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Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clus-
tering applications. From movie recommendations and image clustering to visual feature extractions, NMF
has applications to solve a large number of knowledge discovery and data mining problems. Traditional
optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by
utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective
in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without
this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed.
To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a so-
lution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the
objective and matrix factors converge. In addition, we show the relationship between MUA and our solution
followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets
validate the correctness of our proposed method and its utility as an effective clustering algorithm.
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1 INTRODUCTION

Nonnegative Matrix Factorization (NMF) aims at finding two nonnegative matrices, F € R7>*"
and G € R?*", whose product can well approximate an input nonnegative data matrix X € R7™>",
i.e.,, X ~ FG. In general, one can interpret the columns of X as data points and the rows of X
as observations (features). A broadly used objective to learn NMF is to minimize the following
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objective [20]:

1
in h(F,G) = —||X — FG||%, 1
in (F.G) =l IIF (1)
where || - ||F denotes the Frobenius norm of a matrix. If we consider the r columns of F the basis

vectors, every column of G approximates the corresponding data point in X by a linear combination
of these r bases vectors, where the elements of the column of G specify the coefficients to compute
the linear combination. NMF has been found useful in a large variety of real-world applications,
such as image feature extraction [19], document clustering [36], single speech separation [29],
music transcription [31], and protein—protein interaction network analysis [33], to name a few.

To solve the NMF objective in Equation (1), the Multiplicative Updating Algorithm (MUA)
was derived using the following updating rules [19, 20]:

(FTX);j (XGT);;

Gij « Gijmo | i Fyjmoe
ij < l](FTFG)l'j ij < l](FGGT)ij

)
The convergence of this algorithm was proven using the auxiliary function method [19, 20], whose
correctness was also analyzed in [8, 9, 10].

Using the optimization framework in Equation (2), many machine learning methods have been
developed from NMF in the past two decades. For example, to promote the robustness against
outlying features and data points, not-squared £,-norm distances were used in the NMF objectives
in [11, 17, 23]; to perform clustering in the low-dimensional subspace, the interrelations between
data and features were incorporated in the NMF framework in [6, 21, 35]; to leverage the local con-
sistency, manifold regularized NMF objectives were studied in [4, 12, 13]. Despite their successes,
these new methods suffered from several critical drawbacks because of MUA, such as easily being
trapped into suboptimal local minima [22, 38] and not-unique solutions due to soft labeling [10,
34]. To address these shortcomings, several recent studies have proposed to solve NMF using other
optimization methods. For example, the alternating nonnegative least-squares method was used in
[7] to optimize the objective by solving the least-squares problems of F and G one at a time, while
the other variable is fixed. In [27, 30, 39], it was proposed to decouple F and G into columns and
rows and to update each row or column separately, one at a time when others are fixed. Among oth-
ers, gradient approaches have been studied to improve various aspects of the solution to NMF [7,
14]. To be more specific, the gradients of function h(F, G) with respect to F and G are computed
as

Vrh(F,G) = (FG - X)GT,

VGh(F,G) = FI(FG - X). ®

A quick glance at Equation (2) and Equation (3) shows that they are very similar in that the for-
mer performs element-wise updating, while the latter performs matrix-wise computation. In the
gradient descent method, F and G are updated by computing

Fij = Fij — AVph(F,G);j = Fij — AL(FG - X)G";;,

(4)
Gij = Gij — pVGh(F,G)ij = Gi; — p[FT (FG = X)];;.

It can be verified that when A = (FGF%)U and p = (FTCI;?—UG)U’
tion (2), which is close to traditional gradient descent method except for (1) element-wise update,
and (2) varied learning rates during iterations. On the other hand, while the updating rules in

Equation (2) can nicely guarantee the nonnegativity of both factor matrices F and G during

Equation (4) is identical to Equa-
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Fig. 1. Clustering with data outliers. Two data points lie around (1, 1) and three others lie around (2, 2), with
one additional outlying data point lying around (8,8) that plays the role of outliers. Left: clustering result
with vanilla MUA. Right: clustering result when element-wise bounds (1 < Fj; < 2) are constrained on NMF.
The blue circles denote the learned centroids of the two clusters and the green and red colors denote cluster
membership of the input data. Obviously, the clustering result shown in the right panel makes more sense
for most real-world applications.

updating, Equation (4) fails to achieve the same goal. To tackle this, a projected gradient descent
method [7] was used to update F and G using the following projections:

F = max(F — AVph(F,G),0),

G = max(G — AVGh(F, G),0), ©)

where A is the step size. However, the implementation details of this updating algorithm were not
provided in [7] and the convergence properties of this updating algorithm were not analyzed in [7].

A recent work [22, 32, 40] constrained the two factor matrices of NMF with both lower and
upper bounds. Although the solution algorithm was provided in [22], its convergence analysis
was referred to [5], which, though, can only guarantee the subsequence convergence of F and
G, separately. Moreover, this work presumed that the optimization problem is convex, which is
apparently not true. More recently, the block coordinate descent (BCD) method (also known as
the Gauss—Seidel method) was proposed and used in convergence analyses [15, 28, 37]. However,
in these works, either there exists no convergence proof or only subsequence convergence can be
guaranteed. In a word, no proof yet can show the sequence convergence of the solution algorithms
of NMF with bounding constraints on factor matrices, although the factor bounds in NMF are very
important from the following two perspectives: (1) interpretability in real-world applications, for
example, the numerical values of the elements of the feature matrix F should be ranged from 0
to 255 for image analyses; otherwise, it is difficult to interpret their meanings; and (2) potential
ability to tolerate outliers in clustering tasks, as illustrated in Figure 1.

