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Abstract—High penetration levels of in Distributed Energy
Resources (DERs) as low-inertia renewable energy sources into
smart grids imposes imperative Volt-VAR Control (VVC) as well
as stability challenges for Distribution Network (DN) operation.
Although numerous approaches harness traditional VVC devices
to compensate for voltage violations, synthetic inertia and control
of energy storage systems exist to improve transient stability with
an increase of DERs. While ample strategies tackle these two
problems separately, the ability of smart buildings to provide
active and reactive power support simultaneously to the grid
has not yet been fully exploited. In this work, the effect of the
modulation of loads’ apparent power consumption on the grid’s
frequency and voltage profile have been explored. A Distributed
Model Predictive Control (DMPC) strategy is presented for
voltage and frequency control in the DN provided by smart
buildings. The robustness of this strategy is validated on a
modified IEEE 13 bus system.

Index Terms—Distribution networks; frequency control; model
predictive control; smart buildings; thermostatically controlled
loads; voltage control.

I. INTRODUCTION

Power systems controls aim to maintain system voltages,
frequency, and other system variables within their acceptable
limits. These limits are to be respected when of normal load
and generation variations as well as large disturbances [1].

Load dynamics result in voltage variation. To keep the volt-
age in the desired range, equipment distributed through out the
system are used in the traditional Volt/VAR control. Traditional
Volt/VAR control consider load tap changing transformers,
shunt reactors for long distance Extra High Voltage (EHV)
and Ultra High Voltage (UHV) transmission lines, and shunt
capacitors to maintain the desired voltage profile by injecting
the reactive power into the line [2], [3].

Although the traditional reactive power compensation meth-
ods have helped to mitigate the negative effects of voltage
regulation on the grid, many studies suggest that they cannot

attenuate the detriments of high renewable power source pene-
tration. As the current reactive power compensation techniques
cannot alleviate power quality problems due to the larger
impact of renewable sources, there is a need for VAR control
on a faster time scale [4].

Imbalances between load and generation must be corrected
within seconds as well to avoid frequency deviations that
might threaten the stability and security of the power system
[5]. The conventional method of correcting frequency devia-
tion is focused on primary frequency responses. In this way,
the deviation between demand and generation is corrected
by adjusting the generation outputs [6]. As is the case with
conventional voltage correction techniques, this method suffers
from high latency in adapting to low-inertia, renewable power
source penetration.

As many buildings have control systems to monitor and
adjust their power consumption, [7], [8], [9], and [10] have
explored the use of Heating, Ventilation, and Air Conditioning
(HVAC) units and other Thermostatically Controlled Loads
(TCLs) to provide frequency regulation services to the grid.
While [11] shows that HVAC systems in commercial buildings
can provide demand side system frequency regulation, [12]
illustrates how one can use smart buildings for Volt/VAR
control.

As [12] focuses only Volt-Var problem, it fails to address
frequency regulation. In this work we extend [12] aiming to
provide aditional auxiliary grid services, specifically simul-
taneous distribution networks voltage and frequency control
obtained through smart buildings active power consumption
modulation. Smart buildings which allow apparent power mod-
ulation are considered. Local Quality of Service, (QoS), es-
tablished using Distributed Model Predictive Control (DMPC),
and the global QoS are simultaneously considered.

This paper is organized into six sections. In Section II,
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the state-space model for HVAC systems and the DMPC
strategy are presented. In Section III, the reactive and active
power estimation model considering local measurements and
sensitivity analysis is derived. In Section IV, determination of
apparent power is formulated as a cost minimization problem.
Simulation results, discussion, and analysis are presented in
Section V. Finally, conclusions and future work are discussed
in Section VI.

II. MODELING & CONTROL STRATEGY

A. HVAC State Space Model

For the estimation of the thermal loads, the Equivalent
Thermal Parameter (ETP) modeling approach is used. As this
method is presented thoroughly in [13], only the mathematical
models used for the state space description of ETP are
presented, as follows:

ẋ = Ax+Bu, y = Cx+Du (1)

ẋ =

[
Ṫair
Ṫmass

]
, x =

[
Tair
Tmass

]
, u = 1 (2)

A =

−( 1
R2.Cair

+ 1
R1.Cair

)
1

R1.Cair

1
R2.Cmass

−
(

1
R2.Cair

)
B =

[
T0

R1.Cair
+ Q

Cair

0

] (3)

C =

[
1 0
0 1

]
, D =

[
0
0

]
. (4)

Where:
R1 = 1/UAinsul
R2 = 1/UAmass
Cair = air heat capacity (Btu/◦C)
Cmass = mass (building and contents) heat capacity(Btu/◦C)
UAinsul =the heat gain/loss coefficient (Btu/◦C)
UAmass = the heat gain/loss coefficient between air and mass
(Btu/◦C)
Tair = air temperature inside the building (◦C)
Tmass = mass temperature inside the building (◦C)

B. Control Strategy

In [12], a Model Predictive Control (MPC) approach is used
as the control strategy for the Volt-VAr problem. The step-by-
step procedure of deriving the optimized control signal for the
MPC is presented in [14].

