g and g. We make it rigorous in the following
lemma.

Lemma 3.6 (Boundary estimates with non-vanishing trace: case ¢ > 2). Let
L := —div AV be an elliptic operator. Set A(X) := §(X)""4"1A(X), let qo € [1,2)
given by (2.4), and take q € [2,4}), p € [2,¢\n/(n — 2)).

Choose g € CP(R™) and set w € W to be the (unique) energy solution to
Lu = 0 satisfying Tru = g. For any ball B of radius r centered on I", we have

- 1 - -
(3.31) /B|Vu|2|u|q 2dm < r—2/23|u|qdm+rq 2/23|Vg|q+rd 1”9”%00(23)

and

(3.32) (]i|u|pdm)1/p < (]£B|u|2dm)l/2 + (]iB|g|pdm)1/p

1/p«
—H‘(][ [V g|P~ dm) ,
2B

where p, = max{2,p(n — 2)/n}, and where the constant depends only on n, A4,
w(A), [|Alls, and, respectively, g and p.

As a consequence, for any energy solution uw € W to Lu = 0 and any ball
B C R™ centered on I', one has

(3.33) / IVl [u]?2 dm < +o.
B

Proof. We define v = u — g € Wy. The proof follows the same arguments as the
ones given in Lemma 3.1, step 1 and 2 or Lemma 3.4, the only difference being
that here we have Lv = —Lg instead.

Step 1: estimate of the gradient. We set k large, say & = 100, and then

® e CF¥(2B), 0 <P <1, P =1on B, and |[V®| < C/r. We also define

vy = min{|v], N} to ensure the a priori finiteness of the integrals we work with.
Using g-ellipticity and 2-ellipticity, we obtain similarly to (3.4) that

/ vl V20 dm < Re/ AVv - Vol *0)0* dm
Q Q

= Re/ AV - V[ 2 50 dm — Re/ AV - V[®*] 04 %5 dm
Q Q

(334) = T1 +T2.
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Since ¢ > 2, we have

V[ok *0] < (g = Dof Vol < (g = NP2V,
which ensures that v?\fz?‘) € W. Moreover, since Trv = 0, Lemma 6.1 in [10] gives
that Tr[v%, *5] = 0 and then Lemma 5.24 gives that ¢ := v% *5®* € Wy. So the

term T is v tested against the function ¢ € Wy. Since v = u— g and w is a solution
to Lu = 0, we deduce

@ Q
5/'V9||Vv|v?€2<1>’“dm+/|Vg||vq>|v§1v*2|v|<1>’f—1dm
@ Q
1/2 1/2
[ orrtean)s ([ e oran)”
@ Q

1/2
X (/|Vg|2v§1\,72<1>k dm) .
Q

The last term in the last inequality can be treated as follows: Using the fact that
a®b'=% < a + b, where in our case § =1 —2/q, a = r~2v}, and b = r7"2|Vg|?, we
have

1
(3.35) /vgv*2|vg|2q>k dm < —2/ v;fv@kdmwff*?/wgw@kdm
Q = Ja Q
1
< —2/ vl 2 o2 oF dm+7’q72/|Vg|q<I>k dm.
= Ja Q
Therefore, together with the fact that |[V®| < C/r, the bound on T} becomes
o2 _— 1/2
(3.36) Ty < (/QUN Vol @ dm)
1 1/2
X [—2/ vl v|? k2 d771—|—7“q*2/|Vg|q<I)’C dm}
= Ja Q
1
+—2/v§{,—2|v|2¢>k*2 dm+rq72/|Vg|q<I>k dm.
= Ja Q
We turn to the estimate of T5. One has, by Cauchy—Schwarz’s inequality,
(337) |1 §/Q|W|U§V—2|v||vq>|¢>k—1
-2 2 gk 1/2 —2| 12 k-2 2 !
< (/vgv Vo2 ® dm) (/vjlv 0|2 42|V D dm)
Q Q

1/2 1 1/2
< (/ vl |Vol? F dm) (’I“_Q_/ 02 o2 R 2 dm) ,
Q Q

/2
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where we use the fact that |[V®| < 71 in the last line. The combination of (3.34),
(3.36), and (3.37) implies that

1/2
/ 0172 | Vo> ®F dm < (/ 0% | Vo|? ok dm)
Q Q
1 1/2
X [—2/ vl 2R 2 dm 4 112 / |Vgl|?®* dm}
™ Ja Q
1
+ —2/ 0172 o2 @R 2 dm + 972 / |Vg|?®* dm,
™ Ja Q
which self-improves, since fQ v?\fz |Vo|? ®F dm is finite, to
1
(3.38) / v?\fz Vo2 ®F dm < —2/ v?\fQ |v|> ®F=2 dm 4 r972 / |Vg|?®" dm.
Q ™ Ja Q
Recall that ® =1 on B and ® = 0 outside 2B, hence
1
(3.39) / v?\fz |Vo|? dm < —2/ v?\fQ |v|* dm + 7"172/ [Vg|?dm.
B " J2B 2B

Step 2: Moser estimate. Using similar arguments as the ones invoked in step 2
of the proof of Lemma 3.1 (mainly based on the Poincaré inequality), we obtain
an analogue of (3.14), that is,

’ 1/p
(][ OB |u]? B dm)
2B
’ ’ /4
57,2/(1(][ U;IV_2|VU|2(I)k q/p dm+][ U?V_2|U|2(I)k ‘I/p_2|V<I>|2dm) s
2B 2B

whenever 2 < ¢ < p < gn/(n — 2). Assuming that k' is such that k'q/p —2 > 0
and using (3.38) with k& = k’q/p for the first term in the right-hand side, we obtain
that

; 1/p ,
(][ o2 ]2 ok dm) ,Srz/q(iz][ 017 v ®F VP2 gm
2B = JoB

—l—rq*Q][ |Vg|q<I>kQ/pdm
2B
a2 12 gk'q/p—2 2 a

+F ) V| dm) :

2B

whenever 2 < ¢ < ¢),. Now, use the fact that |[V®| < C/r, ¥ =1on B, and ¥ <1,
to get

_ 1/p 1 _ 1/q
(][ VB2 |v)? dm) 572/‘1(—2][ v 2|v|2dm—|—rq*2][ |Vg|qdm)
B " J2B 2B

(][B VB2 |v)? dm)l/p S (]iB vl 2 ]2 dm)l/q + 7“( ]£B|Vg|q dm)l/q.

or
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The arguments can be slightly modified to get

(]iv%—2|v|2dm>l/17 < C,\(]{\B U?V_2|U|2 dm)l/q+C,\T(]€\B|v9|qdm>1/q7

where A € (1,2) and C) depends on A\. We use then an iterative argument as the
one given page 845 and we get, if p € [2,¢(n/(n—2)) and p,. = max{2,p(n—2)/n},

(3.40) (]iv;ﬁm?dm)”p < (]iBW dm)l/Q + r(]éng

Step 3: Conclusion. The estimate (3.40) gives a uniform (and finite) bound on

1/p
(][ vB 2 |v)? dm) :
B

so, taking N — +o00, we obtain, if p € [2, ¢jn/(n —2)) and p. =max{2,p(n—2)/n},

(3.41) (]i|v|pdm)1/p < <]£B|v|2 dm)l/Q + r(]éng

The inequality above is not (3.32), because the estimate is on v = u — g and not
on u. But by the triangle inequality

(f tupam)” ][|v|pdm (ol am) )"
B

and Holder’s inequality

][ |v|2dm ][ |u|2dm ][ |g|pdm p,

we easily obtain the desired estimate (3.32).

Thanks to (3.41), the right-hand side of (3.39) is uniformly bounded in N.
Thus we may take N — +o0 in (3.39) and get

1/p«

P dm)

1/p«

P dm)

1
(3.42) / [v|772 | Vu|* dm < —2/ [v|?dm + 7"172/ [Vgl?dm.
B = J2B 2B
Again, we want to turn (3.42) into an estimate on u = v + g. Yet, observe that
1 q < 1 q d—1 q
(3.43) 2 2B|v| dm S 2 2B|u| dm + 1|9l 7w 2)-

Besides, we have
[ el Va dm 5 [ o2 9o am o+ [ pr? (9P dm
B B B

4 / 191772 Vol dm + / 19192 Vgl dm
B B

=1L+ I+ I3+ 14
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We do not change I;. We use the fact that a?=2b? < rd=1gq 4 pd=1(1-a/2)pa and
we get

b < ol s, [ V0 dm
wflngni%)+r<d*1><1*q/2> / [Vof? dm)
Pl + O (G [ e am e [ 96 am)”

d _
1Hg||L°°(B T—Q‘/23|v|qdm+r‘1 2/ZB|Vg|<1dm.

a/2

Similarly, since a?"2b? < r~2a9 4 r972b%, we have
1
I < —2/|v|qdm+rq_2/|Vg|qdm
™ JB B
and
15 5 [ lalrdm e [ [Vgltdm < v gl )+ 002 [ Vgltdm,
B
Altogether, we deduce
1
(3.44) /|u|q*2|Vu|2dm§/|v|q*2|Vv|2dm+—2/|v|qdm+rd*1|\g||%w(3)
B B ™ JB

+ 72 / [Vgl?dm.
B

The combination of (3.42), (3.43), and (3.44) gives (3.31).
Eventually, by combining (3.31) and (3.32), we obtain

/|Vu|2|u|q_2 dm
: 1
S [ taftdm s [vg gl g,
2B 2B
a/2

S22 ([ am) g2 [ gl o, <+
because g € Cg°(R") and v € W (recall that the latter forces u € L2 (R™, dm),
see Lemma 3.1 in [10]). The lemma follows. O

Combining the Lemmas 3.5 and 3.6, we easily prove Theorem 1.13.

4. Preliminaries to the local estimates

In this section, and for the rest of the article, we take Q = R™ \ R? = {(z,t) € R",
r € Rlandt € R* 4\ {0}}; the boundary I' is assimilated to R%. We also
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write X = (x,t) or Y = (y, s) for the running points in €2, and we write B;(z) for
the ball in R? with center x and radius [. In this particular case, the measure m

satisfies
dt

dm(X) = pr=aT

dx.

4.1. Properties of the non-tangential maximal function N

Lemma 4.1. Let a,b > 0, p € [1,400|, and let L be an elliptic operator. Set
qo € (1,2) given by Proposition 2.1 and choose q1,q2 € (qo,qp). Then for any weak
solution u € Wb2(Q) to Lu = 0 that satisfies || Nu.q, (w)], < +00, we have

loc
[ Nb,g2 (W)]lp < C|Nag, (w)]lp < +o00,
where C' > 0 depends only on n, a, b, q1, q2, A4, ||Allcc and p(A).

Proof. We use the notation introduced in Subsection 1.2. The proof of Lemma 3.1
can be easily adapted to get (3.2)—(3.3), where the ball B is replaced by Wy(z,r)
and 2B is replaced by

{(y,8) € Q, y € Byr(2), /4 < |s] <4r} C Wa(z,r/2) UWy(z,2r).

So we obtain, for any (z,7) € Riﬂ, that

1/g2 /a1
(4.1) (][ |2 dm) < (][ e dm) .
Wy (z,7) Wap (2,7/2)UWyy (2,27)

In addition, we have
[Wap(2,7/2)| =~ b ~ | Wy (2, 2r)]
and
dm(X) ~ 1= dr dt - for any X = (2,t) € Wap(2,7/2) U Wap(2, 2r).
We deduce that (4.1) becomes
UWbgo (2,7) S Uwab.g (2,7/2) + uw,ab.q, (2, 27).

By taking the supremum on (z,7) € I'y(x), where z € RY, we get the pointwise
bound B N
Nig(u)(x) < CNap,q(u) (),

with a constant C' independent of . We take the LP-norm of the inequality above
to obtain

1Ns.q2 (@)l S I Nasa1 (@)l S I Naqr ()]s

where the last inequality is obtained by a classical real variable method argument
(see Chapter II, equation (25) in [28]). O
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We also have the following corollary of Lemma 3.3, that will be useful in Sec-
tion 6.

Lemma 4.2. Let a > 0 and £ := —div|[t|4T'"" AV be an elliptic operator. Set
q € (1,2) given by Proposition 2.1 and choose q € (qo, q})). Take also k > 3.
There exists € := e(n, k,q,qo) such that for any weak solution u € Wi 2(Q) to

loc

Lu =0, and for any smooth function ¥ € C§°(R™) that satisfies 0 < ¥ < 1 and
|[V¥| < 100/[t], we have

||Na,q(u|\1/k)”q < CHqu—e(umk_g)an

where C' > 0 depends only on n, a, q, Aa, || Allco, p(A) and k. In particular, if the
right-hand side above is finite, so is the left-hand side.

Proof. As in the previous lemma, the use of Lemma 3.3 with the sets W,(z,7)
instead of balls gives that

(U|\I/ )Wa q(z r) S (U|\I/k 3)W4aq (2,7/2) + (u|‘l'k_3)W,4a,q—e(za27")-

By taking the supremum on the cones I', (), and then the L9 norm on = € R%, we
get _ ~
||Na7q(u|‘l'k)”q S ||N4a7q—e(u|‘l'k73)”q-

We can upgrade J\~f4a,q,6 into J\Nfa,q,6 by using, as in the proof of Lemma 4.1, a real
variable argument. The lemma follows. O

4.2. The Carleson inequality and good cut-off functions

Proposition 4.3 (Carleson inequality). Let a > 0 and ¢ € (1,400). Let [ be
a measurable function (scalar, vector-valued, or matriz-valued) that satisfies the
Carleson measure condition (see Definition 1.1). For any function u € L ()
and any non-negative function U € C§° (), we have

dt
/ P 1ult® —Y g < ) fllostal Mo q(ul D)2,
(z,t)eQ |t|

where the constant C' depends only on the dimensions n and d.

Proof. Observe that

dt
I e e
(z,t)EQ [t]
9 dr
S — [f1% |u|? ¥ ds dy — dx
(;c,r)eRfrl |Wa(x,r)| (y,8)EWq(z,1) r

dr
S sw (5P
(w,r)eRi‘H W, ’q((y,s)EWa(a:,r) ) r
S fllem,all Na,q(w¥)][G,

where we used the classical Carleson inequality, see, for instance, Chapter II, Sec-
tion 2.2 of [28]. O
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Let us define ‘good’ cut-off functions.

Definition 4.4. Let a > 0. A function ¥ satisfies (H2) if W is locally Lipschitz
on 2 and there exists M > 0 such that

(i) 0<¥ <1lonQ,

(ii) |V¥(x,t)| < C/|t] for any (z,t) € Q,

(iii) for any z € RY,

(4.2) //( . ( sup |V\I’|)—dz <M,

ely(z) Wy(z,r)

where b = a/100.

We say that W satisfies ('HiM) if U satisfies (iii) with the constant M.

On first read it appears that the condition ('Hi ) depends on the constant C
in (ii); however, it can be shown that condition (iii) implies (ii), with a constant C'
depending on a, M, d, and condition (ii) is only here to simplify the reading. Indeed,
a point (z,t) € Q belongs to Wy(z,r) for any z € R%, r > 0, which satisfies
[t|/2 <r < 2|t| and z € Byjy/a(x), so

1

VU (z,t)| S —/ / sup |V\Il|—dz

|t| Bujelja J |t]/2<r<2]t] Wi (2, r)
M
/ sup |V\Il|) dz < —
|t| (z,r er(m) Wi (z,r) |t|

if (i) is satisfied.
The following observations are crucial.

Lemma 4.5. Let ¢ € C§°(R,) be such that 0 < ¢ < 1,9 =1 on[0,1], p =0 on
2, +00), and |¢/] < 2.

(1) If e(x) is a positive a='-Lipschitz function and

v (1) = o),

2|
then V. satisfies ('HiM) for an M that depends only on a and the dimen-
stons n, d.
(2) If B C R? is a (boundary) ball of radius bigger than or equal to I, and

Wpa(e.1) = o D) o (1 + TUEE)Y

then ¥ satisfies (H2 ) for an M that depends only on a, n.

(3) If Wy and Wy are two functions satisfying (H2 ) and (H? M,)» Tespectively,
then W1 Wy satisfies (H a,MlJer).
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Proof. Part (3) follows easily from Definition 4.4. We shall only prove (1), and the
proof for (2) is similar. The assertion (i) of Definition 4.4 is trivial, and as we said,
(ii) follows from (iii), so we only need to verify (iii).

Let b = a/100 and take x € R%. We want to show that

// ( sup |[VU, |)—dz<M
(z,7)ETy () Wiy(z,r)

By the properties of ¢, we first observe that |V%.(y,s)| < C/|s|, and thus
SUpw, (-, V¥e| < C’/r. Another simple observation is that

{(y:8) € R", [VWe(y,s)| # 0} C {(y,s) € R, e(y)/2 < [s] < e(y)}-

If (y,s) € Wy(z,r) for some (z,r) € I'y(x), then necessarily (y,s) € Ty,
we want to find for which values of (y,s) € I'sp(x), we have [VU,.(y,s)]|
y = x, then we have

(z). S
£ 0.
S, :={s e R |V (z,5)] #0} C {s e R" % e(x)/2 < |s| < e(x)}.

