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ABSTRACT: The scope of graphene nanoribbon (GNR) structures accessible through bottom-up approaches is defined by the
intrinsic limitations of either all-on-surface or all-solution-based synthesis. Here, we report a hybrid bottom-up synthesis of GNRs
based on a Matrix-Assisted Direct (MAD) transfer technique that successfully leverages technical advantages inherent to both
solution-based and on-surface synthesis while sidestepping their drawbacks. Critical structural parameters tightly controlled in
solution-based polymerization reactions can seamlessly be translated into the structure of the corresponding GNRs. The
transformative potential of the synergetic bottom-up approaches facilitated by the MAD transfer techniques is highlighted by the
synthesis of chevron-type GNRs (cGNRs) featuring narrow length distributions and a nitrogen core-doped armchair GNR (N4-7-
ANGR) that remains inaccessible using either a solution-based or an on-surface bottom-up approach alone.

The bottom-up synthesis of graphene nanoribbons
(GNRs), quasi-1D strips of graphene that can host

precisely tunable band gaps and topological engineered states,
has largely been restricted to two complementary but mutually
incompatible approaches.1−7 The first is an on-surface
catalyzed radical step-growth mechanism well-suited for the
detailed characterization of GNRs using advanced scanning
probe microscopy (SPM) imaging and spectroscopy. The
second is a more conventional solution-based approach that
takes advantage of the superior control over critical perform-
ance parameters provided by modern step-growth and living
polymerization techniques.8,9 While the first technique has
been a workhorse for the exploration of electronic properties
emerging from lateral quantum confinement in graphene, the
control over critical structural parameters, e.g., GNR length,
monomer sequence, number and position of interface states,
and functional end-groups has been limited by the short-
comings of surface-catalyzed radical step-growth polymer-
ization.10 In contrast, solution-based approaches can overcome
many of the structural limitations encountered in the on-
surface growth. Modern synthetic protocols give access to
sequence controlled (co)polymer precursors to functional
GNRs. Both the length and functional end-groups can be
precisely controlled using living polymerization techniques.11

For either technique, the scope of the synthetically accessible
GNR structures is largely dictated by unique sets of
requirements imposed by either the underlying surface-growth
or solution-based polymerization mechanisms and are often
exclusive to either technique.12,13 Leading efforts to integrate
bulk solution-synthesized GNRs with advanced surface-based
characterization tools have relied on a direct contact transfer
(DCT) sample preparation technique.14 While this approach
has successfully been used to characterize solution-synthesized
GNRs using SPM, the sample preparation suffers from the
common trend of GNRs to aggregate into amorphous bundles

through π−π stacking interactions.14,15 Furthermore, DCT of
fully cyclized solution-synthesized GNRs fails to take
advantage of a wealth of chemical transformations and
structures exclusively accessible through on-surface growth
techniques.5,16,17

We herein report a hybrid bottom-up approach that
successfully combines three key elements of advanced GNR
synthesis: (i) the exquisite structural control provided by
solution-based polymerization techniques gives access to
sequence-controlled (co)polymer GNR precursors featuring
narrow and well-defined length distributions, (ii) matrix-
assisted direct (MAD) transfer (Figure 1) of these GNR
precursors onto solid substrates, e.g., Au(111), enables surface
catalyzed chemical transformations widely used in the on-
surface synthesis of GNRs, (iii) preparation of spatially isolated
GNRs on scanning tunneling microscopy (STM) compatible
substrates gives access to advanced bond-resolved imaging and
spectroscopic characterization techniques previously reserved
for surface grown GNRs.
We initially studied the thermally induced surface catalyzed

cyclodehydrogenation of poly-1 (Scheme 1), a precursor to
chevron-type GNRs (cGNRs), deposited on Au(111) surfaces
using our MAD transfer technique. Size exclusion chromatog-
raphy (SEC) analysis of samples of poly-1 prepared through
Ni(cod)2 catalyzed Yamamoto step-growth polymerization18 of
6,11-dibromo-1,2,3,4-tetraphenyltriphenylene exhibit broad
molecular weight distributions (Đ = 1.3, SI Figures S1 and
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S2) and M that ranges between 2−12 kg mol−1. Preparative
SEC of a crude sample of poly-1 soluble in CHCl3 yielded a
low Mn fraction poly-1a (M = 2−7 kg mol−1) and a high Mn
fraction poly-1b (M = 7−12 kg mol−1). Matrix-assisted laser
desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS) of poly-1a (Figure 2A) shows a family
of peaks separated by integer repeat units of the monomer
mass (Δm/z = 530 u) ranging from the 5mer to the 13mer, m/
z = 2661 u to m/z = 6905 u, respectively. MALDI of the high

