Scalable yet Rigorous Floating-Point Error Analysis

Arnab Das Ian Briggs Ganesh Gopalakrishnan
University of Utah University of Utah University of Utah
arnabd @cs.utah.edu ibriggs @cs.utah.edu ganesh@cs.utah.edu

Sriram Krishnamoorthy
Pacific Northwest National Laboratory
sriram@pnnl.gov

Abstract—Automated techniques for rigorous floating-point
round-off error analysis are a prerequisite to placing important
activities in HPC such as precision allocation, verification, and
code optimization on a formal footing. Yet existing techniques
cannot provide tight bounds for expressions beyond a few dozen
operators—barely enough for HPC. In this work, we offer an
approach embedded in a new tool called SATIRE that scales
error analysis by four orders of magnitude compared to today’s
best-of-class tools. We explain how three key ideas underlying
SATIRE helps it attain such scale: path strength reduction, bound
optimization, and abstraction. SATIRE provides tight bounds and
rigorous guarantees on significantly larger expressions with well
over a hundred thousand operators, covering important examples
including FFT, matrix multiplication, and PDE stencils.

Index Terms—TFloating-point arithmetic, Round-off error, Nu-
merical Analysis, Symbolic Execution, Algorithmic Differentia-
tion, Abstraction, Scalable Analysis

I. INTRODUCTION

Virtually all HPC applications rely on floating-point arith-
metic to realize their underlying numerical algorithms. Yet
floating-point computations introduce rounding error, which
makes computed results diverge from the mathematical truth
with often negligible, but sometimes disastrous results [1],
[2]. Important decisions such as precision allocation require
accurately characterizing rounding error across a range of
input values: too much precision results in excessive data
movement, while too little yields erroneous behavior for
demanding applications [3]. Yet most error characterization
is unsound, such as measuring the round-off error for sample
inputs. Unfortunately, nothing better is known today—there
are no rigorous and automated methods for handling even
medium-sized, everyday functions such as Partial Differential
Equation (PDE) stencils, linear solvers, prefix-sums, Fast
Fourier Transforms (FFT), or thousands of others.

The last few years have seen a wealth of analysis tools
proposed and evaluated, including Fluctuat [4], Gappa [5],

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing
Research under Award Number 66905. Pacific Northwest National Laboratory
is operated by Battelle for DOE under Contract DE-ACO05-76RLO01830. This
work is also supported by NSF CCF 1704715, 1817073 and 1918497.

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

Pavel Panchekha
University of Utah
pavpan@cs.utah.edu

PRECiSA [6], Real2Float [7], Rosa [8], FPTaylor [9], Nu-
merors [10], and even specialized tools for cyberphysical
systems [11], [12]. Nonetheless, applying such tools to large
numerical programs consisting of thousands of operators has
been impossible: state-of-the-art tools are limited to programs
with few dozens of operators, and otherwise time out or
give woefully imprecise results. Scale is the next barrier that
automated error analysis must overcome.

We present a scalable and rigorous approach to formally
analyzing floating-point rounding error: SATIRE (standing
for Scalable Abstraction-guided Technique for Incremental
Rigorous analysis of round-off Errors.)

SATIRE improves on the currently-best technique for rigor-
ous error analysis: symbolic Taylor forms [9] which produce
rigorous, precise error bounds in three steps: computing a
nonlinear bounding expression based on an error model;
linearizing that bounding expression by Taylor expansion; and
applying global optimization to find inputs with the largest
error. It introduces three key improvements to achieve its
scalability. First, path strength reduction allows an exponential
reduction in the size of the non-linear bounding expressions
(§II). Second, bound optimization rewrites error expressions
into a canonical form, ensuring that global optimization results
in tighter bounds across the space of inputs (§IV). Third,
abstraction allows for a divide-and-conquer approach to ana-
lyzing large expressions, using information-theoretic heuristics
to isolate large sub-expressions and retain only their root
node to summarize their error (§V). These techniques resolve
weaknesses in existing tools and allow for tighter bounds and
greater scale.

SATIRE achieves a precision comparable to (and often better
than) the best published tools, and scales to programs four
orders of magnitude larger. On a standard set of benchmarks
with under 50 operators, including all benchmarks cited in
prior work on symbolic Taylor forms [9], SATIRE proves
tighter bounds than FPTaylor, the state of the art, and achieves
an average 4.5x speedup. On a small example with the 1-
D heat equation (a single expression of ~ 500 operators
obtained by unrolling an iteration scheme), FPTaylor times
out after eight hours while SATIRE returns results in seconds.



On larger benchmarks such as the non-linear Lorenz equation
(70 iterations with ~ 1050 operators), parallel prefix sum
over 4096 inputs (8K operators) and a 4096-point fast Fourier
transform (FFT, ~ 393K operators) are out of reach of all ex-
isting rigorous tools in this area.! SATIRE handles even larger
examples, such as a 128x128 Matrix Multiplication (over 4M
operators in under an hour) and a tensor contraction example
(over 1.5M operators in under two hours). We employed
shadow-value calculations in high precision at 1M randomly
selected points within the input intervals to empirically check
(with high confidence) that SATIRE’s bounds are indeed tight.

Note that Satire-analyzed expression sizes are not “HPC-
scale” in the traditional execution sense. Yet, they are many
orders of magnitude larger than codes that were handled in
prior rigorous analysis work. Satire’s analysis is conducted
across entire intervals of anticipated input values. During ap-
plication development, such analysis helps a designer identify
and potentially resolve lurking precision issues involving rare
input combinations.

While primarily a static error analyzer, we also develop a
dynamic analysis capability around Satire to obtain relative
error estimates of actual applications. We show that this
technique can be useful for estimating the number of bits
of precision needed by many stencil-type computations and
iteration schemes. Again, shadow-value testing confirms the
viability of this technique.

An insight from SATIRE is that scalability is not directly
tied to operator count: it also depends on the degree of non-
linearity (a good example being Lorenz equations) and the
degree of reconvergence within data dependence graphs (a
good example being PDE solver stencils). This insight inspires
SATIRE’s ability to tweak tool behavior, especially abstraction,
in a problem-specific manner. Recapping, SATIRE contributes:

e a path strength reduction approach that exponentially

reduces the size of symbolic error expressions;

e a bound optimization method to canonicalize error ex-

pressions to best utilize global optimizers;

« an abstraction method that trades off precision and scale;

and

« a scalable yet rigorous floating-point error analysis tool

demonstrated on important HPC functions.
We now present background on error analysis §II and then in-
troduce path strength reduction §III, bound optimization §IV,
abstractions §V. Finally, extensive evaluations §VI demon-
strate SATIRE’s utility.

II. BACKGROUND

A binary floating-point number system, F, represents a
subset of real numbers in finite precision as tuples (s, e, m)
representing s - m - 2% s € {—1,1} is the sign bit, e is
the exponent, and m is the mantissa represented with p bits
(p = 24 for single-precision and p = 53 for double precision).
For all x € R, then oz denotes the element in F closest

! Previous tool-based rigorous analysis for a 64-point FFT was estimated
at 2K operators [13].

to x. Every real number x lying in the range of F can be
approximated by a value ox € I with relative error u no
larger than half a unit in the last place 2'~P. Thus, for all
in the range of F, o(x) = z(1 + §) for some |§| < u.

Floating-point operations are rounded as well: given two
exactly-represented floating-point numbers, & and ¢, each
arithmetic operator ¢ € {+, —, -, /} guarantees

o(Togy)=(Zog)(146) = (Tog)+(Tog)d, [ <u (1)
In other words, the result is equal to the exact value T ¢ g,
plus an error term e; = (Z ¢ §)0 representing the amount of

round-off error.

Now consider a straight-line program with n floating-point
operations of the form

sZ:f,;(xl,..., ,Si_l), (2)

LmyS1,825 ...

with f ranging over arithmetic operators and elementary
functions and with the program producing output s,,.

Let function f; be approximated in finite precision by fi.
Then line ¢ applies f; and computes 5, = s; + e,,, where
es; represents the round-off error. 5; depends on both the
rounded inputs Zi,...,Z, and earlier intermediate values
81,...,8;—1; or we can instead think of §; as depending on
the exact inputs and intermediates x1, . .., Z,, and S1, ..., S;—1

and their rounding errors ey, ,...,e;, and €5, ..., €5, ,:

= fi(Z1, ... Ty 81, 8im1)
f(xl+em1,...,xm+ezm,sl—1—651,...752-,1—1—651.71)
= filv1 +exys oy Tm + €s,,
S14 €5y Sic1Hes,_ )(146;); 0] <u

We can now express the error e,,, of the program output as

es, = fn(x1+ €pq,--.

