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a b s t r a c t 

A novel mesh-free approach has been developed to solve the conduction heat transfer equations in a 

particulate bed domain of ferromagnetic powder with and without magnetic field effect. The proposed 

method is based on a probabilistic approach to defining various configurations of energy transfer paths 

around an arbitrary particle called “local packed element”, and results are compared with experimental 

data. Furthermore, a Monte-Carlo approach is used to calculate the magnetic field of a permanent mag- 

net with an arbitrary shape on any arbitrary point around it, and the outcome is also compared against 

measurements. In both cases, the proposed mesh-free method shows excellent agreement with available 

empirical results. The proposed method is then used to model the effect of an external magnetic field in 

the conductive heat transfer in a particulate bed of ferromagnetic powder. It is concluded that the pres- 

ence of a magnetic field increases thermal diffusion in ferromagnetic powder bed domains by increasing 

thermal conductivity. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

Porous and particulate materials are used in various important 

engineering and scientific applications. Heat transfer in such do- 

mains is a main design concern in many of these applications. 

Electrical devices [1] , 3D metal printing [ 2 , 3 ] and selective laser 

sintering [ 4 , 5 ], solid fuel-cells [ 6 , 7 ], thermal barrier coating [8–10] , 

and fixed and moving bed heat exchangers [ 11 , 12 ] are examples of 

industrial applications of particulate materials which modeling of 

heat transfer is one the essential design challenges today. To ex- 

pand it more, there is great interest in both academy and indus- 

try to investigate the use of particulate beds of metal hydrides for 

applications such as heat pumps [ 13 , 14 ]. Particle bed reactors are 

being designed for space nuclear applications [15] . As mentioned, 

thermal management in most of these applications is critical in the 

design process. Simulation of heat transfer in particulate beds re- 

quires taking into consideration the size and shape of the parti- 

cles, volume fraction, porosity, interfacial thermal resistance and 

the configuration of particle assembly. Several numerical methods 

have been used to model the heat transfer behavior of particle 

beds. Finite Element Methods (FEM) are particularly well estab- 

lished for the simulation of the heat transfer problem in particle 
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beds. In microscale (a simulation domain including a small num- 

ber of particles) a FEM model of a particle bed may include most 

relevant details of the particle configuration into account [16–19] . 

On the other hand, the simulation of macroscale problems, includ- 

ing previously considered intricate geometric details in the calcu- 

lation, is computationally prohibitive for FEM. In other words, to 

model a particle bed with a significant level of geometric fidelity 

using finite element methods is computationally very intensive 

and possibly impractical, since the number of elements required 

to realistically represent the geometry of particle bed configura- 

tions in macroscale problems is very large. In FEM simulations, a 

large number of elements yields a large stiffness matrix that needs 

to be inverted at each time step, which leads to a significant in- 

crease of the computational burden as the number of elements in- 

creases. The conventional approach to deal with this issue when 

using FEM models to develop macroscale simulations is based on 

the use of “effective” parameters to model the average behavior of 

particle beds. That is, the details of possible geometric configura- 

tions are not modeled, and instead “equivalent parameters” based 

on particle size, configuration, volume fraction, thermal properties 

of materials, etc., are used [20–24] . Such approximations, when 

using FEM models to analyze macroscale problems, may lead to 

significant loss of fidelity. In this context, the boundary element 

method seems to be a better fit technique as discretization only 

occurs at the boundary of the particle rather than inside the whole 

particle [25–27] . Hybrid approaches are developed to improve the 
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homogenization and volume averaging. Polansky et.al combined 2D 

and 3D porous media modeling with a resistive network model to 

estimate the effective conductivity [28] . 

When modeling particle beds, the discrete element method 

(DEM) aims at connecting the microscale parameters of particles 

such as particle size, surface to volume ratio, surface roughness, 

porosity, and shape to the macroscale properties of the packed par- 

ticle bed, such as thermal conductivity, bulk porosity, angle of re- 

pose, cohesion, etc., by using molecular dynamics governing equa- 

tions. Several surveys can be found describing various approaches 

to undertake heat transfer in particulate beds using DEM or com- 

bined DEM-FEM approaches [29–34] . The main difficulty when 

modeling a system with millions or billions of particles lies in find- 

ing where the nearest neighbors are: the model needs to repre- 

sent how particles with different sizes and shapes pack. In the 

current state of the art, deterministic pre-location of particles in 

a lattice (including fine particles in a porous bed) is typically im- 

plemented using Voronoi tessellation in DEM, or Monte-Carlo tech- 

niques [ 35 , 36 ]. 