Besides, if (y, s) € fgb(x) is such that [V, (y, s)| # 0, since e is a~!-Lipschitz, we
can find s, € S, such that

Therefore,

d
// ( sup |[VU, |) ,S/ / dzwr1 < 1.
(z,7)€Ty(z) Wy(z,r) e(x)/6<r<de(x) J By, (z) r

Part (1) of the lemma follows. O
Now, let us state another important property of functions which satisfy (H2).

Lemma 4.6. Let a > 0 and q € (1,+00). Let U satisfy (M, 5,). If v € L{ (Q)
and 0 < & € C§°(2), then

dt

[t[n—d-1 dz < OM|[Naq(v]®)]G,

(4.3) /|v|q¢|vqf|2wflﬁdx+/ 0|7 ®| V|
Q

with a constant C' > 0 that depends only on n, a.
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Proof. The proof is almost straightforward. Let b = a/100. First, due to (ii) in
Definition 4.4, we have

q 2 < q
/ 070 |V Y| e | > dz C//|v| VY| ItI" —d

so we only need to bound the second term in the left-hand side of (4.3). By Fubini’s
lemma, for any non-negative function f,

fdtdx)dzdr
//(er]R”X(Ooo(|szr|s//Wh(zr )
// // . dr)dtdac
(2,1)€Q (z r)ER*x (0,00 rn

t. (z,t)EWy (2, r)

2|t
> f / / dz— dtdacw//f
//'S; ( [t]/2 ZGBbM/Q(x) rn |t|n = 1

where the constants depend on b and the dimension d. Thus

dt
=l
< —_— [v[T@ (VY| dzdr
//(z,r)E]RdX(O,oo) ( |W5(Z7 T)' Wy (z,1) )

<// |(0]@)w,p,q(z,7)|?( sup |VV|)dzdr
(z,r)€R¥% (0,00)

Wy (z,r)
q dr
(0| ®)wp,q(z,7)] ( sup |V\II|) — dz
z€R JJ (z2,r)€T, (gc) Wy (z,r)
d
5/ |qu v|®)(z)|? / sup |V\I'|) rda:
zER (2, T)El"b(gc) Wy (z,7) rd

<M / [N o (0]@)[9 dz,
Rd

by (iii) in Definition 4.4. O

5. The local estimate S < IN

In this section, we estimate the g-adapted functional S, ; by the functional ]\Nfa,q,
by using methods similar to the ones in [12] and Section 7 of [11]. In fact, the
general method was pioneered in [24]. To get boundary estimates, the derivative(s)
in the transversal ¢-direction clearly plays an essential role. To estimate the t-
derivative(s), it is convenient to tweak the elliptic matrix A so that its lower left
corner becomes zero:

(A A ;o (A A+ (Bs)T
(5.1) A—<83 b1)+c—>,4 ._<0 ) e

By simple algebra, such an A’ satisfies the following:
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e For X = (0,t) and Y = (y, s) € R, we have
(5.2) AY X =bs-t+CY - X.
If Y denotes the full derivative, then roughly speaking A’ highlights the

t-derivative(s).

e The difference between the two elliptic operators — div|t|¢*1~" AV and
—div[t|?*t1=" A’V is of first-order; to be more precise,

(5.3) L= —div|t|TT AV = — div[t| T AV DY,
where, for any 1 < j <d <i<mn,

(5.4) (D) ==Y [tI" " 0u[(Ba)e [t "], (D) =) 0o, (Ba)ie-

£>d 0<d

Observe that the condition (H!) imposes, in particular, that [t|/D’ satisfies
the Carleson measure condition.

o Moreover, if we assume that the matrix Bs is real-valued, then A’¢ - € has the
same real part as A¢ - € (and we have A’¢ - ¢ = A - € without even assuming
that Bs is real). Hence, by Proposition 2.4, A’ is g-elliptic if and only if A is
g-elliptic; more precisely, A\;(A") = A\, (A).

Lemma 5.1 (Local S < kN). Let £L = —div|[t|"1"" AV be an elliptic operator
that satisfies (HL) for some constant k > 0 (see Definition 1.2). We define A" as
in (5.1). Let a > 0 and q € (qo,q(), where qo is given by Proposition 2.1. Take
k > 2 and a function ¥ € C5°(Q2) which verifies 0 < ¥ < 1 and |[V¥| < 100/]t|
everywhere. Then for any weak solution u € W’l(l)f(Q) to Lu =0, we have

1 whdt
. Try|e < = ! . =251 2
cl|Sa,q(u[¥F)[1 < 5 Re//QA Vu - V[ul"" 4] R dx

ul? 24 dt
| |
b |t|n—d—2

1 K p e dt
z Rl _ B VAL /L]
+ q//ﬂ( ar Vi = Vel ]) - Vi[w'] g

where the constants ¢, C' depend on a, q, n, k, || Alloc, A\g(A) and ||b]|ec + |67 ] 0o-

< Ck|| Ny o(u|U*2) |2 - Re //A’Vu V[0 dx
Q

(5.5)

Remark 5.2. (i) In (5.5) the differential operators V, and V; denote an n-
dimensional vector, where the missing derivatives are taken to be zero.

(ii) This lemma is a key step in proving the S < N estimates. The corollaries
of this lemma are Lemma 5.3, and with some additional a priori estimate,
Lemma 7.6. In fact, the second and last terms on the right-hand side can
be roughly bounded by N q(u[¥5=1) 4+ S (ul 05 [2/| Ny o (ul05-2) 2/
(see Lemma 5.3); with an appropriate choice of cut-off function they can be
bounded more precisely by || Trul|¢ (see Lemmas 7.5 and 7.8).
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Proof. First of all, Proposition 1.10 guarantees that |u|? and |Vu|?|u|972 lie in
LL _(Q). Therefore, since A’ and b~! are bounded and

loc
[Vul?[u]?™? = [Va|[V[u?? ],

by (2.5), all the quantities invoked in (5.5) are well defined and finite.
Let T be the quantity

Ukt
Pp— 72_
T .= Re//QA/VU'V[|U|q ul b Jer-z dx.

Since A is g-elliptic and Bs is real-valued, we know A’ is also g-elliptic, and, more
precisely, that A;(A") = A\;(A). Together with Proposition 2.2 and the fact that b
is uniformly bounded from above, we obtain

_ dt
o= [ Ve S S T,
(z,t)ER™

which is exactly the first estimate in (5.5). Here we use the assumption that b is
a real-valued scalar.
We claim that

(5.6) T < CRM2TY | Ny o (ul 942|955,
l k |u|q72l_" dt

Q
! [ul? g dt
- —V|[t]| — a1y . Uk g
1 ] (- v ) - vt e e

which easily implies the second inequality in (5.5) since T is finite. So let us prove
the claim.
First, check that we can write

Lo [tOF at
T:Re//QA’VU'V[|U|q ] b Jfdt dx

- , [t [u|?—2u Wk dt
—Re//Q.AVu V{ 2 } [ dx

o l . k |u|q72ﬂ dt
Re//QAVu V[T"] TRATTETES dx

q—2 7\I/k,
+ Re// A'Vu - Vb ful 2u ncftd72 dz
Q b It]

B , lu|t=2aWF  dt
Re//Q.A Vu- VIt 5 M= dx

=T+ T+ 15+ Ty
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Let us start with T5. The term 75 is similar to the second term in the right-hand
side of (5.6), except that V[U*] is replaced by V,[¥*]. We write
lu|72u  dt

b |t|n7d72
|ul?2u  dt

b -2

dx

T2 = — Re/ .A/VU; . V@[\I/k]
Q

—Re / A'Vu -V, [UF] dx
Q

=:To1 + Too.

The term T is the second term in the right-hand side of (5.6). As for Ths, by (5.2)
we know that

T22 S — Re/ Vtu . Vt [\I’k] |U|q_2’0, M:l% dx
Q
k o dt
+C ] [CHVul [Ve[¥F]]ul® a2 dx
Q

=: Tho1 + Thoo,

where T529 was obtained by using the fact that b~! is uniformly bounded. Notice
that Vl|u|? = ¢Re(Vu|u|?"24), which gives that Thay is part of the last term in
the right-hand side of (5.6). Observe now that by the assumption on ¥, we have

C
|vt[\1’k]| S m \I/k_la

It]
hence
k=1 g1 dt
Toge < C [ [C]|Vu| " |ul? |t|n—d—1 dx
Q
1/2
<o [ a2 vt Lo ao) ([Pt o an)
o |t|n Tm—a—2 ¢ |t|”

Since the matrix A’ is g-elliptic and b=! < C, the first integral in the right-hand
side above is thus bounded by

wrdt
Re/ AVu - Vu|"? 8] — ——— dz =T,
Q b |t|n7d72
while we bound the second integral by using Proposition 4.3 (the Carleson inequal-
ity) and the fact that C satisfies the Carleson measure condition. We obtain

Tonz S T2 KM || Nayq(u| U5 2)[|4/2.

The bound of T5 follows.
We turn to the estimate of T3. We use the boundedness of A’ and b~!, and
then Cauchy—Schwarz’s inequality to obtain

dt
Ts| < [ [Vul Vo[ 9* ful 1™ o da
I |t|n d—2

dt 1/2 dt 1/2
< 2 q—2 7k 2k q
(/Q|Vu| lul?=2 @ T dx) (//Q|Vb| N s dx) .
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As we did for Thao, the g-ellipticity of A’ and the fact that [t||Vb| satisfies the
Carleson measure condition give that

T3] S TV26Y2 || No g (uUF)[[4/2 < TV2R12 || No g (ul OF2) 1572,

where the last inequality stands because ¥ < 1.

The term T} is a bit more complicated. By (5.1), the bottom left corner of A’
is a zero matrix. Thus, similar to (5.2), we have

=t a vyt
T4 = — RE//Q thu . v15|t| b |t|n—d—1 dx

lu|T2a¥F  dt
—Re /Q CVu - Vi|t] 2 T dx
lu|9=2aWF  dt
= —Re/QCVu-Vt|t| 5 T dx
“Re [[ Veu- Vit jup2awt g
e ) - Velt] [u]f % a a1 x

=: Ty + T}o.

The term Ty; can be dealt as Thoo or T3. By using Cauchy—Schwarz’s inequality
and then Carleson inequality (Proposition 4.3), we have

[ Tar] S T2 62| Nag (| U9)|9/2 < T2 52| N o (u 9F2) )12/,
As for Tya, recall that Vi|u|? = qlu|7~2 Re(uV,u), hence

1 . dt
Tyo = ——/ Villul? @ ]-VAthdx

dt
/ Vi [W"]- Vit] [ul? WCZ%

=: Tyo1 + Thoo.

The first term Tyo; is 0. Indeed, for any function v, Viv - V,|t| equals 0,v, the
derivative in the radial direction. We switch then to polar coordinates, and Tyoq
is the integral of a derivative. The last term Tyo0 is part of the last term in the
right-hand side of (5.6).

It remains to treat T7. As stated in (5.3), we know that if u is a weak solution of
Lu = 0, then it is also a weak solution to £'u = 0, L' = — div[t|"1 " A'V+ D'V,
where the matrix A’ is defined in (5.1), and D’ is as in (5.4). Note that [t||D’'| <

[t]|VBs], so [t|D’ lies in L2, () and satisfies the Carleson measure condition.

Now, set v := ‘ibl |u|9=2 4 ¥*. We want to find the value of

(5.7) // A'Vu Vo ———— dac—l—// D' - Vuv ndtd T d,
(z,t)eR™ | | (z,t)ER™ |t|



THE DIRICHLET PROBLEM IN DOMAINS WITH LOWER DIMENSIONAL BOUNDARIES 863

which is formally 0, because (5.7) is only L'u tested against a test function wv.
The problem is that the test function v is not smooth, and not even necessarily in
Wlf)f (€2), so the fact that (5.7) equals 0 needs to be proven.

The function ¥ is compactly supported in €2, hence is v; besides, since the
functions ¥,b~1, VU, Vb are all in L2(Q), we have |[v] < |u[?! and |Vo| <
|Vau|lul9=2 + |u|9~1 uniformly on the support of ¥. Due to Proposition 1.10, the
function A’'Vu-Vou+ D' - Vuw is now in L(Q,dt/[t|"~?! dz) and we will see that
an argument similar to the Lebesgue domination convergence proves that (5.7)
is 0. We separate two cases: if ¢ > 2, then we set uy = min{N, |u|} and

UN = i ul P u vk,

IOC( ) because [t|¥2? is Lipschitz, u% *a € I/Vllf(Q),
since |V[ud, ?a)| < (¢ — 1)uN |Va| € L2,.(Q), and [b] > C~1, b € W,5>(Q), by
assumption. Moreover, vy is compactly supported in €2, so by Lemma 8.3 of [10],

for any NV € N,

dt
// AVu-Voy —— dx—f—// D - Vuvy ——— ——dr=0.
(z,t)eR™ | | (z,t)eR™ |t|

In addition, we have

AVu-Vo+D' - Vuv=AVu-Voy+D -Vuvy in {Jul < N}

The function vy is in W,

It follows that

[(A'Vu-Vv+D - Vuv) % dx
(z,t)ER™ |t|n -1

dt
{lul=N}
as N — +o00, because A'Vu - Vv + D' - Vuv and A'Vu - Voy + D' - Vuvy are
integrable.
We turn now to the case where ¢ < 2. We define u. := max{|ul, e}, ve :=
%‘ug_Qa\I/k. Check, similarly, as before, that v, € W,- Q(Q), which gives

loc

// AVu - Ve ——— i da:—l—// Vuve m—0—dr =0
(z,t)eR™ | (x, t)ER" |t|

and, by the Lebesgue domination theorem, since A'Vu - Vv +D"-Vuv and A'Vu -
Vv, + D’ - Vuv, are integrable,

‘// [A'Vu-Vu+D - Vuy] %dw‘
(z,t)eR™ |t|
dt
< / (V- Vo4 D Vuv] 4+ | AV Vo + D' Vu) gy dor
{lu|<e}
dt
— (JA'Vu-Vo+ D - Vuv| + |A'Vu- Vv + D' - Vuo|) de

{lul=0}
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as € = 0. However, Vu = 0 almost everywhere on {|u| = 0}. We deduce

[A'Vu-Vv+D - Vuu] 4 dx = 0.
(w,t) ER™ [t

We just have shown that the term in (5.7) is zero, thus our term 77 becomes

dt
IT1| < D - Vuv ———— dx
~ |1
(z,t)ER™
dt
< 1t||D'| |V |u]?t OF ——— da.
(z,t)ER™ [t[n—d=1

Recall that |¢|D’ satisfies the Carleson measure condition. So, using Cauchy—

Schwarz’s inequality and then Carleson’s inequality (Proposition 4.3), similar to

Ts22, T3 or Ty, B )

ITh| < T1/2“1/2||Na,q(u|\1/k72)”qm(3)-

The estimate (5.6) and then the lemma follows. O

From Lemma 5.1, we can easily deduce the local bounds given in the following
lemma.

Lemma 5.3. Let £ = — div|t|"™t1=" AV be an elliptic operator that satisfies (H})
for some constant k > 0. Let a > 0 and q € (qo,q}), where qo is given by Propo-
sition 2.1. Choose a functwn \Il € C§°(Q) that satisfies (HZ 5) and k > 2. Then,
for any weak solution u € W1 (Q), we have

(5-8) 1S, (u¥*)[|7 < C(r + M)|| Nag(ul¥*2)],
where the constant C depends on a, q, n, || Alls, A(A), [[b]loo + |67 0o, and k.
Proof. First, recall that

d
(5.9) 18 g (ul@F)||2 = T 1= / |Vu|2|u|q*2wkwﬁ dy.
Rn
By Lemma 5.1, we have
[[Sa.q(ul®F)]|¢ < Cr|N,, a(UI‘I’k_Z)HquMB)
e w2 dt
|u| dt
=: T1 + 15 + T3-
We claim
(5.10) | Ty + Ts| S M||Ny.a(ulUF 1|2+ T2 MY2|| Ny o (u] 0F2)||2/2.

From the claim, we deduce that T" < (k + M)||Nqa(u|\Ilk 2)||Lq 4p)- From this
and (5.9), the lemma follows.
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So it remains to prove (5.10). By using the fact that V;|u|? = q|u|9=2 Re(u Vu)
and that A’/b is bounded, we get

1o+ T3l 5 [ 1RuliTrelt g e ] 91

dt dt
k—1 -1 k—1

=Ty +Ts.
Applying Lemma 4.6 to ® = Uk~ we get
Ts S M||No,a(u U2,

As for Ty, we use Cauchy—Schwarz’s inequality to get

< Tl/Q(/Q|u|q\I/k_2 wop 4 dz)

|Vu|TF VT |u]?1
/Q It] [t|n—d—2

STV M2 Nya(ul¥*2)12,

by applying Lemma 4.6 again to ® = ¥*~2, The claim (5.10) and then the lemma
follows. O

We denote by M the Hardy Littlewood maximal function on R?, that is, if f
is a locally integrable function on R?,

Mf@)i= sup f |fl
balls Box
As it will be useful later on, we also introduce here the maximal operator M,
defined for any ¢ € (1, +o00) on LI (R9) as

loc

M[f](x) = IM[f7) ()] /.

