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A novel mesh-free approach has been developed to solve the conduction heat transfer equations in a
particulate bed domain of ferromagnetic powder with and without magnetic field effect. The proposed
method is based on a probabilistic approach to defining various configurations of energy transfer paths
around an arbitrary particle called “local packed element”, and results are compared with experimental
data. Furthermore, a Monte-Carlo approach is used to calculate the magnetic field of a permanent mag-
net with an arbitrary shape on any arbitrary point around it, and the outcome is also compared against
measurements. In both cases, the proposed mesh-free method shows excellent agreement with available
empirical results. The proposed method is then used to model the effect of an external magnetic field in
the conductive heat transfer in a particulate bed of ferromagnetic powder. It is concluded that the pres-
ence of a magnetic field increases thermal diffusion in ferromagnetic powder bed domains by increasing
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1. Introduction

Porous and particulate materials are used in various important
engineering and scientific applications. Heat transfer in such do-
mains is a main design concern in many of these applications.
Electrical devices [1], 3D metal printing [2,3] and selective laser
sintering [4,5], solid fuel-cells [6,7], thermal barrier coating [8-10],
and fixed and moving bed heat exchangers [11,12] are examples of
industrial applications of particulate materials which modeling of
heat transfer is one the essential design challenges today. To ex-
pand it more, there is great interest in both academy and indus-
try to investigate the use of particulate beds of metal hydrides for
applications such as heat pumps [13,14]. Particle bed reactors are
being designed for space nuclear applications [15]. As mentioned,
thermal management in most of these applications is critical in the
design process. Simulation of heat transfer in particulate beds re-
quires taking into consideration the size and shape of the parti-
cles, volume fraction, porosity, interfacial thermal resistance and
the configuration of particle assembly. Several numerical methods
have been used to model the heat transfer behavior of particle
beds. Finite Element Methods (FEM) are particularly well estab-
lished for the simulation of the heat transfer problem in particle
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beds. In microscale (a simulation domain including a small num-
ber of particles) a FEM model of a particle bed may include most
relevant details of the particle configuration into account [16-19].
On the other hand, the simulation of macroscale problems, includ-
ing previously considered intricate geometric details in the calcu-
lation, is computationally prohibitive for FEM. In other words, to
model a particle bed with a significant level of geometric fidelity
using finite element methods is computationally very intensive
and possibly impractical, since the number of elements required
to realistically represent the geometry of particle bed configura-
tions in macroscale problems is very large. In FEM simulations, a
large number of elements yields a large stiffness matrix that needs
to be inverted at each time step, which leads to a significant in-
crease of the computational burden as the number of elements in-
creases. The conventional approach to deal with this issue when
using FEM models to develop macroscale simulations is based on
the use of “effective” parameters to model the average behavior of
particle beds. That is, the details of possible geometric configura-
tions are not modeled, and instead “equivalent parameters” based
on particle size, configuration, volume fraction, thermal properties
of materials, etc., are used [20-24]. Such approximations, when
using FEM models to analyze macroscale problems, may lead to
significant loss of fidelity. In this context, the boundary element
method seems to be a better fit technique as discretization only
occurs at the boundary of the particle rather than inside the whole
particle [25-27]. Hybrid approaches are developed to improve the
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homogenization and volume averaging. Polansky et.al combined 2D
and 3D porous media modeling with a resistive network model to
estimate the effective conductivity [28].

When modeling particle beds, the discrete element method
(DEM) aims at connecting the microscale parameters of particles
such as particle size, surface to volume ratio, surface roughness,
porosity, and shape to the macroscale properties of the packed par-
ticle bed, such as thermal conductivity, bulk porosity, angle of re-
pose, cohesion, etc., by using molecular dynamics governing equa-
tions. Several surveys can be found describing various approaches
to undertake heat transfer in particulate beds using DEM or com-
bined DEM-FEM approaches [29-34|. The main difficulty when
modeling a system with millions or billions of particles lies in find-
ing where the nearest neighbors are: the model needs to repre-
sent how particles with different sizes and shapes pack. In the
current state of the art, deterministic pre-location of particles in
a lattice (including fine particles in a porous bed) is typically im-
plemented using Voronoi tessellation in DEM, or Monte-Carlo tech-
niques [35,36].