By denoting the variation of the state variable in the future
Xm(t + 1), control variable u(t), and process output y(t),
the triple (A,B,C) are referred to as the augmented model.
The augmented model is defined based on the Am, Bm, and
Cm which depend on the plant characteristics. The state-space
model can be obtained:

x(t+ 1)︷ ︸︸ ︷[
∆xm(t+ 1)
y(t+ 1)

]
=

A︷ ︸︸ ︷[
Am OTm

CmAm 1

] x(t)︷ ︸︸ ︷[
∆xm(t)
y(t)

]
+

B︷ ︸︸ ︷[
Bm

CmBm

]
∆u(t)

y(t) =

C︷ ︸︸ ︷[
Om 1

] [∆xm(t)
y(t)

]
(5)

where Om =

n1︷ ︸︸ ︷[
0 0 · · · 0

]
.

The cost function J is based on our goal of adjusting
the predictive control vector to have the minimum difference
between Y as the predicted system trajectory vector and Yref
as the reference trajectory vector. It is defined as follows:

minJ = (Yref − Y )T (Yref − Y ) + ∆UTQ∆U

Subject to x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

(6)

With ∆U being the predicted input vector variation and
Q = RwI (I is the identity matrix Nc × Nc and Rw is the
weight) being the MPC weight vector, we derive J from ∆U
at each time instant for a prediction horizon Np to have the
optimal control signal that minimizes the cost function in (6).
For Nc as an optimal control sequence whose first value is
applied to the system in the next time instant, the solution of
(6) is:

∆U = (ΦTΦ +Q)−1ΦT (Yref − Fx(ti)). (7)

Where F and φ are matrices based on the augmented model
as following:

F =


CA
CA2

...
CANp

 (8)

Φ =


CB 0 · · · 0
CAB CB · · · 0

...
CANp−1B CANp−2B · · · CANp−NcB

 . (9)

III. SENSITIVITY ANALYSIS, REACTIVE & ACTIVE
POWER MODEL

For deriving the reactive and active power estimation model,
the sensitivity of the system with voltage and frequency must
be analysed to obtain the efficient coordination between the
agents.

A. Sensitivity Analisis

The Newton-Raphson power flow technique is used to
estimate system states considering bus voltage magnitudes and
angles. The minimization between the functions ∆P , ∆Q, and
a predefined convergence tolerance is of interest.
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[
∆P
∆Q

]
=

[
P exp

Qexp

]
−
[
P
Q

]
. (10)

The linearized equations obtained by the Newton-Raphson
approach linearizing (10) at each time step are as follows:

J

[
∆θ
∆V

]
=

[
∆P
∆Q

]
(11)

J =

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

]
is the Jacobian matrix.

With a non-singular and invertible Jacobian as in [15], we
can write: [

∆θ
∆V

]
=

[
Sθ∆P Sθ∆Q
SV∆P SV∆Q

] [
∆P
∆Q

]
. (12)

Where:
Sθ∆P and Sθ∆Q are sensitivities of the bus voltage angles

to active and reactive power;
SV∆P and SV∆Q are sensitivities of the bus voltage mag-

nitudes to active and reactive power.

B. Reactive Power

The process of deriving reactive power from the sensitivity
matrix is demonstrated with details in [12]. For i being the bus
providing reactive power and j being the bus which voltage
regulation is desired, we present the predicted Q at time t+ 1
based on Q at time t by assuming Sv∆Pij = 0:

Qt+1 = Qt +
VReference − Vmeasurement

Sv∆Qij

. (13)

C. Active Power

We use the same model to estimate the active power bus i
provides to maintain the desired voltage angle, θ, at bus j

∆θj = Sθ∆Pij
∆Pi + Sθ∆Qij

∆Qi (14)

θreference−θmeasurement = Sθ∆Pij
∆Pi+Sθ∆Qij

∆Qi (15)

Pt+1 = Pt +
(θreference − θmeasurement)− Sθ∆Qij∆Qi

Sθ∆Pij

.

