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Abstract—Demand side management (DSM) is the modulation
of consumers’ energy demand to ameliorate the power network
at the consumer side. In case of contingency which leads to
frequency falling below a preset value, traditional methods like
load shedding, which de-energize one or more feeders, are
implemented to prevent sustained interruptions. This approach
is neither efficient nor reliable because this may lead to loss of
energy to critical infrastructure and loss of distributed energy
sources (DERs) injection. Implementation of home automation
and communication systems in distribution networks enables
optimization of energy consumption during a power system
contingency. Energy Controllers (EC) can achieve fine adjustment
of consumers’ power consumption which can be used to selec-
tively de-energize certain consumers, instead of a whole region.
In this paper, a real-time centralized under-voltage event-based
DSM approach called Soft Control (SC) that modulates energy
consumption of each consumers’ load utilizing Internet of Things
(IoT) is presented. This DSM technique can be utilized for both
active and passive distribution networks and is formulated as
a utilization maximization problem. The performance of the
proposed DSM approach is evaluated using the IEEE 16 bus
system. The ease of implementation and computational efficiency
highlight potential aspects for practical implementation.

Index Terms—Internet of Things, demand side management,
demand response, distributed generation, Markov process, smart
grid, power quality.

I. INTRODUCTION

DURING recent years, comprehensive studies have been
made on the topic of Demand Side Management (DSM),

which provides an efficient way to use load as an additional
degree of freedom to improve system operation at consumer
side. There is a need for efficient DSM strategies if a situation
arises where the frequency falls below a certain preset value
and frequency containment reserve is not enough to restore
frequency and load shedding should be performed to avoid
sustained interruption.

Several emergency control strategies have been proposed to
prevent sustained system interruptions. One of such strategies
is called ‘system protection schemes’ or ‘wide-area protection
schemes’ to prevent voltage collapse [1] [2] [3] [4] [5]. Load
shedding (LS) approaches are widely implemented as effective
response strategies to tackle generation and load imbalance
following a contingency. When system experiences an initial
voltage drop that is too severe to overcome by load tap
changers (LTC), DSM is a quick and effective solution against

voltage collapse [6]. Some of the recent works explored the
idea of DSM for under-frequency and under-voltage LS [7].

These LS approaches are not efficient and do not consider
the advances in communication infrastructure due to advent
of smart grid technologies [8]. Advances in sensor technology
and Internet of Things (IoT) establishes a real-time com-
munication between users, utilities and power equipment to
achieve real-time, high-speed and two-way communication.
These connections provide the capability to control equipment
distributed over a large geographical area and selectively
turn them ON/OFF when needed. Distributed energy sources
(DERs) are capable of providing economic benefits during
recovery from contingencies because locally generated energy
can be consumed by local loads whenever it is available. The
conventional LS approaches do not utilize these smart grid
features and do not make optimal use of available energy while
maintaining power quality in their design [8]. The latter is
important because one wants to optimize the energy available
in the event of an emergency.

Furthermore, conventional LS approaches shed load by
switching off areas of a network in a controlled and planned
manner [9]–[11]. Energy Controllers (ECs) at smart homes can
modulate load consumption smoothly and selectively.

In this work, a SC DSM approach is presented. This DSM
technique utilizes the smart grid infrastructure to make optimal
use of available energy while maintaining power quality.
We consider each customer is equipped with an EC with
selective appliance control (e.g. home automation). Appliances
with higher priority (or higher utility value) among all the
appliances of a customer will be given priority. The proposed
approach can be seen as a contribution to the incentive based
centralized physical DR methods [12] [13] [14] and it fully
utilizes DERs to help increase total economic benefits by
improving customer utility and reducing power system losses.
Furthermore, a better power quality is achieved with the SC
approach when compared to conventional LS methods. The
contribution of current work to state-of-art are:

• Control strategy for selective load modulation instead of
deenergizing a whole distribution network area.

• Optimal use of energy available after an emergency event.
• Consideration of power quality in constrained DSM

model.
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The remainder of this paper is organized as follows.
Section II describes general aspects of the proposed DSM
approach. In Section III, DSM problem is formulated as a
weighted optimization problem. Specific SC approach imple-
mentation aspects are described in Section IV. A comparative
study case is presented in Section V. Finally, some concluding
remarks are presented in Section VI.