Randomness is an important characteristic of the distribution of
particles in a particle bed. The size, shape, material, and location of
each particle can be realistically described by appropriate distribu-
tion functions within specified ranges of the particle’s properties.
Probabilistic methods like Monte-Carlo have been used to address
heat transfer solution in numerous studies [37-39]. They are strong
candidates to solve boundary and initial value problems in parti-
cle beds since they inherently incorporate the random nature of
the relevant physical parameters involved. Recent studies in both
two and three-dimensional systems [40,41] have used Monte-Carlo
based probabilistic approaches combined with analytical solutions
in polar and spherical coordinates to solve the steady-state and
transient heat conduction problem in composite materials. This pa-
per describes an adaption of the latter parallelizable method that
uses a probabilistic approach to provide a high-fidelity model of
particle configuration as relevant to the solution of the heat trans-
fer problem, while addressing the aforementioned limitations in
the state of the art macroscale models based on FEM and DEM.

2. Formulations
2.1. Heat transfer

The “Effective Floating Volume” (EFV) [42] is a novel approach
proposed by Bahadori et al. to solve transient heat conduction
problems in multi-scale systems, i.e., systems where small and
large dimensions need to be considered to properly describe the
system’s geometry. Important examples of multi-scale systems are
physical domains with thin layers of materials that have significant
effect in the physics being considered, such as thermal or electrical
insulators in electrical machines or the layers in a superconduct-
ing material. When using EFV to solve heat transfer equations, the
temperature at the center point of a spherical element is calculated
using Eq. (1):

M
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where r, 6 and ¢ are radius, elevation, and azimuth in spheri-
cal coordinates, o is thermal diffusivity and T the corresponding
temperature. The EFV method is based on the numerical integra-
tion of the energy transfer through paths starting at the bound-
ary of a spherical element and ending at its center, where dT; =
Tm — Ty, m=2, 3,...,M denotes the temperature difference at
the acquisition points numbered from the center to the boundary.
This formulation takes into account the initial condition, bound-
ary condition, and heat source effect at every point in the sphere,
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and converts their combined effects into temperature at the corre-
sponding acquisition points; numerical integration is then used to
calculate the impact of all points within the sphere on the tem-
perature at the center point Tr. In this paper, the EFV method is
adapted to model heat conduction in particle beds.

When modeling heat conduction in particle beds, thermal en-
ergy is transferred from one particle to the adjacent ones; heat
flow and thermal contact resistance are the main parameters in
the analytical derivation of the energy transfer through each path.
The other path of energy transfer is through conduction by the
interstitial gas trapped in the porous cavities between particles,
and radiation heat transfer is neglected. Heat transfer in micro
contacts is modeled by conduction through the gas in the micro
gaps and conduction trough the solid points of contact. Bahrami
et al. [21] developed formulations for the effective thermal resis-
tance in rough spherical packed beds. From this method, one can
develop a formulation for ellipsoids with arbitrary radii, since el-
lipsoids are good approximations for particle shapes. Fig. 1 depicts
the different types of heat flow between two particles in two and
three-dimensional approximations. The equivalent system shown
in Fig. 1 can be calculated by Eq. (2):

P ! LA )
L QA/Ps+1/Py) 4P, Po

where Ps is the thermal resistance in the micro contacts, Pg the
thermal resistance of the gas trapped between micro contacts, P;
the constriction thermal resistance in the particles, and P; the
thermal resistance of the gas between particles.

Fig. 1 shows the layout of two particles randomly placed in con-
tact. In the two-dimensional case, the distances r.; and r. can be
calculated using Eqgs. (3) and (4). The path length of heat transfer
between two center points is L =r.q + 1., . Starting from parti-
cle 1, w defines the angle that particle two comes in contact with
particle one with respect to the global coordinate system. The pro-
cedure repeats for the next particle to eventually form a path for
conductive energy transfer from boundary to sink. rgy, 152, 17, and
T2, are possible values for major (b) and minor (s) radii for parti-
cles 1 and 2.