Randomness is an important characteristic of the distribution of 

particles in a particle bed. The size, shape, material, and location of 

each particle can be realistically described by appropriate distribu- 

tion functions within specified ranges of the particle’s properties. 

Probabilistic methods like Monte-Carlo have been used to address 

heat transfer solution in numerous studies [37–39] . They are strong 

candidates to solve boundary and initial value problems in parti- 

cle beds since they inherently incorporate the random nature of 

the relevant physical parameters involved. Recent studies in both 

two and three-dimensional systems [ 40 , 41 ] have used Monte-Carlo 

based probabilistic approaches combined with analytical solutions 

in polar and spherical coordinates to solve the steady-state and 

transient heat conduction problem in composite materials. This pa- 

per describes an adaption of the latter parallelizable method that 

uses a probabilistic approach to provide a high-fidelity model of 

particle configuration as relevant to the solution of the heat trans- 

fer problem, while addressing the aforementioned limitations in 

the state of the art macroscale models based on FEM and DEM. 

2. Formulations 

2.1. Heat transfer 

The “Effective Floating Volume” (EFV) [42] is a novel approach 

proposed by Bahadori et al. to solve transient heat conduction 

problems in multi-scale systems, i.e., systems where small and 

large dimensions need to be considered to properly describe the 

system’s geometry. Important examples of multi-scale systems are 

physical domains with thin layers of materials that have significant 

effect in the physics being considered, such as thermal or electrical 

insulators in electrical machines or the layers in a superconduct- 

ing material. When using EFV to solve heat transfer equations, the 

temperature at the center point of a spherical element is calculated 

using Eq. (1) : 

T C = 

∫ 2 π0 ∫ π0 
T 1 ( r,θ ,ϕ ) + 

∑ M 
m =2 d T m ( r,θ ,ϕ ) 

∫ R 0 
dr ′ 

sin ( θ ) r 2 α(r ′ ,θ ,ϕ,T ) 

d θd ϕ 

∫ 2 π0 ∫ π0 
1 

∫ R 0 
dr ′ 

r 2 sin ( θ ) α(r ′ ,θ ,ϕ,T ) 

d θd ϕ 
(1) 

where r, θ and ϕ are radius, elevation, and azimuth in spheri- 

cal coordinates, α is thermal diffusivity and T the corresponding 

temperature. The EFV method is based on the numerical integra- 

tion of the energy transfer through paths starting at the bound- 

ary of a spherical element and ending at its center, where d T m = 

T m − T m −1 , m = 2 , 3 , . . . , M denotes the temperature difference at 

the acquisition points numbered from the center to the boundary. 

This formulation takes into account the initial condition, bound- 

ary condition, and heat source effect at every point in the sphere, 

and converts their combined effects into temperature at the corre- 

sponding acquisition points; numerical integration is then used to 

calculate the impact of all points within the sphere on the tem- 

perature at the center point T C . In this paper, the EFV method is 

adapted to model heat conduction in particle beds. 

When modeling heat conduction in particle beds, thermal en- 

ergy is transferred from one particle to the adjacent ones; heat 

flow and thermal contact resistance are the main parameters in 

the analytical derivation of the energy transfer through each path. 

The other path of energy transfer is through conduction by the 

interstitial gas trapped in the porous cavities between particles, 

and radiation heat transfer is neglected. Heat transfer in micro 

contacts is modeled by conduction through the gas in the micro 

gaps and conduction trough the solid points of contact. Bahrami 

et al. [21] developed formulations for the effective thermal resis- 

tance in rough spherical packed beds. From this method, one can 

develop a formulation for ellipsoids with arbitrary radii, since el- 

lipsoids are good approximations for particle shapes. Fig. 1 depicts 

the different types of heat flow between two particles in two and 

three-dimensional approximations. The equivalent system shown 

in Fig. 1 can be calculated by Eq. (2) : 

P = 

[

1 

( 1 / P s + 1 / P g ) 
−1 

+ P L 
+ 

1 

P G 

]−1 

(2) 

where P s is the thermal resistance in the micro contacts, P g the 

thermal resistance of the gas trapped between micro contacts, P L 
the constriction thermal resistance in the particles, and P G the 

thermal resistance of the gas between particles. 

