A Multi-Instance Support Vector Machine with Incomplete Data
for Clinical Outcome Prediction of COVID-19

Lodewijk Brand
Ibrand@mymail. mines.edu
Colorado School of Mines
Golden, Colorado, USA

ABSTRACT

In order to manage the public health crisis associated with COVID-
19, it is critically important that healthcare workers can quickly
identify high-risk patients in order to provide effective treatment
with limited resources. Statistical learning tools have the poten-
tial to help predict serious infection early-on in the progression
of the disease. However, many of these techniques are unable to
take full advantage of temporal data on a per-patient basis as they
handle the problem as a single-instance classification. Furthermore,
these algorithms rely on complete data to make their predictions.
In this work, we present a novel approach to handle the temporal
and missing data problems, simultaneously; our proposed Simul-
taneous Imputation-Multi Instance Support Vector Machine method
illustrates how multiple instance learning techniques and low-rank
data imputation can be utilized to accurately predict clinical out-
comes of COVID-19 patients. We compare our approach against
recent methods used to predict outcomes on a public dataset with a
cohort of 361 COVID-19 positive patients. In addition to improved
prediction performance early on in the progression of the disease,
our method identifies a collection of biomarkers associated with the
liver, immune system, and blood, that deserve additional study and
may provide additional insight into causes of patient mortality due
to COVID-19. We publish the source code for our method online.!
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1 INTRODUCTION

Predicting mortality of a COVID-19 patient early in their hospital
stay would allow adequate time and resources to care for high-risk
patients. However, this prediction problem presents two unique
challenges. First, the clinical data provided is not necessarily the
same size for each patient. For example, a patient that has been
in critical care for many days will have more data available than
another patient who has recently been admitted. We refer to this
type of data as multi-instance data where a single patient can contain
multiple clinical observations observed over time. Second, these
clinical data inevitably contain many missing entries [11] due to the
physical constraints of a caregiver in a hospital setting. The variable
size of the input data and incompleteness are significant challenges
for the modern statistical learning toolbox and are solved using
a variety of pre-processing methods. For example, Ma et al. [16],
utilized random forests to identify clinical outcomes of COVID-
19 patients by aggregating data into a single vector per-patient
before the algorithm is applied. These techniques may miss-out
on the temporal changes evident across the clinical data. Another
recent approach, proposed by Yan et al. [23], drops instances with
missing records to ensure that the algorithms operate on dense data;
although, this approach may inadvertently lead to the removal of
valuable information.

In this work we propose a Simultaneous Imputation-Multi In-
stance Support Vector Machine method that handles the temporal
prediction and incomplete data challenges at the same time for
clinical outcome prediction. Our approach relies on combining
techniques from multi-instance learning [6, 15, 18-20], as well as
matrix completion [5], to handle missing data across an entire
patient cohort. In this work we present the following scientific
contributions:

o A detailed derivation of a novel multi-instance support vec-
tor machine, in its primal form, that is explicitly designed to
handle temporal and missing data at the same time.

e Experimental results illustrating how multi-instance learn-
ing techniques can identify serious COVID-19 cases earlier
than traditional single-instance learning methods.

e Biomarkers, validated by current literature and identified by
our approach, that may be predictive of serious outcomes
related to COVID-19.

2 METHODS

In this manuscript we represent matrices M as bold uppercase let-
ters, vectors m as bold lowercase letters, and scalars m as lowercase
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Figure 1: A visualization of the Simultaneous Imputation-Multi Instance Support Vector Machine method applied to temporal
clinical data. Our method takes as input incomplete temporal data in Z of which L patients have known clinical outcomes.
The model is jointly optimized to perform both a classification and imputation task to learn a dense matrix X (green). The
trace-norm regularization, ||X||,, ensures that the completed data matrix captures patterns across all labeled and unlabeled
clinical data with possible corruptions/outliers captured by S (red X’s). The unlabeled patient data, X,,(;) € X, which is imputed
from the original data, Z,,), is classified once the joint optimization has finished.

letters. The i-th row and j-th column of a matrix M are denoted
as m’ and m j, respectively. Similarly, m. is the scalar value in-
dexed by the i-th row and j-th column of the matrix M. The matrix
M,, corresponds to the p-th column-block of the matrix M. Given
the K x T matrix M, {m, t} = argmax,, ., (M) gives the row-by-
column coordinates for the maximum element in the matrix M.
The row and column indices are given by arg max,, ,,(M)™ and
arg max,,, ,»(M);, respectively.