S1+ €syy..-

, Tm + €z,

731'—1+esn,1)(1+6n)_5n§ |6n| <u

Symbolic Taylor forms provide an efficient way to bound
this error. Trivially, es, is zero if the error values eg,, €z,
and §,, are all equal to zero. This justifies a Taylor expansion
about zero in those error values:

n—1

8sn
€s,, = Snon + g

Zas” ea; +O(W’)  (3)

SATIRE’s goal is to bound e;, , the fotal error of the
program, which we also write £'"(s,,). From Equation (3),
we can observe that £ (s,,) is composed of the local error
generated by the application of f,,, which we write £/"(s,,),
and the propagation of the incoming errors e;; and es; [8],
[14].



Given intervals I(x) over which inputs x range, the error
bound on e, which we write E'"(s,,), can be computed as
follows:

E"(sn) < max (I (sn)])

x€el(x)

Osn Osn
7maX <|sn6|+\z 5 ele—HZ 5 ez]) O(u?)

< max <|5 sn)| + | Z 8Sn5”

XGI(x

|Zasngt'r ) +O( )
“)

Note the second order error term O(u?). Given that u = 2753,
n—the number of intermediate nodes in the expression tree—
must approach 2°3 for the second order error to matter, thus
confirming that for most practical purposes first-order error
analysis suffices.

Prior work using symbolic Taylor forms, including the
FPTaylor tool, use global optimization to compute E"(s,,).
SATIRE introduces the following improvements: it simplifies
the symbolic Taylor form using path strength reduction ($1II);
it uses expression canonicalization to simplify the global
optimization problem (§IV); and uses abstraction to separately
optimize parts of the symbolic Taylor form (§V).

ITI. PATH STRENGTH REDUCTION

We take the example of a simple unfolded 3-point stencil
(Figure 1) to explain the idea of path strength reduction.
Consider the problem of determining how much the local
error £"(y) introduced at y contributes to the value at node s
(location (z,t+4)). Expression £'7(y) is typically a very large
symbolic expression for the kinds of examples we consider,
as it is obtained by performing a forward symbolic execution
from primary inputs to determine the symbolic value of y,
and then using Equation (1) to multiply this value by 6.
FPTaylor [9] then obtains the said contribution by generating
a Symbolic Taylor Form that ends up propagating £"(y) along
all paths starting from y and impinging on s. In general,
there are an exponential number of such paths—especially for
examples whose dependence graphs have reconvergent paths
(as Figure 1 has). This exponential behavior is encountered
also when calculating the influences of nodes such as a, b, and
c upon s. This directly impedes with scalability, explaining
why even simple examples such as 1D-heat (§I) could not
finish under FPTaylor.

A much more economic way to obtain the contribution of
E'"(y) to the value at node s without enumerating all paths
first can be achieved by separating out the error terms from
their propagation effects. In other words, we can summarize all
the symbolic partial path strengths from s to y first, and then
take a product with the symbolic error term generated at y,
namely E7(y). Here, path strength refers to the amplification
of an input change along a path.

SATIRE implements a dynamic-programming style, sym-
bolic reverse mode algorithmic differentiation to achieve this

calculation. This is also economical, since every parent node’s
derivative is evaluated before reaching a child node — hence
derivative computation cost is shared across all nodes. To
do so, as shown in Figure 1, we first compute the partial
derivatives for the children of s, and then keep pushing
the path strength information along their children and so
on as a reduction process. In addition, symbolic expression
canonicalization (discussed in §IV) is performed all through
this process, keeping the expressions simplified as well as

canonicalized.
For the complete path strength required at y, that is ps,_,, =
ds/dy, we compute

PSy—s = PSy—a * PSa—s T PSy—b * PSb—s T PSy—c " PSc—s
ds _0ads  0bds  Oc s
dy ay da Jy 0b 8y de
®)]

where 0s/0a, and so on, have been computed similarly and
symbolically using a reverse mode backward pass beginning
from the output node s. Then the total error contribution from
y to s, denoted £ (s]y), now gets simplified by the distributive

property as
Oa Os Oc 0s
=" W) <8y3a+ Jrayac)‘
(0)

This is done for every inner node, y; (internal nodes and
incoming error-laden inputs), in the dependence cone of s,
and their symbolic partial error expressions are accumulated
to obtain the global total error expression £"(s) as shown in

equation
s)= > E"(sly); (7

Yi €Y

r, ds 0b 0s
E7(y) ay b

tr _
£ (sl) = |€" ()

where, y is the set of all nodes in the dependence set of s.
Notice also that path strength summaries build up propor-
tional to the number of nodes (linearly), and not the number
of paths (exponentially). This benefit directly shows up in
our examples. For ”1D-heat”, SATIRE ends up generating and
optimizing the error expression in a few seconds.
Remark: The exponentiality in Taylor-form generation is a
direct consequence of generating expressions in a manner that
capture higher order errors (a detailed derivation is in [15]).

Fig. 1.

Path strength information for an error propagating from y to s in an
heavily interconnected network



As observed in §II, higher order error often does not matter in
practice; however, in floating-point error analysis, there are al-
most always exceptions to every such “rule”. Others [16] have
observed that higher-order error analysis is quite specialized,
and may require special strategies. In their work, they found
that FPTaylor’s own higher order analysis was not sufficiently
precise for their problem.

We also tested whether FPTaylor produced a different
answer—on its own benchmarks—when its second-order error
estimation flag was toggled. To our surprise, we found that
it emitted the same (bit-identical) results with and without
second-order estimation. While this might have been due to the
currently limited set of examples in FPTaylor’s distribution, it
still does suggest that it is difficult to make second-order error
analysis matter in practice. It seems to justify our position that
it is better to build a scalable tool that focuses on first-order
error analysis (allowing optimizations such as path-strength
reduction), leaving higher-order analysis to specialized ap-
proaches.

IV. BOUND OPTIMIZATION

The goal of concrete error bound calculation (Equation (4))
is to maximize the error expression over input intervals.
Specifically, given our n-variable total error expression
£ (s,,), an Interval Branch and Bound Analysis (IBBA [17])
method can search an n-dimensional box of input intervals.
Each IBBA step recursively divides (modulo the number
of subdivisions allowed) the initial n-dimensional box into
smaller box (interval) queries to obtain the max within each
subdivided interval box. This recursion bottoms out at a
primitive interval library such as Gaol [18] (a component of the
Gelpia optimizer we use [19]) that produces an output bound
for that primitive interval. The final answer is the supremum
over all n-dimensional boxes—one that produces the tighest
error upper bound within a given tolerance.

If £%7(s,,) is syntactically expressed with distinct variable
occurences, the computed bound can be excessive. As a simple
example, consider computing the bound for z - = - = using
an interval library where x € [—1,5]. Gaol will perform
successive interval multiplications, resulting in [—25,125] as
the final answer. To avoid this bloat, Gaol encourages the use
of the interface function pow that is aware of variable sharings
(“the same ‘x’ instance is being used”) when one expresses
the same query as pow(z, 3). This results in the much tighter
bound of [—1,125].

Unfortunately, Gaol cannot, by itself, accommodate all such
cases through special functions such as pow, and therefore
users must step in and help. This can be achieved by externally
reassociating common coefficients and grouping correlated
terms before invoking Gaol.2 Take for example, the ‘direct
quadrature moments method’ (DQMOM) benchmark captured

2We direct SymEngine [20] to perform such canonicalizations and also
expression simplifications. Any other similar engine will suffice.

in Equation (8), where I(m;) = [—1.0,1.0] and parameters
w;, a; € [0.00001, 1.0]:

7 =(0.0 + ((((w2 * (0.0 — my)) * (—3.0 * ((1.0 * (az/w2))
x (ag/w2)))) * 1.0) + ((((wy * (0.0 —my)) * (—3.0 % ((1.0
(a1 fun)) * (a1 /un))) * 1.0) + ((( (o * (0.0 — mo))

* (—3.0 % ((1.0 % (ag/wo)) * (ag/wp)))) * 1.0) + 0.0))()g)

The above non-canonicalized expression for r yields the
interval [-4.5e+10, 4.5e+10]. However, after canonicalization,
we obtain the real-value equivalent form below which notice-
ably reduces the distinct occurrences of w; and a;:

r=3.0%(ad) xmo/wo + 3.0 % (a3) * m1 /w1 + 3.0 % (a3) * ma /w2

The interval bound now obtained is 5 orders of magnitude
tighter, namely [-9.0e+05, 9.0e+05]. This allows SATIRE to
report the error bound of 5.0e-10 for DQMOM while FPTaylor
(which does not perform canonicalization) reported 3.45e-05
(and a shadow-value computation that resulted in 3.27e-13 as
the bound, confirming that SATIRE was much tighter). Please
note that canonicalization only simplifies the query expression
submitted to Gaol (it does not rewrite the AST being operated
upon, thus not affecting floating-point error analysis).

The combination of path strength reduction and canoni-
calization allows SATIRE to be much faster than FPtaylor,
allowing it to often handle expressions with 10K operators
even without abstraction. In Table I we provide a subset of the
comparative study performed over a suite of 47 benchmarks
exported from FPTaylor’s suite (we confirmed SATIRE’s em-
pirical soundness through shadow value calculations).