Fig. 1 shows the layout of two particles randomly placed in con- 

tact. In the two-dimensional case, the distances r c, 1 and r c, 2 can be 

calculated using Eqs. (3) and (4) . The path length of heat transfer 

between two center points is L = r c, 1 + r c, 2 . Starting from parti- 

cle 1, ω defines the angle that particle two comes in contact with 

particle one with respect to the global coordinate system. The pro- 

cedure repeats for the next particle to eventually form a path for 

conductive energy transfer from boundary to sink. r s,1 , r s,2 , r b,1 , and 

r b,2 , are possible values for major ( b ) and minor ( s ) radii for parti- 

cles 1 and 2. 

r c, 1 = 

[

1 

r 2 
s, 1 

cos 2 ( ω ) + 
1 

r 2 
b, 1 

sin 2 ( ω ) 

]−1 / 2 

(3) 

r c, 2 = 

[

1 

r 2 
s, 2 

cos 2 ( ω + π ) + 
1 

r 2 
b, 2 

sin 2 ( ω + π ) 

]−1 / 2 

(4) 

The Monte-Carlo method can be used to generate a random dis- 

tribution of the above angles and dimensions. Eqs. (5) –(7) repre- 

sent the corresponding probability functions: probability distribu- 

tions of the particles’ size, shape, and orientations within specified 

ranges. 

r s = r s,max − [ ( r s,max − r s,min ) RN ] (5) 

r b = r b,max −
[(

r b,max − r b,min 

)

RN 
]

(6) 

ω = 2 π ( RN ) (7) 

where RN stands for a uniformly generated random number be- 

tween 0 and 1. RN numbers are generated separately for each of 

the Eqs. (5) –(7) . r s and r b are possible values for the small and 

big radius of the ellipsoid in the two-dimensional case, respec- 

tively; these radii are defined within ranges denoted by the inter- 

vals [ min, max ] . To minimize the particle overlap, parameters are 

set in the code to propagate the paths in the first layer around the 

center particle by a multiple order of 6 in 2D and 12 in 3D, then 

they branch in the next layers. (i.e., energy packets share the same 
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Fig. 1. Heat flow and thermal resistance between ellipsoidal particles with rough contact Area. (a) Two-dimensional case and relevant geometric parameters, and heat flow 

Q g (b) microscopic view of thermal contact heat flow, (c) equivalent thermal resistance, (d) three-dimensional case: geometric parameters and heat flow. 

path when they get closer to the center). Similarly, in the three- 

dimensional case, contact radii r c, 1 and r c, 2 can be calculated using 

Eqs. (8) and (9) and the heat transfer path length is L = r c, 1 + r c, 2 . 

r c, 1 = 

[

1 

r 2 
s, 1 

sin 2 ( θ ) cos 2 ( ϕ ) + 
1 

r 2 
m, 1 

sin 2 ( θ ) sin 
2 
( ϕ ) + 

1 

r 2 
b, 1 

cos 2 ( θ ) 

]−1 / 2 

(8) 

r c, 2 = 

[

1 

r 2 
s, 1 

sin 2 ( θ + π ) cos 2 ( ϕ + π ) + 
1 

r 2 
m, 1 

sin 2 ( θ + π ) sin 
2 
( ϕ + π ) 

+ 
1 

r 2 
b, 1 

cos 2 ( θ + π ) 

]−1 / 2 

(9) 