It is well known that the operator M, is weak type (q,q) and strong type (p,p)
for p > q.

A key result of our paper is Lemma 5.5, which states that the L? bounds for
the g-adapted square function given in Lemma 5.3 self-improve to LP bounds for
all p > 0. We start by proving a preliminary good-\ inequality.

Lemma 5.4. Let £ = —div|t|*'=" AV be an elliptic operator that satisfies (H})
for some constant k > 0. Let a > 0 and q € (qo,q(), where qo is given by Propo-
sition 2.1. Choose a function U € C§°(Q) that satisfies (H2 5;) and k > 2. Then
there emzsts n € (0,1) that depends only on d and q such that for any weak solution
we Wk (Q), any v >0 and any v € (0, 1),

loc
(511)  [{w € RY Sug(u¥¥)(@) > v, MINoy(ul¥*)](2) <0}
< Oy {z € RY, M[Saq(ul¥"))(x) > nr}],

where the constant C' depends on a, q, n, ||Alc, A(A), [|blloo + |67 0os &, &
and M.
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Proof. Let n to be chosen later on. Take v > 0. We define the set
S = {z € RY, M[S, o (u|T")(z) > nv},

which is open (¥ is compactly supported in 2, which makes S, ,(u|¥*) continuous)
and bounded. Indeed, S is bounded because ¥* is compactly supported, so we
have S, ,(u|¥*) = 0 outside of a big ball.

We construct a Whitney decomposition of S in the following manner. For
any x € S, we set B, as the ball of center x and radius dist(z, S%)/10. The balls
(By)zes clearly cover . Moreover, the radii of the balls are uniformly bounded,
since § is bounded. So, by Vitali’s lemma, there exists a non-overlapping sub-
collection of balls (By,)ier such that | J;c; 5B, D S. We write B; = 10B,, and I;
for its radius. By construction, for every ¢ € I,

(5.12) there exists y; € R? such that |z; — y;| = l; and M[S, 4 (u[P*)](y:) < nv.

The balls B,, = B;/10 are mutually disjoint sets contained in S, so we deduce

(5.13) SIBi =100y,

i€l i€l

<10%S].

Thanks to (5.13), the estimate (5.11) will be obtained if we can prove that
(5.14) sz ={z € B, Sa7q(u|‘l'k)($) >V, M[qu(umlk_Q)](x) <y} < Cy? B,

where C' is independent of v € (0,1). If FWZ = (), there is nothing to prove, so we
can assume F; # (). Set the function ®; as

wie= o5

where ¢ € C§°(R) is such that 0 < ¢ <1, ¢ =1 on [—1,1], ¢ = 0 outside [-2,2],
and |¢'| < 2. We claim that we can find n small such that

(5.15) sa,q(umf’“@f)(z)z% for 2 € F!.
Indeed, for any z € R, one has, by definition,
d 1/
. wo(U -0 (z) = ul” ul?™ — 4—sd !
(5:16) Sag(ul WF[1-24))(2) = ( [Vuf? u] =2 0H 1 0] = dy
(y,s)efa(z) |S|

By definition, 1 — ®F = 0 if |s| < I;/a, thus in the above integral (5.16) we only
need to consider the integration region I'y(z) above the level of I;/a. Note that we
can find N points (z;);<n € By, (2), with N depending only on d (for example, by
taking each z; to be at least [;/3a-distance away from all the other z;’s), such that

N
To(2) N {|s| > li/a} C U To(zj,1i/2a).
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Here we define

~

(5.17) La(z,p) :={(y,s) € Q |y — 2 <alls| - p)},

which are cones raised to the level p. Hence

N
d 1/q
Sa.q(u]WF[1—0F))(2) < Z(/ Vul? [u] 2 T [1—5H] nS_Q dy) .
TN W ys)elaz i /2a) 5]
By simple geometry, we observe that

Ta(z,1i/2a) C To(z) for any 2’ € By, j2(%5);

if the point z belongs to F! C B; = B(xi,l;) and |z; — y;| = l; (see (5.12)), we
have By, j2(2;) C Bu, (y:). We conclude that

Sa.q(ul TH[1 = @7)(2)

N ds 1/q
< Z][ (// [Vl u =2 1 - oF 2 dy)
j=1"7"€Bu2(z5) (y,5)€Ta(2") ||
N
< Zf S (| UF)(2)] 2
j=1 2" €Bui, (yi)

< CaM([Saq(ul¥9)])(y:) < Canr,

where we used (5.12) in the last inequality. We choose 7 := n(d) such that (Cqn)? <
(1 —279). Consequently, |Sq, q(u|T*[1 — ®K))(2)|? < v(1 —279) and then

[Saq(ulTF @F)(2)|? = [Saq(u|T*)(2)]7 = [Saq(ul T*[1 = DF]) ()7 > o,

which is the desired claim (5.15).
We define now the cut-off function y; as

dist(z, F?)
1) = (D)
Xi(w,t) = ¢ ol
It is easy to check that for any z € F, we have fa(z) C {dist(z, F¥) < alt[}, and
thus x; = 1 on 'y (z). In fact x; describes a smooth version of the classic sawtooth
domain on top of F.. Therefore,

qu(umk @fxf)(z) = Sa7q(u|\1/k (I)f) >

_% forzeF,i

and .
. 2
B < 2 [ Suaul ¥ o))
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Since U satisfies (H} 5,), by Lemma 4.5, U®;x; satisfies (H3,, p;v), with M’ de-
pending only on a and n. Lemma 5.3 entails that

(5.18) Fi| < v / [N (W52 04252 ()2 2.
Rd'

The function ®; is supported in {(z,t) € Q, x € 4B;, |t| < 2l;/a}. It forces
N (u|¥F=20572k=2) 6 he supported in, say, 20B;. So (5.18) becomes

(5.19) Fi| < v / | R (u[ U252 ()7 d.

For (z,7) € R% x (0,00), we want to compute (u|¥*~2x¥2)y, (z,7). On the one
hand, for any 2z € By, (z), we have (z,7) € ['4(2"), and thus

(u|\Ilk_2 Xf72)W,a,q(z77') < Na,q(umlk_Q Xfiz)('z”) < Na,q(umlk_Q)(z/l)'

Hence

6200 @I D) < Nagwl ¥ HEE"

Bar(z)
On the other hand, if (u|U*=2x¥"2)y, ,(2,7) is not 0, it means that W, (z,r) N
supp xi # 0, and so that there exists 2’ € F,ﬁ such that |z — 2’| < 6ar. Combining
this with (5.20), we get

(5.21) (U|\I/k72Xf_2)W,a,q(za r) S ][ Na7q(u|q/k72)(zﬂ) dz"
B?ar(zl)

< M[]\~fa7q(u|\llk_2)](z’) < v

The last inequality is by the definition of F!. Since the estimate (5.21) holds for
all (z,7) € R? x (0,00), we deduce that N, ,(u|¥*2x*"2)(z) < yv for all z € R%,
Therefore, one can rewrite (5.19) as

(5.22) |E5] S v 12085 (yv)? < 47| Bil.-
The claim (5.14) and then the lemma follows. O

Lemma 5.5. Let £ = —div|t|*'=" AV be an elliptic operator that satisfies (H})
for some constant k > 0. Let a > 0, 1 < p < o0, and q € (qo,q,), where qo
is given by Proposition 2.1. Choose a function U € C§°(Q)) that satisfies (’HgM)
and k > 2. Then, for any weak solution u € VVI}DCQ(Q),

(5.23) 1a,q(ul¥)llp < Ol Nayq (ulT*2)]l,

where the constant C' depends on a, p, q, n, | Alloo, A\g(A), [|blloc + 167 oo, #, &k
and M.
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Remark 5.6. The result is proven for p > 1, but can be easily extended to p > 0

if, in Lemma 5.4, we replace the Hardy—Littlewood maximal function M by M,
with 0 <r < 1.

Proof. We have
[ ISuatule) do
Rd

=¢p /000 Pz € RY, S, o (u]TF)(2) > v} dv
< C/OOO Vp71|{x € RY, Sy q(u|UF)(z) > v, M[Na,q(uhllkfz)](x) < 'yu}‘ dv
+ C/OOO VP Uz € RY M[Nqo(u|U*2)](2) > v} dv.
Lemma 5.4 implies the existence of 7 := n(d) such that
[ ISuatule) do
Rd

< cw/ P € RY M[S ()| (z) > v} dv
0
Loy / ()L {z € R, MIN, o(u[W*2))(z) > v} dv
0
<y / | M(So g (uU)]|P di + CAP / M N, o (u T52)]P da
R4 Rd

< Oy /Rd|5’a7q(u|\llk)|pda: L oytr /Rd|]\~fa7q(u|\llk72)|pdx,

where the last inequality is due to the Hardy-Littlewood maximal inequality. We
choose 7 such that Cv? = 1/2. On the other hand, since ¥ is compactly supported
in Q, we know [|Sq q(u|¥*)||, < +o0c0. Therefore,

/ S (] TF)|P dar < c/ N o ([ TF2)|P dar
Rd Rd

The lemma follows. O

6. The local estimate N < S

First, for p > 0, we introduce similarly to (5.17) the new set defined as
Fa(xap) = {(2,7") € Rifrla |Z - £C| < CL(T’ - p)}v

which is a (d + 1)-dimensional cone raised to the level p. Let a > 0. For
v > 0 and v, a continuous and compactly supported function, we define the map
hya(v): RT = R as

hy(z) :=hyq(v)(z) =inf{r >0: sup v(Y)<v}.
Yer,(z,r)
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Since v is compactly supported, it is clear that {r > 0: supycr, ;. v(Y) <v}
is non-empty and then that h,(x) is well defined for all z € R4,

The function h, will play a very important role in the future, so it is important
to understand its purpose. The original idea (see [23], [14]) is the following: we
want to get rid of the supremum in the quantity qu(v)(x), so we would like to
replace N’a,q(v)(x) by vw,q,q(2, by (x)) for some ‘good’ function h,,. The function h,
is defined so that it captures, roughly, the level sets of ]\meq(v) (see Lemma 6.2). In
Lemma 6.4, we prove local L9 estimates on uyw,q.q(+, () when u € W,22(Q) is a
weak solution to Lu = 0. Lemma 6.6 gathers Lemmas 6.2 and 6.4 to prove a good
A-inequality for the bound N‘a,q S Sa,q; Lemma 6.7 transforms this weak estimate
into one in LP, p > ¢; Lemma 6.9 proves that Lemma 6.7 can self-improve, which
allows us to get an estimate in L9. Lemma 6.11 is the aim of the section, and is
an easy consequence of Lemma 6.7 and Lemma 6.4.

We start by proving some basic properties of the function h,,.
Lemma 6.1. Let a > 0. Let v be a continuous and compactly supported function.
Choose a positive number v. Then the following properties hold:

(i) The function h, = h, 4(v) is Lipschitz with Lipschitz constant a™", that is,
for z,y € RY,
|z —y|

[ho(a) = hu(y)] < 7

(ii) For an arbitrary x € {y € R? : SUpp, (,) v > v}, we set ry = hy(z) > 0.
Then there exists a point (z,7,) € OLg(x,ry) such that v(z,r,) = v and
hy(z) =r,.

Proof. Let us prove (i). Pick a pair of points 2,y € R? and set r, = h,(x) and
ry = h,(y). Without loss of generality, we can assume that r, < r,. We want to
argue by contradiction, hence we also assume

(6.1) |z —y| < alry —rs),

which can be rewritten (y,ry) € I'a(2,72). As a consequence, I'y(y, ry) is a subset
of T'y(z, 7). Now, it is easy to improve the inclusion T'q(y,7,) C To(x,75) to

Fa(ya Ty — 77) C Fa(x; Ty + 77),
with > 0 small enough. We deduce that

sup v < sup v <v,
Lo(y,ry—m) o (z,rz+n)

the last inequality being true by the definition of r,. It follows that
ry —n = hy(y) =ry,

which is a contradiction. We deduce that (6.1) is false and thus part (i) of the
lemma follows.
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We turn now to the proof of part (ii). For any = € R?, the function r ~
SUpr,, (¢, ¥ Is continuous (and non-increasing). By the definition of r, := h,, (), for
any m € N big enough, the quantity supr ;. ., —1/m) v is bigger than or equal to v,
and the aformentioned continuity implies then the existence of Z,, € I'y(x,r, —
1/m) such that v(Z,,) = v. Besides, again by definition of r,, none of the Z,,
lies in T'y(x, r;). Obviously, the sequence (Z,,)n, lies in the compact set supp vy,
S0 Z,, has at least one accumulation point Z. Such accumulation point Z has to
liein (), Ta(x, 72 —1/m) \ Tq(z,75) = OTa(x, ), and has to satisfy v(Z) = v by
the continuity of v. Hence, r, = hy o(2). O

The function h, has the following interesting property.

Lemma 6.2. Let a > 0 and q € (1,400). Choose a function v € LL _(Q), a

loc

smooth function W _which satisfies 0 < W < 1, and k > 2. For any v > 0 and any
point = satisfying N ,(v|¥*)(x) > v, one has

d 1/q
62 M|(f [ o ) @) 2 o
yEBahV(_)/g(-) s€Rn—d |S|

where ¢ depends only on k and n, h, = hyo((V|¥*)waq), and x, is a cut-off
function defined as

5| if 0<r<1/5

s ;
63) o) =0(5 ) where 60)= B~ Fr 155 <5,

v 0 if 7> 5,

and Xl/(y7 ) =0 Zf hu(y) =0.

Remark 6.3. (i) Since 0,[—x%] =~ 1/h,(y) is supported in {(y,s), h.(y)/5 <
|s| < 5h,(y)}, and for y € By, (2)/2(x), we have h,(y) =~ h,(x), we have
that (roughly speaking)

ds 1/q
(o o) s o) = O )
YE€Bah, (x)/2(x) J sER™ ™

(ii) Since we define the non-tangential maximal function by the average of |v|7W¥,
instead of the pointwise values, the assumption N, ,(v|¥¥)(z) > v can only
give us information about the average value of [v|7U* on the level of h, (y).

Therefore, we use a function y,, such that 9,[—x*] is supported in a band of
width ~ h, (y).

Proof. First, observe that vy, is the L? average of a locally L9 function, so
(V| W) 4.4 is continuous and the function hy, = hy, o ((v|¥*).4.4) is well defined.

Fix 2 € R? such that Na7q(v|\llk)(x) > v. Set r, := hy(x) > 0. From
part (ii) of Lemma 6.1, there exists Z = (z,7,) € Ol'y(z,75) C I'y(z) such that
(0| ¥*)W,a,q(2,72) = v and h,(z) = r.. Define now B as the ball B,,_/(z) C R™.
Since Z belongs to the boundary of I'y(z,75), we deduce |x —z| = a(r, —ry) < ars,
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and thus « € 2B. Besides, due to Lemma 6.1, the function h,, is a~*-Lipschitz and
we obtain that

4 3 4
(6.4) 0< % <ry=hy(y) < ; for y € B,
and, in particular,
%2%’ and 2r, <4r, forye B.

The inequalities above imply that W, (z,7.) C {(y,s) € Q, y € B, hy,(y)/3 < |s| <
4h,(y)}. Besides, notice that, by the definition of x,,

0t 2 = on {(y8) €Dy € Ry hu(u)/3 < Js| < thuly)} > W(r)

vl ~
z

This yields that
ds
][ B/ R |v|qq}k8r[_x£] W dy Zf |(v|\Ilk)W,a,q(Zv7nz)|q =i
ye scRn—d

(Tt is also easy to see that the left-hand side is finite). For any y € B, we define
By = By, /100(y). By Vitali’s covering lemma, we can find N points (y;)i<n such
that the balls B,, are non-overlapping and |J5B,, D B. We deduce first that,
since r, ~ r, for any y € B, the value N depends only on the dimension d, and
second that there exists at least one i < N such that

ds
foo ) e
y€ESBy, JscRn—d

ds
2 ][ / 0|1 U* O [— XS] g dy 2 VY
yeB JsecRn—d |S|

For any y' € By, /10(y:) C 2B, we let 7,y = h,(y'). By Lemma 6.1 and (6.4), we
get

2 8
grzgry’ggrz;

and thus r,, >~ r, ~ r,,. And, moreover, simple computations show that 5B,, =
Baryi /20 (yz) - Bary//Q (y/) Therefore,
ds

1/q
va(f e ) e d)
yE5B,, J scRn—d |s|™
f (f [ o) =L ) ay
Y €Bar, /10(Yi) yEBmy//g(y’) seRn—d |S|

d 1/q
][ (][ / [v] 7T 0, [— 5] 7%8(1,1 dy) dy'.
y'€2B yEBaryl/z(y’) seRn—d |S|

Since x € 2B, we conclude that

ds 1/q
M ][ / |v|? pk 8,{—)(5] —dy (z) > v.
{( YEBan, (yy2(-) J s€Rn—d |S|"_d—1 ) :|

The lemma follows. O

A

A
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Lemma 6.4. Let £L = — div|t|**1=" AV be an elliptic operator that satisfies (HL).
Let a > 0 and q € (qo,q), where qo is given by Proposition 2. 1 Choose k > 2 and
a function ¥ compactly supported in 2 and that satisfies (H o 2.1). Then for any
weak solution u € WL2(Q) to Lu = 0, we have

q
(6.5) ‘//|u| o,[v ItI" Y
< ||Sa,q(u|‘l'k)”g + H5a7q(U|‘1/k_2)HZ/2 |\Na7q(U|‘1/k)||Z/2,

where the constant depends only on a, q¢ and n, ||Alls, |67 |loo, £ and M.