With the above recognitions, in this article, we study the NMF problem with the following
constraints to bound the factor matrices:

OSﬁSFiiju, OSg[SGingu, (6)

which leads to an apparently much more challenging, yet more meaningful and more useful, opti-
mization problem. To solve this optimization problem, in this article, we derive an algorithm that
satisfies the constraints in Equation (6) with rigorously proven mathematical properties: (1) the
objective function decreases monotonically (same as the MUA method); and (2) F and G converge
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as well (not guaranteed by the MUA method). Moreover, our new method can be further developed
to solve the NMF problems with the energy (norm) constraints on factor matrices, where the same
convergence properties can be guaranteed by rigorous mathematical proofs.

2 FACTOR-BOUNDED NMF

When we apply NMF to document clustering [36] or image clustering [19], the factors F and G
can be, respectively, interpreted as the feature matrix and the membership matrix [8, 10]. With
this interpretation, it is expected that the elements in F and G are within some prescribed ranges,
rather than being arbitrary or extremely large. However, such constraints are not easily satisfied in
conventional NMF problems due to the following reason. It can verified that if (F, G) is a solution
to the NMF problem in Equation (1), then (F’ = FA,G’ = A™!G) is also a solution to the same
objective, where A can be any positive diagonal matrix. This renders the ambiguity issue that
we may find a solution to Equation (1) in which the diagonal elements of A are very large, such
that F” has dominated entries compared with G’ that lead to significantly deteriorated learning
performance.

To overcome the above ambiguity issue, given the data matrix X € R™*" we attempt to factorize
it into the feature matrix F and the membership matrix G under certain conditions:

min  h(F, G)=|X -FG|%, st.FeF,GeG. (7)

Here, we first consider the element-wise constraints:

F =T, :={F:F, <F < Fy},

G =G;:={G:G, <G <Gy}, ®

where Fr, Fy € R™ and Gr, Gy € R"™" are prescribed parameters, and A > B means that every
element in A is greater than or equal to the corresponding element in B. Obviously, the constraints
in Equation (8) can avoid the unstable solutions when the values of F or G are very large. Moreover,
these constraints can also be used to incorporate prior information of an application when the
ranges of the factors F and G are known in advance. Here we note that, when we choose Fj =
G1 = 0 and Fy and Fg to be large enough, Equation (7) reduces to the conventional NMF objective
in Equation (1).

2.1 Alternating Projected Gradient Descent Algorithm
Let P be the orthogonal projector onto F, i.e.,

FL(i7j), F(l7j) < FL(iaj)a
F(i,j), otherwise.

Here A(i, j) = Ajj represents the (i, j)th element of A. Similar notation holds for Pg.
We utilize the alternating minimization approach for solving Equation (7). Accordingly, we have

Fr = Pr (Fk - AVFh(Fk—l,Gk—l))
= Pr (Fk - AVFTF[(X = Fie1Gr) T (X - kalefl)]) (10)
= Pp (Fk -2 (Fk,le,lGZ_l — XGZ—I))
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and
Gk = Pg (Gi-1 = pVGh(Fr, Gi-1))

= P¢ (Ger = pVGTr[(X = FeGi1)" (X = FeGi 1)) ) (1)
= Pc (Gt = 1 (F{FiGrr = F{X)).

ALGORITHM 1: Alternating Projected Gradient Descent (PGrad) for the Problem in Equation (7).

Input: data X € R™*" rank of factors r, step sizes A, 1, sets IF, G, number of iterations K.
Initialization: Fy € R™*", Gy € R™",
for k = 1to K do
Fi = P (Fx = A (Fe_1 Gy GL_, - XGI ),
Gi. = PG (Gk-1 — 1 (F{ FiGy—1 = F{ X)),
end for
Output: Fx and Gg.

Remark 1. The step sizes A and p are fixed through the iterations for simplicity of the following
convergence analysis in Section 3, but we note that they can be varied in each iteration to speed
up the convergence. In particular, in the kth iteration, one can choose ;. € (4, min(z, Lk)), where
Ly satisfies the following Lipschitz condition:

VE,F'||VA(F, Gk1) = VA(F', Gi)||,, < Li|[F - F/| - (12)
Then, we can obtain an upper bound for L as follows:
Lic = Amax (V2R(F, Gi1)) = ||Gra Gy, (13)

Thus, one can choose A € (4, min(4 1

*1Gr+GT_ T
parameters. One may also utilize other more sophisticated methods, such as the backtracking line

search method, to locate the optimal step sizes of pz and A.

)) (and similar for ), where A and A are prescribed

Remark 2. When we set F = {F € R™" : F > 0} and G = {G € R™" : G > 0}, Algorithm 1 al-
most reduces to Equation (5), which was proposed in [7]. Equation (11) differs from Equation (5)
in that once Fy is updated, as can be seen in Equation (11), G is updated with Fy (asynchronized
update) rather than the previous one Fj_; (synchronized update). This slight difference can speed
up the convergence of Algorithm 1, based on which we will give sequence convergence proof.

3 CONVERGENCE ANALYSIS

In this section, we prove the convergence of Algorithm 1, which solves the objective in Equation (7)
with constraints on F and G, as defined in Equation (8).
To begin, we first show that h(F, G) has a Lipschitz continuous gradient at F € F and G € G.

ProrosITION 1. The objective h(F,G) has a Lipschitz continuous gradient at F € F and G € G,
where I and G are defined in Equation (8). That is, there exists a constant L. such that

|VA(F.G) - Vh(F',G") (F,G) - (F,G"),.
forall F,F" € F and G,G’ € . Here L. > 0 is referred to as the Lipschitz constant.

<L
F— c

(14)

PROOF OF PrROPOSITION 1. It is equivalent to show ||V2h(F,G)|l; < L. for all Fe F,G € G.