1 1 e

Teq = [zcosz(w) + 2sinz(a))] (3)
51 U
1 1 172

Tep = I:ZCOSZ(C()-F?T) + 2sir12(a)+n)] (4)
rs,2 rb,z

The Monte-Carlo method can be used to generate a random dis-
tribution of the above angles and dimensions. Eqs. (5)-(7) repre-
sent the corresponding probability functions: probability distribu-
tions of the particles’ size, shape, and orientations within specified
ranges.

I's = I's max — [ (Fs.max — T'smin)RN] (5)
Th = Thmax — [(rb.max - rb,min)RN] (6)
@ =27 (RN) (7)

where RN stands for a uniformly generated random number be-
tween 0 and 1. RN numbers are generated separately for each of
the Egs. (5)-(7). rs and r, are possible values for the small and
big radius of the ellipsoid in the two-dimensional case, respec-
tively; these radii are defined within ranges denoted by the inter-
vals [min, max]. To minimize the particle overlap, parameters are
set in the code to propagate the paths in the first layer around the
center particle by a multiple order of 6 in 2D and 12 in 3D, then
they branch in the next layers. (i.e., energy packets share the same
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%2

Fig. 1. Heat flow and thermal resistance between ellipsoidal particles with rough contact Area. (a) Two-dimensional case and relevant geometric parameters, and heat flow
Qg (b) microscopic view of thermal contact heat flow, (c) equivalent thermal resistance, (d) three-dimensional case: geometric parameters and heat flow.

path when they get closer to the center). Similarly, in the three-
dimensional case, contact radii r.; and r. can be calculated using
Egs. (8) and (9) and the heat transfer path length is L =171 + 1.
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The geometric coordinates § and ¢ are the elevation and az-
imuth angles for each particle’s orientation in the global coordi-
nate system, and ¢ and i are the elevation and azimuth angles
that define the contact orientation of particle two with respect to
particle one. In the three-dimensional case, the ellipsoidal volume
is specified by small, medium and big radii noted as by r, r, and
rp,, respectively. Eqs. (10)-(14) are used to determine each geomet-
ric parameter value in its specified range [min, max]:

Is = Ts.max — [ (Fs.max — Ts.min)RN] (10)
Tm = T'mmax — [ (Fm.max — Tm,min)RN] (11)
Ty = To.max = [ (Tb.max — To.min) RN] (12)
0 = cos (1 —2RN) (13)
@ =27 (RN) (14)

Fig. 2 illustrates a Monte-Carlo distribution of energy transfer
paths in a three-dimensional domain. Each of the path distribu-
tions shown in Figs. 2 and 4 have shapes and orientations based on
the random variables defined by Egs. (3)-(14). The temperature in
the center particle can be calculated using Eq. (1) and information
of temperature from previous step and thermal resistivity from en-
ergy transfer path configuration. One can generate a bank of path
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Fig. 2. Three-dimensional Monte-Carlo distribution of thermal energy transfer by
random paths to the center point of a spherical element.

distributions and randomly call one of them to calculate the tem-
perature at each desired point in the geometry. Eq. (15) is used
to calculate the thermal resistance P; experienced by each particle
[21]:

1
o 2’(5(1[_

where ks = 2k1ky/(ky + k) is the equivalent thermal conductivity
of two contacting particles, and a; the radius of macro contact as
defined by Eq. (16) [43]:

P, (15)

3rF\ '3
a = (f) (16)
where 1= (1/rc1+1/rc2)71, and  E*=[(1-v1?)/E; + (1 -

v,2)/E;]7 1 is the equivalent modulus of elasticity calculated from
the corresponding moduli of elasticity E; and poison ratio v;
of particles 1 and 2. The thermal contact resistance Ps can be
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Table 1
Coefficients of the inverse probability function for Eq. (20) and (21).
D; D, Dy D4
0.0-0.1 0.079578 0.079621 0.058919 0.048997
0.1-0.3 0.079515 0.081077 0.048261 0.074542
0.3-0.6 0.070722 0.150740 -0.13699 0.240830

obtained from the formulation developed in [44]:
_ 0.565H*(0'/m)