Remark 6.5. A careful reader will notice that the constants do not depend on
the ellipticity constants, or on an upper bound on [b|. In addition, we do not need
for the proof of this lemma to assume that b and B3 are real-valued.

Observe also that if u is a constant function (and since ¥ has to be compactly
supported in ), both the right-hand term and the left-hand term in (6.5) are zero.

Proof. First, Proposition 1.10 ensures that |u|? and [Vu|?|u|?"2 both lie in L{ (€2),
and so all the quantities in (6.5) are well defined and finite.

We also use the same trick as in Lemma 5.1, which says that u is also a weak
solution to £'u = 0, where £ = —divA'V + D' -V,

;A A+ (Bs)T
(6.6) A = (0 bI +C,

and for any 1 < j <d<i<n,
(6.7) (D) == Y "0, [(Balag 7] and (D'); = 3 0 (B

k>d k<d

Note in particular that [¢|D’ satisfies the Carleson measure condition. Unless we
assume Bs is real-valued, nothing guarantees here that the matrix A’ is elliptic,
but we shall not use this assumption.

Let us denote
/ |ul?0,. [W |t|” = 1dx

By using the product rule and the fact that 0,[|u|?] = £|u|?*[ad,u + ud,u], one

obtains
q\I,k q— 2
7~ [ 2.4 ItI” &y //a JJul ItI" A
_ 1 7 a1 42 k__ 7%
2//98,,[u]|u| uW |t|n_d_1 dx

=T +1T5+T5s.

The term T3 is 0. Indeed, we switch to cylindrical coordinates, and we have

T1=/ / / O [|u|7T*) dr df dz = 0,
zcRe JOES,, _4_1J0

since ¥ is compactly supported in 2.
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We need to bound T3 and T3. Since, T3 = Th, we only need to treat Th. We
remark that the estimate of 75 is in some sense the reverse of the estimate of the
term T}, in Lemma 5.1. Observe that

=25 gk dt
Ty = _9g // bViu - Vit lu*” ot 4,
2 M)z pyeq b i

and so with (6.6), we have

q—2 =k
TQ:—Q// Ay R dt
2 (z,t)eQ

b [T
2wk dt
+2 // evu - vy M e
2 (z,t)eQ b |t|
=:Toy + Tho.

We use the fact that |b] 2 1, and then Cauchy—Schwarz’s inequality to bound Tsa
as follows:

w1k gt
mal 5 [ v M
(@) bl ]
gk @
< IClIVul [u]*™" W s d
(z,t)EQ |t|

dt 12 . \?
< (// [Vl Jult =2 0F s da) (/ CI2 W o da)
(2,t)EQ [t] (2,t)EQ [t]

The first integral in the right-hand side above can be bounded by [|Sa,q(u[¥*)|[4 <
(| Sa,q(ul¥F=2)[|2. Since C satisfies the Carleson measure condition, we use the
Proposition 4.3 (Carleson inequality) to bound the second integral as follows:

dt ~
I e e g e < o )15
x,t)E

As a consequence,
Toa| S ||Sa7q(u|‘l'k72)||g/2||Na7q(u|‘l'k)”g/2-

Now, we deal with T5;. We write

tlul?2a vk dt
To = —9// Argy .yl 7uTy dt
2 (z,t)eQ b |t|

q / —2 - ok dt
+—// AV Vi 2] — 2 s
2 Joipco el e

q // / k |u|‘I*2ﬂ dt
+ = A'Vu - V[¥ ——dx
2 M(zpyea ] b [t[n—d=2

q , lu|72a Wk dt
5 //(M)EQ A'Vu - Vb 72 2 dx

=:To11 + To12 + To13 + To14.
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By using the boundedness of A’/b, the term Ts15 can be bounded as follows:
Dol < [l vt e a
212 u u |t|n—d—2 xZ.

But using the product rule and the fact that |V|u|| < |[Vul, one has [V[|u|9=24]| <
(g — D)|ul17?|Vu| if ¢ < 2 and |V[|u|?24]| < (3 — q)|u|??|Vu] if ¢ > 2. Hence
one can bound

- dt
|T212| ,S //( ) Q|VU|2|’U,|q Q\I’k W dx S H;S'aq(u|\llk)||g
x,t)e

The terms T3 and T514 are bounded in a similar manner as T»y. Let us start
with Tb13. Since A’/b is uniformly bounded,

- dt
sl 5 ff |1l O ol i e

dt
< // V] (VO R [y~ Ly
(z,t)€Q ||

dt 1/2
< (// |Vu|? [u|972 @h2 T dac)
(.)€Q 2]

dt 1/2
(@.t)€Q "

by Cauchy—Schwarz’s inequality. The first integral in the right-hand side above is
bounded by |[Sq,q(u|¥*~2)[|2. As for the second one, Lemma 4.6 gives that

dt ~
|l Ve S de MR gl
(z,t)EQ |t|
We conclude that
| Tors| < [1Saq(uWF~2) |22 No g (u9F)]|2/2.

Then we deal with Tb14. Using the fact that A’/b is uniformly bounded,
Cauchy—Schwarz’s inequality and the fact that |¢t|Vb satisfies the Carleson measure
condition, similar to the bound on T35 or T513, we obtain

B dt
(6.8) Toual < // IVl Vb [u]~ 0F —Z da
(z,t)EQ |t|

dt 1/2
< (//ﬂ |V’U,|2 |U|q_2 \I/k TTn—d—2 d.]?)
(z,t)eQ |t|

1/2
(] e et i i)
x,t)EQ ||

S K2 Sa,q (ulT0) |4/ Nayq (u] T*) |14/
S 11Sa,q(ul¥F2) 1872 | Nag (ul €F) |14/,




876 J. FENEUIL, S. MAYBORODA AND Z. ZHAO

It remains to bound T51;. However, T51; can be treated as the term Tj in
Lemma 5.1, by using the fact that u is a weak solution to £'u = 0, and we will
eventually obtain that

t|ulT2a vk dt
(z,t)ER™

b |t|n7d71
dt
s vl d,
(I,t)E]R" |t|

However, recall that |D’'| < |VBs], so [t|D’ satisfies the Carleson measure condition.
By using Cauchy—Schwarz’s inequality and then Carleson’s inequality (Proposi-
tion 4.3), similar to Tha,

Tiaa| S K2 Sag (| WF2) 1972 || Ny g (u| WF) |22,
The lemma follows. O

Lemma 6.6. Let L be an elliptic operator satisfying (H}) for some constant k > 0.
Let a,l > 0 and q € (qo,q(), where qo is given by Proposition 2.1. Choose k > 2,
a positive a~'-Lipschitz function e and a ball B := By (xg) C R? of radius I' > 1.
Then there exists n € (0,1) that depends only on d such that for any weak solution
we W), any v > 0 and any v € (0,1),

loc

(6.9) [{z € RY, Ny o (u|VEUE )(2) > v} N E,,|
< Oy [{z € RY, M[Noq(u|TE 0l )](x) > nu},

where W, Vg are defined as in Lemma 4.5,

ds 1/q
El/, = {x S Rd, M ][ / |u|q \I/k ar[\:[lk] _as (x) S "
' q[( Y€Bac()/2(:) J s€RM 4 b ‘ |S|"_d_1) }

and -/\/‘q[]\Nfcuq(uhl'leC qj%,l)](x)Mq[qu(umlsiz ‘1'112’12)](33) < ’721/2};

and the constant C > 0 depends on a, q, n, || Alloo, |67 0o, £ and k.

Proof. Take some 1 to be fixed later. Choose v > 0. To lighten the notation, we
write W for W, Wp ;. We define

S :={z € RY, M[N, 4 (u|T")](2) > nv},

which is open and bounded. Indeed, S is bounded because ¥ is compactly sup-
ported, and then N, ,(u|¥*)] = 0 outside a big ball, and S is open because (u|¥*)y
is continuous.

We construct a Whitney decomposition as follows (the construction is classical,
and we only aim to prove that (6.10) is possible). For any = € S, we set B, C R?
the ball of center = and radius dist(z, S¢)/10. The balls B, have uniformly bounded
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radius (because | B, | < |S| < +00) and therefore Vitali’s covering lemma entails the
existence of a non-overlapping collection of balls (B, )ier such that J,c; 5B, = S.
We write B; for 10B,, and [; for its radius, so by construction,

(6.10) U B; =S, Z|Bz| < 10%S| and for i € I, there exists y; in B; N S°.
icl icl

Then the point y; satisfies
(6.11) s —yil =1 and  M[Na o(ulT")](y:) < nv.

Since ), ;|Bi| < |S|, the estimate (6.9) will be proven if we establish that
(6.12) Fi = {z € R, Nyg(u|U*)(z) > v} N E,, N B; < Cy?|By,

where C' is independent of v € (0,1). If FWZ = (), there is nothing to prove, so we
can assume that F contains some point z;.
Similar to Lemma 4.5 (2), we denote

R U L)

We claim that we can find 7 small enough such that

(6.14) Naq(u[TF®F)(2) >0 for 2 € Fi.

Indeed, letting z € B;, for any (2/,r) € T'y(2) such that ' > [, /a,
(W UF)waq(2, 1) < Nuo(u|WF) (") for 2" € Bay (2').

Now, since
|2" —yil < [2' — 2|+ |2 — wi| < ar’ +2l; < 3ar’,

we deduce

wwmw%méf N g () (") dz"
B, (z")

SCif  RualuN)G)
By (2)
< CaM([Naq(u|¥")](y:) < Canr,
by (6.11). We choose 1 such that Cyn < 1 and we obtain that
(6.15) (u|UF) oo (2,7) < v for (2,17) € To(2), ' > 1i/a.
We observe that ®; =1 on W, (2", ") if (2,7") € T'y(2) and " < l;/a, and thus

(u|\Ilk)W,a,q (21/7 rl/) = (u|\Ilk (I)?)W,a,q (ZH» 7"”)~
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Recall that ]\Nfaq(u|\llk)(z) > v for z € F! and (6.15), so we necessarily have
Nag(u]@F@F)(2) > v.

The claim (6.14) follows.

We are now ready to use Lemma 6.2. Set h, := hy o ((u|U* @)y, ) and y, as
n (6.3). Lemma 6.2 gives that, for any z € FY,

ds 1/q
M ][ / lu|? Ok &k 5, [— k] ——— dy (2) >0,
|:( YEBan,, (.),2(+) sERn—d |S|n_d_1 ) :|

and so, if we integrate with respect to z € R?,

1 ds 1/q
a\yk ek Lk
misy [ Ml(f [ wrvteko ) ] )

yEBahU(_)/QC) SERW'_d
The Hardy—Littlewood maximal inequality entails that

ds
16 Bl [ f [ ureate ) sy,
z€ERd YEBan, (= )/2( z) eRn—d | |

If y € Bap,(2)/2(2), then |y — z| < ah,(z)/2, and since h,, is a~!-Lipschitz,

q
zZ.

(6.17) S () < hu(y) < 3 (),

in other words h,(z) < 2h,(y). It follows that z € By, ;) (y), and so, by Fubini’s
theorem and (6.17),

) 1 ds
6.18 Fi|<— TGk Gk 9 [ H] -
( ) | ’y| ~ q /ye]Rd /‘;ER”d|u| i [ Xl/] |S|nid71

X (/ (ahy, ()¢ dz) dy
2€Ban,, (y) (v)

5—/ / 0 @ 0, k] — 2y
yeR? JseRn—d | |

Now we estimate the right-hand side of (6.18). By the product rule,

VEDF 9, [—xp] = —0,[OF OFx] + X1 O, [ 0" @]
= =0, [UF B} x] + Xy (VLD (Ul @F] + Ul @F 0,[)])
_87" [\Ilk q)k Xu] + XV\II (I)f 87" [\Illec]v

where the last line holds because U g ;®; is decreasing in r (because we build Up
and ®; with the help of ¢ which is decreasing). Set

ds
/ / |u] 20, [UF @F X ] ——— dy
yER4 Rn—d | |
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and d
o= [ [ indeluh el S
y€ERd JseRn—d ’ i
We have
619 F) £+ )

and we want to bound 77 and T5. Let us start with Tb. Let y € R? and z €
Bue(y)/a(y). Since e is a~'-Lipschitz, similar to (6.17), one has

3

(6.20) S ely) < (=) < 2 ely).

In particular, y € Bqe(»)/3(2) and for any y € R%,

1< / (ae(z))"4dz.
2€Bac(y)/a

The bound on 75 then becomes

ds _
ns [ [ edelvbe ot [ el ey
yeR JseRn—d | | 2E€EBqc(y)/4
d
5/ ][ / o ok w0, (04 — 2 ay i,
z€RA yGBae(z)/g,(z) seRn—d | |

by Fubini’s lemma. We want to see for which z € R?, the quantity
ds

][ / Jul Ty ®F W 1 0, [Ve] =y dy

yEBaﬂ(z)/:;(Z) s€Rn—d | |

is non-zero. First, by the definition (6.13), we know
supp @; C {(y,s) € R", |s| < 4l;/a, y € 5B;}.

Thus we need e(z) < 10l;/a, because otherwise ®¥9,[U*] = 0 (we also use (6.20)
here). We also need Bge(.y/3(2) N5B; # () to guarantee ®; # 0. Altogether, z
needs to lie in, say, 10B;. Recall that there exists some z; € F C 10B;, so we
conclude

ds
2€10B; JYyEBge(= )/3(2) sERn—d | |

ds
/ ][ / || \I' O [ ¥ ] —— dydz
2€10B; JYyEBge(= )/3(2) sERn—d | |

Mq{(][yeBae(‘)/z(.) -/SGRH |u|? ‘I’B 1Or [ ] %)UQ} (20)

< Bily .

q
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We turn now to the treatment of 7T7. Observe that, by invoking the same
argument as the one used to prove Lemma 4.5 (1), we can prove that y, satisfies
('HiM) with M that depends only on a and n,d. (Note, in particular, that the

Lipschitz constant for h, is a~!, independent of v.) Therefore, Lemma 6.4 entails
that

IT1] S 11Sa,q(ulTF SEXEING + [[Sa,q (wlTF 2 @2 x5 2) 1 4/2 | Nag(ul U8 @) 4/
S 11Sa,q(u[U* SEE + [1Sa,q (P2 72|22 N g (u U* 27) 1372,

Since ®; is supported in {(z,t) € Q, = € 5By, [t| < 4l;/a}, we have that the
functions S, (u|¥*~2®F2) and N, ,(u|T* ®F) are supported in, say, 10B;. The
bound on 7 then becomes

T3] S 1Sa,q @) N0 105, + S0 @O )2 05 | N T |95 105,
S IBil - (| Mgl Sayq (u29)] (2)]°
+ |Mq[Sa7q(u|‘I'k)](zi)|q/2 |Mq[Na7q(u|\I/k)](Zi)|q/2)-

Since z; € F;, we have
|Mq[sa,q(u|\1lk)](zi)|q/2 |Mq[J\~[a,q(u|\Ilk)](zi)|q/2 <yt

In addition,

M[Suqlu N 2|9 = |Mq[Sa,q(u|\Ilk)]£Zi)| |Mq[]\~[a,q(u|\llk)](zi)| a
Ml ( |Mg[Naq(u|TF)](2)]| )
72qy2q

< S’Yqu/q < 494,

4

For the first inequality we also used the fact that Na,q(u|\llk)(zi) > v and that

Na o (u|¥F) is continuous. We deduce
(6.22) T3l S |Bibyior.
The combination of (6.19), (6.21) and (6.22) proves (6.12). The lemma follows. O

Lemma 6.7. Let £ be an elliptic operator satisfying (HL) for some constant k > 0.
Let a,l >0, q € (qo,q}), where qo is given by Proposition 2.1, and p > q. Choose
k > 2, a positive a~'-Lipschitz function e and a ball B C R? of radius I’ > 1. Then
for any weak solution u € WL2(Q),

(6:23) || Nayg(ulTEWE )|

p

?

ds 1/q
v)
p

Slsuatul i w520+ (f [ ot
YEBac(y/2(-) ¥ s€R™ Y

where the constant depends on a, q, n, || Alloo, |67 0o, &, k-
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Remark 6.8. The reader may think of the last term as the average of u in the
local region in consideration (determined by B and e). It appears on the right side
because, roughly speaking, we are estimating u by its gradient.