Standard computations give the Hessian quadrature form [V2h(F, G)](A, A) for any A = [2? ] €
G
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R+m)Xr (where Ap € R™" and Ag € R™") as
[V2h(F.G)|(A. A) = |IAFG + FAGIIE +2(FG — X, ApAc) , (15)

which gives that

[v2h(F, G)H2 = max |[V2h(F.G)| (A, 0)]

< max IAFG + FAGI1% +2| (FG - X, AFAG)| (16)
r=1

< 2(IIFy 12 + IGu 12 + IFu IFIGu llF + IIX1IF) = Le.

where the second inequality follows from [(A, B)| < ||Al|r||Bl|r and the third inequality utilizes
ICDI||r < |IClIrlID]|g. This completes the proof of Proposition 1. |

To analyse the convergence, we rewrite Equation (7) as
min f(F, G) = h(F, G) + 5p (F) + 56 (), (17)
0, FeF
where 6p (F) = {oo’ FeF

that the subsequence convergence property of the proposed algorithm, i.e., the sequence generated
by Algorithm 1 is bounded and any of its limit point is a critical point of Equation (17).

is the indicator function of the set IF. The following result establishes

THEOREM 1 (SUBSEQUENCE CONVERGENCE). Let {Wy}rso = {(Fk, Gi) k>0 be the sequence gener-
ated by Algorithm 1 with a constant step size A, u < L—lc Then, the sequence {Wj. }r>o is bounded and
obeys the following properties:

(P1) sufficient decrease:

1
—L— L
max(A, p) ¢
FWis)) = F(We) = 22— Wy = Wi |12, (18)
which implies that
lim Wkt — wk||p = 0; (19)

(P2) the sequence { f (Wi)}r>o is convergent;
(P3) for any convergent subsequence {Wy}, its limit point W* is a critial point of f and
lim f(Wie) = lim £(W) = f(W*). (20)

k’—o0
Proor oF THEOREM 1 (P1): First note that for all k, by the definition of Equation (11), we always
have Op (Fx) = G (Gk) = 0 and thus f(Wy) = h(Wg).
Since h(F,G) has a Lipschitz continuous gradient at F € IF,G € G with Lipschitz gradient L.
and % > L., we define hy_(F, F’, G) as proximal regularization of h(F, G) linearized at I’, G:

Le ,
h(F',G) + (VEh(F',G).F — F') + —IF-F 112,

hr.(F,F',G)
which yields the following relationship:
h(F,G) < hy,(F,F',G). (21)
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Now we note that
Fr = Pr (Fk—l — AVrh(Fi_1, Gk—l))

. 2
= argmln”F - (Fk_1 - }LVFh(Fk_l,Gk_l))HF
FeF
. 1 ) (22)
= argmin h(Fe-1, G-1) + == IF = FiealF + (VFR(Fio1, Git). F = Fioa)
FeF 21
= argmin h) (F, Fx_1, Gk-1),
FeF
which implies that
ha(Fk, Fx-1, Gk-1) < h(Fg-1, Gk-1)- (23)
Combining Equation (21) and Equation (23), we have
h(Fi-1, Gk-1) = h(Fk, G-1)
> hp(Fk, Fx-1, Gk-1) — hr, (Fk, Fx-1, Gk-1) (24)
1
11
= 4 IIFk = Feaall7.
Similarly, we have
1_1.
h(Fi, Gi-1) — h(Fi,Gi) > & Gk = Gr—1ll} (25)

2
which together with the above equation gives Equation (18). Now repeating Equation (18) for all
k, we get

1 (o]
(max(&, 1) B LC) kZ; Wi — Wk*1”127 < f(Wo), (26)

which gives Equation (19).

(P2) It follows from Equation (18) that { f (W) }k>o is a decreasing sequence. Due to the fact that
f is lower bounded as f(W;) > 0 for all k, we conclude that { f(Wy)}r>o is convergent.

(P3) Since F € IF,Gy € G for all k” and both of the sets F and G are closed, we have F* €
F, G* € G. Since h is continuous, we have

Jim f(Wy) = Jim h(Fi, Gr) + 8 (Fr) + 66 (Grr) = fF(W™), (27)

which together with the fact that { f(W)}k o is convergent gives Equation (20). To show W* is a
critical point, we first rewrite Equation (22) as

Fy = argmin h)(F, Fx_1, Gi-1) + O (F). (28)
The optimality condition gives
~Vrh(Fi-1, Ge-1) — %(Fk — Fi—1) € 96 (F). (29)
Similarly, we have
~Voh(F.Git) = £ (i = Giy) € 08 (G, (30)
Now, we define
Veh(Fi, Ge) = Vrh(Feo1, Gir) = 5 (Fi = i), G
Ak
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1
VGh(Fi,Gi) = VGh(Fi, Gi—1) — ;(Gk = G-1), (32)

By

by which we have
Ay € 0pf(Fr,Gr), Bg € 0 f (Fi,Gi). (33)
It follows from the above that

. . 1
lim Al < lim [Veh(Fe. Ge) = Vrh(Fior, Geor)|| + 3 IFk = Fialle

: (34)
< lim (Lo + 3 ) IWe = Wil = 0,
k—oo A
With similar argument, we have
. . 1
lim ||Bi|lr < lim (LC + —) [[Wr — Wi_1]| = 0. (35)
k—oo k—oco H
Now summing over Equation (34)—(35), we have
, 11
dlst((), (9f(Wk)) < (ZLC + 1 + —) [|Wr — Wi_1]|. (36)
U

Owing to the closedness properties of d f (Wy-) and (19), we finally obtain 0 € d f(W*). Thus, W*
is a critical point of f. This completes the proof of Theorem 1. ]

THEOREM 2 (SEQUENCE CONVERGENCE). The sequence {W; }i>o generated by Algorithm 1 with a
constant step size A, i < Li is global-sequence convergence.