- kF

where F is the contact force acting on the particle, H* =
ci(o’'/m)2, o' =0 /0y, 0 = /o + 03 is the combined roughness
of two particles in contact, and og = 1 um. The surface slope is de-
fined as m = /m% +m2, and each surface slope is calculated based
on its corresponding roughness: m, = 0.1520,%4, p=1, 2 [21]. ¢
and ¢, are defined in Eqgs. (18) and (19), where k = Hg/Hpgy, Hp
is the Brinell hardness of the bulk material (in GPa) and Hpgy =
3.178 GPa.

c1 = Hpom (4.0 — 5.77k + 4.0k* — 0.61k°) (18)

P, (17)

¢, = —0.57 + 0.82k — 0.41k* 4 0.06k> (19)

Heat transfer in micro gaps (Pg) and macro gaps (P¢) are ne-
glected in this study, and the relations to calculate them are shown
in [21].

Egs. (20) and (21) provide the relationship between time t and
the corresponding distance r the energy can travel [41]. Having =

N
Y Li, L=rcq1+ ¢, and the equivalent thermal conductivity from
i=1

reciprocal of Eq. (2), the required time t for an energy particle to
travel the distance r can be calculated as:

ot

~2 = D1+ Dy(RN3) + D3 (RN3)? + D4(RN3)>RN3 < 0.6 (20)
atT
7 =—0.10132In[0.5(1 — RN3) RN3 > 0.6 (21)

Conversely, having the step time, one can trace the sequence of
randomly distributed particles along the energy transfer path and
reconstruct the sequence to the point that the required time is ap-
proximately equal to the step time 7. Table 1 shows the values of
the coefficients in Egs. (20) and (21).

2.2. Probabilistic model of magnetic field

To enhance thermal conduction in a particle bed of ferromag-
netic particles, one can use an external magnetic field to apply
force on the particles. The Monte-Carlo method provides a mesh-
free approach to model the field of a permanent magnet even
with a complex shape. Generally, using this method, any complex
permanent magnet can be modeled as NC magnetic components,
where the magnetization vector of each component can be defined
in arbitrary magnitude and direction. Eq. (22) defines the magnetic
field strength of the permanent magnet at an arbitrary point P as
a summation of the effect of all combined components used to de-
scribe the permanent magnet:

Hm(p)z—%v‘/// (ﬁ;T)dv (22)

Defining the arbitrary magnetization vector M = [Myx My M;]
and position vector r =[x y z] (which represents the distance of a
magnetic component to an arbitrary point I"), one can obtain the
components of Hy(p) along the x, y, and z directions, as shown in
Egs. (23)-(25):

—dV | M, 3x(Mxx + Myy + M,z
me(p): [ X ( yy )}

(23)

ar | () (r)’
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_ —dV | M 3y(Mxx + Myy + M;2)

Hiny (p) = A |:(r)y3 - (r);’ ] (24)
_—dV| M;  3z(Mx + Myy + M,z)

Hmz(p) - 477|:(T)3 - (r)?—; ] (25)

Superposition of the magnetic field strength H of all magnetic
components p=1 to NC with volume dV on an arbitrary point I
defines the magnetic field effect of the permanent magnet at point
I'. Using Egs. (23)-(25), one can calculate H on each ferromagnetic
particle in the particle bed. With H, one can calculate the magnetic
flux density B due to the permanent magnet on each particle in
the particle bed. To calculate the force acting on the ferromagnetic
particles due to the external magnetic field, Eq. (26) is used, where
Lo is the permeability of vacuum, B is the magnetic flux density in
Tesla, and A is the area of the particle in m? :