The aforementioned region is close to boundary, and the reader may be used to
see it lying in a Whitney region of the boundary ball B. However, we find it easier
to get the self-improvement given by Lemma 6.9 with the estimate (6.23), and
Lemma 6.4 will be used (again) in Lemma 6.11 to recover a “classical” right-hand
term.

Proof. As in the previous proof, we write ¥ for ¥.¥p ;. Besides, E, , denotes the
set

. d
E, = {x € R, M, [(][yeBae(.)/z()

and Mq[ﬁa,q(umlé ‘I']J%,l)](x)Mq[Sa,q(umg_Z \I/%le)](@ < 'YZVQ}

ds 1/q
| b o0l —Em) @<

seRn—d

By Lemma 6.6, there exists 7 = n(d) such that for any v € (0, 1),
Rl = [ 070 € B, Noglal¥)@) > o) v
0

< c/ pP=1 <|{x e RY N, ,(u|¥¥)(z) > v} N E, .|
0

+ Hx e R, M, [(][ /SERMMW%J a,«[qﬂg]wﬂ% dy)l/q] > w}‘

YEBae(y/2(+)
+ Hx € RY, MY2[N, 4 (u]WF)] (@) MY2[S, o (u]U52)](2) > W}D dv

<Oy / 1z € RY, M[No o (u99))(2) > v} dv
0

+ C’Yl_pHM‘I[(][ /seRndm'q\I/%’lar[\I’lz] Mnd%y/q}

YEBae(y/2(4)

+ Oy P MY 2[R g (uTF)] M8 (T2

p

P

Now applying the Hardy-Littlewood maximal theorem with power p/q > 1 to each
term, and using also Cauchy—Schwarz’s inequality for the last term, we get

|‘Na7q(u|q/k)||5 < C’YqHMq[Na,q(umk)]”g
ds 1/q
M ][ / |U|q‘l’%lar[‘1/5]T
Q[( €Bac(y/2(1) 's , 5] dl) }

y S
+ O M [Nag (u U] 2 M2 [Sa g (u] 9 2)] 12/

< qu|\ﬁa7q(UI‘1’k)ll,’§

d 1/ayp
(f [ o)
YEBae(y)2(") J s€Rn—4 ' Is| p

+ O 7P| Nayq (w0 [/ S, (u UF2)|12/2.

1-p p
+ Cv

p

+CAylP




882 J. FENEUIL, S. MAYBORODA AND Z. ZHAO

The last term in the above inequality can be bounded by
1, ~ _
1 1 Naq (ul OB + C||Sa,q (ul T*2)5.

We choose v such that Cy? = 1/4. So all the term H]Vaq(u|\llk)||g in the right-hand
side can be hidden in the left-hand side. The estimate (6.23) and then the lemma
follows. O

Combined with Moser’s estimate and Lemma 5.5, we can improve Lemma 6.7.

Lemma 6.9 (Self-improvement). Let L be an elliptic operator satisfying (HL) for
some constant k > 0. Let a > 0, 1 > 0, and q € (qo,q}), where qo is given by
Proposition 2.1. Choose k > 12, a positive a~'-Lipschitz function e and a ball
B C R? of radius I' > 1. Then for any weak solution u € WL2(1),

(6.24) [N g(ulTETE )19 < [[Sag(uWH 1205 12)
d
+ / / o w20, (k3 — gy,

where the constant depends on a, q, n, A\y(A), [|Alloc, |67 oo + |bllscs # and k.

Remark 6.10. The last term is bounded by the LY average on a local region
compactly contained in €, so it is finite. Thus this integral has no singularity at
the boundary R? x {0}, and in fact it is the same as

_ -~ ds
//Q ol W 0 s dy

Proof. As before, we write ¥ for ¥ .Wp ;. Lemma 4.2 entails that there exists e
sufficiently small (depending on n, k, g, qo and, without loss of generality, we can
assume ¢ — 2€ > ¢p) such that

N k N7 k—
[ Na.q(ul¥*)IE S | Nayg—e(u U521,
Now, since ¢ — € < ¢, we can use Lemma 6.7 to get
~ L ~ B
[ Na,q(u|¥ )HZ S ||Na,q—6(u|\1/k B)HZ

S ||Sa,qfe(u|\llk75)||g
6.25 e 4 ds 1/(a—e)
(6:25) (f | o s ay)

YEBge(y2(-) / seR™ 4
=: T1 + TQ.

q

q

We first estimate Ty. By Holder’s inequality, for any = € R,

d 1/(g—¢)
020 (f [ e a ) S dy)
yEBae(w)/Q(Z') seRn—d ’ |8|

d 1/q
<(f [ it o )
yEB,,,e(m)/g(ac) s€Rn—d ’ |s|

d €/la(g—e)]
X (][ / Uh3 0, [wh3) %d_l dy) :
yEB,,,e(m)/g(ac) s€Rn—d ’ |S|
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Note that 0 < \111;’313&[\1"2_3] < (k- 3)0,V,, 0,V, < 2¢e(x)/|s|?, and it is non-
zero only if e(y)/2 < |s| < e(y). For any y € Bae(z)/2(x), since |e(y) — e(x)| <
ly — z|/a < e(x)/2, it follows that

e(fﬂ) 36(%)
2 <e(y) < 5
Hence
- - ds
(627) ][ / \Iﬂz}JB 87-[\115: 3] _ s dy
YEBae(z)/2(x) J s€R?—4 |S|

d
N ][ / &2 e dy S 1.
YEBye(z) 2(x) Je(z)/4<|s|<3e(z)/2 s [s]

Combining (6.27) with (6.26), we deduce that

_ - ds
6.28) T» < / ][ / |ul W 0, (¢ 3]ﬁdydx
T€ER4 eB ,,p(T)/g s€Rn—d ||

ds
k—3 k—3
/yeRd ./seRn—Ju'q\PB»l Or [\Ile ] W dy,

where, in the last line, we use the same argument as the one used to go from (6.16)
o (6.18).
It remains to bound 7. For any = € R4,

A

-5 —2—¢ -5 ds
|Sa,q—e(u|¥* ) (2)]9 = // VP u)r? e ok g dy
y,5)€q (2) |s|

d 1/2
<( // |Vu|2|u|q’2’26\11k+2 g dy)
y 5 Ef | |

d 1/2
// |Vu| ut=2wh12 2 gy )
y 5 Ef | |n
< |Sa7q—26(u|‘l'k+2)($)|q/2|Sa7q(u|‘l'k 12)($)|q/2-

So, using Cauchy—Schwarz’s inequality, we can bound 7} as follows:
Ty < [[Sasq—2e (@ W* 2|32 S, (u WF12)]|2/2.
The use of Lemma 5.5 and then Holder’s inequality gives that
(6.29) Ty 5 1 Nayg—oe (u0F) |42 S, (w05 12) 472
S N (] TF) 472 St (| HF12) 1472,
The combination of (6.25), (6.28), and (6.29) proves that

HNa,q(umk)”g < C”Na,q(umk)Hg/z|‘Sa7q(u|‘l'k712)”g/2

_ _ ds
E e I Ry s e
yeR JseRn—d |S|

which can be easily improved into (6.24). The lemma follows. O
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Lemma 6.11. Let £ be an elliptic operator satisfying (H?) for some constant k> 0.
Let a,l > 0, q € (qo,q,), where qo is given by Proposition 2.1. Choose k > 12, a
positive a~'-Lipschitz function e and a ball B := By (xg) C R% of radius I' > 1.
Then for any weak solution u € VVI}DCZ(Q),

(6:30) || Nag (ul UEWE )18 S | Saqul W)l

_ _ ds

+/ / |ul? WF 33r[—‘1’]§;713] T W
yeRd JseRn—4 |S|

where the constant depends on a, q, n, A\y(A), [|Alloc, |67 oo + |bllscs # and k.
Proof. Let ¥ be the product V.V ;. By Lemma 6.9,

~ _ _ -~ ds
| g (W TP < S (] TH12) 0 / / a1 w20,k — gy
yeRd JsecRn—d |S|

It follows by the product rule that

(6:31) [ Nag(u®M)I2 < [[Saq(ul ¥ )12

ds
+/ / u|TUF39, Wk —— — dy
yess Juegoa Ve OV B

ds
+/ / a1, (043 — gy,
yeRd SER"_d'| | [ ] |S|n_d_1

So it remains to bound the last term in the right-hand side of (6.31). By simply
using Holder’s inequality with different powers, the proof of Lemma 6.4 can be
easily adapted to obtain

032) | [[ ju0n04%) po Sy o] < 150wl 9401
S g ) 972 g ) 3
< Ol S W) 3 4 K ()
< Ol gl 52 [ ] g (5]

for all n > 0. By choosing n small enough, the combination of (6.31) and (6.32)
gives (6.30). The lemma follows. O

7. From local estimates to global ones and existence of solu-
tions to the Dirichlet problem

By Lemma 1.12, for any g € C5°(R?) C H, there is a (unique) energy solution
u € W to Lu = 0 such that Tru = g. The idea of this section is to first prove that
if £ satisfies (H}) with x sufficiently small, then any energy solution satisfies

(7.1) INaq(@)lg < CITrullg,
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with a universal constant C' > 0. Then, for any g € L9(R?), the existence of a
weak solution u to Lu = 0, whose non-tangential limit on R? is given by ¢, can
be obtained by a density argument; moreover, we can show that this solution u
satisfies | Na,q(u)llg < llgllq-

The local inequalities proven in Lemmas 5.1 and 6.11 increase the integral
regions from left to right. Actually, we use some cut-off functions and we lose
power on these cut-off functions, but the idea is the same: by combining Lem-
ma 6.11 and Lemma 5.1, we do not loop back to the same local non-tangential
function, so even if x is small, we cannot hide the term on the right-hand side to
the left-hand side at the local level, where we are sure that everything is finite.
The idea to prove (7.1) is then to pass the local estimates to infinity. The main
obstacle however is that we do not know a priori that the energy solutions satisfy
that || Ng,q(u)q, or even ||Sg q(u)||q, is finite.

For the sequel we use the following notations for cut-off functions. Choose the
same function ¢ € C§°([0,00)) such that 0 < ¢ <1, ¢ =1 on [0,1], ¢ = 0 outside
[0,2], ¢ decreasing, and |¢'| < 2. For € > 0, we define ¥, as

U (a,t) = Ue(t) = ¢(H)

For [ > 0, we define x; as

xi(z,t) = xi(t) = ¢(#),

and if B C R? is a ball, we define

dist(z, B) ) .

Ppi(z,t) = Pp(z) = ¢(1 + l

The reader may recall Lemma 4.5 and recognize that W, is the function ¥, there
with e(x) = ¢, and the product x;®p,; is the function ¥p; there. These cut-off
functions correspond to smooth cut-off away from the boundary, at infinity in the ¢
and x variables, respectively. Also recall that, when the radius of B is bigger than [,
the function W x;®p ; satisfies (Hg’MO) for some Mj depending only on a and the
dimensions d,n (see Lemma 4.5).

Lemma 7.1 (N < S+ Tr when ¢ > 2). Let L be an elliptic operator satisfying
(HL) for some constant k > 0. Let a,l >0, 2 < q < g}y, where g, is the conjugate
of qo given by Proposition 2.1. Choose k > 12. Then for any energy solution
ueW to Lu=0,

(7.2) 1 Na,g (b 1E S 1S (ulx; )18 + 1 Trul§ < +oo,

where the constant of the first inequality depends on a, q, n, d, A(A), || A,
15" oo + [[blloo, % and k.
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Remark 7.2. An immediate consequence of the lemma is that if v € W is an
energy solution to Lu = 0, then || N, ,(u|xF)||, is finite for any & > 0 (not only for
k > 12). Indeed, since Xf < X%? for all £k > 0, > 0, we have

||Na,q(U|Xf)||q < HNa7q(U|X§?)Hq < +o00.
The same remark holds for Lemma 7.4

Proof. We start by proving finiteness. First, if u is an energy solution and g > 2,
we have that [, |Vul?|u|972]t|*"1 =" dt dz < +o0, by Theorem 1.13 (i), and also
that Tru € C§°(RY) C LI(RY). Then, since y; < 1 is supported in {(z,t) € Q,
[t| < 2l/a}, we have

dt
ISualuld™ Dl = [ [FuP R e e
(z,t)eQ |t|
2 dt
(7.3) <2 // Vul a2 % < oo
a JJ(z,t)en It]
So, indeed, we have

k_
[[Sa,q(ulxy ™ )12+ || Trul|d < +oc.

The proof of the first inequality in (7.2), in simple words, is by passing to the

limit the estimate in Lemma 6.9.

Step 1. We claim that for any ball B with radius I’ > [ and for any k > 12,
(7.4) | Na,q(ulxF @B )13 < +oo.

We take € > 0 sufficiently small (¢ < [/a). We write ¥ for x; ®p,; V.. According
to Lemma 6.11,

||Na,q(u|‘l'k)”g S ||Sa7q(u|‘l'k_12)|‘g

ds
+/ / |u|TTF3 k=39 [\ h 3] ——— dy.
y€ERA J seRn—d ‘ BT ! |s[n—d=1

Note that @ ; is independent of ¢, so we can pull it out of the r-derivative. Since
U < x;, Ve =1 onsuppdrx; C {l/a < |t| < 2l/a}, and |0,x:i(s)| < 1/]s|, we
deduce

7 ds
k k—12
[ Naq(ul¥)|g < 1Sa,q(ulxi™ )G + // [ul? ——— dy.
(y,s)€supp ®p,10rx1 |S|

Notice that the right-hand side is independent of €, and it is finite. Indeed, by (7.3),
|\Sa,q(u|xf_12)||g < +4o00; moreover, ®p;0,X; is compactly supported in © and by
Lemma 3.1 u € L} (£2). We deduce that

| Naq(ul @) 17 = || Naq(ulxi @5 YOI

is uniformly bounded in €, and so the claim (7.4) follows by passing ¢ — 0.
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Step 2: We want to prove that for any & > 1 and any ball B with radius I’ > [,
we have

ds
(7.5) hmsup/ / [u| Ty % 0, [0F) ——— T dy N/ | Tr w|? da.
e—0 yER JscRn—d | |n rE€4B
Note that supp 0,V C {(z,t) € Q, ¢/2 < |t| <€}, 0< 0, ¥, < 1/e. Hence
ds
o) [ undeb el oSy
yeR?® JseRn—d | |

S / ][ |U'|le/(I)B 1 dsdy
ye2B Je/2<s|<e '

s o Foo o undeb dsdyda,
2€3B JyeB,c a(x) Je/2<|s|<e ’

For the last inequality, we use Fubini’s lemma. By (7.4) of step 1,
k
an el dsdy = |(ud o g (e
YE€Byc/2(x) Je/2<|s|<e - .
< [ Nag(ulxi ®p,) ()]

is integrable uniformly in e. When ¢ > 2, Moser’s estimate (Lemma 3.1 (ii)) gives
that

1/q 1/2
(7.8) <][ ][ |u|?ds dy) < (][ ][ lu|? ds dy)
YEBgc(z) Je/2<|s|<e YEBage(z) Je/4<]s|<2e

(We remark that when ¢ < 2, the above estimate also holds by Holder’s inequality.)
We claim that

1/2
(7.9) hmsup(][ ][ lul? ds dy) < [Tru(@)),
€0 YEBage(z) J e/4<|s|<2¢

for o-almost every € I'. Then, by the reverse Fatou lemma and the pointwise
domination (7.7), we get

qa/2
hmsup/ (][ ][ lu|?ds dy) dx < / | Tr u|? da.
e—0 z€4B YEBage(z) Je/4<]s|<2e r€4B

This estimate, combined with (7.6) and (7.8), proves (7.5).
By the triangle inequality,

(7.10) ][ ][ |u|? ds dy
YEBage(z) Je/4<]s|<2e
’S][ ][ lu — Tru(z)|* ds dy + | Tru(z)|?
YEBaac(x) / e/4<]s|<2¢

’S][ ][ |u — Tru(z)|* ds dy + | Tru(z)|*.
ZIEBQGF(QT) |S‘S26
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Recall the Lebesgue density property in Theorem 3.4 of [10] guarantees the first
term above tends to 0 as € — 0, if we replace the power two by one. We claim that

a similar L? Lebesgue density property holds, and thus (7.9) follows immediately.
In fact,

(7.11) ][ ][ lu — Tru(z)|* ds dy
YEBage(x) J|s|<2e

S 2|U'377€ —TI'U(]))|2 +2][ ][ |'U:_'sz,e|2 dey
YEBoge(z) J|s|<2€

The first term goes to 0 as € — 0, thanks to (3.23) in [10]. We use (2.13) and
Lemma 4.2, both from [10], to bound the second term as follows:

(7.12) ][ ][ lu — ug |* ds dy
YEBage(z) J|s|<2€

d
S Gelz) =e? IVl o dy.
~ [s[n—d—1
YEBoge(z) /|s|<2€

But since Vu € L2(R™ \ T', w) implies

[e@a=c [ [ vipEdyo
r yer J|s|<2¢ |s|™

we deduce that Ge(x) — 0 for a.e. & € T'. The latter convergence, combined
with (7.11) and (7.12), gives the L? Lebesgue density property, i.e., the left-hand
side of (7.11) converges to 0 as € — 0 for o-almost every z € I'.