ProoF oF THEOREM 2. Before proving Theorem 2, we give out an important definition.

Definition 1 (Kurdyka—Lojasiewicz Property) [3]. We say a proper semi-continuous function p(u)
satisfies Kurdyka-Lojasiewicz (KL) property, if u is a critical point of p(u), then there exist
§>0,0€[0,1),C; >0, s.t.

lp(u) - p(@)|® < Cy dist (0,0p(u)), ¥ u € B, 5).

The above KL property (also known as KL inequality) states the regularity of h(u) around its
critical point u and the KL inequality trivially holds at a noncritical point. There is a very large set
of functions satisfying the KL inequality, including any semi-algebraic functions [2]. Clearly, the
objective function f is semi-algebraic as both & and dy and dy are semi-algebraic.

LeEmMA 1 (UntrorM KL PROPERTY). There exist &y > 0, Ok € [0,1), Cxp > 0 such that for all W
s.t. dist(W), C(Wp)) < &

OkL

[Fw) = F|™" < C dist (0,0 £ (W), (37)

with f denoting the limiting function value defined in (P2) of Theorem 1.

Proor. First, we recognize the union | J; B(W/*, ;) forms an open cover of C(W;) with W*
representing all points in C (W) and §; to be chosen so that the the following KL property of f at
w> e C(W) holds:

"

[Fw) = F|™ < Cidist (0,0 (W)) ¥ (W) € BW, 5:),
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where we have used all f(W;*) = f by assertion (P3) of Theorem 1. Then, due to the compactness of
the set C (W), it has a finite subcover Ule B(Wk*_, Jk,) for some positive integer p. Now combining

all, forall W € U‘f:l B(Wk’f, Ok, ), we have

Fw) = ™" < i dist (0,0 £(W)), (38)

where Ox; = max A0} and Cxp = max 1{Cx,}). Finally, since Uli)z1 B(Wk’f,5ki) is an open cover
of C(W,), there exists a sufficiently small number do so that

{(W) : dist (W, C(Wp)) < &) UB(W . 6%,).

Therefore, the KL equation holds whenever dist(W, C(W)) < &. O

We now turn to prove Theorem 2. Note that h(F, G) is a KL function since it is an analytical
function and §p and g are also KL functions as they are the indicator functions on the sets [F and
G, respectively. Thus, f also satisfies the above KL property. According to Theorem 1 (P3), W*
is a critical point of f. It then follows from [1, Lemma 1] and the KL property that there exists a
sufficiently large ko satisfying

0 .
[£ W) = F(W)]" < Cadist (0,0 (W), (39)
for all k > ky. Now, we construct a concave function x179 for some 0 € [0, 1) with domain x > 0.
By the concavity of the function, we have

x; 7 = x 70 2 (1-0)x, (e = 1), Yy > 0,35 > 0.

Replacing x; with f(Wiy1) — f(W*) and x; with f(Wy) — f(W™), we have

[f<wk> — F)] = [F W) - FovH)]
f(Wk) f (Wis1)
[f(wk> fown)]’
- A1 -0) Wi = Wiqallz
T 2G dist (0,0f (W)
A(1 = 0) Wi = Wi ll%
2C,Cs [[Wy = Wi llF
(“Wk - Wisll2

> (1-

= x| Wi = Wiy llE | — 6l Wi — Wiyl
Wi — Wil ! !

> x (21 Wi = Wiesallr = I Wi = WicsllF),
where C3 := 2L, + ‘lll + %, K= )é(cl, g) It then follows that

2[|Wi = Wil = Wk = WiillF
< B(LFWie) = FOW]'0 = [f Wiesr) = F(W]P),

with 8 := (Azgz‘(;‘?)-l

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 111. Publication date: May 2021.
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Summing the above inequalities up from some k; > ko to infinity yields

S W = Wil < Wi, = Wioall + B[ £ W) = Fw )]~ (41)
k=k;

which implies that
D7 IWe = Wil < oo.
k=k,

Therefore, the sequence {W;} is Cauchy, and hence convergent. Hence, the limit point set C(W))
is singleton W*.

THEOREM 3 (CONVERGENCE RATE). The convergence rate is at least sublinear.

Proor ofF THEOREM 3. To show the convergence rate, we first notice that {Wy} converges to
some point W*, i.e., limg_,., WX = W*. Then, by making use of the triangle inequality and Equa-
tion (41), we have

Wi, = W*lle = || > Wi = Wiewa| < > IIWi = Wil
k=ky P kk (42)

< 1We, = Wieallr + B[ £ (Wi) = FOv)]

which indicates the convergence rate of Wy, — W* is no slower than the speed that ||[W, —
Wi—1llr + BLf (Wg,) — f(W*)]l_G converges to 0.
Moreover, according to Equation (39), we have

BlF W) - Fv)]” < Bey dist (0, £ (W)

1 1
< G, (zLC e 1) Wi, — W, 1lF- (43)

=a
Plugging (43) back to (42), we then have
> e
D7 Wi = Wiesrlle < 11Wi, = Wil + el Wi, = Wi 12 (44)
k=k;
Now, we divide the convergence rate analysis into different cases based on the value of KL
exponent 0:

—Case I 0 € [0, %], which indicates % > 1. Now define Ry = Z‘;ik [|W; = Wi1llg, and ac-
cording to the above, we have
1-0
Rk1 < Rkl—l _Rkl +a [Rkl—l _Rkl] 3
Since Ri,—1 — Rk, — 0, when k; — oo, thus there exists a positive integer k such that Ri,-1 —
Ry, <1,V ki > k. Thus,

Ri, < (1+a)(Rg,-1 —Ry,), Yk >k,

(45)

1

which implies that

Ry, <p-Reo1, Vi >k, (46)
where p = ¥ € (0,1). This together with (42) gives the linear convergence rate
Wy = W*lle < O(0FF), V& > k. (47)
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—Case II: 0 € (1/2,1), which indicates % < 1. According to the former results, we have
1-6

Ry, <(1+a)[Ri-1—Ri,1 2, Y ki >k,

which is a similar situation to that in [1], where we have

1-20 1-20 -
Rle —R”’ >, Yk >k,
-1
for some { > 0. By repeating and summing up the above inequalities, we can obtain

_9 —_ —
R, < |RE + 80k - k)] =0 ((k1 - k)—%),
which indicates the sublinear convergence rate holds.