II. SOFT CONTROL FOR DEMAND RESPONSE: GENERAL
ASPECTS

We assume that each customer is equipped with an EC
which has a communication interface and ability to selectively
control appliances.

A. Load Model

We define the set of customers Nc with cardinality N =
|Nc| customers. For each customer n ∈ Nc, let An denote the
set of customer appliances. Each appliance has its own utility
function which is a function of power supply. When power
supply is not enough to run all appliances, only appliances
with higher priority should work. For instance, low energy but
critical devices would be given higher priority when energy
supply is low.

To eliminate the non-linearity introduced by the constant
P-Q load model in the solution of power flow (PF) equations,
we utilize a voltage dependent load model [15] as:

P (V )
P0

= CZ

(
V

V0

)2
+ CI

(
V

V0

)
Q(V )
Q0

= C ′Z

(
V

V0

)2
+ C ′I

(
V

V0

) (1)

where P and Q are the load’s active and reactive power con-
sumption; V is the terminal voltage magnitude and P0, Q0, V0
are the nominal values; constants C and C ′ are calculated by
a curve-fitting procedure for different types of loads which
satisfy CZ + CI = 1 and C ′Z + C ′I = 1.

B. Solar Forecasting: A Markov Chain Approach and Confi-
dential Intervals

In order to forecast the amount of solar energy available for
use after a contingency, we use Markov models to forecast and
compute the transition probability from historical TMY3 data
sets of Gainesville [16].

1) Markov chain model: A Markov chain is used to imple-
ment the stochastic element in the model, such as estimation
of available wind and solar energy [17]. A Markov chain
features two elements (N ,Π), where N = {1, 2, ..., N} is
the set of finite states and Π is a transition matrix, defining
the probability of change between any two possible states. Let
Xt be the state of the Markov chain at time t. The transition
probability from state Xt to state Xt+1 can be described as
πij = Pr{Xt+1 = j|Xt = i}. In our Markov model, we split
maximum and minimum solar radiation value for each hour
in N levels, which are labeled from level 1 to N . For each
month of each year, the transition matrix Π is acquired from
solar radiation data of the specific month from all historical
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Fig. 1: Measured, forecast, minimum and maximum forecast
value with 99% confidence interval

years. Thus, in this work a total of 12 Markov chain models,
each corresponding to a month, are used.

2) Solar energy forecasting: Forecast of hourly solar ra-
diation for each day is generated with the Markov chain
corresponding to the month of that day and the historical solar
radiation range for the corresponding hour. The forecast solar
radiation P̂S

t+k at time t+ k can be obtained by the transition
probability value of the future state E[XS

t+k|XS
t = i] and the

historical solar radiation range RS
t+k at time t+ k, where i is

measured state at time t. Thus we have [17],

P̂S
t+k = 1

N
RS

t+k

(
E[XS

t+k|XS
t = i]− 1

2

)
. (2)

Fig. 1 represents the data corresponding to a summer day,
including the measured data PS , the forecast data P̂S using
a Markov chain of 8 states and prediction horizon 1 min, the
minimum and maximum values P̂S

min and P̂S
max of the 99%

confidence interval for the forecast of power insolation.

C. Power Flow Equations

Assume the system admittance matrix Ȳ = Ḡ + jB̄, thus
the power flow equation at node n could be written as,

N∑
k=1

(Ḡn,kV
re

k − B̄n,kV
im

k ) = Ip,n

N∑
k=1

(Ḡn,kV
im

k + B̄n,kV
re

k ) = Iq,n

(3)

where N is the number of nodes; n and k are the two ends
of line connecting nodes n and k; V re and V im are the real
and imaginary part of nodal voltage; Ip,n and Iq,n are real
and reactive part of corresponding nodal current injections at
node n.

D. Appliances Utility

Each customer n ∈ Nc has a different utility function deter-
mined by the energy consumption of appliances. In this work,
we choose quadratic utility functions [18]. These quadratic
functions are non-decreasing and concave.
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In [18], the quadratic utility function of the consumer n ∈ N
is described as:

Un(Pn) =


ωnPn −

α

2P
2
n , if 0 ≤ Pn ≤

ωn

α
ω2

n

2α, if Pn ≥
ωn

α
.