Step 3: Conclusion. Let B = By be a ball with center 0 and radius I’ > [
and € > 0. Applying Lemma 6.9 to the function ¥ = x; ®p,; V., we get

1 Naq (T S 11Sa.q(u UF12)]|

d
+ / / X3 @3 0, (k3 — gy,
yeR Js —d ’ |S|n_ -

By step 2, taking the limit as € goes to 0 gives that
~ / T
||Na,q(u|Xf q’%’,l)”% S ||Sa7q(“|>dc 2 (I)B,llz)”Z +/ Trul? da.
rc4B
We take now the limit as the radius I’ goes to 400 and we obtain (7.2). O

Remark 7.3. We remark that the above proof does not use ¢ > 2 per se: We
only need this assumption to guarantee that ||S, ,(u|x;~*?)||, is finite (see step 1).
That is to say, we can use the same argument for the case ¢ < 2, if we know a

priori the corresponding square function is integrable.
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Lemma 7.4 (N < S + Tr when ¢ < 2). Let £ be an elliptic operator satisfy-
ing (HL) for some constant k > 0. Let a,l > 0, q € (qo, q}), where qo is given by
Proposition 2.1. Choose k > 12. Then for any energy solution uw € W to Lu = 0,

(7.13) 1 Na,g (b1 S 1S (ulx; )18 + 1 Trul§ < +oo,

where the constant of the first inequality depends on a, q, n, d, A(A), ||Alcc,
167 oo + [|b]l 0o, K and k.

Proof. We start by proving a priori finiteness.

Step 1. We claim that if [ is sufficiently large (depending only on a and the
support of Tru) and B C R? is any ball centered at zero with radius greater than [,
then

(7.14) 1 Na.q(ulxf (1 = 250"
S ISaq(ulxi ™2 (1 = 250)* )| + [ Trullf < +oc.

We choose 1 so that the ball in R™ centered at zero with radius [/a contains
two times the ball By C R™ given by Theorem 1.13 (ii). (Recall that By depends
on the support of Tru.) Recall that

1Sa.q(ulx; (1 — @p)F 1))
dt

~ //(I t)eQ|V'LL|2 |u|q72X§€712(1 — @B)l)kilz W de

dt
Sl / |VU|2 |u|q_2(1 - ‘I’B,l)k_12 Tn—d—1 dz,
(z.1)€Q It]

because |t| < 2l in the support of x;. In addition, the support of (1 — ®p;)k~12
is contained in the complement of a cylinder of radius ~ [/a, thus by the choice
of [ it is contained in R™ \ By. Lemma 3.5 then allows us to conclude that the
right-hand side above, and so the left-hand side, is finite. Again by Remark 7.3,
once we know [|Sq q(ulx) 2(1 — ®p,;)*2)|, < +oo, (7.14) follows by the same
argument as in the proof of Lemma 7.1.

Step 2. We claim that for any k > 2,
(7.15) ||Sa,q(u|Xf)||q S HNa7q(U|X;€72)Hq < Fo0.

On the one hand we observe that for any [ > 0 and any ball B’ of radius at least [,
one has

(7.16) [ Na.q(ulx; > @53l < +oo.

Indeed, the above finiteness is an immediate consequence of Holder’s inequality,
since

N k—2 5 k—2 N k-2

Naq(ulx; (I)B’,l) < Naa(ulx; ™),
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where Naq(u|xk 2<I>k 2) has compact support, and |\Na2(u|x Hl2 < 400 by

Lemma 7.1. On the other hand, by step 1, ||, JulxF21 = ®p ) ), < oo
if 1 is sufficiently large. (A priori we only have finiteness when k& — 2 > 12, but
since 0 < y; < 1, the finiteness clearly holds for any k > 2.) A simple computation
shows that 1 < <I>2B + (11— <I>B7l)k_2, and hence

1Na.q(ulxi™)llg S 1 Naq(ulxi ™ 255Dl + 1Nag (ulxi (1 = 250" ) g < +o0.

Now take an increasing sequence of balls (B;);>1 such that B is of radius [,
B; C B;y1 and | B; = R%. We apply Lemma 5.3 to the functions ¥ = Xi®B, 1V,
which gives that

1Sa,q(ul¥*)lg S 11 Na,q (ul ¥*2)]|q-
By the finiteness of |\Na,q(u|xf72)||q, we may take the limit as ¢ — +oo and
obtain (7.15).

Step 3: Conclusion. Having shown the finiteness of ||Sq 4 (u|xy2)||4, by Re-
mark 7.3, the same argument in the proof of Lemma 7.1 gives (7.13). O

The following estimate is a byproduct of Lemma 7.1, in particular, of (7.5). It
will be used later in the proof of Lemma 7.6.

Corollary 7.5. Let L be an elliptic operator satisfying (HL) for some constant
k> 0. Let a >0, q € (qo,q(), where qo is given by Proposition 2.1. Choose k > 1.
Then for any energy solution u € W to Lu = 0,

(7.17) limsup/ |ul? 0, [W |n = 1dyN [ Tr |2,

e—0

where the constant depends on a, q, n, d, \g(A), || Allso, |67 oo + [|b]lcc, & and k.

Proof. Let [ > 0 be fixed. Since |]\~fa,q(u|xf)|q is integrable, the same argument in
step 2 of Lemma 7.1 allows us to conclude

ds
limsup/ / lu|9xF 0, [UF] ———— —— dy N/ | Tr w|? da.
e—=0 y€ERE J sgRn—d | | zERY
Since y; = 1 on supp 9[¥¥] if € is small enough (e < I/a), it follows that
limsup/ / |u| 20, [WF] ——— dy
=0 Jyerd Jsern—d |s |” -1
imsup [ [ pupnda ot
= limsup ul X} Yy
=0 Jyerd Jsern—d |s[n—d=1
,S/ | Tr ul? da. O
zER

The next lemma can be seen as the analogue of Lemma 5.1 for energy solutions.



THE DIRICHLET PROBLEM IN DOMAINS WITH LOWER DIMENSIONAL BOUNDARIES 891

Lemma 7.6 (S < kN +Tr). Let L be an elliptic operator satisfying (HY) for some
constant k > 0. Let a,l > 0, ¢ € (qo,q)) where qo is given by Proposition 2.1.
Choose k > 2. Then for any energy solution u € W to Lu = 0,

(7.18) ¢l Sa,q(ulxi)I§ < CrllNag(ulxi)l1g + C| Trull}

// 'Ti'| r{lul)) o [xﬂm;%dx,

where the constants ¢, C > 0 depend on a, q, n, A\y(A), || Allso, |blloc + |67 00, &
and (the upper bound of ) k

Proof. We take ¢ > 0 and a sequence of balls (B;);>1 such that By is of radius 1001,
B; C Bit+1, UB: = R?. We apply Lemma 5.1 with the function ¥; = xi1®B,1Y,,
which gives that

1 , o U dt
c||Sa,q(u|\Ilf)Hg < —Re/ A'Vu - V|ul? 2u]— 7|t|n_d_2 dx
=27 dt
< Ol )y~ e [ v v, ot M2 o

7.19
o +—// el Gy - V[|u|Q]).V[\1ﬂs]de
LT t il

Passing i — +0o and then e — 0, the left-hand side converges to ¢|[Sa,q(u|x})[|2,
which is finite by Lemmas 7.1 and 7.4. Clearly we have that || N, o(u|¥52)|, <
|V, ,a(u|xf72)||q. So to prove (7.18), it suffices to establish

. , |u|q 2u dt
and
. |u| & dt
. sup 1 — ph
(7:21) lim sup lim // Ty VI = Villul® ]) V3] g o

< O||Tr ull’ | Suq(ulxiIF> + Ol Trull§

// |1|ft|| ARIE [xf]mnd%dx.

In the last inequality, we have the additional term C/|Tr u|\q/2||5aq(u|xl )|
which does not appear in the right-hand side of (7.18), but this term can be
bounded by Cy||Trul|g + 7l[Sa,q(ulx})||4, and then we can hide 7]|Sq,q(ulx})||¢ in
the left-hand side by taking 7 small enough.

Let us start with (7.20). Since x; and ¥, are z-independent, we have

|Q/2
)

Vo [UF] = kU 0V, D5, .
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But V,®p, ; is supported outside the ball B;, and ®p,,5; = 0 on supp V,Pp, ;
if I, > 2. So Vo @, = (1—®p,/2,)"V,Pp,, and

|ul?2u  dt
(722) T —’Re// AV V[0l = d:c)
_ _ dt
5/ IVul(1 = ®p,/2.0) U X W Va1 ul? 14|t|n7d72 dx
Q

n—d—2 dx

k dt )1/2
"t

S (/Q|Vu|2 u|T (1 — g, 20)*

_ dt 1/2
(] 0= B2 W2 ) g )

S 1Saq(ulF (L = @, 2,0 ) 2| Nag (u U2 (1 = @, 1.0)") 132,
by Lemma 4.6 and the fact that ®p, ;x; satisfies (H2). It then follows from Lem-
ma 5.3 that
(7.23) Tt < || Nayg(u|UF2(1 - (I)Bi/Q,l)k72)Hg'

By the construction of ¥, Na7q(u|\l'f*2(1—@Bi/g’l)k*) is supported in R9\ (B;/4),

so the right-hand side of (7.23) is bounded by ||Na’q(u|xl 72)||%Q(Rd\Bi/4)'

mas 7.1 and 7.4 imply that Na,q(ubdcfz) is integrable in L(R?). Therefore, since
the balls B; increase to R?, we have
lim T} = 0.

11— 00

Lem-

The claim (7.20) follows.
We turn to the proof of (7.21). First, since ¥; depends only on z, |[t| and not

on t/[t|, by simple algebra, we have
|u|?
= ("5 = oellul]) &, W]

|t

< (M 0w ot

2|
That is, the integrand is bounded by a function independent of i. Moreover, we
let the reader check that the latter is integrable:

LI = ot ol o

T dx
S| Nayg (| TEH 9+ (| Nayq (uOF2)[|9/2]|S g (u] TF)][ 2/
S N, q(uWE )2 S ([ Nag(ulx) ™)1 < +oc.

\('ﬁ'l VIt — Villul?]) - V(@]

Therefore, by the Lebesgue dominated convergence theorem,

|’LL| q k dt
tim = ] (Vi = V) - (0] g
|u|q kg k dt
// |t| [ |u]? ]) Y] a2 dr < +o0.
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We denote the second integral as Th. If € is small (¢ < [/a), then ¥, = 1 on
supp 0, x; and x; = 1 on supp 0, ¥.. Hence

O, XFUk) = 8, (0% + 0, [xF],

// 'Tt'| {Jul’]) [wmwﬁ%m
u i d
// ||t|| r[lul? ]) [XI]WL%C&“

= Ts+ Ty

which implies that

Both T3 and T are finite when € is small, because T3 and T are just the de-
composition of the integral T into two integrals on disjoint sets supp 0, ¥, and
supp O, x; (and the function under the integral of T is integrable). The term T} is
independent of €, so we do not need to touch it anymore. Now, we consider

dt
U. .= 9. [0k — x> 0.
E /Q|u| 0r[T7] T dx >0

Since |9, [|u|?]| < |u|?™!|Vu| and 9,[¥F] > 0 by construction, by Holder’s inequal-
ity, we have

dt 1/2
7, U+ U2 [ Va2 0r10) oo an)
Q

Observe now that 9,.[¥ ] < 1/[t|, and if € is small, then x; = 1 on supp 9,.[¥*]. We
deduce

Q2
Ty S Ue+ UQ/Q(/QIVUIQIUI" M e dr) " S Ue+ UM Sag(ulxd) I3/

By taking the limit as ¢ — 0, and recalling that Lemma 7.5 shows limsup, o Ue <
[ Trul|Z, it follows that

lim sup 7 S A Trulld + 1 Tr ]|/ Saq (w1
e—

The claim (7.21) and then the lemma follows. O

The next step is to prove a bound on the growth of the energy solution u. It
will be used to get a global estimate in the proof of Lemma 7.8.

Lemma 7.7. Let L be an elliptic operator. Let q € (qo,q(), where qo is given by
Proposition 2.1. Choose k > 1. Then for any energy solution w € W to Lu =0,

24 lim - .
(7.24) e 1 //'“' 0[] |t|" a1 =0
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Proof. First, by the definition of x; and ¢, we have 0 < 9,[—xF] < 1/I and
supp O [—xF] C {(=,t) € Q, | < a|t| < 21}. Therefore,

1 dt 1 dt
7.25 —//uq&«—xkidxﬁ—/ / u|! —— dx
(0200 g PO G R e T

Let (B;)ier be balls of radius [ that form a finitely overlapping covering of R? \
By;(0). Without loss of generality, we only consider balls that intersect R%\ By;(0),
thus

R\ By(0) € | J Bi € R\ By(0).
il
Let Dy be a cylindrical annulus:

Dy = {(x,t) € Rn, T € By \ Bgl, a|t| < 2[} @] {({E,t) S Rn, X € Bgl, [ < a|t| < 21}

The bound (7.25) then becomes

(726) //|U’|q8 Xl |t|n Ttn—d—1 1

dt dt
NI |u|? dr + - / / |u|? e dx
/(:c t)eDo Jtn—d=1 12 Z weB; Jalt|<2l [t[n—d=t
=5 w22 uf? f dx
12 //m ,t)EDg |t|n -1

dt
u| 2~ uf? ——— da.
ZZ/eBi /a|t§2l [t[r—d=t

icl

Now, since u is an energy solution, there exists {y such that supp Tru C By, (0).
If I > 1o, all the cubes {(z,t) € R", x € B;, alt| < 2} and the domain Dy
intersect the boundary 9Q = R? where Tru is 0. Thus Tr|u|9? 'y = 0 by
boundary Moser’s estimate (when ¢ > 2) or Holder’s inequality (when ¢ < 2). So
by Poincaré’s inequality (see Lemma 4.2 in [10] (the proof there is written when
the domains are balls but it goes through for our domains), we have

ult, (-] s // Vil )
i T s ) Ot
Vil )
Py /xeB /t|<2l |t|" a1 4
S // Val a7 L da
(I t EDO |t|
DN BN L S e
weB; Jalt|<21 |t|

where the last line is due to (2.5). Due to the finite overlapping of the covering
(B;)icr and the fact that we always avoid {(z,t) € Q, x € By(0), alt| <1} in the

i€l
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integrations, we have, when [ > [,

1 dt
i a9 [k
l//ﬂ'u| 87"[ Xl] |t|n,d,1 dx
dt

S |Vu|? |ul?™? ——— du.
N\ {(2,1)€Q, 2€B2(0), alt| <1} |

Thanks to Lemma 3.5, the right-hand side above converges to 0 as [ goes to +o0.
The lemma follows. O

The following lemma is the key point in proving the existence of solutions to
the Dirichlet problem, when the boundary function (trace) is smooth.

Lemma 7.8 (Global estimate N < Tr for energy solutions). Let L be an elliptic
operator satisfying (H}) for some constant k > 0. Let a > 0, q € (qo,qh), where qo
is gwen by Proposition 2.1. There exist two values kg > 0 and C > 0, both
depending only on a, q, n, A\;(A), [|Allcc, [|bllc + |67 0o, such that if k < ko,
then for any energy solution v € W to Lu = 0,

(7.27) INaq(@)llg < CITrull,.

Proof. Let us fix for the proof some k large, say k = 20. In addition, we always
consider k¢ smaller than 1 and K < kp. Assume that u is not trivially zero,
otherwise there is nothing to prove.