We end this part by pointing out that the convergence rate is closely related to the KL exponent
0 and at least a sublinear convergence rate can be guaranteed. O

4 A NORM-BOUNDED VARIATION

Based on the previous procedure, we can also consider the norm constraint on the factor matri-
ces, instead of just the element-wise bounded constraints. For example, we may be interested in
bounding the magnitude of F and G as a whole:

F =T, :={F,F>0,[F|lr <c},

G =G = (G,G > 0,|[GlF < cz). “8)
Algorithm 1 still holds for the updating with the following projection:
maX(Fa 0)’ ” maX(F7 O)”F <c,

Pr (F) = 49

¥ (F) {a% | max(F.0)lr > c. )

And the proof'is almost the same as the element constraint except in Equation (16), where we have
Le =2(c2 +c5 +cico + IX|lp) when F = F,, G = G,.

For the analysis of sequence convergence of MUA, under mild conditions, we suppose (1) the
sequences F and G are norm bounded; thus, Proposition 1 holds; and (2) during every update,
A= ol €
By summing over all elements in F and G, Equation (18) and Equation (19) hold, and so are the
theorems; thus, the sequence is convergent.

(4, mln(/l )) (similar for p1), Equation (24) and Equation (25) hold simultaneously.

5 EXPERIMENTS

In this section, we empirically study the performance of our proposed factor-bounded NMF method
using several benchmark datasets and compare our method against a collection of state-of-the-art
NMF methods. Our experiments show that the bounding constraints on the factor matrices of F
and G can provide a favorable representation for the original data X in a learned space and such a
representation can be further utilized to improve the clustering performance. Our experiment sets
the dimensionality of the learned feature space as the number of classes of the original dataset.
For example, in the AT&T Faces dataset, we set r equal to 40 for each selected algorithm. Once
we get the learned representations, in which n columns are involved in G, we use two approaches
to determine the clusters for this reduced representation. One approach is the K-Means algorithm
and another approach is G-indicator, which explores the clustering results directly on the partition
matrix G [10]. These experimental approaches are inspired by the work done by Liu et al. [24
35]. All hyper-parameters associated with the methods reported in Tables 1-6 are found via a
reasonably sized grid search performed for each method and dataset pair.
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Table 1. Adjusted Rand Index and Standard Deviations (on 10 Runs) for an Array of Matrix Factorization
Methods Tested on Various Real-World Datasets Compared to the Proposed Factor-Bounded NMF

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.089 0.101 £ 0.047  0.131 £ 0.004 0.236 + 0.124 0.213 £0.106 0.188 = 0.071  0.217+0.026 0.129+ 0.011  0.201 + 0.059
Ionosphere 0.015 0.060 + 0.007  0.066 + 0.008  0.067 + 0.015 0.071 £ 0.008 0.077 £ 0.025 0.030 £ 0.015 0.027 + 0.021 0.479 + 0.014
Wine 0.371 0.743 £ 0.035 0.750 £ 0.018  0.738 +£ 0.033  0.751 £ 0.013 0.755 £ 0.012 0.826 £ 0.009 0.749 + 0.016 0.857 + 0.024
Iris 0.433 0.510 £ 0.012 0.781 £ 0.151 0.589 + 0.145 0.504 £ 0.003 0.563 = 0.119  0.600 £0.011  0.598 + 0.021  0.618 + 0.078
Cancer 0.492 0.562 £ 0.005 0.567 £ 0.000  0.610 + 0.015 0.595 £ 0.012 0.569 £ 0.026 0.718 £ 0.029 0.677 + 0.025 0.746 * 0.025
AT&T Faces 0.387 0.427 £ 0.020  0.497 + 0.030  0.433 +£ 0.016  0.432 + 0.031 0.476 + 0.027 0.509 £ 0.011  0.497 + 0.020 0.563 + 0.037
Mnist 0.598 0.672 £ 0.004 0.728 £ 0.010  0.695 + 0.011  0.601 £ 0.007 0.675 + 0.020 0.734 £ 0.005 0.603 + 0.015 0.772 *+ 0.013
USPS 0.399 0.427 £ 0.020 0.497 £ 0.030  0.433 £ 0.016  0.432 £ 0.031 0.476 = 0.027 0.527 £ 0.016 0.472 + 0.036 0.513 + 0.037

The cluster membership of each data point is determined by generating a reduced representation (G € R”*") that is fed
into a standard K-Means algorithm. We set r equal the number of classes contained in each dataset.

We compare our method to the following six matrix factorization methods implemented in
Python [41]. First, the standard multiplicative-update NMF [20] method, which is widely used
to determine clusters in text analysis, image processing, and bioinformatics applications. Second,
an implementation of Least-Squares NMF (LSNMF) using a projected gradient method [22] that
has shown faster convergence than the multiplicative update method. Third, the Nonsmooth
Nonnegative Matrix Factorization (nsNMF) proposed by Pascual-Montano et al. [26], which
is able to identify localized features from the input data through an objective that promotes spar-
sity. Fourth, a Probabilistic NMF (PMF) method motivated by the analysis of Laurberg et al.
[18], which argues for a probabilistic interpretation of matrix factorization. Fifth, we compare our
method to a Sparse NMF (SNMF) that uses an alternating nonnegative LS approach [16]. This ap-
proach is designed to impose a controllable sparsity, via hyper-parameter tuning, on the learned F
and G matrices. Finally, the Adversarial NMF (ANMF) approach, which considers potential test
adversaries that are beyond the pre-defined constraints, instead of only focusing on the regular
data points [25].