(16)
Assuming Sθ∆Qij

= 0:

θreference − θmeasurement = Sθ∆pij∆Pi. (17)

Same as Q, here we predict P at t+ 1 with the current P ,
reference angle, and measured angle:

Pt+1 = Pt +
θReference − θmeasurement

Sv∆Pij

(18)

by assuming Cij(∆Pij), the cost incurred to supply Pij
active power to improve voltage at bus ‘j’ by bus ‘i’ we have:

Cij(∆Pij) ∝
1

Psurplusi
(19)

Cij(∆Pij) ∝
1

Number of nodes in control region of bus i
(20)

Cij(∆Pij) ∝ Plosses(ij). (21)

Qlosses(ij) is the increment of technical losses due to the
component of current related to increases in Q flow and

is given by Rij(
Qt+1

ij

2−Qt
ij

2

V t
j

2 ) [16]. Consequently, we derive

Plosses(ij) as:

Plosses(ij) = Rji(
P t+1
ij

2 − P tij
2

V tj
2 ). (22)

IV. PROBLEM FORMULATION

A. Control Strategy Based on Apparent Power (S) Modulation

HVAC units provide temperature trajectory information to
the agent. The agent receives voltage magnitude and angle
information from the smart meter. If the grid voltage profile
goes out of its operational limits, the agent calculates the
necessary amount of active and reactive power considering
the reference values received from the grid, and selects the
HVAC units that need to be controlled according the optimized
temperature trajectories. The agent sends the control signal
back to each DMPC and the control actions are applied. The
agent makes the binary decision of ON/OFF based on its
algorithm, as illustrated in Fig. 1.

On the other hand, each HVAC unit has a certain capacity
in OFF condition. In case the required apparent power ex-
ceeds the capacity of the system, we assume it provides the
maximum possible with the same requested angle.

The flow chart of determining apparent power via DMPC
is shown in Fig. 2

B. Optimization

The problem of estimating the optimal contribution of active
and reactive power from neighboring buses and the bus at
which voltage regulation is desired is formulated as a cost min-
imization problem. β = (i, j, .., n) is the set of all the busses
on the region, and j is the bus at which voltage regulation is
desired under the control region of β. The optimization cost
function coordinates the amount of active and reactive power
supplied from each of these buses to improve the voltage
profile at bus i both in terms of magnitude and angle. Active
and reactive power are coupled, so a constraint on apparent
power must be defined.

By having active power, reactive power, and proportionality
constants aij and bij , the loss minimization is defined as
follows:

min Cs(i) =
∑
i∈β

aijPlosses(ij) +
∑
i∈β

bijQlosses(ij) (23)

s.t.
Sij =

√
(Pij)

2
+ (Qij)

2 (24)
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HVAC Controller Agent

Smart
MeterGrid

| V | and ∠θReferences

ON/OFFTemperature

Fig. 1. Flowchart of decision making process of the agent

Qt+1
ij ≤ Qsurplusj and P t+1

ij ≤ Psurplusj (25)

Psurplusj and Qsurplusj are obtained from priority slack and
are sum of maximum active and reactive power each HVAC
unit can provide. Equation (25) was defined so that the amount
we receive do not exceed the required amount.

0.95pu ≤ Vjt + Sv∆Qij
∆Qj ≤ 1.05pu (26)

0.95pu ≤ Vjt + Sv∆Pij
∆Pj ≤ 1.05pu (27)

and
118.8◦ ≤ θjt + Sθ∆Qij

∆Qj ≤ 121.2◦ (28)

118.8◦ ≤ θjt + Sθ∆Pij
∆Pj ≤ 121.2◦ (29)

We assume 1 pu as the voltage magnitude reference and
120◦ as the angle reference. ±5% for magnitude and ±1%
for angle tolerance range are considered.

Solving the aforementioned cost function will give us the
optimal contribution of both active (Pji) and reactive (Qji)
power from bus i to improve both the voltage at bus j and
the global frequency. With surplus active power at bus j
(Psurplusj ) and surplus reactive power at bus j (Qsurplusj ) be-
ing known quantities, the agent determines the ON/OFF state
of each HVAC unit according to the active and reactive power
demand by having the knowledge of the optimal trajectory of
HVAC units in its control region for the prediction horizon.

By considering providing power to the grid as positive injec-
tion and absorbing power as negative injection, the following
conditions are possible:
• Positive reactive power injection for under voltage

(V < 0.95 pu)
• Negative reactive power injection for over voltage

(V > 1.05 pu)
• Positive active power injection for under frequency

(θ < 118.8◦)
• Negative active power injection for over frequency

(θ > 121.2◦)
For positive power injection, HVAC units which are about

to turn OFF will be turned OFF, while for negative power
injection, HVAC units which are about to turn ON will be
turned ON to absorb power.