Absolute Error Num
Benchmarks OPs
SATIRE  FPTaylor
explx_32 1.12e-06  6.15¢-06 5
dopplerl 3.19e-13  1.29e-13 10
carbonGas 4.13e-09  6.08e-09 21
turbine3 6.58e-15  1.06e-14 23
triangle 2.50e-14  3.12e-14 14
rigidBody2 1.99e-11  3.6le-11 17
predatorPrey  8.27e-17  1.59e-16 12
jetEngine 6.55e-12  1.03e-11 35
bspline3 2.78e-17  7.86e-17 7
dgmom 5.0e-10*  3.45e-05 35
TABLE I

COMPARISON OF RESULTS (bold-face HIGHLIGHTS BETTER RESULTS, AND
* HIGHLIGHTS A DIFFERENCE OF MORE THAN AN ORDER OF MAGNITUDE)

To summarize, SATIRE obtains slightly better bounds for
most benchmarks in FPTaylor’s suite. Also, SATIRE retains
its ability to find tight bounds on smaller benchmarks (while
being on the average 4.5x faster). We will now describe ab-
stractions (§V) that help SATIRE handle much larger examples
(§VI) with similar benefits obtained.

V. ABSTRACTIONS

A central strategy for scalability in SATIRE is to replace
entire subexpression DAGs by its root node that summarizes



(S = w3 -3.5, £7(S)) (S =wv3-3.5, £7(5))

(b3 =y —x, EV(v3)) (v3 =FVy — =z, E(v3))

(3.5, 0
P
(vg = vy -, E (3.5,0) E]
<L1 —z+y, glr Ul E] Abstracting 91}2 D
(FVa, E(FVa))
(v, Efr I E” [L(FV2)] (x, B (x))
) [I(z)]

Fig. 2. Abstractions introduced in a simple expression AST

error up to that node. In Figure 2, the newly introduced input
node (a “free variable” F'V5) replaces the DAG under the ‘*’
operator. Instead of v, carrying the symbolic error £ (vy),
F'V, carries, for the remainder of the analysis, the concrete
error E'"(FV,).? This has two advantages: (1) large portions
of the expression graph (and their symbolic errors) do not
burden the remainder of the analysis, (2) concrete errors can be
treated as constants, and incorporated during further symbolic
analysis, gaining even more efficiency.*

Using abstractions too frequently has its downside. Figure 2

illustrates how inputs such as x can flow into both the
abstracted node and also “higher up.” This has two disadvan-
tages. First, variables become uncorrelated, causing the global
optimizer to exaggerate error (as discussed in §IV). In our
example, with I(x) = I(y) = [—1,1], abstraction obtains
FVy = [-2.0,2.0], and the output of the ‘—’ node, namely
FV,—x evaluates to [—3, 3]. Without abstraction, the output of
the ‘—’ node, namely (x + y) * x — x, evaluates to the tighter
interval [—2,3]. Second, opportunities for error cancellation
(important in floating-point error analysis) are lost.
An Information-theoretic Abstraction Heuristic: We now
present a practical and automated abstraction heuristic that
blends a collection of competing factors. First, we recognize
the fact that symbolic execution of expression DAGs with
many reconvergent paths (common in FFTs, iterative solver
expressions, etc.; see Figure 3) tend to blow-up expression
sizes. To avoid this, we suitably incorporate the fanout of a
node (number of consumers of the same expression value) into
a formula (Equation (9)) detailed momentarily. Second, we
recognize the fact that a global optimizer query is involved
at each abstraction step, and so delayed abstractions may
choke the optimizer. While this may pressure us to abstract
sooner, we balance it with the risk of losing variable corre-
lations by finding a good compromise, leading to the idea
of an abstraction window that bounds the abstraction height
(Equation (11)) . All this is placed on a formal footing based
on ideas from Shannon’s [21] work, leading to two notions:
information content and entropy.

The information content, I(n,h), of a node (n) at height
h in the AST is a good relative measure for use in SATIRE
(instead of the probabilistic measure used in Shannon’s work;

3We obtain E*"(FV3) by dispatching the global optimizer, as captured
in Equation (4).

4SATIRE is neither “interval based” nor “affine based”—it is a combined
interval and “symbolic-affine” analysis approach.

Second
Abstraction
-

AN

@ Input or abstracted nodes with total error term

/T\

First
Abstraction

© Internal nodes with local error terms

Fig. 3. Incremental error analysis using gradual abstraction

here, H is the full AST height and 0 < h < H measures the
distance to the root). This is captured in Equation (9) which
helps compute cut points for abstraction at candidate nodes n:

I(n,h) = —log(h/H) - (fanout(n)) )

A node at the root (output node) of the AST does not needs
to be abstracted and hence yields no infromation. The further
away a node is from the root or larger the fanout of a node,
the more fitting candidate it is for abstraction. I(n, h) captures
this key information quite effectively.

Next we define the cost function as an information entropy
measure (similar to the expectation of information in Shan-
non’s work). In SATIRE, we abstract all nodes at a selected
height (as illustrated by Figure 3 which shows two abstraction
steps at a height of 2). Let C'(h) define the cost in this sense,
as shown in Equation (10) where N(h) denotes the set of
all nodes at height h. As per this formula, one can observe
that h/H and —log(h/H) work in opposition, preferring h
roughly “halfway”:

C(h) =

>

n; EN(h)

(_% .10g(h/H)) - fanout(n;) (10)

In SATIRE, an abstraction window, define by a pair [Hy, Hs),
bounds candidate abstraction heights, balancing expression
sizes and variable correlations, as captured by Equation (11):

‘H = argmax
H1<h<Hy
g

Z (in . log(h/Hg)) - fanout(ni) (11)
EN(h) 2
Here, H denotes the selected abstraction height.

Last but not least, as pointed out in §I, the advantages of
abstraction are far more for nonlinear benchmarks than linear
benchmarks. This is an aspect not easily captured by any
equation; we rely on user judgement for this aspect.

Our abstraction heuristic is designed to strike a good balance
between several competing factors that affect its efficacy, while
also staying fast and simple-enough to code. The efficacy of
abstraction depends on expression sizes, the degree of non-
linearity, the extent of variable correlation loss, the execution
time of each optimizer call, and many more such factors. The
abstraction heuristic implementation is driven primarily by
sub-expression sizes, node fanouts and variable correlations.
We now assess the efficacy of our abstraction heuristic by com-
paring it against trends observed with fixed-depth abstractions.



Comparison with Fixed Depth Abstraction: Table II
presents the error bounds and execution times at fixed abstrac-
tion depths for three examples, namely FFT, Lorenz70 and
Scan. These examples rely on different (and often competing)
aspects of abstraction. Scan is an example type where one can
obtain the same tight error bound even with small abstraction
depths, without the worry of huge variable correlation losses.
For such examples, a smaller abstraction depth that leads to
better overall runtime is preferred.

In contrast, FFT presents a completely different scenario:
larger abstraction depths lead to tighter error bounds, but
with diminishing returns beyond a point—while increasing
the execution time beyond that point. Instead of forcing the
user to guess this critical point, SATIRE’s abstraction window
mechanism allows the user to suggest a range of depths. For
example, a window of (10,20) suggested by the user obtains
a bound of 4.52e-13 for an execution time of merely 17
seconds. It turns out that an abstraction depth of 10 is optimal
for this example (finding this value through trial-and-error is
impractical).

While it is tempting to treat SATIRE’s global optimizer
as a black box during abstraction, doing so can severely
hurt performance. An optimizer query involving 2K operators
returns in 26 seconds, while with 24K operators, the runtime
goes up to 4450 secs (virtually exponential growth observed).
As a matter of fact non-linear benchmarks exhibit higher
runtime sensitivity because their path-strength derivatives are
actual expressions (for linear benchmarks, these derivatives
are constants). Thus, with non-linear benchmarks, one faces
expression complexity twice: in the forward symbolic ex-
pressions and in the path-strength expressions. The forward
expression is small at small depths with the reverse derivative
large; and at higher depths, the opposite is true. Therefore,
abstractions exercised midway in the expression tree obtain
the best results, as they tend to strike a good balance between
these two.

In our studies (Table II), we find that Lorenz70 can generate
error expressions that choke the optimizer merely at a depth
of 19, with each query taking hours. In such situations, having
the ability to suggest heuristic parameters for abstraction helps
guide Satire. Note that the upper and lower bounds of the
abstraction window only act as hints; Satire can instantiate the
actual abstraction depths “as necessary” within such windows
SATIRE can automatically adjust the bounds when faced with
large expression complexity (e.g., when Lorenz70 was run
with an input window (20,40), Satire automatically reduced
the lower bound from 20 to 18). To summarize, simple self-
adjusting abstraction mechanisms eliminate the need for users
from having to commit to specific choices that may prove to
be highly suboptimal.