5.1 Clustering Performance

In Tables 1-3, we, respectively, present the average adjusted rand scores, normalized mutual
information (NMI), and accuracy classification scores (ACCs), with their standard deviations
for our method and aforementioned matrix factorization algorithms. We test the performance of
our method on a collection of widely used datasets downloaded from the UCI machine learning
dataset repository! and two large datasets. The datasets are chosen to illustrate the versatility that
our factor-bounded NMF approach provides a clustering algorithm in a variety of problem do-
mains. In each experiment, the data are normalized and the bounds on F and G are set accordingly
from 0 to 255 for imaging datasets and 0 to 1 for others.

From Table 1, we can see that our proposed method is effective at creating a reduced representa-
tion that can be used to accurately cluster data for the majority of the chosen datasets. Our method
outperforms other matrix factorization methods with clear margins, in terms of clustering perfor-
mance, on the lonosphere, Wine, Cancer, AT&T Faces, and Mnist datasets. In particular, the clus-
tering adjusted rand scores of our learned representation of the Ionosphere dataset is significantly
more effective than other compared NMF algorithms. In Tables 2 and 3, we find that our method
presents better NMI and ACC for the most selected datasets. Even though the ANMF outperforms
our method in some cases, applying ANMF on large datasets is limited to the bottleneck of slow
computational speed because of intensive matrix multiplications involved in each iteration step of

Thttp://archive.ics.uci.edu/ml/index.php.
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Table 2. NMI and Standard Deviations (on 10 Runs) for an Array of Matrix Factorization Methods Tested
on Various Real-World Datasets Compared to the Proposed Factor-Bounded NMF

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.021 0.019 £ 0.021  0.052 £ 0.039  0.146 + 0.005 0.131 £0.074 0.119 £ 0.062 0.116 £ 0.009  0.098 £ 0.010 0.161 * 0.036
ITonosphere 0.037 0.066 + 0.010  0.070 £+ 0.009  0.071 + 0.005 0.043 £ 0.017 0.040 £ 0.012 0.074 + 0.004  0.069 + 0.021 0.082 + 0.025
Wine 0.410 0.518 +£ 0.020 0.672 + 0.038 0.607 + 0.016 0.587 +£0.030 0.588 + 0.025 0.654 + 0.026 ~ 0.623 + 0.070  0.637 + 0.032
Iris 0.672 0.682 +0.040  0.899 £ 0.009 0.871 +0.042 0.682 £ 0.010 0.888 £ 0.042 0.906 + 0.004  0.796 + 0.016 0.913 + 0.028
Cancer 0.421 0.452 + 0.009  0.501 £0.032 0.572 + 0.011 0.549 + 0.080 0.477 £ 0.036 0.654 + 0.005  0.503 £ 0.009 0.698+ 0.012
AT&T Faces 0.331 0.537 £ 0.003  0.570 + 0.010  0.533 + 0.019 0.609 +0.014 0.611 +0.014 0.591 + 0.017  0.488 + 0.009  0.629 + 0.030
Mnist 0.358 0.348 + 0.027  0.401 £+ 0.009  0.529 + 0.037 0.601 £ 0.004 0.653 £ 0.025 0.742 + 0.045 0.701 £ 0.002 0.793 £ 0.021
USPS 0.466 0.657 £ 0.020  0.597 £ 0.023  0.633 £ 0.006 0.637 £0.001 0.701 £ 0.017 0.721 £ 0.017 0.588 + 00.021  0.709 £ 0.009

The cluster membership of each data point is determined by generating a reduced representation (G € R”*") that is fed
into a standard K-Means algorithm. We set r equal the number of classes contained in each dataset.

Table 3. ACCs and Standard Deviations (on 10 Runs) for an Array of Matrix Factorization Methods
Tested on Various Real-World Datasets Compared to the Proposed Factor-Bounded NMF

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.020 0.051 £ 0.039 0.041 + 0.005 0.144 + 0.074 0.119 + 0.062 0.025 + 0.018 0.210 = 0.007 0.101 +£0.011  0.197 + 0.036
Ionosphere 0.031 0.091 £+ 0.009 0.049 + 0.001 0.081 +0.011 0.039 + 0.012 0.083 £ 0.006 0.083 + 0.017 0.076 + 0.027 0.086 + 0.025
Wine 0.328 0.631 + 0.047 0.630 = 0.015 0.647 £ 0.03  0.656 + 0.036 0.656 + 0.046  0.722 + 0.001  0.698 + 0.026 0.731 £ 0.044
Iris 0.664 0.902 + 0.045 0.864 + 0.048 0.674 + 0.019 0.880 + 0.055 0.908 +0.019 0.908 + 0.028 0.866 + 0.010 0.910 £ 0.009
Cancer 0.450 0.520 £ 0.063 0.510 = 0.015 0.477 + 0.076 0.490 + 0.084 0.505 + 0.045 0.712 + 0.020 0.509 £ 0.007  0.697 + 0.012
AT&T Faces 0.308 0.521 +£0.013 0.582 + 0.034 0.527 + 0.022 0.572 + 0.026 0.545 £ 0.026 0.542 + 0.0168 0.422 + 0.012 0.606 £ 0.018
Mnist 0.326 0.382 £ 0.063 0.322 £ 0.015 0.372 £ 0.076 0.427 + 0.084 0.453 £ 0.045 0.812 +0.0328 0.601 + 0.023 0.820 £ 0.012
USPS 0.427 0.749 £ 0.030 0.503 + 0.011 0.621 + 0.010 0.602 + 0.023 0.701 £ 0.003  0.734 + 0.005 0.501 + 0.023 0.751 £ 0.037

The cluster membership of each data point is determined by generating a reduced representation (G € R"*") that is fed
into a standard K-Means algorithm. We set r equal the number of classes contained in each dataset.

the solution algorithms. The results from Tables 1-3 show that our method can be used as an ef-
fective low-dimensional embedding and afford accurate clustering results for a variety of datasets.