2.0.1 Building the Objective. We begin with the following general
loss function:

Liotal = Lclassification + Limpute > (1)

which, when optimized, is designed to jointly perform a clinical
outcome prediction when provided with incomplete/missing data.
Following the multi-task learning paradigm, we expect that the
data imputation task should guide the classification task and vice
versa, thus we optimize them simultaneously.

In a hospital setting, clinical data will usually contain a varied
number of temporal records per-patient (e.g. some patients may
have been in the hospital longer than other patients). Thus, a clas-
sification problem using clinical data can naturally be formulated
as a multi-instance classification. In order to classify a patient rep-
resented by multi-instance data, and/or to learn from patients who
have been discharged, we define a decision function that operates

on a patient matrix X, € RPX"p representing n, clinical measure-
ments with D features as

Yp = arg max (WTXP + lep)m , (2)

{m’,1'}

where W € RP*K and b € RK are the predictors and intercepts
for K classes and y,, € K is the predicted class index.? Intuitively,
Eq. (2) returns the class index m € K from which the ¢’-th instance
in X, provides the largest output from the parameterized model.
Note that Eq. (2) is defined even if n,, is different for each patient.
In order to learn a model parameterized by W and b we turn to the
multi-instance classifier and support vector machine formulations
presented in [1], and [22] and propose the following f»-regularized
multi-instance support vector machine (MISVM)

1{1Vn{)152||wm||2+022 (1-1 max(w Xy

p=1m=1 ®3)
+1by) — max(wap + lby)]y‘;,")+
where C is a tuning parameter, P is the total number of patients

and (-)+ = max(+,0). The m-th class label for the p-th patient is
captured by y7' € {-1,1}. The hyperplane wy, and intercept by are

2In Eq. (2) we explicitly provide the size of the row-vector 1 p as the number of instances
in X, for clarity. Although, for the remainder of this manuscript, we will omit this
subscript to simplify notation.
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associated with the positive class label for X,,. We refer to Eq. (3)
as the “Weston & Watkins MISVM.” This formulation allows us to
handle the K-classification problem as a single optimization instead
of one-vs-all approaches. The SVM proposed by Weston & Watkins
has been shown to provide [10] higher accuracies on benchmark
datasets than other formulations.

Frequently, the temporal data collected for a given patient during
a hospital stay is incomplete. Since data is collected across multiple
features at different times it is practically impossible to collect a
complete data matrix. Thus, we propose a data imputation approach
that can ensure that the multi-instance classification task in Eq. (3)
is well defined even when provided with incomplete data. Motivated
by [5], we formulate the data imputation task as

%iél IX|lsx +Bl1Pq (S)|l; subjectto X+S=Z, (4)

where f is a tuning parameter and Z € RPX(mi++1p) jg 3 hori-
zontal concatenation of the patient data with missing entries. The
function Pq (+) is an orthogonal projection onto the data available
in Z. By optimizing over Eq. (4), we intend to uncover a complete
data matrix X that captures a low-rank representation across all
patient observations within our cohort. The trace norm regular-
ization on X will discover underlying patterns across all clinical
observations. The matrix S in the second term, allows for possible
outliers present in the original data matrix Z.

Combining Eq. (3) and Eq. (4) together gives us our proposed
objective

mm - Z ||wm||2 +CZ Z(l - max(w p(l)

p=1m=1 (5)
+1by) — max(wap(l) + lby)]yp )+ + o |IX]].