The geometric coordinates θ and ϕ are the elevation and az- 

imuth angles for each particle’s orientation in the global coordi- 

nate system, and ϑ and ψ are the elevation and azimuth angles 

that define the contact orientation of particle two with respect to 

particle one. In the three-dimensional case, the ellipsoidal volume 

is specified by small, medium and big radii noted as by r s , r m and 

r b , respectively. Eqs. (10) –(14) are used to determine each geomet- 

ric parameter value in its specified range [ min, max ] : 

r s = r s,max − [ ( r s,max − r s,min ) RN ] (10) 

r m = r m,max − [ ( r m,max − r m,min ) RN ] (11) 

r b = r b,max −
[(

r b,max − r b,min 

)

RN 
]

(12) 

θ = co s −1 ( 1 − 2 RN ) (13) 

ϕ = 2 π ( RN ) (14) 

Fig. 2 illustrates a Monte-Carlo distribution of energy transfer 

paths in a three-dimensional domain. Each of the path distribu- 

tions shown in Figs. 2 and 4 have shapes and orientations based on 

the random variables defined by Eqs. (3) –(14) . The temperature in 

the center particle can be calculated using Eq. (1) and information 

of temperature from previous step and thermal resistivity from en- 

ergy transfer path configuration. One can generate a bank of path 

Fig. 2. Three-dimensional Monte-Carlo distribution of thermal energy transfer by 

random paths to the center point of a spherical element. 

distributions and randomly call one of them to calculate the tem- 

perature at each desired point in the geometry. Eq. (15) is used 

to calculate the thermal resistance P L experienced by each particle 

[21] : 

P L = 
1 

2 k s a L 
(15) 

where k s = 2 k 1 k 2 / ( k 1 + k 2 ) is the equivalent thermal conductivity 

of two contacting particles, and a L the radius of macro contact as 

defined by Eq. (16) [43] : 

a L = 

(

3 r ∗F 

4 E ∗

)1 / 3 

(16) 

where r ∗ = (1 /r c, 1 + 1 /r c, 2 ) 
−1 , and E ∗ = [(1 − ν1 

2 ) /E 1 + (1 −

ν2 
2 ) /E 2 ] 

−1 is the equivalent modulus of elasticity calculated from 

the corresponding moduli of elasticity E i and poison ratio v i 
of particles 1 and 2. The thermal contact resistance P s can be 

3 
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Table 1 

Coefficients of the inverse probability function for Eq. (20) and (21) . 

D 1 D 2 D 3 D 4 

0.0-0.1 0.079578 0.079621 0.058919 0.048997 

0.1-0.3 0.079515 0.081077 0.048261 0.074542 

0.3-0.6 0.070722 0.150740 -0.13699 0.240830 

obtained from the formulation developed in [44] : 

P s = 
0 . 565 H ∗( σ /m ) 

k s F 
(17) 

where F is the contact force acting on the particle, H ∗ = 

c 1 ( σ
′ /m ) c 2 , σ ′ = σ / σ0 , σ = 

√ 
σ 2 
1 + σ 2 

2 is the combined roughness 

of two particles in contact, and σ0 = 1 µm . The surface slope is de- 

fined as m = 
√ 
m 2 
1 + m 2 

2 , and each surface slope is calculated based 

on its corresponding roughness: m p = 0 . 152 σp 
0 . 4 , p = 1 , 2 [21] . c 1 

and c 2 are defined in Eqs. (18) and (19) , where k = H B / H BGM , H B 

is the Brinell hardness of the bulk material (in GPa ) and H BGM = 

3 . 178 GPa . 

c 1 = H BGM 

(

4 . 0 − 5 . 77 k + 4 . 0 k 2 − 0 . 61 k 3 
)

(18) 

c 2 = −0 . 57 + 0 . 82 k − 0 . 41 k 2 + 0 . 06 k 3 (19) 

Heat transfer in micro gaps ( P g ) and macro gaps ( P G ) are ne- 

glected in this study, and the relations to calculate them are shown 

in [21] . 