Robustness to Noise. In order to further validate the usefulness of our proposed method, we per-
form the same experiment as reported in Table 1 but add random (uniform) noise to each element
contained in X. The Gaussian noise added to each individual element is randomly distributed with
the variance of 0.01. Once the random noise has been added, the experiment follows the same flow
as described above; the resulting data are normalized and they are fed into a corresponding NMF
algorithm to calculate a reduced representation G, which is then used as an input into a standard
K-Means algorithm. The results of this experiment are meant to illustrate that our method can
produce reasonable results even when random noise is incorporated into the data.

In Tables 4-6, we report the results of our method compared against various other NMF al-
gorithms when the original data are artificially corrupted. We find that our factor-bounded NMF
method appears to generate an effective reduced representation of X that can be used to cluster
the data even though a significant amount of random noise is added into the data, which indicates
the potential applications of our method, especially for dealing with noisy data. The authors re-
mark that this robustness to noisy data could be enhanced if we considered an implementation of
the nonsquared Frobenius-norm instead of the squared Frobenius-norm defined in Equation (7).
Nonetheless, our proposed algorithm learns a representation that can more accurately cluster noisy
data points when compared to other state-of-the-art NMF approaches.

5.2 Empirical Convergence

In Section 3, we analyzed the convergence of our projected gradient descent algorithm. Here, we
provide some empirical evidence to illustrate the practical convergence of our approach. In the
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Table 4. The Calculated Adjusted Rand Index and Standard Deviations of a Collection of NMF
Algorithms Performed on Real-World Datasets that Are Corrupted with Random Noise

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.072 0.088 + 0.039 0.117 + 0.005 0.092 + 0.074 0.109 + 0.062 0.118 £ 0.018 0.180 + 0.009 0.129 + 0.023  0.173 £ 0.036
Ionosphere 0.011 0.017 £ 0.009 0.015 + 0.001 0.015 + 0.011 0.021 + 0.012 0.021 £ 0.006 0.106 + 0.003 0.201 + 0.002 0.216 £ 0.025
Wine 0.169 0.219 +£ 0.047 0.232 +£0.015 0.184 £ 0.03 0.189 + 0.036 0.204 + 0.046 0.198 + 0.025 0.211 + 0.017 0.237 + 0.044
Iris 0.209 0.213 +0.045 0.317 +0.048 0.222 + 0.019 0.211 + 0.055 0.340 £ 0.019  0.306 + 0.014  0.299 + 0.007 0.349 + 0.009
Cancer 0.069 0.072 £ 0.063 0.183 + 0.015 0.161 + 0.076 0.115 + 0.084 0.242 + 0.045 0.374 £ 0.022 0.263 £ 0.011 0.487 £ 0.012
AT&T Faces 0.206 0.245 + 0.013 0.449 £ 0.034 0.238 +£ 0.022 0.251 + 0.026 0.434 + 0.026 0.326 = 0.009 0.411 + 0.024 0.497 + 0.018
Mnist 0.218 0.322 + 0.002 0.315 + 0.004 0.287 + 0.007 0.347 + 0.010 0.358 £ 0.009 0.217 + 0.003  0.208 + 0.011 0.381 £ 0.014
USPS 0.102 0.117 £ 0.011 0.208 + 0.014 0.188 + 0.009 0.241 + 0.015 0.187 £ 0.022 0.281 + 0.020 0.200 = 0.017  0.275 £ 0.021

Following [24], the cluster membership of each noised data point is determined by a K-Means algorithm applied to the
reduced representation learned by each NMF algorithm. Identical to the experiment reported in Table 1, we set r equal
the number of classes contained in each dataset.

Table 5. NMI and Standard Deviations of a Collection of NMF Algorithms Performed on Real-World
Datasets that Are Corrupted with Random Noise

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.013 0.011 £ 0.007 0.009 + 0.005 0.015 + 0.074 0.077 + 0.062 0.098 £ 0.018 0.107 + 0.009 0.019 + 0.023 0.111 £ 0.036
Ionosphere 0.015 0.023 + 0.009 0.034 + 0.001 0.027 £ 0.011 0.018 + 0.012 0.018 + 0.006 0.030 £+ 0.003 0.027 + 0.002  0.027 + 0.025
Wine 0.122 0.306 + 0.047 0.222 £ 0.015 0.269 £ 0.03  0.249 + 0.036 0.176 £ 0.046  0.309 + 0.025 0.301 £ 0.017 0.311 + 0.044
Iris 0.301 0.247 £ 0.045 0.309 + 0.048 0.231 £ 0.019 0.195 + 0.055 0.300 £ 0.019 0.328 + 0.014 0.270 + 0.007 0.351 £ 0.009
Cancer 0.106 0.119 £ 0.063 0.277 £ 0.015 0.241 +£ 0.076 0.305 + 0.084 0.118 £ 0.045 0.307 + 0.022 0.202 + 0.011 0.311 + 0.012
AT&T Faces 0.247 0.288 + 0.013 0.321 +0.034 0.242 + 0.022 0.268 + 0.026 0.321 £ 0.026  0.319 + 0.009  0.207 + 0.024 0.325 £ 0.018
Mnist 0.176 0.211 £ 0.010 0.275 +0.009 0.301 +0.012 0.314 + 0.004 0.286 + 0.014 0.299 + 0.003  0.189 + 0.008 0.374 £ 0.006
USPS 0.217 0.229 £ 0.018 0.306 + 0.017 0.253 £ 0.010 0.286 + 0.021 0.294 £ 0.013 0.317 £ 0.006 0.262 + 0.021  0.309 * 0.027

Following [24], the cluster membership of each noised data point is determined by a K-Means algorithm applied to the
reduced representation learned by each NMF algorithm. Identical to the experiment reported in Table 2, we set r equal
the number of classes contained in each dataset.