VI. EVALUATION

Tool Overview: Figure 4 provides an overview of the various
stages of SATIRE’s execution. SATIRE begins by reading-in
a problem definition file in a simple syntax describing ex-
pressions and input intervals, and also optional command line

Examples

Fixed Depth

FFT Lorenz70 Scan

Exec Exec Exec

err Time err Time err Time

8 4.34e-13 14 1.12e-11 88 9.38e-13 24
9 398e-13 17 1.05e-12 45 9.38e-13 18
10 4.44e-13 18 2.58e-12 152 9.38e-13 22
11 4.60e-13 18 4.56e-12 128 9.38e-13 35
12 4.52e-13 18 5.58e-12 150 9.38e-13 49
13 4.75e-13 24 1.70e-11 168 9.38e-13 61
14 4.39-13 24 591e-12 627 9.38e-13 78
15 4.36e-13 28 7.31e-12 987 9.38e-13 93
16 4.43e-13 42 7.90e-12 1220 9.28e-13 109

17 4.18e-13 41 2.43e-12 3400 9.38e-13 131

18 4.18e-13 47 7.93e-13 2041 9.38e-13 142

19 421e-13 70 9.38e-13 137

20 4.08e-13 71 NA 9.38e-13 140

21 4.08e-13 68 9.38e-13 138
TABLE I

ERROR BOUNDS AND EXECUTION TIMES FOR THREE EXAMPLES
OBTAINED WHEN PERFORMING ABSTRCATIONS FOR A SET OF FIXED
DEPTH VALUES

arguments for abstraction-specific parameters. Each symbolic
variable is derived from the var datatype of Symengine [20].
First, SATIRE builds the full abstract syntax tree (AST). If
abstraction is disabled, SATIRE initiates Direct Solve that by-
passes abstraction, attempting to directly solve for the full error
expression. Otherwise, the abstraction loop is entered with
the specified abstraction window (defaults to [10,40], unless
the user overrides this choice). All nodes at the heuristically
determined abstraction height h (§V) are then abstracted by
calling Direct Solve on the set of selected candidate nodes
(denoted by the dashed line in figure 4. Post abstraction, the
abstracted nodes are mutated to become free variables, with
concrete function and error intervals. An AST that reduces
in height by h is then rebuilt. If warranted, the process of
abstraction continues for the remaining AST; else Direct Solve
is invoked on the AST that remains at this point.

Input
problem file

Determine

Yes abstraction height |
(h)

Abstract all

Build
AST

Optional nodes at "h’
1
configurations Yes SO
No k-
Expression —No More
Builder abstractions ? Rebuild AST
(DFS traversal)
Derivative Generate + Invoke Report
Builder — Accumulate optimizer |—— Worst case
(BFS traversal) Error expressions (Gelpia) absolute error

bound

Fig. 4. Overview of SATIRE

During Direct Solve, SATIRE first invokes an expression
builder to assign symbolic expression at each node, conducting
expression canonicalization (§IV) in the process via the expand
functionality of Symengine. Next, the Expression Builder
performs a depth-first traversal beginning from the set of root
nodes (SATIRE allows for solving multi-rooted expression



DAGs). It is followed by a breadth-first traversal to obtain
the reverse mode symbolic derivatives (we have built this
functionality as part of SATIRE).

Once both the symbolic expression and derivative are avail-

able at a node, SATIRE generates the corresponding symbolic
error expression contributed by the node to each DAG output,
aggregating these error expressions in an accumulator held
at the outputs. The derivative evaluation and error generation
are done in synchrony to avoid multiple traversals of the
AST. When the output node error accumulation is finished,
the results are fed to the global optimizer (Gelpia) to obtain
its concrete error bound.
Experimental Setup: SATIRE is compatible with Python3,
and its symbolic engine is based on SymEngine [20]. All
benchmarks were executed with Python3.8.0 version on a dual
14-core Intel Xeon CPU E5-2680v4 2.60GHz CPUs system
(total 28 processor cores) with 128GB of RAM. To arrive
at an objective comparison, the core analysis algorithms were
measured without any multicore parallelism (both for FPTaylor
and SATIRE). The Gelpia solver (optimizer) does employ
internal multithreading: we did not alter it in any way when
we used either FPTaylor or SATIRE. All FPTaylor benchmarks
used their specified data types.

Our main focus during evaluation will be the larger bench-

marks, none of which can be rigorously analyzed by other
tools. These are instantiated using the double precision
floating-point type. For our empirical checks using shadow
values, we employed GCC’s quadmath.
Larger Benchmarks: Our larger benchmarks cover sten-
cils (e.g., Finite-Difference Time-Domain FDTD), iterative
solvers, Fast Fourier Transforms (FFT), Tensor Contractions,
matrix multiplication and Lorenz system of equations (a
well-known nonlinear benchmark that exhibits the “butterfly
effect”). We ported the stencil kernels for heat (H¥), Poisson
(P*) and Convection Diffusion (C) type from [22] and unrolled
them over 32 steps to be in SATIRE’s input format. The data
range values for these variables were obtained by scanning the
input domain of their initial conditions.

For Conjugate Gradient solvers, the input matrices were
obtained from [25] and analyzed over 20 iterations of the
solver. Tensor contractions are extensively used in computa-
tional chemistry codes. We obtained smaller block level data
for 4D tensor contractions from a CCSD [26] calculation
on Uracil molecule, with the inner dimension of 35x35 for
the contraction. For correctness of the contraction, the inner
dimension is required to be preserved, while the outer dimen-
sions can be divided into smaller partitions for simplifying the
problem.

Table III summarizes the aforesaid large benchmarks where
column Direct Solve indicates the bounds obtained without
any abstractions. The “Num OPs” column shows the number
of operators in a single expression tree created by unrolling the
loops in these benchmarks to various sizes. The unroll factors
were chosen with two objectives: (1) push SATIRE to its limits,
and (2) mimic what a user of SATIRE might do in the field to
understand error-buildup across iterations. We neither attempt

to compute a tight loop invariant nor determine the fixed-point
semantics of loops: these are known to be very difficult for
floating-point computations (see discussions in §VII).

For our linear benchmarks, path strength expressions ag-
gregate to constant factors, allowing huge scalability without
abstractions. For instance, Direct Solve handles FDTD with
~ 192K operators. However for Lorenz, the path strength
expressions are quite complex symbolic expressions, and
therefore abstractions were essential at around 300 operators.
Abstractions: In our experiments pertaining to abstraction,
we did observe the competing forces (e.g., the effects of
frequent and infrequent abstractions) mentioned in §V at play.
An encouraging observation was that frequent abstractions did
weaken the error bounds, but by not much—they remain in the
same order of magnitude. Certain examples did suffer a lot:
in FDTD for example, concretization of internal nodes during
abstraction introduced larger correlation losses. Fortunately,
FDTD also does not critically depend on abstractions. For such
examples, correlations outweigh the need to abstract, resulting
in favorable error cancellations.

We chose three candidate abstraction windows in our ex-
periments — (10,20), (15,25) and (20,40). In a majority of
the cases, smaller abstraction windows tended to estimate
reasonably tight error bounds while reducing the execution
time dramatically. This is especially impactful when many op-
timizer queries are involved. In the CCSD benchmark, SATIRE
makes 26K and 12K optimizer queries for abstraction windows
of [10,20] and [20,40] respectively. Although, the number of
queries get halved, each query takes longer, increasing the
total execution time — while in the end obtaining the same
error bound.

We now briefly discuss whether and how semantics-
preserving changes to one’s code might impact abstraction.
Given that such changes modify the expression DAG, round-
off error bounds will also get affected correspondingly. In one
simple study, a 1,024 point serial summation yielded an error
bound of 2.91e-11 while a reduction-tree based summation
of the same items yielded an error bound of 5.68e-13 which
is two orders of magnitude tighter. In another simple study,
we also compared a straightforward polynomial calculation
against the Horner’s method. Both Horner’s method and tree
reduction are known to be precision-preserving by design than
their counterparts (standard polynomial evaluations and serial
summation, respectively) as was confirmed by SATIRE. We
also observed that for the reduction scheme, there is negligible
impact due to abstraction. For Horner’s method, we observe
slight loss of tightness where the error bound drops from the
original bound of 1.0e-13 (without abstraction) to 4.43e-13
when using an abstraction window of (10,20). In summary,
these equivalence-preserving transformations appear to have
the same order of magnitude of impact on the computed error
bounds either with or without abstraction.