Eqs. (20) and (21) provide the relationship between time τ and 

the corresponding distance r the energy can travel [41] . Having = 

N 
∑ 

i =1 

L i , L = r c, 1 + r c, 2 , and the equivalent thermal conductivity from 

reciprocal of Eq. (2) , the required time τ for an energy particle to 

travel the distance r can be calculated as: 
ατ

r 2 
= D 1 + D 2 ( R N 3 ) + D 3 ( R N 3 ) 

2 
+ D 4 ( R N 3 ) 

3 RN3 < 0 . 6 (20) 

ατ

r 2 
= −0 . 10132 ln [ 0 . 5 ( 1 − R N 3 ) ] RN3 ≥ 0 . 6 (21) 

Conversely, having the step time, one can trace the sequence of 

randomly distributed particles along the energy transfer path and 

reconstruct the sequence to the point that the required time is ap- 

proximately equal to the step time τ . Table 1 shows the values of 
the coefficients in Eqs. (20) and (21) . 

2.2. Probabilistic model of magnetic field 

To enhance thermal conduction in a particle bed of ferromag- 

netic particles, one can use an external magnetic field to apply 

force on the particles. The Monte-Carlo method provides a mesh- 

free approach to model the field of a permanent magnet even 

with a complex shape. Generally, using this method, any complex 

permanent magnet can be modeled as NC magnetic components, 

where the magnetization vector of each component can be defined 

in arbitrary magnitude and direction. Eq. (22) defines the magnetic 

field strength of the permanent magnet at an arbitrary point P as 

a summation of the effect of all combined components used to de- 

scribe the permanent magnet: 

H m ( p ) = −
1 

4 π
∇ 

∫ ∫ ∫ 
(

~ M . ~ r 
)

| r 3 | 
dV (22) 

Defining the arbitrary magnetization vector M = [ M x M y M z ] 

and position vector r = [ x y z ] (which represents the distance of a 

magnetic component to an arbitrary point Ŵ), one can obtain the 

components of H m (p) along the x, y, and z directions, as shown in 

Eqs. (23) –(25) : 

H mx ( p ) = 
−dV 

4 π

[

M x 

( r ) 
3 

−
3 x ( M x x + M y y + M z z ) 

( r ) 
5 

]

(23) 

H my ( p ) = 
−dV 

4 π

[

M y 

( r ) 
3 

−
3 y ( M x x + M y y + M z z ) 

( r ) 
5 

]

(24) 

H mz ( p ) = 
−dV 

4 π

[

M z 

( r ) 
3 

−
3 z ( M x x + M y y + M z z ) 

( r ) 
5 

]

(25) 

Superposition of the magnetic field strength H of all magnetic 

components p = 1 to NC with volume dV on an arbitrary point Ŵ

defines the magnetic field effect of the permanent magnet at point 

Ŵ. Using Eqs. (23) –(25) , one can calculate H on each ferromagnetic 

particle in the particle bed. With H, one can calculate the magnetic 

flux density B due to the permanent magnet on each particle in 

the particle bed. To calculate the force acting on the ferromagnetic 

particles due to the external magnetic field, Eq. (26) is used, where 

µ0 is the permeability of vacuum, B is the magnetic flux density in 

Tesla, and A is the area of the particle in m 2 : 

F = 
B 2 A 

2 µ0 
(26) 