+ B 11Pa(S)ll; subjectto X+S=Z,

where Z and X are explicitly separated into labeled-unlabeled pairs
by Z(1y, Z(y), X(1) and X (4, (see Figure 1). We call Eq. (5) the Simul-
taneous Imputation-Multi Instance Support Vector Machine objective.
We note that although we only handle the binary clinical outcome
prediction task in this manuscript, our formulation allows us to clas-
sify any number (K > 2) of case severities. While our final objective
is clearly motivated, it is difficult to solve efficiently due to term
coupling by X. For this, we use the alternating direction method of
multipliers (ADMM) framework to design an algorithm. The idea
of the ADMM is to decouple a larger problem that is difficult to
solve into collection of smaller parts

rr)l(i_nﬁ(xl) + falxz) + -+ fn(xn)

(6)

subjectto Ejx; +Egxo+---+Enxy =c ,

that are easier to solve. Once an appropriately decoupled problem
has been defined, the constraints in the decoupled form are incorpo-
rated into the objective via an augmented Lagrangian. The updates
for the primal variables x; follow a Douglas-Rachford splitting strat-
egy followed by a dual variable update. See [3] for further details
on the ADMM.

Inspired by [17], [21], and the multiblock extension of the ADMM
[3] we introduce constraints e = yp - q r;,", q;," = max(t;,”),

t;J” =w Xl+1bm, —max( ;,"),up :WZX,-+1by,andF:Xto
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decouple the optimization variables in Eq. (5). Then, the augmented
Lagrangian can be written as

1 K P K
5 2 wmls+ > > (y;,ne;,n)+
m=1 p=
P K 2
el +p1Pa O+ Y D | (o =)

2
+ (q;]" — max (tg’) + 0'1'7”/;1) + (ry’ — max (u;J")

L(pygrs’ doars) =

+ wzq/p)z + Htpm - (W;Xp + lbm) + OZ‘/pHE

+ Hul'," - (ngp + lby) + §;,"/,u”j

H 2 H 2
B =X T/l 4 2 2 - (X 9)+ A /ulE
rp - AZI / Hs
Poars = {W,b, X, E,Q, T,R, U, F, S} are the primal variables, dygrs =
{A,2,0,Q,E 11, A} are the dual variables and p > 0 is a tuning pa-
rameter. Given the augmented Lagrangian, we derive an algorithm
by differentiating Eq. (7) with respect to each primal variable, set-
ting the derivative equal to zero, and solving for the differentiating
variable; this process is repeated for each primal variable in p,,,...
After each primal variables has been updated the dual variables
are updated accordingly and y is increased by a factor p > 1 for
the next round. The algorithm terminates when the residuals of
the constraints introduced before Eq. (7) are less than a predefined
tolerance, which equivalently solves the original problem in Eq. (5).

For the remainder of this section we derive the primal variable
updates for optimizing the Weston & Watkins MISVM followed
by the proposed Simultaneous Imputation-Multi Instance Support
Vector Machine method; this is done to increase the clarity of our
derivation as Eq. (3) is a subset (e.g. without data imputation) of
Eq. (5). Finally, we provide Algorithm 1 and Algorithm 2 which
clearly specifies the initializations, assorted hyperparameters, dual
updates, and the sequence in which each primal variable is updated
in the associated code.

W update Removing all terms from Eq. (7) that do not include
W and decoupling across columns of W gives the following K
problems to solve

where nj' =yt —qp' +

o1
Wi = argmin [}
Wm

+ 0 /ull| + Z Z |5l -

p'=1m=1

P
2, H
+ EPZ_: [||tm WX + bm)
®)
(w Xp/ +bm) + fm/y” ]
where p’ indicates the column blocks in X (and the corresponding
columns of U and E) that belong to the m-th class. Taking the

derivative of Eq. (8) with respect to wy and setting it equal to zero
gives the closed form solution

wh= (20 [ (6 - 10m + 0500) X5
* Ty i [0 = 1w £20X1) )

1
*(I/y+z VXpXE KD X fx)
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Algorithm 1 Multiblock ADMM for Optimizing Eq. (3)

Algorithm 2 Multiblock ADMM for Optimizing Eq. (5)

: Data: X € RP*(mi++np) andy e {—1,1}K*P,

: Hyperparameters: C > 0, u > 0, p > 1 and tolerance > 0.

: Initialize: primal W, b, E, Q,R, T, U and dual variables A, %, 0, Q, E.