Mn fraction poly-1b (Figure 2B) reveals an analogous series of
mass signals (Δm/z = 530 u) ranging from the 15mer to the
22mer (m/z = 7968 u to m/z = 11681 u), albeit at significantly
lower intensities. End-group analysis suggests that the
polymers are terminated by hydrogen atoms on either end of
the chain.
With two unique fractions of poly-1 in hand we set out to

prepare samples for MAD transfer onto Au(111) substrates.
Selection of a suitable matrix requires consideration of both
chemical and materials properties. The matrix itself must be
chemically inert across a wide range of temperatures to avoid
undesired reactions with the polymer sample or uncontrolled
thermal decomposition during processing. A low melting point,
Tm, ensures that the polymer can readily be dissolved in a melt
of the matrix under ambient conditions. Dispersion and
dilution of the polymer sample is most effective if the
noncovalent interactions between the matrix and the polymer
sample are stronger than the attractive interactions between
molecules of the sample themselves. Traceless removal of the
matrix following deposition can only be achieved if the matrix
exhibits a low enthalpy of sublimation, ΔHsub°, and undergoes
a solid/gas phase transition in UHV. While a wide variety of
polycyclic aromatic hydrocarbons meet the criteria listed
above, we herein relied on pyrene (Tm = 151.1 ± 0.5 °C,
ΔHsub° = 23.9 ± 0.3 kcal mol−1) as a universally accessible
traceless matrix.19−21

Dispersions of poly-1a and poly-1b (0.1 wt %) in a melt of
pyrene were prepared and rapidly solidified at −78 °C before
being ground into a fine powder and deposited in UHV onto a
Au(111) surface using a fiberglass stamp (Figure 1). Annealing
of the molecule-decorated surface at 300 °C for 10 min in
UHV induces sublimation of the bulk matrix (∼99 wt %
pyrene). STM images on Au(111) reveal a submonolayer
coverage of the surface with islands of parallel aligned chains of
poly-1 separated by a random network of residual pyrene
molecules (Figure 2C). The characteristic adsorption geometry
and structural features of poly-1 synthesized in solution and
deposited by MAD transfer on a Au(111) surface are
indistinguishable (0.28 ± 0.03 nm, 1.5 ± 0.1 nm, 1.5 ± 0.1
nm, height, width, and length of the polymer repeat unit) from
an original sample prepared via a surface catalyzed radical step
growth polymerization of 6,11-dibromo-1,2,3,4-tetraphenyltri-
phenylene on Au(111).3 Further annealing of the sample at
420 °C for 10 min induces a thermal cyclodehydrogenation
that transforms the polymer precursor poly-1 into the fully
conjugated backbone of cGNRs (Figure 2D,G). STM
topographic images reveal the characteristic structural features
of cGNRs (0.18 ± 0.03 nm, 2.5 ± 0.2 nm, 1.5 ± 0.1 nm,
height, width, and length of the GNR repeat unit) separated by
isolated matrix molecules (Figure 2D).3,22 Extending the
annealing step from 10 to 30 min leads to the complete
desorption of the remaining submonolayer of pyrene leaving
only cGNRs behind (Figure 2H). Direct comparison with a
sample of poly-1 deposited on Au(111) using a matrix-free
DCT technique serves to highlight the critical role of the
pyrene matrix in our MAD transfer process. STM topographic
images reveal that, in the absence of a matrix, thermal
annealing of poly-1 leads exclusively to irregular carbon
networks rather than discrete cGNRs (SI Figure S3).
To demonstrate the potential of our MAD transfer process

we recorded large area topographic STM images and
performed statistical length analysis of cGNRs grown from
samples of poly-1a (M = 2−7 kg mol−1, 5−13 monomers

Figure 1. MAD transfer process: (A) Loading of fiberglass applicator
with polymer sample dispersed in an inert matrix under ambient
conditions; (B) MAD transfer of polymer dispersion onto STM
substrate in ultrahigh vacuum (UHV); (C) annealing induces
traceless sublimation of bulk matrix followed by cyclodehydrogena-
tion leaving spatially isolated GNRs behind.

Scheme 1. Bottom-Up Synthesis of cGNRs using a MAD
Transfer of poly-1 Followed by Thermal
Cyclodehydrogenation
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units) and poly-1b (M = 7−12 kg mol−1, 15−22 monomers
units) (Figure 2G−H, SI Figure S4). Figure 2E,F shows
histograms for cGNR length (as a function of monomer units)
resulting from samples of poly-1a (N = 130) and poly-1b (N =
70). The mode, the mean, the median, the skewness (g), and
even the kurtosis (κ) of the statistical length distribution of
cGNRs mirrors the m/z distributions previously determined by
MALDI-TOF MS of the original samples of poly-1a (Figure
2A) and poly-1b (Figure 2B). This remarkable correlation
suggests that critical structural and functional parameters
designed into a solution-synthesized GNR (co)polymer
precursor, e.g., length, monomer sequence, and potentially
even functional end groups, can be seamlessly translated into
the structure of the resulting fully cyclized surface-supported
GNRs.
To further illustrate the technological advancement enabled