3. Experiment setup 

Fig. 3 shows the setup used to measure temperature distribu- 

tion in a particle bed domain. The setup is made of a glass con- 

tainer sealed by an aluminum plate at the bottom and a phenolic 

plate on top. The diameter of the container is 5 cm, and its to- 

tal height, including gaskets, is 10.8 cm. A circular ultra-thin heat 

sheet with a maximum power of 31 W is attached below the alu- 

minum plate. Three thermocouples are used to read the tempera- 

ture inside the container: one in direct contact with the aluminum 

plate, the second and third are 1 cm and 2 cm above the bottom 

plate, respectively. All three thermocouples are aligned at the cen- 

ter of the container. Power supplied to the heater is 1 . 8 W ( 30 V , 

0 . 06 A ), and the maximum magnetic flux is 990 G for the exper- 

iment under a magnetic field. The external magnetic field is pro- 

vided by a disc NdFeB permanent magnet with a radius of 25 mm 

and a thickness of 9.5 mm. The initial temperature of the setup 

was recorded for two minutes, and then heating started. The heat- 

ing process continued for approximately two hours. The container 

was filled with 542.936 grams of iron powder with a particle size 

of 150 − 300 µm . To get distribution of particle sizes as close as 

possible to uniform distribution, particles are sieved using avail- 

able sieve sizes [149-177], [177-210], [210-250] and [250-297] µm 

and mixed after with %18, %22, %27 and %33 weight ratio, respec- 

tively. To have the same boundary conditions and thermal loads 

for both cases with and without magnetic field, an identical disc 

magnet was demagnetized and used in the experiment without 

magnetic field. This adds similar thermal resistance to the setup 

for both cases. Finally, it should be mentioned that the experimen- 

tal setup is kept in a temperature-controlled environment to make 

sure the initial temperature is equal for both magnetic and non- 

magnetic cases before starting the heating process. 

4. Simulation results and verification 

A simulation of heat transfer in the particle bed shown in 

Fig. 3 using methods that require the composition of all particles 

to be precisely defined uses more than six million particles to set 

the geometry. It is therefore very time and memory consuming to 

solve this problem using either FEM or DEM methods. Using the 

proposed method, Eqs. (20) and (21) show that the length of the 

energy transfer path is a function of the time step τ . Therefore, the 
total number of required points to set up the geometry should be 

large enough so that the distance between points is smaller than 

the energy transfer path, and subsequently, accurate interpolation 

can be performed. 20 thousand particles used to randomly fill the 
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Fig. 3. Experimental setup for heat transfer measurements in particulate packed bed. (a). Filled container, (b). reversed empty container and heater, (c). Location of thermo- 

couples A, B and C. 

Table 2 

Material properties of solid particles. 

Density- ρ Thermal Conductivity- k Heat Capacity- C p Hardness Brinell - H B Elastic Modulus- E Poisson’s Ratio- ν Surface Roughness- σ

7850 [ kg 
m 3 ] 37 [ W 

m −K ] 456 [ J 
kg−K ] 4 . 5 [ GPa ] 165 [ GPa ] 0 . 3 1 − 5 [ µm ] 

Fig. 4. Scanning electron microscopy (SEM) of particles used in experiment, mag- 

nification X20 0 0. 

container volume and define the geometry are therefore sufficient. 

Table 2 shows the material properties of the iron powder used 

in the simulation. The values for material properties are obtained 

from literature [45–48] . The Fig. 4 shows scanning electron mi- 

croscopy (SEM) with x20 0 0 magnification to justify the scale used 

for the roughness. 

The reading from thermocouple A in the experiment ( Fig. 3 ) is 

fed to the points at the bottom boundary of the container in the 

simulation. The time step τ = 10 s is chosen for a total simulation 

time of 70 0 0 s to match the experiment. The size of the iron pow- 

der particles in the simulation are generated in a uniformly dis- 

tributed range of 150 µm < r ( x,y,z ) < 300 µm to match that of 

the experiment. Fig. 5 shows five different possible configurations 

for 130 energy transfer paths from probable sources to the sink in 

the center (local packed elements). 50 cases of these local packed 

elements were used in this simulation, and only five of them are 

shown here. Each energy transfer path is built as a chain of par- 

ticles, with the cut off criterion of achieving a time to travel from 

thermal source to sink close to the time step τ = 10 s . 

A random number between 1 to 50 is generated before calcula- 

tion of the temperature distribution at each particle in the domain, 

and the respective configuration case is employed for that purpose. 

This helps in reaching a more homogenous distribution of sources 

for the entire simulation. 

For thermal resistance calculations, the force F acting on the 

particles is required. When the magnetic field does not exist, the 

weight of the particle and of the column of particles on top of it 

is calculated as the applied force F. For the case with an external 

magnetic field, Eqs. (23) –(25) are used to obtain the total magnetic 

field acting on each particle, and the resulting magnetic force is 

calculated using Eq. (26) . The magnetization vector M is obtained 

from the H-B curve of the permanent magnet material when the 

remnant field B r is considered 0.1 Tesla for NdFeB magnet. The mu- 

tual effects of magnetization among ferromagnetic particles in the 

domain are neglected in this study. 