: while residual > tolerance do

form € M do
Update w,,, € W by Eq. (9)
Update b,, € b by Eq. (11)

end for

for (p,m) € {P,M} do
Update e’ € E by Eq. (13)
Update g’ € Q by Eq. (15)
Update rp" € R by Eq. (16)
for j € ny do

R S A A R A e

o
L S el =4

14: Update t,"; € T by Eq. (19)
15: Update u '; € Uby Eq. (20)
16: end for

Update A", oy w;,", 0, 5 by At = A5 + plepy’ = (yp!
—qp +15)); 0, =0y +u(gqy —max(ty)); 0y = wp'
(7 = max(u): 6 = 87+ (7 — (WE X, + 1byn)):

= (Wi Xp +1by)).

17:

gyt =¢&p +pu(uy
18: end for
19: Update pt = pu
20: end while
21: return (wyy,, ...,

wg) € Wand (by,...,bg) €b.

b update Removing terms that do not include b from Eq. (7) and
decoupling across each element of b gives K problems to solve

b = argbmin ZP: [”tzl - (WLXP + bm) + 9;"/#“2}
m p=1

P K 2
+ Z Z [”uZ} - (WZnXp' + bm) + ’5’;‘/;1”2}
p'=1m=1

Once again, p’ indicates the column blocks that belong to the m-th
class are chosen from X. Taking the derivative of Eq. (10) with
respect to by, setting the derivative equal to zero, and solving for
bm gives

(10)

P P K
bm = (Z [tZ’—ngXp+9;,"/y] Z_ Z_

p=1
~wh Xy + €% /4] )/(P + KP’) ,

(11)

where P’ is the total number of patients belonging to the m-th class.

E update Dropping terms from Eq. (7), that do not contain E
and decoupling element-wise gives K X P problems

. U 2
ei'," = arge:nn C (y;," ;,") + 3 (e;," - nz’) ) (12)
P

m

A
where n = yp qp +r — £ Equation (12) can be differentiated
with respect to el?, set equal to zero, and solved in three cases

m_C,.m C
ny = iYp when yp p >4 .

m _ m

e, =40 when 0 < yp ny < (13)
nyt when yg'ng' <0

1: Data: Z(j € RPX0u++nn) y e {1 1}5E 7 ) e RPX(m+ny),
and a masking function Pq indicating whether an entry in Z €
RPX(mi+-+1p) s available/missing.

2: Hyperparameters: C > 0, > 0, > 0, ¢ > 0, p > 1 and
tolerance > 0.

3: Initialize: primal W,b,X,E,Q,R, T,U,F,S and dual variables
AZ,0,QEILA.

4: while residual > tolerance do

5: for m € M do

6: Update w,,, and b, by line 6 and 7 in Alg. 1

7: end for

8: for p € P do

9: Update X,,(;) € X by Eq. (23)

10: Update X (u) eX by Eq. (24)

11: Update e’, qp,', 1", t;"j, '; by lines 10-15 in Alg. 1
12: Update A7, 077, w}?, 6 f;," by line 17 in Alg. 1

13: end for

14:  Update F by Eq. (26)

152 Update s € S by Eq. (28)

16: Update ILAby I =11+ p(F-X); A=A+ p(Z - (X+8S))

17: Update = pp

18: end while

19: return [yp(u) = argmax,, (WTXP(u) + lep(u))’" T u €
{1,2,....U}].

Q update Keeping only terms with Q in Eq. (7) and decoupling
element-wise gives K X P problems

2
q;,” = argglin (e;,” - y;," +q;," - r;,” +A;,"/,u)
o (19)
2
+ (q;,” — max (t;,") + 01',"/;1)
Taking the derivative of Eq. (14) with respect to g}, setting the
result equal to zero, and solving for g5 gives the update
g —ept gt = AR p+ max (t7') — oyt /p)
a = 2 . (1)
R update Following a similar strategy to Eq. (15) the element-
wise updates for R are derived as
ey —Yp +qp + Ay /p+max (u;,”) - a)l’,”/y)

r;" = ( 5 . (16)

T update Keeping terms in Eq. (7) containing T and decoupling
across K and P gives the following