Frequency is related to the angle indirectly. Angle θ is
defined as the difference between the voltage angle with

Start

Monitor
voltage at
bus i (Vi)

Is θi out of the
nominal range?

Estimate Pi
using (18)

Is θj out of the
nominal range?

Estimate Pj
using (18)

Determine the
remaining P
at common

neighbouring bus

Is Vi out of the
nominal range?

Estimate Qi
using (13)

Is Vj out of the
nominal range?

Estimate Qj
using (13)

Determine the
remaining Q
at common

neighbouring bus

Determine
the optimal
S using (23)

Broadcast
ON/OFF

Stop

yes

no

yes

yes

no

yes

no no

Fig. 2. DMPC flowchart for determining apparent power (S)

a reference that rotates always at 60Hz. The power flow
equations in (12) consider a constant frequency [1]. Instead
of relying on the time domain equations, we make a quasi-
static analysis by considering the correlation of the frequency
with the angle change. Reference angle θ is assumed to be
120◦ for phase C and a 60Hz frequency reference. Local
QoS is ensured by implementing the state space model which
determines the appropriate control signal to maintain customer
comfort by remaining within the temperature bounds set by the
customer.

V. CASE STUDY

Test results are obtained considering the modified IEEE
13 Test Feeder System illustrated in Fig. 3 and modeled in
MathWorks Simulink [17]. Besides removing capacitor banks
at nodes 652 and 611 for testing the robustness of the DMPC
control strategy on the voltage profile, a synchronous generator
is used as the system source at node 650 for the frequency
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Fig. 3. 13 bus test system

Fig. 4. Uncontrolled voltage profile

regulation analysis. The nominal power of the synchronous
generator is 6.5 kw with 3.7 inertia constant. A population
of 40 homogeneous HVAC systems (with 5kW, 4kVAr rating)
at each bus were considered in the simulation with a narrow
temperature dead band of 3 C◦ and a set point of 23◦C for
a cold day. Since the IEEE 13 Test Feeder System is a radial
system and just neighbouring areas contribute to the node
power, the results considering the optimization problem in (23)
were not considered in the Simulink model.

Firstly, we demonstrate some of the system profiles without
any control strategy applied. Bus 675 is chosen for analysis
since it is at the end of the line and is more sensitive to
violations. Fig. 4 and Fig. 5 show the voltage profile, active,
reactive, and apparent power on node 675 while Fig. 6 illus-
trates the temperature trajectories when no control strategies
are applied to the system. Fig. 7 also shows the frequency
profile derived from the phase C voltage angle of bus 675. As
can be seen in Fig. 4, the phase C voltage profile is below
the lower bound of nominal range, and frequency in Fig. 7 is
oscillating around 60Hz.

Active, reactive, apparent power, and temperature trajecto-
ries of the system are shown in Fig. 9 and Fig. 10 for the node
675 when controlled on phase C for the 24◦C set temperature.

Fig. 8 shows how voltage violation improves after applying
the DMPC on phase C at node 657 of the system. In this
case, the agent turns OFF HVAC units with the set temperature
> 24◦C at t+ 1 to provide the necessary active and reactive

Fig. 5. Active, reactive and apparent power on node 675 without control

Fig. 6. Temperature trajectories of node 675 without control

Fig. 7. Frequency monitored on node 675 without control

Fig. 8. Voltage profile at node 675 (24◦C)
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Fig. 9. Active, reactive and apparent power on node 675 using DMPC (24◦C)

Fig. 10. Temperature trajectories of node 675 with control on (24◦C)

power.
Finally, Fig. 11 illustrates the frequency profile when con-

trolled by the DMPC strategy for control over 23◦C, and
control over 24◦C, and the uncontrolled case. As can be seen
in the inset between 850 min and 1050 min, the frequency
oscillation improves with the DMPC strategy. The small
changes in frequency are justified by the limited availability
of the controlled HVAC loads.

VI. CONCLUSION

A DMPC strategy is presented to provide both active and
reactive power support from smart buildings to attenuate power
quality by optimizing a cost function related to the room
temperature in smart buildings. Multiple simulations for dif-
ferent temperatures have been conducted and the comparison
of different cases have been demonstrated. The feasibility of
obtaining better voltage and frequency profiles by providing

Fig. 11. Comparison of frequency monitored on node 675 between uncon-
trolled, controlled over 23◦C and 24◦C

both active and reactive power from DERs is explored and
promising results are obtained.

Future work could focus on obtaining the algorithm of the
agent which determines the exact apparent power with the an-
gle. Additionally, testing the strategy for a more sophisticated
system could be investigated.
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