Result Reuse through Expression Hashing: We now de-
scribe a result-reuse method that saves on computations. Given
that SATIRE abstracts all nodes at a selected height, for time
iterative kernels such as stencils, this boils down to abstracting



Benchmarks Num OPs Direct Solve ‘Window-(10,20) ‘Window-(15,25) Window-(20,40)
Execution Execution Execution Execution
Absolute Time Absolute Time Absolute Time Absolute Time
Error Bound (secs) Error Bound (secs) Error Bound (secs) Error Bound (secs)
lorenz20(y) 300 NA NA 1.25e-14 14 1.25e-14 519 1.24e-14 528
lorenz40(y) 600 NA NA 9.11e-14 29 9.33e-14 1131 9.02e-14 1192
lorenz70(y) 1050 NA NA 1.06e-12 50 8.14e-13 2088 8.14e-13 2150
Scan(1024pt) 2K 9.38e-13 141 9.38e-13 141 9.38e-13 141 9.38e-13 141
Scan(4096pt) 8K 4.66e-11 2822 4.66e-11 13 4.66e-11 2837 4.66e-11 2859
FFT-1024pt 81K 3.98e-13 171 4.52¢-13 17 4.36e-13 28 3.98e-13 171
FFT-4096pt 393K 1.82e-12 2581 2.02e-12 68 1.935e-12 106 1.82e-12 2576
HI1? 393K NA NA 1.11e-14 1322 / 274 1.11e-14 3767 / 692 1.11e-14 10579 / 2615
H22 393K NA NA 1.94e-14 1340 / 275 1.94e-14 3792 / 694 1.94e-14 10480 / 2603
HO* 393K NA NA 5.55e-14 1334 /280  5.55e-14 3784 / 697 5.55e-14 10472 / 2597
P12 436k NA NA 2.26e-14 680 / 234 2.26e-14 1216 / 360  2.26e-14 2445 / 966
p22 436k NA NA 2.26e-14 612/ 161 2.26e-14 1213 /456  2.26e-14 2428 / 942
P0? 436k NA NA 7.55e-14 606 / 180 7.55e-14 1225 / 458 7.55e-14 2435 / 998
C1? 436k NA NA 6.25e-15 1772/ 1186  6.25e-15 4122 /3038  6.25e-15 10875 / 7969
28 436k NA NA 6.25e-15 1170/ 1277  6.25e-15 4117 /2963  6.25e-15 10766 / 7980
Cco? 436k NA NA 5.56e-14 1593 /914  5.56e-14 4164 / 2827 5.56e-14 10839 / 7946
Advection 453k 1.01e-13 3212/ 1479 1.0le-13 3218 /1476 1.0le-13 3247 /1623 1.0le-13 3215/ 1476
FDTD 192k 3.71e-13 8902 - - - - - -
matmul-64x64 520K 4.76e-13 65 4.76e-13 58 4.76e-13 55 4.76e-13 54
matmul-128x128  4177K 1.86e-12 763 1.86e-12 664 1.86e-12 556 1.86e-12 527
Tensor contraction  1530K NA NA 2.28e-13 3676 2.28e-13 3115 2.28e-13 3142
Tensor contraction® 1530K NA NA 1.57e-19 1473 1.57e-19 953 1.57e-19 752
CG-Arc? 211K 3.15e-19 1206 1.23e-17 2291 1.68e-17 1032 1.54e-17 3866
CG-Pores® 45K 2.67e-05 9 - - - - - -
Mol-Dyn® 5K NA NA 3.96e-14 49 4.46e-14 117 4.46e-14 117
Serial Sum 1023 291e-11 5407 291e-11 14 291e-11 11 291e-11 11
Reduction 1023 5.68e-13 32 5.68e-13 34 5.68e-13 34 5.68e-13 34
Poly-50 1325 3.26e-13 3 6.48e-13 2 6.25e-13 2 6.22¢-13 1.5
Horner-50 100 1.03e-13 5 4.43e-13 2.6 2.14e-13 1.2 2.58e-13 1.3
4 Benchmarks ported from [22] and [23]
b Benchmarks analyzed over degenerate intervals
¢ Benchmark realized from [24]
TABLE III

SATIRE EVALUATED WORST CASE ABSOLUTE ERROR BOUNDS AND EXECUTION TIME ON LARGER BENCHMARKS.

all nodes in the plane of the selected intermediate tile, which
can be expensive in number of optimizer calls for a large
tile size. However, if the analysis of such kernels is done
over input ranges that are shared by multiple input variables,
many of these optimizer calls will result in the same interval
optimization query. This can be taken advantage of through
a result-reuse method implemented through a dictionary that
stores a compressed ‘md5’ signature of the query for each
optimizer call as the key, and the previously computed result
as the value. If two calls result in the same signature (modulo
variable re-namings), the optimizer is bypassed and stored
results are returned. For the stencil types with names H, P,
C, and Advection, we report two execution times for each
configuration where the numbers after the “/” indicate the
execution time with this option enabled.

Degenerate intervals : SATIRE supports the ability to feed
degenerate input intervals ([m, M] with m = M) to serve
three purposes all of which help improve analysis speed and/or
versatility. First, this allows to propagate sparsity information
by propagating Os directly instead of interval ranges when
dealing with near-sparse matrices. This greatly simplifies
the analysis since the corresponding symbolic variables are

replaced using constant propagation. The conjugate gradient
(CG) benchmarks were executed on degenerate intervals from
two sparse matrices — a computational fluid dynamics problem
(Pores) and a materials problem (ARC130).

Next, it can help facilitate analysis when one encounters
non-differentiable points (e.g., E1/E; where Es’s interval
includes 0). Given that there is no direct way to circumvent
this problem, the provision for degenerate intervals allows the
designer to architect selected points carefully to bypass the
discontinuities. In CG, when analyzed with interval ranges,
beyond two iterations, the scale factor, 5, composed of the
ratio of near zero residuals (from two successive iterations)
encounters a zero crossing interval in the denominator report-
ing a divide by zero error — using degenerate intervals remove
these difficulties when such situations arise.

Additionally, this facility of degenerate intervals also came
in handy when studying the highly unstable Lorenz iteration
scheme where we could clamp a few inputs at degenerate
values and explore the remaining inputs (sensitivity analysis)
across a non-degenerate interval.

Empirical consistency : We resort to extensive empirical
testing to quantify the tightness and the empirical soundness
of SATIRE’s worst case absolute error bounds. We performed



10 tests across these benchmarks (except the ones subject
to degenerate intervals) with random sampling over their
respective input intervals. SATIRE’s bounds were always found
to be conservative while being on average no worse that 2
orders of magnitude. The stencil benchmarks obtain a much
tighter empirical bound in the order of e-15. Prefix-sum (Scan)
obtained empirical bounds only one order of magnitude tighter
than the worst case bounds. The largest deviation was seen of
lorenz70, where SATIRE’s bound of 1.06e-12 was two orders
of magnitude worse than empirically obtained maximum error
of 4.1e-14.

a) FFT: A Case study : Fast Fourier transform (FFT) is
an optimized algorithm for discrete Fourier transform (DFT),
which converts a finite sequence of sampled points of a
function into a same length sequence of an equally numbered
complex-valued frequency components. It has a vast number
of applications in signal processing and fast multi-precision
arithmetic for large polynomial and integer multiplications.

An N-point FFT involves log, N stages, each stage having
a familiar butterfly structure (see for example [27]). We are
not aware of any tool supporting floating-point error analysis
over complex domains barring [13] which was demonstrated
on a small 64-point FFT design. However, its application to
fast math multi-precision libraries necessitates precise floating
point error analysis and has been the subject of multiple
analytical studies [28]-[31]. These analysis methods focus on
obtaining L2-norms in terms of root mean square (RMS) er-
rors, or statistically profiled error bounds. Brisbarre et al. [27]
followed up on the work from Percival’s [29], [30] to report
the best L2-norm bound till date of ~ 30.99ulps. That is, if z
represents the discretized input samples, Z is the exact result

1Z = Z]|2

and Z is the computed result, then, W < B = 30.99u
2

To extend this result to a bound on absolute error
corresponding to the L-infinity norm, we utilize two well-
known relations: (1) Between the L2 norms of the input and
outputs of an N-point FFT, i.e., ||Z||2 < VN -||2||2, and (2) a
generic relation between the L-infinity norm and L2-norm,
re., ||Z]l2 < v/n||Z||- Using these relations, the L-infinity
norm on the error (as obtained in [27]) of the computed FFT
result can be obtained as

1Z = Zlloo < B- NV2| |20 (12)
Equation (12) obtains the absolute-error bound analytically.
A 1024-point FFT with input samples in the interval [0, 1]
with an L2-norm bound of B & 30.99u obtains an absolute
error bound of 78200u. For double precision data type, with
u = 273, implying an absolute error bound of 4.98e-12.
SATIRE partitions the real and imaginary parts of the
complex operations in FFT, obtaining real expression types
for the output variables guarded with rounding information
at every compute stage. Two separate datapaths are generated
for the real and imaginary terms, each of which is solved
individually. Let Er and E; denote the absolute error bounds
obtained by solving the real and imaginary parts, respectively.
These solutions, on their own, provide the individual accuracy
information of the real and imaginary expressions. Addition-

ally, Ep = \/E% + E7 gives the bound on the maximum of
the total absolute error. It is an upper bound on the L-infinity
norm.