Table 6. ACCs and Standard Deviations of a Collection of NMF Algorithms Performed on Real-World
Datasets that Are Corrupted with Random Noise

K-means NMF LSNMF nsNMF PMF SNMF ANMF G-inidicator Ours

Heart 0.009 0.011 + 0.007 0.018 £ 0.003 0.027 + 0.011 0.047 + 0.005 0.018 + 0.009 0.076 + 0.013  0.030 + 0.008 0.088 + 0.011
ITonosphere 0.011 0.027 £ 0.009 0.015 + 0.005 0.027 + 0.006 0.014 + 0.003 0.033 £ 0.010  0.029 + 0.010  0.076 + 0.011 0.034 + 0.021
Wine 0.118 0.201 + 0.043 0.228 + 0.011 0.189 + 0.030 0.293 + 0.027 0.285 + 0.034  0.244 +£0.09  0.268 + 0.021 0.300 £ 0.035
Iris 0.289 0.256 + 0.039 0.301 £ 0.050 0.251 +0.014 0.205 + 0.049 0.278 £ 0.023  0.302 + 0.018  0.222 + 0.008 0.341 + 0.010
Cancer 0.113 0.201 + 0.058 0.275 + 0.014 0.247 + 0.069 0.296 + 0.081 0.120 + 0.034 0.311 £ 0.034 0.208 + 0.010  0.308 + 0.010
AT&T Faces 0.209 0.271 £0.011 0.309 + 0.028 0.231 + 0.017 0.254 + 0.031 0.287 £ 0.026  0.296 + 0.018 0.204 + 0.009 0.314 £ 0.012
Mnist 0.188 0.201 +0.014 0.269 £ 0.011 0.285 + 0.008 0.311 + 0.004 0.295 £ 0.025 0.296 + 0.005 0.197 + 0.010 0.368 + 0.007
USPS 0.214 0.218 £ 0.032 0.304 + 0.014 0.248 + 0.012 0.277 £ 0.018 0.301 £ 0.006  0.290 + 0.002  0.209 + 0.022 0.320 + 0.038

Following [24], the cluster membership of each noised data point is determined by a K-Means algorithm applied to the
reduced representation learned by each NMF algorithm. Identical to the experiment reported in Table 3, we set r equal
the number of classes contained in each dataset.

following figures, we are interested in showing two types of convergence. First, we would like to
verify that our algorithm obtains an overall convergence of our objective and, second, that F and
G also converge. This experiment serves as a validation of the rigorous mathematical convergence
analysis of our algorithm.

Figure 2 shows how the objective in Equation (7) and MUA changes through an update on
the Wine dataset. We can clearly see that the objective function using our method decreases at a
sub-linear rate, which presents a faster converging rate relative to the MUA method. This finding
successfully supports our previous mathematical discussions. Furthermore, in order to validate
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Fig. 2. The converging rate between the factor-bounded NMF objective (Equation (7)) and MUA.
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Fig. 3. Left: |[Fx, 1 — Frllr plotted with an update of our method. Right: ||Gr,; — G| plotted with an
update. Both plots converge to zero after several iterations; this empirically validates the convergence of the
matrix factors discussed in Section 3.

that our proposed method gets factor matrices F and G converged, we plot the gap between every
two iterations in Figure 3. We see that after around 500 iterations, both factor matrices are stable
and have converged; this empirical evidence also agrees with our proof.

5.3 Case Study: Learned Features

In the seminal paper introducing NMF by Lee and Seung [19], the authors stress that an inter-
pretable benefit of NMF is that it can learn a “parts-based representation” of the original data
instead of the “holistic” representations, which are learned via algorithms such as principal com-
ponent analysis (PCA) and other similar embeddings. Provided that the bounds on F and G are
also positive, we would assume that our algorithm will also learn a parts-based representation. To
verify this assumption, and see how our method’s learned features compare to other NMF algo-
rithms, we plot a few components of each matrix factorization algorithm derived from the rows
of F trained on the AT&T Faces dataset.

In Figure 4, we plot five randomly chosen rows of F for the same algorithms tested in Tables 1 and
4. We clearly see in Figure 4 that our proposed algorithm learns a parts-based representation similar
to other NMF implementations. This “parts-based representation,” provided in conjunction with
the factor-bounded constraint, affords a level of guaranteed interpretability that, to the authors
knowledge, has not previously been shown.
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Fig. 4. Learned feature comparison between our method and other state-of-the-art methods on the AT&T
Faces dataset. Note that we only show 5 randomly chosen (out of 40) centroids selected from the rows of F for
each method. Observe that the factor-bounded NMF algorithm also learns a “parts-based representation”
similar to other compared algorithms.

6 CONCLUSION

In this article, we explored factor-bounded NMF problems where the feature matrix and the
membership matrix are assumed to lie within certain regions. In particular, we incorporated the
element-wise constraint on the factor matrices to make the NMF more suitable for clustering ap-
plications. Moreover, we have provided a rigorous convergence analysis for the alternating pro-
jected gradient descent when applied to solve the corresponding factor-bounded NMF. We have
shown the sequence generated by the projected gradient descent method is convergent and that it
converges to a critical point.
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