2
Fo BA (26)
2100

3. Experiment setup

Fig. 3 shows the setup used to measure temperature distribu-
tion in a particle bed domain. The setup is made of a glass con-
tainer sealed by an aluminum plate at the bottom and a phenolic
plate on top. The diameter of the container is 5 cm, and its to-
tal height, including gaskets, is 10.8 cm. A circular ultra-thin heat
sheet with a maximum power of 31 W is attached below the alu-
minum plate. Three thermocouples are used to read the tempera-
ture inside the container: one in direct contact with the aluminum
plate, the second and third are 1 cm and 2 cm above the bottom
plate, respectively. All three thermocouples are aligned at the cen-
ter of the container. Power supplied to the heater is 1.8 W (30 V,
0.06 A), and the maximum magnetic flux is 990 G for the exper-
iment under a magnetic field. The external magnetic field is pro-
vided by a disc NdFeB permanent magnet with a radius of 25 mm
and a thickness of 9.5 mm. The initial temperature of the setup
was recorded for two minutes, and then heating started. The heat-
ing process continued for approximately two hours. The container
was filled with 542.936 grams of iron powder with a particle size
of 150 — 300 um. To get distribution of particle sizes as close as
possible to uniform distribution, particles are sieved using avail-
able sieve sizes [149-177], [177-210], [210-250] and [250-297] um
and mixed after with %18, %22, %27 and %33 weight ratio, respec-
tively. To have the same boundary conditions and thermal loads
for both cases with and without magnetic field, an identical disc
magnet was demagnetized and used in the experiment without
magnetic field. This adds similar thermal resistance to the setup
for both cases. Finally, it should be mentioned that the experimen-
tal setup is kept in a temperature-controlled environment to make
sure the initial temperature is equal for both magnetic and non-
magnetic cases before starting the heating process.

4. Simulation results and verification

A simulation of heat transfer in the particle bed shown in
Fig. 3 using methods that require the composition of all particles
to be precisely defined uses more than six million particles to set
the geometry. It is therefore very time and memory consuming to
solve this problem using either FEM or DEM methods. Using the
proposed method, Eqs. (20) and (21) show that the length of the
energy transfer path is a function of the time step 7. Therefore, the
total number of required points to set up the geometry should be
large enough so that the distance between points is smaller than
the energy transfer path, and subsequently, accurate interpolation
can be performed. 20 thousand particles used to randomly fill the
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Fig. 3. Experimental setup for heat transfer measurements in particulate packed bed. (a). Filled container, (b). reversed empty container and heater, (c). Location of thermo-

couples A, B and C.

Table 2
Material properties of solid particles.

Density-p Thermal Conductivity-k Heat Capacity-Cp

Hardness Brinell -Hp

Elastic Modulus-E Poisson’s Ratio-v Surface Roughness-o

7850 [ X 37 [+%] 456 [kgff,(] 4.5 [GPa]

165 [GPa] 03 1-5 [um]

Fig. 4. Scanning electron microscopy (SEM) of particles used in experiment, mag-
nification X2000.

container volume and define the geometry are therefore sufficient.
Table 2 shows the material properties of the iron powder used
in the simulation. The values for material properties are obtained
from literature [45-48]. The Fig. 4 shows scanning electron mi-
croscopy (SEM) with x2000 magnification to justify the scale used
for the roughness.

The reading from thermocouple A in the experiment (Fig. 3) is
fed to the points at the bottom boundary of the container in the
simulation. The time step T = 10 s is chosen for a total simulation
time of 7000 s to match the experiment. The size of the iron pow-
der particles in the simulation are generated in a uniformly dis-
tributed range of 150 um < ry,, < 300 pum to match that of
the experiment. Fig. 5 shows five different possible configurations
for 130 energy transfer paths from probable sources to the sink in
the center (local packed elements). 50 cases of these local packed
elements were used in this simulation, and only five of them are

shown here. Each energy transfer path is built as a chain of par-
ticles, with the cut off criterion of achieving a time to travel from
thermal source to sink close to the time step T =10 s.

A random number between 1 to 50 is generated before calcula-
tion of the temperature distribution at each particle in the domain,
and the respective configuration case is employed for that purpose.
This helps in reaching a more homogenous distribution of sources
for the entire simulation.

For thermal resistance calculations, the force F acting on the
particles is required. When the magnetic field does not exist, the
weight of the particle and of the column of particles on top of it
is calculated as the applied force F. For the case with an external
magnetic field, Egs. (23)-(25) are used to obtain the total magnetic
field acting on each particle, and the resulting magnetic force is
calculated using Eq. (26). The magnetization vector M is obtained
from the H-B curve of the permanent magnet material when the
remnant field B; is considered 0.1 Tesla for NdFeB magnet. The mu-
tual effects of magnetization among ferromagnetic particles in the
domain are neglected in this study.