We show that SATIRE obtains a tighter bound than the
analytical bound obtained by [27] as in Equation (12). We
also select the input space in the interval [0, 1]. The bound
obtained for the real and imaginary parts are E® < 3.98e-13
and ET < 3.80e-13. Thus the total error bound is E; < 5.5e-
13 which is tighter than the best analytical bound obtained
in [27]. We tried different input intervals for FFT, each
time obtaining a tight bound in comparison to the analytical
bounds achievable due to [27]. However, the optimizer faced
convergence difficulties for intervals with zero crossings like
[—1, 1]. In these cases, incrementally solving using abstraction
of smaller depths allowed us to solve the problem while still
obtaining tighter bounds than [27].

b) Lorenz equations: A Case Study: Lorenz equations
model thermally induced fluid convection using three state
variables (z,y, z). Here, x represents the fluid velocity am-
plitude, ¥y models temperature difference between top and
bottom membranes, while z represents a distortion from
linearity of temperature [32]. The equation requires three
additional parameters, a=10 called the Prandtl number, b=8/3
corresponding to the wave number for the convection, and r
being the Rayleigh number proportional to the temperature
difference. The recurrence relations obtained by discretizing
the continuous version of the Lorenz equation are shown in
Equation (13), where k represents the previous iteration and
dt is the time discretization.

Tht1 = xk + a(zp — yi)dt
Yk+1 = Yk + (—zpzi + rag — yr)dt
Zr+1 = 2k + (Tryr — bzy)dt

13)

In [32], authors study the trajectories for different r val-
ues for chosen initial conditions of (z1,y1,21,dt) =
(1.2,1.3,1.6,0.005). It shows chaotic behavior for r > 22.35
and again starts approaching equilibrium once r reaches close
to 200. However, for such chaotic systems, if two initial
conditions differ by a quantity of J, the resulting difference
after time ¢ shows exponential separation in terms of § - e*’.
This becomes a critical component when evaluating such equa-
tions in finite precision since the round-off error accumulation
introduces a gradual ¢ error building up.

We focus on two aspects of the analysis: (1) Obtaining
bounds over a range of input intervals over (z,y,z), and
(2) Analyze the sensitivity of initial conditions on individual
inputs by using degenerate intervals on the other inputs.

Using SATIRE, we obtain tight bounds for as large as 70
iterations of the problem using abstractions. Note here the
non-linearity of these equations makes it difficult to simplify
expressions beyond a certain limit. The error expressions com-
posed of the products of forward error and reverse derivative
may reach a large operator count quickly within few itera-
tions, choking symEngine’s simplification process. SATIRE
delays further canonicalization beyond an operational count
larger than a pre-defined limit, controlled by a parametric
knob, maxOpCount, with default value of 30K selected
over multiple experiments over a mix of non-linear and linear



systems. Using maxOpCount, we only allow simplification ' o T e et
within the depth necessary for abstraction or otherwise force
abstraction at a reduced height. During the next abstraction,
further simplification take place. 51 1t 1t E
Table IV shows the bounds obtained for varying windows S —
of the abstraction depth and the corresponding execution time
(exectime)inseconds‘ ol L L L
35 T T
30 L ||l FFT || lorenz20
Window of Abstraction depth : (mindepth, maxdepth) 25 : | 1L 1L )
L
orenz (10,20) (15,25) (20,40) 2 . 1+ 1t :
Exec Exec Exec 15[ e | s 1
err Time err Time err Time 49 | —— L ]
lorenz20: x  5.69e-15 5.88e-15 5.64e-15 51 ’ 1l |
lorenz20: y  1.25e-14 14s 1.25e-14  535s 1.24e-14 545s 0 ‘ ‘ ‘ ‘ ‘ ‘ - — ;
lorenz20: z  4.75¢-15 4.82e-15 4.72e-15 0 4000 8000 O 4000 8000 O 4000 8000 O 4000 8000
lorenz40: x 3.78e-14 3.91e-14 3.75e-14 # of simulations # of simulations # of simulations # of simulations
lorenz40: y  9.1le-14 29s 9.33e-14  1131s  9.02e-14 11925 Fig. 5. x-axis: number of simulations performed for high precision shadow
lorenz40: z  7.08e-14 7.09e-14 6.95e-14 . :
: : . . value evaluation; y-axis: Measured Q)
lorenz70: x  3.02e-13 2.45e-13 2.45e-13
lorenz70: y  1.06e-12 50s 7.93e-13  2088s  7.93e-13  2150s
lorenz70: z  1.05e-12 8.14e-13 8.14e-13
TABLE IV
ERROR BOUNDS FOR THE THREE STATE VARIABLES IN THE LORENZ
EQUATION

We perform analysis for 20, 40, and 70 iterations. The
second state variable, y, shows more worst-case variation.
Therefore, we studied the sensitivity of y for a larger size of
70 iterations using degenerate intervals in = and y, obtaining
a bound of 5.50e-13 as opposed to 8.14e-13 in the non-
degenerate case.

c) Application to Relative error profiling: After having
obtained the worst case absolute error for an expression g over
input intervals I using SATIRE, suppose the user wants to
run their code, say instantiated at double precision (dp), with
inputs ¢ chosen from I/ and wants to obtain the worst case
relative error estimates during that run. This can be useful
for the user, as relative error directly (RE) informs about
precision loss. RE is defined by RE(g) = (lg — g|/g) where
the numerator is the absolute error (“true-value - computed-
value”) and the denominator the “true-value.”” The SATIRE-
obtained worst-case absolute error over I is an upper-bound
for the numerator of RE(g). The “true value” (denominator)
can be obtained by instrumenting the code in higher precision
(say quad-precision) and obtain g,, as a close proxy to g,
allowing us to compute an upper bound on RE(g). The user
can then estimate the number of bits lost as #bits lost =
ceil(logy(RE(g)/u)) where u is the unit round-off.

Unfortunately, obtaining g4, in this manner calls for
code-instrumentation. Suppose we employ gq), in lieu of g,,:
how much error are we introducing in our relative error
estimation? Since gg4;, is the observed value at runtime, there
is no extra overhead to evaluate this quantity (unlike shadow
value calculations). To determine that, we first obtain an
equation characterizing the discrepancy in lost-bits estimation,
calling it Q:

Q = {sat — 4shadow; where
Gsat = loga( max(|g — g|)/(|gap| - u))
dshadow = 1092( max(‘gqp - gdp|)/(|gqp| : u))

We now estimate the spread of @) across multiple simulation

runs, each time starting the simulation at an ¢ value drawn
at random from within /. For such simulations, if we plot
@, we are able to determine the spread of discrepancy in
estimating the number of bits lost, shown in Figure 5, where y-
axis plots the spread of (), and the x-axis plots the simulation
runs involved in generating those (Js. For this method to be
(empirically) sound, ) must stay above zero. In addition, if
@ stays close to 0, it would tend to confirm the tightness of
the relative error estimation.
Observations about @ in our Simulations: We do find that
@ > 0, confirming that this relative error estimation method
is sound in an empirical sense. In our studies, we analyzed a
subset of our benchmarks (HO, CO, PO, Prefix-sum, DQMOM,
FDTD, FFT and lorenz20) as part of this case study. We chose
I = [0,1], thus ensuring that it contains many binades of
floating-point values (many exponent changes involved in the
range [0,1]). This ensures that we pick values with widely
differing exponents as our candidate ¢, thus causing higher
overall error.

Figure 5 plots the results of our empirical evaluation for
10K simulations of this subset of benchmarks. We observe
that for well-conditioned problems presented in the upper half
of Figure 5 (smoothing solvers such as 2-D heat—HO in our
figure), the prediction difference lies in the range of 6 to 8
bits—a good confirmation of the tightness of our estimation
method. For more complex computations presented in the
lower half of the figure (e.g., DQMOM, FFT, etc), the spread
of @ is higher. Yet, we do see many () values bunched up
within tight bands. The lower bound of these bands indicate

(14)



the extent of tightness exhibited by our relative error profiling
method (this despite our use of SATIRE’s worst-case bounds
in the numerator of gsq¢).

In conclusion, the approach presented offers a promising
avenue for estimating precision loss—at least in a relative
sense—through the following simple steps: (1) measure the
worst-case absolute error, (2) observe the runtime output value
of the function being studied, and (3) apply the formula for
Qsqat- Armed with this knowledge of precision loss, a user may
be able to profile their simulation to identify points at which
it exhibits high relative error (e.g., as a result of the value
distribution that exists at those simulation states) and mitigate
the precision loss suitably—say by rewriting their function,
switching to higher precision realizations, etc.

VII. LIMITATIONS, ADDITIONAL RELATED WORK

Additional Related Work: Rigorous floating-point precision
analysis is central to the advancement of HPC in enabling
activities such as correctness verification and precision tuning,
while offering rigorous guarantees. The importance of offering
formally certified bounds is well-recognized [9], [33], and
scalability in this area is essential to extend the reach of
certified methods. The work in [11], [12] offers another
rigorous approach supported by theorem-proving. Roundoff
analysis is approached using semi-definite programming in [7].