by MAD transfer we applied our technique to the synthesis of
N4-7-AGNR, a nanoribbon that, thus far, has been inaccessible
using conventional bottom-up approaches. The structure of
N4-7-AGNRs (Scheme 2) can be derived from an alternating
copolymer, poly-2, formed through a Suzuki-Miaura step-
growth polymerization of anthracene-9,10-diyldiboronic (A)
with 5,10-dibromopyrazino[2,3-g]quinoxaline (P). The alter-
nating (A−P)n pattern of monomer building blocks in N4-7-
AGNR is incompatible with the typical requirement for a
symmetric repeat unit used in on-surface radical step-growth
polymerizations of GNRs. At the same time, the oxidative
cyclodehydrogenation of all peri-positions in poly-2 involves
the formation of C−N bonds: a challenging transformation in
solution yet readily accessible even at moderate temperatures
on Au(111) surfaces.16,23 The introduction of MAD transfer
techniques enabled us to design a bottom-up synthesis of N4-7-
AGNR that takes advantage of the superior sequence control
imparted by solution-based transition metal catalyzed cross-

coupling reactions, while retaining access to the surface-
catalyzed cyclodehydrogenation sequence facilitated by the
Au(111) substrate.
STM topographic images of short segments of N4-7-AGNR

prepared by depositing a dispersion of 0.1 wt % poly-2 in a
pyrene matrix onto a Au(111) substrate followed by annealing
of the molecule decorated surface at 280 °C for 10 min are
shown in Figure 3A. The uniform width (0.95 ± 0.05 nm) and
height (0.19 ± 0.02 nm) of the molecular adsorbates is
consistent with the expected dimensions of fully cyclo-

Figure 2. MALDI-TOF MS of (A) poly-1a and (B) poly-1b. (C) STM topographic image (Vs = −2.0 V, It = 50 pA) of poly-1b deposited on a
Au(111) surface using MAD transfer followed by sublimation of the bulk pyrene matrix at 300 °C for 10 min. The inset shows a self-assembled
island of uncyclized poly-1b (Vs = −2.0 V, It = 100 pA). (D) STM topographic image of short cGNRs resulting from annealing of a MAD-
transferred sample of poly-1a to 420 °C for 10 min (Vs = 0.3 V, It = 200 pA). Histogram of cGNR length resulting from (E) poly-1a (N = 130) and
(F) poly-1b (N = 70) as a function of the number of monomer units. (G) STM topographic image (Vs = −1.0 V, It = 20 pA) of short cGNRs
resulting from annealing of a MAD-transferred sample of poly-1a to 420 °C for 10 min. (H) STM topographic image (Vs = −2.0 V, It = 20 pA) of
long cGNRs resulting from annealing of a MAD-transferred sample of poly-1b to 420 °C for 30 min.

Scheme 2. Bottom-Up Synthesis of N4-7-AGNR Segments
using a MAD Transfer of poly-2 Followed by Thermal
Cyclodehydrogenation
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dehydrogenated N4-7-AGNR segments. The longitudinal
dimension is an integer multiple of 0.5 ± 0.05 nm
commensurate with the average length added by either an
anthracene or a pyrazino[2,3-g]quinoxaline unit. STM with
passivated tips reveals that most N4-7-AGNR feature an odd
number of monomer units (>95%) and are terminated
preferentially by anthracene groups. Figure 3B shows a
topographic image of a N4-7-AGNR oligomer featuring an
alternating (A−P−A−P−A) pattern of three anthracene and
two pyrazino[2,3-g]quinoxaline units. All eight pyrazino[2,3-
g]quinoxaline nitrogen atoms have successfully undergone
surface catalyzed cyclodehydrogenation. dI/dV maps of the
same N4-7-AGNR oligomer recorded across a bias of −1.8 V to
+1.6 V (Figure 3C−K) show distinct features reflecting the
molecular orbitals of the N4-7AGNR, in full agreement with
DFT calculations (SI Figure S7). The nonvanishing local
density of states around the Fermi level (EF) (Figure 3F−H, SI
Figure S7) is furthermore suggestive of p-type doping of N4-7-
AGNR on Au(111).
In summary, we report a hybrid bottom-up synthetic

approach toward GNRs relying on a MAD transfer of

solution-synthesized polymer precursors onto a Au(111)
substrate. Traceless removal of the bulk pyrene matrix followed
by surface-assisted cyclodehydrogenation yields spatially
isolated GNRs suitable for STM imaging and spectroscopy.
We demonstrate that control over key structural parameters
uniquely accessible through solution-based polymerization
techniques can seamlessly be translated into the structure of
the resulting surface-supported GNRs. The synergy between
solution and surface-based bottom-up approaches enabled by
our traceless MAD transfer technique provides synthetic
avenues to complex functional GNR architectures that have
thus far been inaccessible by conventional synthetic tools, but
the possibility to transfer to any surface of choice (SI Figure
S9) also paves the way for the integration of functional GNRs
with lithographically patterned integrated circuit architectures.
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