Fig. 6 shows the simulated magnetic flux density calculated
with the proposed method compared to the one measured in the
experiment. The disc magnet with a radius of 50 mm and a thick-
ness of 9.8 mm is shown in black in all subplots. Fig. 6a shows the
magnetic field lines around the magnet. The magnetic field mea-
surements are done using a fluxgate at different radial and eleva-
tion locations on top of the disc magnet. Fig. 6b depicts the mea-
surement point locations for magnetic field measurements. Fig. 6¢
and d show the magnetic flux density on the particle bed domain
interpolated from measurement data and calculated from simula-
tion, respectively.

Table 3
Thermal conductivity ratio for magnetic and non-magnetic cases.

Experimental Simulation

Kratio = 1.127 or 12.7% Kyatio = 1.098 or 9.8%
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Fig. 5. Five energy transfer path configurations (local packed elements) for time step 7 = 10 s.
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Fig. 6. Magnetic Flux Density- Simulations and measurements. 5.a: magnetic field lines around the magnet, 5.b: measurement point locations for magnetic field measure-
ments. 5.c: magnetic flux density on the particle bed domain interpolated from measurement data, 5.d: magnetic flux density on the particle bed domain calculated from

simulation
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Fig. 7. Simulation results for non-magnetic temperature distribution in particulate bed domain with 1000 s time interval.

Fig. 7 shows the temperature distribution for a non-magnetic
case at a time interval of 1000 s from initial time O s to final sim-
ulation time 7000 s. A quarter slice of the pack bed is removed
to show the radial temperature distribution. To allow quantitative
comparison and benchmark of the proposed method, the simu-
lation results of temperature rise at the exact locations of ther-

mocouples B and C (10 mm and 20 mm from the bottom of the
container) are captured and compared with measurement data for
both the magnetic and non-magnetic cases and shown in Fig. 8.
The results are in an excellent agreement with the experimental
measurements. Both theoretical and empirical results show an in-
crease in the thermal conductivity of the domain. The increase is
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Fig. 8. Simulation versus measurement for temperature distribution at thermocouples A and B locations for magnetic and non-magnetic cases.

calculated using Eq. (27) [49] and shown in Table 3.

_ (TB - TA)Non—Magnetic
(TB - TA)Magnetic

kMagnetic (27)

kratio = P =
cNon—Magnetic
where T, and Ty are the temperatures at the location of thermo-
couples A and B at the steady-state condition, respectively.

5. Conclusions

The proposed method provides a probabilistic approach to solve
the conductive heat transfer problem in particulate materials with
no requirement of mesh generation or knowing the exact loca-
tion of all particles. It provides a parallelizable method that can
achieve a significant reduction in both simulation time and mem-
ory requirements in these kinds of problems compared to conven-
tional FEM, DEM and FDM methods. Besides requiring a signifi-
cantly smaller number of particles (compared to conventional FEM,
DEM and FDM) the proposed mesh free Monte Carlo approach en-
ables parallel solution of the heat transfer for each particle to be
assigned to an individual core on a GPU platform, further enabling
a reduction of simulation time that can be several orders of mag-
nitude smaller compared to conventional FEM solutions.

Simulated results obtained with the proposed mesh-free Monte
Carlo approach show good agreement with experimental results,
for both the prediction of magnetic field density in the 3D domain,
as well as for the prediction of conductive heat transfer in both
magnetic and non-magnetic cases.

It is shown that the presence of an external magnetic field in-
creases thermal conductivity in ferromagnetic particulate materials
due to the magnetic forces acting in the particles. Although the
effect of gas thermal resistance in micro and macro gaps was ne-
glected, it did not affect considerably the accuracy of the simulated
results, since the corresponding passive convection has a marginal
effect on heat transfer.

It is once again confirmed that probabilistic methods are good
candidates to simulate boundary and initial value problems where
physical parameters follow random distributions. The effect of
forced convection, radiation at high temperature, and even phase
change (for the cases when melting and solidification of particles

happen such as Laser Powder Bed Fusion) can be considered in the
future development of the proposed method.
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