Rosa and FPTaylor are the closest to our work in their
approach to extend Taylor forms [34] for rigorous floating
point error estimation. Rosa propagates errors in numeric
affine form and uses SMT solvers to obtain tight bounds.
In FPTaylor, full symbolic Taylor forms are obtained and
fed to a global optimizer, which often results in bloated
error expressions, impeding scalability. In contrast, SATIRE’s
decoupled analysis achieves this objective albeit without this
complexity, using path strength reduction and abstractions.

Fluctuat [4] is a commercially available static analyzer
relying on zonotopic abstract domains. It has been primarily
applied to control software where its ability to detect instability
is key. While Fluctuat includes support for loops and condi-
tionals, it is often nuanced and requires user-defined abstract
domains. Their work also recognizes the difficulty of synthe-
sizing strong loop invariants for numerical codes with roundoff
incorporated, and the solutions they offer are not push-button
applicable. Precisa [6] can also handle conditionals using
a denotational semantics-based approach. Our emphasis in
SATIRE is to create exact descriptions of finitely unrolled
loops and conducting push-button analysis that yields tight
error bounds across loop iterations. Eventually, a combination
of loop unrolling and invariant synthesis can be effective, and
a coveted future direction.

Gappa [5], while inherently an interval-based reasoning
system, comes with a plethora of simplification rules of its
own. Embedded into verifiers such as [35], it has provided
key reasoning power to various proof-assistants [6], [36],
[37]. The combined uses of static analyses [38] are popular,
as demonstrated at scale in Astrée [39]. A general abstract
domain for floating-point computations is described in [40].

Automatic differentiation (A/D) [41] involves chain-rule
based techniques, widely used for evaluating derivatives in sci-
entific computing. ADAPT [42] introduces a scalable approach
to mixed-precision tuning for HPC applications however lim-
ited to concrete data points. It uses Codipack [43] to perform
reverse mode A/D to obtain derivative values.

In contrast SATIRE implements its own symbolic library for
reverse mode A/D, with analysis supported over input interval
ranges for rigorously estimating the output error across the
entire space of input intervals. This serves as a method for
formal specification inference that can help future code users
reliably use the code in new environments and new precision
regimes—important for code adaptation that will increase in
HPC. While SATIRE does not perform precision tuning, it can
provide new capabilities for existing tuning assistants such
as Precimonious [44], FPTuner and ADAPT which can use
SATIRE to zoom into code regions and interval sub-ranges
to fine-tune code accuracy in a specification-directed manner.
Another interesting use of SATIRE is to direct tools such as
Herbie [45] to rewrite subexpressions in a more goal-directed
manner (improve precision where it lacks). The work in [46]
can also derive similar benefits.

The importance of sound techniques for relative error esti-
mation has been recognized by many. A common approach for
relative error estimation is to first obtain the absolute error and
then divide it by the minimum of the function interval value.
A combined rigorous approach to relative error estimation is
presented in [47]. Our approach for relative error estimation
is meant for use in a dynamic analysis setting. It is motivated
by the important pragmatic consideration of avoiding shadow-
value computations on an existing piece of code. We use
the observed value at runtime in combination with SATIRE’s
worst-case bound to obtain a relative error profile that provides
insights on precision loss. Through empirical evaluation, we
establish the reliability of this approach. A good contrast
is also with Verificarlo [48] that has been applied at scale,
but requires the provision of Monte-carlo based arithmetic
operator bindings to obtain statistical precision-loss estimates.
Going forward, we plan to study how close Verificarlo’s
relative error estimates are to ours.

Limitations Round-off analysis tools that are based on interval
analysis face difficulties when given non-differentiable expres-
sions (also pointed out in [42]). SATIRE’s current solution
is to rely on constant propagation based on its support for
degenerate intervals, as already discussed in conjunction with
our conjugate gradient and sparse matrix examples. This may
be automated by employing program-level static analysis.
Higher-order errors: SATIRE’s preference for first-order error
analysis was discussed as directly enabling techniques such as
path strength reduction. While this is often sufficient in prac-
tice, in our future work will explore methods to incorporate
higher-order error analysis while also retaining some of the
advantages of path strength reduction.

Conditionals and Loops: Conditionals can introduce control
flow divergence which introduce discontinuities. Current A/D
algorithms cannot handle such discontinuities and therefore



this remains an open problem for all tools in this area.
Parallelization: SATIRE’s current implementation is serial.
However there is ample scope for parallelization of the
optimization queries. Specially, when abstracting multiple
nodes, their respective queries can be potentially dispatched
in parallel and/or pipelined. Furthermore, the accumulated
error expression can be broken down in parallel sub-queries
followed by a reduction to obtain the final error bound. Such
parallelization methods, and an implementation of SATIRE in
C++ or Rust can make it significantly more efficient.

VIII. CONCLUDING REMARKS

We presented SATIRE, a tool for rigorous floating-point
error analysis that produces tight error bounds in practice.
SATIRE is similar to many of its predecessors, but specifically
emphasizes handling large expressions that arise in practice
by including an information-theoretic abstraction mechanism
for scalability. The effectiveness of SATIRE has been demon-
strated on practical examples including FFT, parallel prefix
sum, and stencils for various partial differential equation
(PDE) types. Even divergent families of equations such as the
Lorenz system are included in our study. SATIRE can provide
insights on the loss of precision at runtime as demonstrated
on a large ill-conditioned problem. We believe this variety
and scale in an automated rigorous tool is unique. Our work
demonstrates that scale coupled with other aspects such as
nonlinearity and the DAG reconvergence structure determine
scalability. Given that global optimizers are workhorses in er-
ror estimation, our studies shed light on the role of expression
canonicalization. Important future directions include handling
loops (enabling further scaling), improving abstractions with-
out increasing error bounds, the use of parallelism to further
speed up the analysis, and also in precision tuning.

REFERENCES

[1] M. Altman, J. Gill, and M. P. McDonald, Numerical Issues in Statistical
Computing for the Social Scientist. John Wiley & Sons, Inc., Dec.
2003. [Online]. Available: https://doi.org/10.1002/0471475769

[2] D. H. Bailey, J. M. Borwein, and V. Stodden, “Facilitating reproducibil-
ity in scientific computing: Principles and practice,” in Reproducibility:
Principles, Problems, Practices, and Prospects, H. Atmanspacher and
S. Maasen, Eds., 2016, pp. 205-231.

[3] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double pre-
cision floating point arithmetic,” in Proceedings 15th IEEE Symposium
on Computer Arithmetic. ARITH-15 2001, 2001, pp. 155-162.

[4] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software,” in Formal Methods for Industrial Critical Systems, FMICS
2009, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5825, pp. 53-69.

[5] M. Daumas and G. Melquiond, “Certification of Bounds on Expressions
Involving Rounded Operators,” ACM Transactions on Mathematical
Software, vol. 37, no. 1, pp. 1-20, 2010.

[6] L. Titolo, M. A. Feliti, M. Moscato, and C. A. Mufioz, “An abstract
interpretation framework for the round-off error analysis of floating-
point programs,” in Lecture Notes in Computer Science. Springer
International Publishing, Dec. 2017, pp. 516-537. [Online]. Available:
https://doi.org/10.1007/978-3-319-73721-8_24

[71 V. Magron, G. Constantinides, and A. Donaldson, “Certified roundoff
error bounds using semidefinite programming,” ACM Transactions on
Mathematical Software, vol. 43, no. 4, pp. 34:1-34:31, Jan. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3015465

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

(27]

(28]

E. Darulova and V. Kuncak, “Sound compilation of reals,” in Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 2014, pp. 235-248.

A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamaric,
and G. Gopalakrishnan, “Rigorous estimation of floating-point round-
off errors with symbolic taylor expansions,” ACM Trans. Program.
Lang. Syst., vol. 41, no. 1, pp. 2:1-2:39, 2019. [Online]. Available:
https://doi.org/10.1145/3230733

M. Jacquemin, S. Putot, and F. Védrine, “A reduced product of absolute
and relative error bounds for floating-point analysis,” in Static Analysis
- 25th International Symposium, SAS 2018, Freiburg, Germany, August
29-31, 2018, Proceedings, ser. Lecture Notes in Computer Science,
A. Podelski, Ed., vol. 11002. Springer, 2018, pp. 223-242. [Online].
Available: https://doi.org/10.1007/978-3-319-99725-4_15

M. M. Moscato, L. Titolo, M. A. Felid, and C. A. Mufioz, “Provably
correct floating-point implementation of a point-in-polygon algorithm,”
in Formal Methods — The Next 30 Years, M. H. ter Beek, A. Mclver,
and J. N. Oliveira, Eds. Cham: Springer International Publishing, 2019,
pp- 21-37.