The combination of Lemma 7.1 and Lemma 7.6 gives that for [ > 0,

(7.28) INa.q(ulxi ™)1 < Ckl| Nag(ulxi ™)1 + Ol Trul|d

C// 'Ti'| OrlJul")) 0 [xmwj%dx,

where the constant C' > 0 depends only on a, g, n, Ay(A), [[Allsc, [|bllco + 67 ||oo-
In particular, note that & = 20 is fixed and x < kg < 1, the constant C' does not
depend k and [. N

In order to control || Ny q(ulxF~?)|l4 by ||Naq(u|xk+12)||q, we make an addi-
tional assumption on ¢, the smooth function from which y; is defined. Recall that
¢ € C§°(]0,00)), 0 < ¢p <1, ¢=1on[0,1], ¢ = 0 outside [0,2], ¢ is decreasing
and |¢’| < 2. We assume, in addition, that

(7.29) ¢(x) =2—x when x € (9/8,15/8).
With this additional assumption, it is not hard to verify that
Xl 23 Xk+12 + lar[_xl?fl/ﬂ)

where the constant is universal (recall & = 20 is fixed). Indeed, observe that the
assumption (7.29), in particular, implies that 8T[—X’§l /2] has a strictly positive
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lower bound on the interval 2£(9/8,15/8) O [151/(8a), 2l/a], where the value of x;
is very small. It then follows that

(7.30) 1 Naq (b )1

SN 215 | s (0l
Since 9,[—x%, ,,] is supported in a domain, where |s| = I/a, we deduce
31/2

| sup (u|8r[_X§l/2])W7a,q‘q S |(u|8r[_X§l/2])W,10a,q(xa31/2a)|q

T.(z)
lfn/ / |u|q87«[—x§l/2] ds dy
yEBs) (z) J31/4<a|s|<31

ds
st [ o) e dy
yEBg;(z) J s€Rn—d 8i/2 |S|n_d_1

And then, by Fubini’s lemma,

ds
sup (uld, |-yl hwaal"do ST ] Jult0, ol e
-/wE]Rd‘Fa(w) 31/2 Q| (1.5)€Q 31/2 |8|” d—1
The estimate (7.30) becomes
~ k—2 FH12) 0y k dt
(7.31) HNa7q(u|Xl )H HNaq U|X H |u| or| Xgl/z] [|n—d—1 dx.

We eventually want to estimate the last term by HNa q(u|Xk+12)||g. Notice that
for any I < (2/3)%1 < /2, we have

dt
(7.32) // |0 [~Xp) gy dar
(z,t)eQ |t|
d_"/ / |u|? dt dx
zeRE JU /2<alt| <2l
5/ ((z')*"/ / |u|thdy) dz
zER? YEBy jo(x) JU'/2<alt| <2V

< / | R g (ulxH12)] daz = [| N gl X 12) 2.
reR4

The last inequality is because x; = 1 when a|t| <, so, in particular, when alt| <
21" < 1. Let w: (0,00) — R denote the continuous function

dt
l z// w20 [~ X}] ——— dx
"= e O i
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Then the combination of (7.28), (7.31), and (7.32) gives that

(7.33) sup w(l') < || Nag(ulx}'%)|
17 <41/9

< Cr|| Nag(ulxi )14 + Crw(31/2) + O Trul|§

+ < (5 = o), ) s

where the constant C' > 0 is independent of x.

The last term of the above estimate (7.33) can also be written in terms of the
function w(l). In fact, we define

= / / |u(z, r0)|? d dz,
z€R Jhesn—d-1

which is finite for almost every r > 0, since u € L{ (€2). On the one hand, the last
term of (7.33) can be rewritten by polar coordinates:

(7.34) // ||l;|| e [ul? ]) -7 Mﬁdw = /Ooo[m’(r) —v(r)] 0 [~x;] dr.

On the other hand, we have

(735)  w(l) = //( o) Md—i dx = / " o) or [ dr.

By the construction of y;, we can write 8,,[—)(5“] as $§(4°) with a non-negative
function £ = —¢* @' € C5°([0,00)), and hence

(7.36)  w(l) = /0 mv(r)al[%g(% dr

|
|
] =
S—
+
3
(4
—
3
SN~—
~|
o~

|

|
] =
S—

+

8
(4

—
3

SN~—
~|
o
~|g

I
~ =
+
8
<
@\
—~
=
SN~—
|
2

where we use integration by parts and the fact that £ has compact support. By
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combining (7.34), (7.35) and (7.36), we can rewrite (7.33) as

(7.37) sup w(l') < [ Nag(ulxiT2)|2
1<4l/9

< Ok Naq(ulx} )] + Crw(31/2)

+ %(lw’(l) —w(l)) + C| T ule.

We claim that for any [y > 0, there exists [ > [y such that

(7.38) w(;l) < (§)5lls§£9w(z') and lw'(I) — w(l) <0.

Assume the claim holds. Then there is a sequence l; — oo such that

Cﬁw(gli) < CH(§) sup w(l’) < EHNa,q(me.HQ)HZ-
2 27 p<a o 3 :

Thus, by choosing k sufficiently small satisfying Cx(3/2)% < 1/3, we obtain (7.27)
by combining (7.37) and (7.38).

Recall in Lemma 7.7 we proved (7.24), which says w(l)/l — 0 as — +o0. Thus,
it is not difficult to show each estimate of the claim (7.38) holds for infinitely many [
individually. But we need to find a sequence l; — oo such that both estimates hold
at the same time. We prove the claim by contradiction. Assume not, then there
exists [p > 0 such that for all [ > [y, either

(7.39) w(%l) > (;)5 sup w(l’)

I'<41/9
or
(7.40) Iw' (1) —w(l) > 0.
We define M as the positive quantity
M = inf  w > 0.

[(2/3)%10,l0]

Indeed, note that w(l) is continuous, and if M is zero, then there exists | €
[161/81,1y] such that w(l) = 0. Hence u(x,t) = 0 almost everywhere whenever ¢
lies in supp d,(—x/), which is a non-trivial band contained in {I < alt| < 21}.
Extending u by zero outside of this band, we get another weak solution in W to
Lu = 0 with the same boundary value. By the uniqueness of weak solutions (see
Lemma 1.12), we conclude that u(z,t) = 0 almost everywhere beyond the band, in
particular, whenever [t| > 2ly/a. Then (7.39) and (7.40) clearly fail, and thus M
is strictly positive.

Let I, denote the interval [(3/2)%=ly, (3/2)*~3ly). We will show by induction
that the following property holds for all £ € N:

P(k) : there exists | € Ij, such that w(l) > —M.

S| =~
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The base steps when k& = 0, 1, 2, 3 are immediate by the definition of M. Assume
that P(k) and P(k+ 3) hold, that is, there exists I € Ij, such that w(ly) > I3 M/ly,
and there exists ls € Iji3 such that w(le) > [bM/lp. We want to prove that
P(k +4) holds. Let I3 = (3/2)*ly denote the upper endpoint for the interval Iy 3.
We distinguish two cases. Either there exists [ € [l3,13) C I3 such that (7.39) is

satisfied, that is,

3 3\°

=1 — ).

w(z0)>(3) s w)
Since 41/9 > sup Iy > I, 31/2 € I;y4 and (3/2)%1; > sup Ix1q > 31/2, it follows
that
3 3\ 3\%1 3l/2
() > Qv (= 22

2 2 lo lo

Therefore, P(k + 4) holds for 31/2 € Ij14. Alternatively, in the second case, (7.39)
is never satisfied on the interval [lo,l3) and so by assumption (7.40) is always
satisfied on the same interval, that is,

w'(l) —w(l) >0 for alll € [ls,l3).

By Gronwall’s inequality and the continuity of w, this implies

l3
=M
lo

l
w(ls) > = w(ly) >
ly
i.e.,, P(k+4) holds for I3 € I)44. The induction step follows, and we conclude that
P (k) holds for all k € N. Thus, in particular, we have

limsupM > % > 0,

[—00 ZO
contradicting Lemma 7.7. Therefore, the claim (7.38) holds. O

The next result proves the existence of a solution to the Dirichlet problem with
boundary value in L9(R%), by approximating using energy solutions.

Lemma 7.9. Let £ be an elliptic operator satisfying (HL) for some constant k> 0.
Leta > 0, q € (qo,q), where qo is given by Proposition 2.1. There exists two values
ko > 0 and C > 0, both depending only on a, q, n, A\y(A), [|Allsc, [|Blloc + 167 ||c0s
such that if k < ko, then for any g € LI(R?), there erists a weak solution u €
WL2(Q) to Lu =0 such that

loc

7.41 lim // , z)|Tdyds =0
(7.41) (M)EFWW 1l ) =l dy

for almost every x € R, and
(7.42) [Na.q(w)llq < Cllgllg,

where the constant depends only on a, q, n, A\;(A), || Allcc, and ||b]|oc + |67 c0-
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Remark 7.10. (i) The trace operator is defined for functions in W. In general,
for functions in W,5(Q2), we use the equality (7.41) as a weaker version or
an adaptation of Tru = ¢ almost everywhere on R?.

(ii) By Moser’s estimate or Holder’s inequality, the Lebesgue density property,
e. (7.41), with power ¢ is equivalent to that of power 2.

Proof. Since C5°(R9) is dense in L9(R?), we can find a collection (g;); of functions
in C§°(RY) such that g; — g in LI(RY). In particular, (g;); is a Cauchy sequence
in Lq(Rd). By passing to a subsequence if necessary, we may assume that ||g; —
git1llg <272 for all i. Since C$°(RY) C H, Lemma 1.12 guarantees the existence
of an energy solution u; € W such that Tru; = g;.

Lemma 1.12 also guarantees that for boundary value g; — g; € H, the corre-
sponding solution in W is unique, so by the linearity of the operator £ the solution
is u; — uj. Thus, by Lemma 7.8, we have, for all i, j,

(7.43) [ Na.g(@i)llg < llgillg
and
(7.44) [ Na.g(ti = uj)llg < llgi = 95lq-

We claim that Na,q(ui —uiy1)(x) = 0 as i — oo, for almost every x € R%. In fact,
for any A > 0, denote

By = {2 € R N, q(u; —uiy1)(x) < A/2% for all i}.

Then, by (7.44) and the assumption on (g;);, we have

|ES| < Z‘{x € RY, Nag(ui — uip1)(@) > A/27}]
< Z(T) [ gt =) (@) da
<SG =5

Consider an arbitrary sequence \; — oo, the above estimate implies () /\,~E§\j has
measure zero, and thus its complement [ J A E), has full measure in R?. Therefore,

for almost every = € R, there exists some A > 0 (depending on z) such that
~ A
Na,q(ui — uip1)(z) < o for all .

Thus, by the triangle inequality for the L? norm, we have that for any j > 1,
~ 2\
Nag(ui —uj)(@) < 5,

and by the definition of Na,q, this means that for any (z,7) € I'y(x),

a 2\
(7.45)  lui — ugllpaw, (zr)) = (//W( )|Ui — uy|? dyds) <% [Wa(z,m)[M9.
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That is to say (u;); is a Cauchy sequence in L4(W,(z,7)), and thus it converges to
a function u. Since this holds for almost every = € R? and any (z,7) € [,(z), this
function u is well defined on all of Q and u; — w in L{ . Moreover, by passing
j — oo in (7.45), we have

~ 1 a _2X
(7.46) Nggq(u; —u)(x) = sup —_— // lu; — ul?dy ds < —
! (z,r)EFa(a:)(|Wa(Z7 T)' o (z,7) ) 2

which converges to zero as i — oo. In particular, for any (z,7) € 'y (z),

W (2:7) = @ 7)] < Nl = u)(a) < 2.

We deduce that

(7.47) Zlg& qu(ui)(x) = Na,q(u) (@)
for almost every x € R?. The estimate (7.42) follows by (7.47), Fatou’s lemma
and (7.43).

We recall the interior Cacciopoli inequality (see Lemma 8.6 in [10]): Let B be
a fixed ball with radius » > 0 such that the distance from 4B to the boundary is
roughly . We know

1
// IV (s — )| dm S = // lus — w2 dm < +cc.
B r 2B

By assumption, the distances from B and 2B to the boundary are roughly 7, so
the above estimate is equivalent to

1
(7.48) // |Vu; — V> dedt < — // |u; — uj|? du dt.
B % J)ap

We have shown that (u;); is a Cauchy sequence in L9(4B). Either by Holder’s
inequality (in the case of ¢ > 2) or by Moser’s estimate (in the case of ¢ < 2),
see (3.26), it follows that (u;); is a Cauchy sequence in L?(2B). Therefore, (7.48)
implies that (Vu;); is also a Cauchy sequence in L?(B), and thus it converges
in L?(B). By the uniqueness of the limit, Vu; — Vu in L2 _(2). The convergence
forces u to be, like the u;’s, a weak solution to Lu = 0.

We now turn to the proof of (7.41). Since u; € W, by Theorem 3.4 of [10] (see
also step 2 of Lemma 7.1), we have

1
(7.49) sup  ———— // lui(y, s) — gi(z)|*dyds — 0 as§ — 0,
(z,r)El:sa,(:E) |Wa(Z,7")| Wal(z,r) '
r<

for almost every 2 € R%. The set such that (7.49) holds depends a priori on 4, but
since a countable union of sets of zero measure is still a set of measure zero, we
have (7.49) for every i € N and almost every z € R%. Either by Holder’s inequality
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(when ¢ < 2) or by Moser’s estimate (when g > 2, see (3.2)) applied to the weak
solution u; — g;(x), it follows that

1
(7.50) sup // lui(y,s) — gi(x)|?dyds -0 asd — 0,
(z,r)el;,,,(gc) |WG(Z7T)| Wa(z,r)
r<

for any i € N and almost every = € R%. Since g; — g in LY(R?), by passing to a
subsequence, g;(r) — g(x) for almost every x € R%. Recall also that (7.47) holds
for almost every # € R%. As a consequence, (7.41) is obtained by taking the limit
as ¢ — oo in (7.50). O

8. Uniqueness in the Dirichlet problem

In this section, we assume that u € VVéf(Q) is a weak solution to Lu = 0, where £

satisfies (H1), and that u satisfies |U\~fa7q(u)||q < +00. We want to prove that if x
is sufficiently small and that

1
8.1 lim 7// u(y,s)dyds =0 for a.e. z € RY,
®1) Gnere@ [Walz 0] w, e (v, s) dy

then u has to be 0. This, in turn, proves the uniqueness of solution.

Lemma 8.1. Let L be an elliptic operator satisfying (HL) for some constant k > 0.
Let a >0, q € (qo,q), where qq is given by Proposition 2.1. For any weak solution
ue Wh2(Q) to Lu =0 that satisfies | N, q(u)|, < +00, we have

loc

(8.2) Hﬁmq(u)”q ~ || Sa,q(w)lg;

where the constants depend only on a, q, n, \g(A), || Al |bllec + 167 ||oo and k.

Proof. Since ||]Va,q(u)|\q is finite, the proof of
[Sa.q(u)llq < C”Na,q(u)Hq < +0o0

can be achieved by using Lemma 5.5 with an increasing sequence of cut-off func-
tions W;(z) such that ¥;(z) — 1 for all z € Q.

With the notation of Section 6, for a fixed &k = 15, for any ¢ > 0, [ > 0, and
any ball B of radius I’ > [, Lemma 6.11 shows that

(8.3) HNa7q(u|‘Pf ‘I’Ifg,z)HZ N ||Sa7q(u|‘l'f_12 \I/%Tllz)Hg

d
s
yeR JseRn—d |3|
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By Fubini’s lemma and the fact that B has radius I’ > [, the second term in the
right-hand side is bounded by

1
|u|?ds dy g/ <7// |u|qudy) dx
./yeRd ~7{<a|5<2l verd MWa(z,l/a)l (y,5)EWa(z,l/a)

< [ Na,q(u) ]

Iza@a\/2) = 0:

which tends to zero as the ball B 7 R%. By taking the limit as [ — oo and € — 0,
we obtain then

[Na,q(W)llqg < CllSa,q(w)llq-
The lemma follows. O
Lemma 8.2. Let L be an elliptic operator satisfying (HL) for some constant k > 0.

Let a > 0, q¢ € (qo,q)), where qo is given by Proposition 2.1. Suppose that g
lies in LYRY) and u € W,22(Q) is weak solution to Lu = 0 that satisfy both

- loc
[Na,q(u)llq < oo and

4 li A7 (-~ N dyds = €Rd
(8) (zrlerlr‘l |W Z?"|// (2r) y’)ys 9() foraex

Then (8.4) self-improves itself into the q-Lebesgue property

1
5 i 7// u(y,s) — g(x)|?dyds =0 for a.e. z € R
59 (zn)ela(@) [Walz, 7)) Wu’(zm)' (y:5) = g()[* dy f

Proof. Let us write u(z,r) for m ffWa(Z’T) u(y, s) dy ds. Observe that

(e fl 0 - ar)”

- (m //wa@ T)Iu(y, s) — u(z,7)|? dy ds)l/q+ lu(z,r) — g(z)| =: Ty + To.

Due to (8.4), the quantity T5 tends to 0 as (z,7) € I'y(x), 7 — 0 for almost every
x € R?. Tt remains to prove that

1/q

8.6 1 ,8) —a(z,r)|?dyd =0

for a.e. x € R, We split the proof of the claim into two cases: ¢ > 2 and ¢ < 2.