(4)

where Pn is power supply for customer n, ωn is a parameter
which may vary among users and also at different times of
the day, α is a pre-determined parameter, which represents
utility gain characteristic of each load. For example, in utility
models with distinct parameters, customers with life support
devices would gain higher utility than those with only illu-
minating devices when they have the same amount of energy
consumption.

III. SOFT CONTROL FOR DEMAND RESPONSE WITH IOT:
PROBLEM FORMULATION

In this section, we formulate an optimization problem to
maximize consumer’s utility while maintaining power quality.
In the event of power system contingency, the total energy
consumption should decrease to match the value of available
power generation (total power from available substation Pmax

and solar plants P̂S
t - distribution network technical power

loss Ploss). To regain balance between energy generation and
consumption, the adopted SC approach adjusts the power
consumption in the period T of recovery.

A. Total Customers Utility Maximization

Assuming we have complete knowledge of customers’ util-
ity function (4), the most economical efficient load-shedding
can be characterized as the maximum value of the following
objective equation,

maximize
Pn

∑
n∈N

Un(Pn) (5)

where Pn is the power supplied at customers’ bus n. We
assume that each customer n will try his/her best to utilize the
total amount of available energy supply, after the customer is
affected by a contingency. Moreover those appliances which
provide higher utility to customers (such as life support
systems, lighting devices after sunset, etc.) will be turned
on preferentially. Devices with similar utility are grouped to
ensure that all the devices of a certain class (for instance: life
support systems) in an area are ON if enough surplus energy
was available. The strategy for grouping of devices into classes
proposed in [13] was adopted in this work.

B. Weighted Optimization Problem Definition

We define our optimization problem for both active (with
DG) and passive distribution systems using the weighted
sum method for multi-objective optimization [19]. Utilization
maximization and reduction of losses are the objectives in this
strategy. Unlike traditional energy sources, renewable energy
is an intermittent energy source. When a contingency occurs
during daytime, solar plants in the affected area can help
mitigate amount of load-shedding by providing energy locally.

As solar availability fluctuates with time, we utilize its forecast
value at the specific time t. We formulate the optimization
problem in distribution networks with solar plant as:

maximize
P t

n

wu

∑
n∈N

U t
n(P t

n) + wlPloss

subject to Vmin ≤ V t
n ≤ Vmax

N∑
n=1

P t
n ≤ Pmax − P t

loss + P̂S
t,min

N∑
n=1

Qt
n ≤ Qmax −Qt

loss + Q̂S
t,min

I2
n,k,t ≤ |Imax

n,k |2

(6)

where wu and wl are the weights assigned to utility max-
imization and losses reduction respectively. P t

n and Qt
n are

real power and reactive power injection on bus of customer n
at current time t, Pmax and Qmax are the maximum available
real power and reactive power provided from feeders, P t

loss

and Qt
loss are total real and reactive power loss at time t,

P̂S
t,min and Q̂S

t,min are the confidence interval’s lower bound
of real and reactive power that could be provided by DER.
V t

n is the voltage magnitude of the bus. Vmin and Vmax

establish the range of allowed voltage magnitude of each bus
(e.g. Vmin = 0.90V0 and Vmax = 1.05V0). A slack was
introduced to lower ANSI range to allow for extreme condition
in emergency conditions. In,k,t stands for current through line
n − k at time t, and it should not exceed power line flow
limit of line n − k Imax

n,k . Without loss of generality, passive
distribution networks can also be described by making the
power injection from DG equal to zero at each time slot.

In this work, a linear power flow formulation based on a
voltage-dependent load model as described in II-A is adopted
to solve the load flow [15]. The real power losses on line
between node n and k are given by:

Pn,k =un,kGn,k[(Vre,n − Vre,k)2

+ (Vim,n − Vim,k)2].
Qn,k =− un,kBn,k[(Vre,n − Vre,k)2

(7)

where Vre,n and Vim,n are real part and imaginary part of
the voltage, which can be calculated from linear power flow
equation (3). un,k is equal to zero if there is no line between
nodes n and k. Gn,k and and Bn,k are the conductance and
susceptance of power line n−k. The total network losses can
be calculated by

Ploss =
∑

n,k,n<k

Pn,k.