R. Salvia, L. Titolo, M. A. Felii, M. M. Moscato, C. A. Muiioz,
and Z. Rakamaric, “A mixed real and floating-point solver,” in
NASA Formal Methods - 11th International Symposium, NFM 2019,
Houston, TX, USA, May 7-9, 2019, Proceedings, ser. Lecture Notes
in Computer Science, J. M. Badger and K. Y. Rozier, Eds.,
vol. 11460.  Springer, 2019, pp. 363-370. [Online]. Available:
https://doi.org/10.1007/978-3-030-20652-9_25

D. Boland and G. A. Constantinides, “A scalable precision analysis
framework,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp. 242—
256, 2013.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
“Programming with numerical uncertainities.” [Online]. Available:
https://people.mpi-sws.org/~eva/papers/thesis.pdf

W. Lee, R. Sharma, and A. Aiken, “On automatically proving
the correctness of math.h implementations,” Proc. ACM Program.
Lang., vol. 2, no. POPL, Dec. 2017. [Online]. Available: https:
//doi.org/10.1145/3158135

J.-M. Alliot, N. Durand, D. Gianazza, and J.-B. Gotteland, “Finding
and proving the optimum: Cooperative stochastic and deterministic
search,” in Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI). ACM, 2012, pp. 55-60.

F. Goualard. (2017) Gaol (not just another interval library). [Online].
Available: http://frederic.goualard.net/#research-software

“Gelpia: A global optimizer for real functions,” 2017. [Online].
Available: https://github.com/soarlab/gelpia

“Symengine,” https://github.com/symengine/symengine/.

C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379423, 7 1948.
[Online]. Available: https://ieeexplore.ieee.org/document/6773024/

A. Das, S. Krishnamoorthy, I. Briggs, G. Gopalakrishnan, and
R. Tipireddy, “Efficient reasoning about stencil programs using selective
direct evaluation,” 2020.

, “Fpdetect: Efficient reasoning about stencil programs using
selective direct evaluation,” ACM Trans. Archit. Code Optim., vol. 17,
no. 3, Aug. 2020. [Online]. Available: https://doi.org/10.1145/3402451
“Molecular dynamics,” https://people.sc.fsu.edu/~jburkardt/py_src/md/
md.html.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

J. Kim, A. Sukumaran-Rajam, C. Hong, A. Panyala, R. K. Srivastava,
S. Krishnamoorthy, and P. Sadayappan, “Optimizing tensor contractions
in cesd(t) for efficient execution on gpus,” in Proceedings of the 2018
International Conference on Supercomputing, ser. ICS "18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 96-106.
[Online]. Available: https://doi.org/10.1145/3205289.3205296

N. Brisebarre, M. Joldes, J.-M. Muller, A.-M. Nanes, and J. Picot, “Error
analysis of some operations involved in the Cooley-Tukey Fast Fourier
Transform,” ACM Transactions on Mathematical Software, pp. 1-34,
2019.

G. Ramos, “Roundoff error analysis of the fast fourier transform,”
Mathematics of Computation - Math. Comput., vol. 25, pp. 757-757,
10 1971.


https://doi.org/10.1002/0471475769
https://doi.org/10.1007/978-3-319-73721-8_24
http://doi.acm.org/10.1145/3015465
https://doi.org/10.1145/3230733
https://doi.org/10.1007/978-3-319-99725-4_15
https://doi.org/10.1007/978-3-030-20652-9_25
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
https://people.mpi-sws.org/~eva/papers/thesis.pdf
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
http://frederic.goualard.net/#research-software
https://github.com/soarlab/gelpia
https://github.com/symengine/symengine/
https://ieeexplore.ieee.org/document/6773024/
https://doi.org/10.1145/3402451
https://people.sc.fsu.edu/~jburkardt/py_src/md/md.html
https://people.sc.fsu.edu/~jburkardt/py_src/md/md.html
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3205289.3205296

[29]

[30]

[34]

[35]
[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. P. Brent, C. Percival, and P. Zimmermann, “Error bounds on complex
floating-point multiplication,” Math. Comput., vol. 76, pp. 1469-1481,
2007.

C. Percival, “Rapid multiplication modulo the sum and difference
of highly composite numbers,” Math. Comput., vol. 72, no. 241,
p. 387395, Jan. 2003. [Online]. Available: https://doi.org/10.1090/
S0025-5718-02-01419-9

E. Jr and H. Saleh, “Fft implementation with fused floating-point
operations,” Computers, IEEE Transactions on, vol. 61, pp. 284 — 288,
03 2012.

J. Liang and W. Song, “Difference equation of lorenz system,” Interna-
tional Journal of Pure and Apllied Mathematics, vol. 83, 02 2013.

H. Becker, N. Zyuzin, R. Monat, E. Darulova, M. Myreen, and A. Fox,
“A verified certificate checker for finite-precision error bounds in coq
and hol4,” in FMCAD, 10 2018, pp. 1-10.

A. Neumaier, “Taylor forms—use and limits,” Reliable Computing,
vol. 9, no. 1, pp. 43-79, Feb 2003. [Online]. Available: https:
//doi.org/10.1023/A:1023061927787

“Frama-C Software Analyzers,” http://frama-c.com/index.html, 2017.
G. Melquiond, “Floating-Point Arithmetic in the Coq System,”
Information and Computation, vol. 216, pp. 14-23, 2012. [Online].
Available: http://dx.doi.org/10.1016/.ic.2011.09.005

J. Harrison, “Floating-Point Verification Using Theorem Proving,” in
SFM 2006, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, vol. 3965, pp. 211-242.

E. Goubault and S. Putot, “Static Analysis of Finite Precision Computa-
tions,” in International Workshop on Verification, Model Checking, and
Abstract Interpretation, VMCAI 2011, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, vol. 6538, pp. 232-247.
P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The ASTREE analyser,” in Proceedings of the 14th
European Symposium on Programming Languages and Systems (ESOP),
ser. Lecture Notes in Computer Science, vol. 3444. Springer, 2005, pp.
21-30.

M. Martel, “Semantics of roundoff error propagation in finite
precision calculations,” Higher Order Symbolic Computation, vol. 19,
no. 1, pp. 7-30, 2006. [Online]. Available: http://dx.doi.org/10.1007/
$10990-006-8608-2

C. Bischof, H. Buker, P. Hovland, U. Naumann, and J. Utke, Eds.,
Advances in Automatic Differentiation. Springer, 2008, iSBN : 978-3-
540-68935-5.

H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, “Adapt: Algorithmic differentiation applied
to floating-point precision tuning,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC *18. IEEE Press, 2018.

M. Sagebaum, T. Albring, and N. R. Gauger, “High-performance
derivative computations using codipack,” CoRR, vol. abs/1709.07229,
2017. [Online]. Available: http://arxiv.org/abs/1709.07229

C. Rubio-Gonzélez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. lancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in Supercomputing (SC), 2013, pp.
27:1-27:12, https://github.com/corvette-berkeley/precimonious.

P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015. ACM, 2015, pp.
1-11. [Online]. Available: http://doi.acm.org/10.1145/2737924.2737959
N. Damouche, M. Martel, and A. Chapoutot, “Improving the
numerical accuracy of programs by automatic transformation,”
International Journal on Software Tools for Technology Transfer
(STTT), vol. 19, no. 4, pp. 427-448, 2017. [Online]. Available:
https://doi.org/10.1007/s10009-016-0435-0

A. Izycheva and E. Darulova, “On sound relative error bounds for
floating-point arithmetic,” in Proceedings of the 17th Conference on
Formal Methods in Computer-Aided Design, ser. FMCAD ’17. Austin,
Texas: FMCAD Inc, 2017, p. 15-22.

C. Denis, P. de Oliveira Castro, and E. Petit, “Verificarlo: Checking
floating point accuracy through monte carlo arithmetic,” in 23nd IEEE
Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA,
USA, July 10-13, 2016, P. Montuschi, M. J. Schulte, J. Hormigo, S. F.
Oberman, and N. Revol, Eds. IEEE Computer Society, 2016, pp.
55-62. [Online]. Available: https://doi.org/10.1109/ARITH.2016.31


https://doi.org/10.1090/S0025-5718-02-01419-9
https://doi.org/10.1090/S0025-5718-02-01419-9
https://doi.org/10.1023/A:1023061927787
https://doi.org/10.1023/A:1023061927787
http://frama-c.com/index.html
http://dx.doi.org/10.1016/j.ic.2011.09.005
http://dx.doi.org/10.1007/s10990-006-8608-2
http://dx.doi.org/10.1007/s10990-006-8608-2
http://arxiv.org/abs/1709.07229
https://github.com/corvette-berkeley/precimonious
http://doi.acm.org/10.1145/2737924.2737959
https://doi.org/10.1007/s10009-016-0435-0
https://doi.org/10.1109/ARITH.2016.31

	Introduction
	Background
	Path Strength Reduction
	Bound Optimization
	Abstractions
	Evaluation
	Limitations, Additional Related Work
	Concluding Remarks
	References