First, let us treat the case ¢ > 2. Thanks to Proposition 1.10 and then the
Poincaré inequality, we obtain that

1 1/2
T < // fu(y, s) — (=, ) dy ds
' (|W4a(zﬂ“/2)UW4a(Z727“)| Waa (2,7/2)UWaa (2,27) )
1

1/2
r Vu(y, s)|> dy ds .
(|W4a<z,r/2>uw4a<z,2r>|//WM,(Z,T/Q)WM,(Z,Q,«)' ()] dy ds)
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Notice that Wy, (z,7/2) ~ a®r™ ~ Wy,(z,2r), from which we deduce that

ds ds \1/2
Ty S (// [Vu(y, s)|? dy T T // Vu(y, s)|* dy ﬂ)
Waa (2,7/2) |s | Wia (2,27) |s]
1/2 ds \1/2
Vu(y, s)|* dy + // Vu(y, s)|* dy }
//WSO(x r/2)| | |s |” 2 ( WSG,(Q:,QT)| | |S|”’2>

Therefore, the convergence of T7 to 0 will be established if we can show that

d
lim // |Vu(y, s)|? dy % =0 forae. x€RY
Wiga(z,7) |S|

r—0

which is a consequence of the fact that for any ball B C R?,

ds
(8.7) lim / // |Vu(y, s)|? dy —— dx = 0.
=0 JzeB Wiga (z,m) |8|n 2

Since, for r small enough,
5 dr < / / Vu(y, s)|* dy ——
o TP s

[ vt s dy
z€B JJ Wigq (z,r)

the convergence (8.7) is an immediate byproduct of the fact that

d
/ / Vuly, )P dy — 2 dr < / S (1) dx
2B J|t|<r |s[™ 2B

is finite. Thanks to Lemma 5.5 and an increasing sequence of compactly supported
cut-off functions W; 1 1, it is easy to obtain that

(88)  [ISu2(w)lr2@s) < CnllSa2(w)lly S [INa2()lly < | Nag(w)lly < +oo.

The claim (8.6), in the case g > 2, follows.

Let us turn to the proof of the claim in the case ¢ < 2. By Poincaré’s inequality,

1 1/q
T <rl———r \% Ty d
S (i J L T dyds)

ds \1/a
IVu(y, s)|* dy —— :
//Wz (z,r) | | 2>

Then, the use of Holder’s inequality with o = 2/q > 1 gives that

ds ds \(1—a/2)/q
T < // Va2 dy // ul? dy )
Waq (z,r) Waq (z,r) |

_ d -
<(J |w|2|u|”dym) R ] 2
Woag (2,r) ||
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In order to prove the claim (8.6), we will show that T} converges to 0 in L9(R?).
We have, by Holder’s inequality again,

a/2 ~
/ 7 dx</ // Vul? u] =2 dy — 2) | Naa.q ()| 909/ da
reR4 rERd Waq (z,r) | |

_ ds \l/apa/2 ~ _
S L P ) R W RO P
Waa (,7) |s|

La
_ dt \'/2 - -
SO [ vl e g ) )
zeRL J[t|<2r

The right-hand term above converges to 0 as r — 0. Indeed, due to Lemma 4.1,

HNQa,q(u)Hq S ”Na,q(u)”q < 400

and

dt
/ / |Vu|2|u|q_2dxm =0 asr—0
zeRd J|t|<2r |t|

is an easy consequence of the fact that, thanks to Lemma 5.5, one has || ¢(u)|q <
| Na,q(u)|lq < 4+00. The claim (8.6) when ¢ < 2 follows. O

Lemma 8.3. Let L be an elliptic operator satisfying (HL) for some constant k > 0.
Let a > 0, ¢ € (qo,q,), where qo is given by Proposition 2.1. Choose k > 1.
Let g € L and u € VVIOC( ) be a weak solution to Lu = 0 that satisfies both
[ Na,g(u)llg < oo and

8.9 lim // ,8)dyds = or a.e. z € RY.
(8.9) R |WM| . u(y, s) dy g(z) f
We have
. ds
(8.10) lim sup |ul? 0, [UF] a1 v < llgllds
e—0 yeRd JscRn—d | |

where the constant depends on a, q, n, A\y(A), [|Alloc, |67 oo + |bllscs # and k.

Remark 8.4. (i) The existence of such a u is guaranteed by Lemma 7.9.

(ii) Here the solution w is only assumed to lie in Wlif (€), so its trace may not
be defined. Instead we use the assumption (8.9) to describe “u = g on the
boundary”. In particular, if u € W is a weak solution to Lu = 0 such that
Tru = g, then u satisfies the assumption (8.9).

(iii) This lemma is an analogue and a generalization of Lemma 7.5, which only
holds for energy solutions in W.
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Proof. Observe first that we have the uniform bound

(8.11) / / |u|qar[w':1%dy
y€eRI JseRn—d | |n

5/ // u(z, t)|?dx dt dy
€R4 |W | o (y,€)

S [ Reawldy <+
yeRd
By (8.9) and Lemma 8.2, we have

all
_ u(z, t)|?dzdt — |g(y)|? ase— 0,
|Wa (ya €)| Wa(y,e)

for almost every y € R%. Therefore, the reverse Fatou lemma and the pointwise
domination (8.11) imply that

d
hmsup/ / |u|?0, [T % dy
e—0 y€ER JseRn—d | |n
1
Stwswp [ ot [ puprdediay S [ ot
e—0  JycRd Waly,e€) Wa (y,€) yERd
The lemma follows. O

Lemma 8.5. Let L be an elliptic operator satisfying (HL) for some constant k > 0.
Let a > 0, q € (qo,4q}), where qo is given by Proposition 2.1. For any g € L4, let
we W 2(Q) be a weak solution to Lu = 0 that satisfies both ||Ng q(u)|q < 00 and

loc
8.12 li - duds — R
512 (n)ela |Wzr|//a”) uly,s)dyds = g(x) for a.e.
Then
(819 Suq(ll§ < ChllFag(w)l + Cllgls

where the constant C > 0 depends only on a, q, n, A\g(A), [|Alloc, |67 |loc + 6] co-
Proof. Let x; be the function defined in the beginning of Section 7. By Lemma 5.3,
(8.14) 1Saq(xlla S I Nag(ulxi ™)l < [ Nag(w)llq < +oo.

We only proved Lemma 7.6 for energy solutions in W such that the trace operator
is defined. But by the a priori estimate (8.14), in a similar manner, we can get

(8.15) el Saq(ulxi)§ < CrlINgalulx )14+ Clgllg

// 'Ti'| r{lul)) o [xﬂm;%dx.
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Note that we use Lemma 8.3 for the second term on the right. The last term can
be bounded as follows:

|u| ) dt
s 4]
// |t| |U'| ] [Xl] |t|n d—2
» dt

< |u|?dt de + |u|? |Vu|ﬁdx

zeRd Ji<alt|<2 zeRd Ji<alt|<2l [t
g/ ][ |u|?dt dx

z€R? Ji<a|t|<21

1/2 1/2
+ (/ ][ |u|thdx) (// |vu|2|u|q*2%l_2dx)
z€R?® J1<alt|<21 (z,t)eQ |t|

- ~ 1/2
</ Foguftde+ ([ Rua@l?dr) S0l 0
z€RI\B;,4(0) €R4\ By ,4(0)

x

as | — +oo. Hence the lemma follows by taking [ — +o00 in (8.15). O

Lemma 8.6. Let £ be an elliptic operator satisfying (HL) for some constant k > 0.
Let a > 0, ¢ € (qo,q,), where qo is given by Proposition 2.1. There exist two
values kg > 0 and C > 0, both depending only on a, q, n, A\y(A), | Al and
167 oo + [|blloc, such that if k < kg, then for any g € L1 and any weak solution
ue WEh3Q) to Lu =0 that satisfy both |Nu.4(u)||, < 0o and

loc

8.16 lim // ,8)dyds = or a.e. z € R?,
(8.16) (e |Wzr| S u(y, s)dy g(@) f

we have HNa,q(u)Hq < Clgllq-

Proof. Let kg < 1 to be fixed later and k < kg. Lemmas 8.5 and 8.1 give that
[Na,q(u)[|§ < Ckl|Nag(w)lg + Cligllg,

where the constant C' does not depend on x anymore (since £ < 1). We choose kg
such that Ckg < 1/2 and the lemma follows. O

Lemma 8.7. Let L be an elliptic operator satisfying (HL) for some constant k > 0.
Let a > 0, q € (qo,q,), where qq is given by Proposition 2.1. There exists ko > 0
depending only on a, q, n, A\y(A), [|Allcc and |6 oo + [|b]lec such that if k < ko,
then for any couple of weak solution wi,us € VVI})CQ(Q) to Luy = Lus = 0 that
satisfy _ B

[ Na,q(u1)llq + [[Na,g(u2)llq < o0

and

1
8.17 lim 7// u1(y, s) dy ds
( ) (z,r)el" (z) |W z,r | Wa(z,r) 1(y ) Y

lim // ,8)dyds
zr)EF |W z 7"| W (27') y 4

for almost every x € R, we have u; = uy almost everywhere in R™.
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Proof. Set the weak solution v = u; —ug € I/Vhljf (©). The function v satisfies

lim // ,8)7dy =0 for a.e. z € RY
(erF (z) |W | zr) y )| Y

and B
[ Na,q(v)llg < +o00.

So if kg is chosen as in Lemma 8.6, we have || Ny ,(v)|l; = 0 and so v = 0. The
lemma follows. O

Remark 8.8. It is easy to see that the same conclusion holds if we assume, in
place of (8.17), that

li S — dyds = f e R%,
(ZT)IEIIQ(:E) |W Z?"|// ZT) (yv ) y S = g( ) or a.e. x

with i = 1,2. Moreover, by Proposition 4.1, || N, 4(u;)|q < oo if and only if

|\Na72(ui)||q < +o00. Therefore, we finish the proof of the uniqueness of solutions
to Dirichlet problem with given boundary value g.

References

[1] AUSCHER, P. AND AXELSSON, A.: Weighted maximal regularity estimates and solv-
ability of non-smooth elliptic systems I. Invent. Math. 184 (2011), no. 1, 47-115.
[2] AUSCHER, P., HOFMANN, S., LACEY, M., MCINTOSH, A. AND TCHAMITCHIAN P.:

The solution of the Kato square root problem for second order elliptic operators
on R™. Ann. of Math. (2) 156 (2002), no. 2, 633-654.

[3] AuscHER, P., McINTOSH, A. AND MOURGOGLOU, M.: On L? solvability of BVPs
for elliptic systems. J. Fourier Anal. Appl. 19 (2013), no. 3, 478-494.

[4] AXELSSON, A.: Non-unique solutions to boundary value problems for non-symmetric
divergence form equations. Trans. Amer. Math. Soc. 362 (2010), no. 2, 661-672.

[5] BARTON, A. AND MAYBORODA, S.: Layer potentials and boundary-value problems
for second order elliptic operators with data in Besov spaces. Mem. Amer. Math.
Soc. 243 (2016), no. 1149, v+110 pp.

[6] CARBONARO, A. AND DRAGICEVIC, O.: Convexity of power functions and bilinear
embedding for divergence-form operators with complex coefficients. To appear in J.
Eur. Math. Soc., doi: https://doi.org/10.4171/JEMS/984.

[7] CIALDEA, A. AND MAz’vA, V.: Criterion for the LP-dissipativity of second order
differential operators with complex coefficients. J. Math. Pures Appl. (9) 84 (2005),
no. 8, 1067-1100.

[8] DAHLBERG, B. E. J.: Estimates of harmonic measure. Arch. Rational Mech. Anal.

5 (1977), no. 3, 275-288.

[9] DAHLBERG, B.E. J.: On the Poisson integral for Lipschitz and C'-domains. Studia
Math. 66 (1979), no. 1, 13-24.



THE DIRICHLET PROBLEM IN DOMAINS WITH LOWER DIMENSIONAL BOUNDARIES 909

(10]
(11]

(12]

(13]

(14]

(15]

(16]

24]

25]

(26]

27]

Davip, G., FENEUIL, J. AND MAYBORODA, S.: Elliptic theory for sets with higher
co-dimensional boundaries. To appear in Mem. Amer. Math. Soc.

Davip, G., FENEUIL, J. AND MAYBORODA, S.: Dahlberg’s theorem in higher co-
dimension. J. Funct. Anal. 276 (2019), no. 9, 2731-2820.

DinDoS, M., PETERMICHL, S. AND PIPHER, J.: The LP Dirichlet problem for second
order elliptic operators and a p-adapted square function. J. Funct. Anal. 249 (2007),
no. 2, 372-392.

DINDOS, M., PETERMICHL, S. AND PIPHER, J.: BMO solvability and the A~ condi-
tion for second order parabolic operators. Ann. Inst. H. Poincaré Anal. Non Linéaire
34 (2017), no. 5, 1155-1180.

DiNDOS, M. AND PIPHER, J.: Regularity theory for solutions to second order elliptic
operators with complex coefficients and the LP Dirichlet problem. Adv. Math. 341
(2019), 255-298.

FaBes, E., JERISON, D. AND KENIG, C.: The Wiener test for degenerate elliptic
equations. Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, 151-182.

FaBes, E.B., KeEnig, C. E. AND SERAPIONI, R.P.: The local regularity of solu-
tions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982),
no. 1, 77-116.

FEFFERMAN, R. A.) KENIG, C. E. AND PIPHER, J.: The theory of weights and the
Dirichlet problem for elliptic equations. Ann. of Math. (2) 134 (1991), no. 1, 65-124.
HorMANN, S., KENIG, C., MAYBORODA, S. AND PIPHER, J.: Square function/non-
tangential maximal function estimates and the Dirichlet problem for non-symmetric
elliptic operators. J. Amer. Math. Soc. 28 (2015), no. 2, 483-529.

HorFMANN, S., MAYBORODA, S. AND MOURGOGLOU, M.: Layer potentials and
boundary value problems for elliptic equations with complex L coefficients satis-
fying the small Carleson measure norm condition. Adv. Math. 270 (2015), 480-564.
JERISON, D.S. AND KENIG, C. E.: The Dirichlet problem in nonsmooth domains.
Ann. of Math. (2) 113 (1981), no. 2, 367-382.

KeNiG, C. E.: Harmonic analysis techniques for second order elliptic boundary value
problems. CBMS Regional Conference Series in Mathematics 83, American Mathe-
matical Society, Providence, RI, 1994.

Kenig, C., KIRCHHEIM, B., PIPHER, J. AND TORO, T.: Square functions and the
Ao property of elliptic measures. J. Geom. Anal. 26 (2016), no. 3, 2383-2410.
Kenig, C., KocH, H., PIPHER, J. AND TOrO, T.: A new approach to absolute
continuity of elliptic measure, with applications to non-symmetric equations. Adv.
Math. 153 (2000), no. 2, 231-298.

KEeNic, C.E. AND PIpPHER, J.: The Dirichlet problem for elliptic equations with
drift terms. Publ. Mat. 45 (2001), no. 1, 199-217.

MATTILA, P.: Geometry of sets and measures in Euclidean spaces. Fractals and
rectifiability. Cambridge Studies in Advanced Mathematics 44, Cambridge University
Press, Cambridge, 1995.

MAYBORODA, S.: The connections between Dirichlet, regularity and Neumann prob-
lems for second order elliptic operators with complex bounded measurable coeffi-
cients. Adv. Math. 225 (2010), no. 4, 1786-1819.

MAYBORODA, S. AND ZHAO, Z.: Square function estimates, the BMO Dirichlet

problem, and absolute continuity of harmonic measure on lower-dimensional sets.
Anal. PDE 12 (2019), no. 7, 1843-1890.



910 J. FENEUIL, S. MAYBORODA AND Z. ZHAO

[28] STEIN, E.M.: Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals. Princeton Mathematical Series 43, Princeton University Press,
Princeton, NJ, 1993.

[29] STEIN, E. M.: Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.

Received February 4, 2019. Published online October 8, 2020.

JosepPH FENEUIL: Department of Mathematics, Temple University, Wachman Hall,
1805 North Broad Street, Philadelphia, PA 19122, USA.
E-mail: joseph.feneuil@temple.edu

SVITLANA MAYBORODA: School of Mathematics, University of Minnesota, 127 Vin-
cent Hall, 206 Church St. SE, Minneapolis, MN 55455, USA.

E-mail: svitlana@math.umn.edu

Z1HUI ZHAO: Department of Mathematics, University of Chicago, 5734 S. University
Avenue, Chicago, IL 60637, USA.
E-mail: zhaozh@uchicago.edu

The second author was supported by the Alfred P. Sloan Fellowship, the NSF INSPIRE
Award DMS 1344235, NSF CAREER Award DMS 1220089, the NSF RAISE-TAQ grant DMS
1839077, and the Simons Foundation grant 563916, SM. The third author was partially sup-
ported by NSF grant numbers DMS-1361823, DMS-1500098, DMS-1664867, DMS-1902756 and
the Institute for Advanced Study.


mailto:joseph.feneuil@temple.edu
mailto:svitlana@math.umn.edu
mailto:zhaozh@uchicago.edu

	Introduction
	The q-ellipticity and its consequences
	Moser and energy estimates
	Preliminaries to the local estimates
	The local estimate S<N
	The local estimate N<S
	From local estimates to global ones and existence of solutions to the Dirichlet problem
	Uniqueness in the Dirichlet problem