Fig. 6 shows the simulated magnetic flux density calculated 

with the proposed method compared to the one measured in the 

experiment. The disc magnet with a radius of 50 mm and a thick- 

ness of 9 . 8 mm is shown in black in all subplots. Fig. 6 a shows the 

magnetic field lines around the magnet. The magnetic field mea- 

surements are done using a fluxgate at different radial and eleva- 

tion locations on top of the disc magnet. Fig. 6 b depicts the mea- 

surement point locations for magnetic field measurements. Fig. 6 c 

and d show the magnetic flux density on the particle bed domain 

interpolated from measurement data and calculated from simula- 

tion, respectively. 

Table 3 

Thermal conductivity ratio for magnetic and non-magnetic cases. 

Experimental Simulation 

k ratio = 1 . 127 or 12 . 7% k ratio = 1 . 098 or 9 . 8% 

5 
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Fig. 5. Five energy transfer path configurations (local packed elements) for time step τ = 10 s . 

Fig. 6. Magnetic Flux Density- Simulations and measurements. 5.a: magnetic field lines around the magnet, 5.b: measurement point locations for magnetic field measure- 

ments. 5.c: magnetic flux density on the particle bed domain interpolated from measurement data, 5.d: magnetic flux density on the particle bed domain calculated from 

simulation 

Fig. 7. Simulation results for non-magnetic temperature distribution in particulate bed domain with 10 0 0 s time interval. 

Fig. 7 shows the temperature distribution for a non-magnetic 

case at a time interval of 10 0 0 s from initial time 0 s to final sim- 

ulation time 70 0 0 s . A quarter slice of the pack bed is removed 

to show the radial temperature distribution. To allow quantitative 

comparison and benchmark of the proposed method, the simu- 

lation results of temperature rise at the exact locations of ther- 

mocouples B and C ( 10 mm and 20 mm from the bottom of the 

container) are captured and compared with measurement data for 

both the magnetic and non-magnetic cases and shown in Fig. 8 . 

The results are in an excellent agreement with the experimental 

measurements. Both theoretical and empirical results show an in- 

crease in the thermal conductivity of the domain. The increase is 

6 
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Fig. 8. Simulation versus measurement for temperature distribution at thermocouples A and B locations for magnetic and non-magnetic cases. 

calculated using Eq. (27) [49] and shown in Table 3 . 

k ratio = 
k Magnetic 

k Non −Magnetic 
= 

( T B − T A ) Non −Magnetic 

( T B − T A ) Magnetic 

(27) 

where T A and T B are the temperatures at the location of thermo- 

couples A and B at the steady-state condition, respectively. 

5. Conclusions 

The proposed method provides a probabilistic approach to solve 

the conductive heat transfer problem in particulate materials with 

no requirement of mesh generation or knowing the exact loca- 

tion of all particles. It provides a parallelizable method that can 

achieve a significant reduction in both simulation time and mem- 

ory requirements in these kinds of problems compared to conven- 

tional FEM, DEM and FDM methods. Besides requiring a signifi- 

cantly smaller number of particles (compared to conventional FEM, 

DEM and FDM) the proposed mesh free Monte Carlo approach en- 

ables parallel solution of the heat transfer for each particle to be 

assigned to an individual core on a GPU platform, further enabling 

a reduction of simulation time that can be several orders of mag- 

nitude smaller compared to conventional FEM solutions. 

Simulated results obtained with the proposed mesh-free Monte 

Carlo approach show good agreement with experimental results, 

for both the prediction of magnetic field density in the 3D domain, 

as well as for the prediction of conductive heat transfer in both 

magnetic and non-magnetic cases. 

It is shown that the presence of an external magnetic field in- 

creases thermal conductivity in ferromagnetic particulate materials 

due to the magnetic forces acting in the particles. Although the 

effect of gas thermal resistance in micro and macro gaps was ne- 

glected, it did not affect considerably the accuracy of the simulated 

results, since the corresponding passive convection has a marginal 

effect on heat transfer. 

It is once again confirmed that probabilistic methods are good 

candidates to simulate boundary and initial value problems where 

physical parameters follow random distributions. The effect of 

forced convection, radiation at high temperature, and even phase 

change (for the cases when melting and solidification of particles 

happen such as Laser Powder Bed Fusion) can be considered in the 

future development of the proposed method. 
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