2
ty = argtrflnin (q;1 — max (t;,") + ag’/p)
v 7)
2
+ Ht;," - (WLXP + lbm) + 9;,"/,uH2
which can be further decoupled element-wise for each tZ’j €ty
giving KX P X (n1 +---

2
_m m m _ i m
(qp tp] +0 /p) + (tp!j p,j)

+ np) problems

m
tp,j = ar%”rlmn when t™ PJ —Zmax (tp ) s (18)
P.J m _ am )
(tp,j piJ else ,
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Model Precision Recall Fq-score Accuracy
k-NN 0.846+0.027 0.936+0.060 0.872+0.023 0.875+0.017
XGBoost 0.769+0.068  0.932+0.069  0.819+0.068  0.814+0.064
LightGBM 0.728+0.033  0.945+0.038  0.800+0.036 0.784+0.035
SVM 0.837+0.025 0.941+0.039 0.867+0.048 0.873+0.029
CMISVM  0.854£0.078  0.827+0.085  0.822+0.052  0.837%0.049

SimMISVM ~ 0.900+0.032  0.862+0.034 0.872+0.012 0.884+0.015
Table 1: Identifying COVID-19 clinical outcomes within the
first twenty-four hours of patient admission. Average perfor-
mance and standard deviations for each metric are calculated
across a six-fold cross validation experiment.

where ¢7 = WLXP +1by — 605/ pi. Taking the derivative of Eq. (18)

with respect to t;)"j, setting the result equal to zero, and solving for

t;"j, gives the updates

max(¢p)+qpitapt i
m ——L—L—if j = argmax(¢}') (19)
PJ le else

U update Following the steps used to derive Eq. (19) the element-
wise updates of U are derived as

max(PP)+r)t+ont fu .
ymoo |z ifj = argmax(yp) (20)
bJ m else

p.J

where g = ngp +1by — &3/ p. This completes the primal updates
for Algorithm 1. The final three primal updates are for Algorithm 2.

X update The update for X is decoupled across column blocks
associated with the p-th patient. Since some patients have labels
and others do not we have two sets of minimization problems. First,
are the L sub-problems for each patient with labels

Xp(p) = argmin [[Fp = Xp + I /p|7
Xp(1)

i ,nzi:l [”t?’" ~ (whXp + 1bm) + 071 (21)

+ ”u;,” - (ngp + lby) + 5;,”/;1“2}

2
12 = (Xp +8p) + Ap/pll
Second, are the U problems associated with the unlabeled patients
inZ )
Xp(u) = argmin|[Fp = X + T /p|
Xp(u) (22)
2
+[[Zp = (Xp +Sp) + Ap/ulff -
Taking the derivatives of Eq. (21) and Eq. (22) with respect to X,
setting the result equal to zero, and solving for the corresponding
X, gives the updates
-1
Xp) = 2+ T8 Winwih, + Kwywi) ™ s (Fp + T /p
+Zp = Sp+Dp/p+ Ty [Win (] = 1bm + 03! /) (23)
+wy(ug' —1by + f;;n/ﬂ)]) ,
for the patients with labels and
Fp+Tlp/pu+2Zp —Sp+Dp/p
2

(24)

>

Xp(u) =

for patients without labels.
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F Update Keeping terms in Eq. (7) that contain F gives
: Il
min a||F||*+§ ||F—X+1'I/,u||12; , (25)

which can be solved via the soft-thresholding operation [4] on the
singular values

F=Udiag ((6 - a/w+) V', (26)

where sod(X — II/p) = {U,%,VT} and 6 are the singular values
along X.
S Update Keeping terms in Eq. (7) that contain S gives

$ = argmin f[1Po (8)l+ Elz-X-s+a/l} ()

which, following [5] is updated by

md if P (z%) is missing
e m‘,’l' - é if Po (zg) is available and m‘,jl > g (28)
n 0 if P (zg) is available and mg < é

m‘,f + g if Po (zg) is available and mg < —é

where md e M=Z - X +A/p.

3 EXPERIMENTS & RESULTS

We compare our method against an array of statistical learning tech-
niques that have recently been used to predict COVID-19 clinical
outcomes followed by a discussion of identified biomarkers.

3.0.1 Data. We obtained the clinical data and associated outcomes
for 375 COVID-19 cases included in Yan et al. [23]. Patients without
timestamped clinical observations were removed. The remaining
data were then normalized by feature and a missing data mask was
calculated for each patient. The final dataset included 73 features
derived from blood tests across an average of ~ 16.9 observations
for 361 patients of which 195 survived and 166 died. The average
age of patients in our dataset was ~ 58.9 years where 205 patients
were between 33-65 years and 156 patients were 65 years and older.
The proportion of missing data was ~ 87.6%.

3.0.2  Experiment settings. We compared our method to k-nearest
neighbors (k-NN), gradient boosted trees with the XGBoost [8],
LightGBM [12] libraries, a linear support vector machine SVM im-
plemented in LIBSVM (7], and our implementation in Algorithm 1
of a multi-instance support vector machine (MISVM) as a baseline.
For the compared methods we handled missing data by following a
similar approach to [23] the most recent observation available was
used at prediction time. The hyperparameters for the SimMISVM
method are C = 10,a = 10_2,ﬁ = 10_2,/,1 = 1074, searched over
[10? : p € {-5,...,5}] for each parameter. Competing methods
and grid-search codes and implemented using the MLJ library [2].

3.0.3 Classification performance. In Table 1, we report the perfor-
mance of our method in predicting COVID-19 clinical outcomes on
the Tongji Hospital data. In each case, the models are provided with
all clinical data available during training, while at test-time the mod-
els were only provided with clinical data from the first twenty-four
hours. Table 1 shows that our method has higher precision, F;-
score, and accuracy than the compared methods. Our method also
shows improvement over the baseline MISVM method. In Figure 2,
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Figure 2: Precision and accuracy results of the compared
methods when provided with patient readings every two
hours after the first patient data is collected. The width of the
ribbons for each method represent the standard deviations

across the six-fold cross validation experiment at that time.

\ Top-10 Biomarkers (33-64 years) Index Biomarker Function
. 1 total bilirubin Tiver
2, 2 neutrophils(7%) immune
Z 3 direct bilirubin liver
L T S e T B 4 Iymphocyte(%) immune
Index 5 total protein blood
6 albumin liver
Top-10 Biomarkers (65+ years) 7 mean corpuscular hemoglobin blood
L 8 globulin liver
B2 9 mean corpuscular volume blood
2 10 mean corpuscular hemoglobin conc. |  blood
0 11 indirect bilirubin liver

Index

Figure 3: Top-10 biomarkers predictive of a clinical COVID-
19 outcome identified by the proposed SimMISVM method.
Weight (y-axis) is derived from the absolute row-sum of W.

we show how the performance metrics of the compared methods
change as the number clinical observations provided increase. The
far-left side of the two panels in Figure 2 highlight that both multi-
instance approaches provide increased performance with limited
clinical data. This may be due to the fact that our method, since
it operates on the instance level, can identify trends in previous
clinical data which can generalize to new patients early in their
hospital stay.

3.0.4 Biomarker identification. In addition to improved predictive
performance our method can be analyzed to identify biomarkers
from the Tongji hospital data that is discriminative of a fatal COVID-
19 outcome. In Figure 3, we show the top-10 biomarkers identified
by our approach across two patient cohorts. Liver function, in-
cluding bilirubin, albumin, and globulin are studied in [13] and
were found to be predictive of a serious COVID-19 infection by
our approach. Additionally, a high neutrophil to lymphocyte ratio,
two biomarkers also identified by our model, have been found to
predict mortality [14] for critically ill COVID-19 patients. Finally,
[9] also report that higher levels of mean corpuscular volume and
hemoglobin were higher in general COVID-19 cases. These iden-
tified biomarkers may provide additional insights into COVID-19
mortality and warrant further investigation.

4 CONCLUSION

This work presents a novel Simultaneous Imputation-Multi Instance
Support Vector Machine approach applied to COVID-19 clinical out-
come prediction. Our method shows improved prediction early in
the progression of the disease and identifies clinical biomarkers that
are validated in current literature; this demonstrates the utility of
multi-instance learning techniques for clinical outcome prediction.
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