Qloss =
∑

n,k,n<k

Qn,k

(8)

Here the restriction n < k in the summations is required to
prevent adding the losses of the same line twice when there
is a power line between node n and k (8).
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Fig. 2: System Diagram

IV. SOFT CONTROL FOR DEMAND RESPONSE WITH IOT:
IMPLEMENTATION ASPECTS

Fig. 2 illustrates communication networks that support con-
trol loops between control centers and power system equip-
ment. Home automation devices can adjust energy consump-
tion of a consumer by turning selective appliances OFF or ON.
The communication interface can be utilized to monitor status
and control energy consumption of a consumer by collecting
data and transferring control messages. One prominent system
structure for future smart grid infrastructure is illustrated in
Fig. 2. Sensors, meters, control devices and other devices com-
municate with each other via wireless network (e.g. 5GHz for
short distance communication and 2.4GHz for long distance
communication) in the same distribution network.

SC approach determines energy consumption of each con-
sumer which helps to achieve maximum social benefit while
maintaining balance between total energy generation and con-
sumption. The procedure of control message generation is
illustrated in the Fig. 3. During initialization stage, the latest
distribution networks topology un,k, power line parameters
Gn,k, Bn,k and load profiles CZ,n, CI,n are obtained from
the database. When any of these parameters are updated in
database, previous loaded data are substituted with the most
recent data. When load-shedding request is triggered by the
analysis of data from remote monitors, total available energy
from substation Pmax is loaded from database. The available
energy P̂S

min,t from DG at control operation time t can be
obtained from the corresponding Markov model and historical
data from the database.

With all the above parameters available, the utility max-
imization problem can be solved sequentially in time-steps
for the recovery time. Since (6) is a convex program, it can
be solved in a centralized way using convex programming
techniques such as Interior Point Methods (IPM) [20]. Finally,
control center periodically dispatches control messages with
required energy consumption to the corresponding control
device via communication networks. As long as power system
is recovering from contingency, control center keeps broad-
casting control messages to devices to optimize utility with
updated parameters.

Start

Initialize System Parameters

Acquire voltage
from sensors

Is voltage below
threshold?

Calculate Total Available Energy

Solve Utility Max-
imization Problem

Acquire Power
Plant Energy Profile

Acquire Energy
Availability of Renewables

Solve Utility Max-
imization Problem

Broadcast Control Signals

No

Yes

Fig. 3: Flowchart of Soft Control Approach

V. EXPERIMENTAL EVALUATION

In this section, we compare the performance of the SC
approach with an optimized adaptive load-shedding approach
[8]. In order to make a fair comparison, we assume that the
same amount of load (Pshed) is shed in both the approaches.

Pshed = ∆P − Pthr (9)

where ∆P is the total active power imbalance between genera-
tion and consumption, Pthr is the threshold value which stands
for the maximum allowable amount of imbalance between
generation and load to maintain frequency above a specific
value.

A. Test Feeders and Load Profiles

We use the modified IEEE 16 node test feeder with 13
sectionalizing switches, 3 tie switches, overhead lines and
13 distribution buses in our simulations [21]. For presented
approach evaluation considering an active distribution system,
the 16 bus test feeder system is modified to include a 1.2
MW maximum solar farm on bus 12. The historical hourly
insolation data is utilized to forecast power supply from
solar farm at specific time in one day. We implemented the
test feeder in Gridlab-D [22], a power distribution system
simulation software. All customers’ energy consumption can
be controlled in our implementation, which simulates the
operation of EC’s after energy consumption control messages
are received. All tie switches and sectionalizing switches are
closed at the beginning of simulation. In our residential load
model, we assume there are N = 1300 customers distributed
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along the 13 nodes in 3 areas. Total power generation of
3 feeders is 5 MVA, which is balanced with total energy
consumption. The appliances used by customers which are
served by each bus are randomly allocated according to total
power consumption in areas. In our experiment, we define
5 appliances classes and CZ and CI parameters of these
classes are obtained from experimental measured real power
P0, reactive power Q0 [15].

B. Case Study

In order to compare performance, a disturbance was simu-
lated in the distribution network. To simulate a power system
disturbance in the simulation platform, the amount of power
injection in feeder-I is set to 0. This would lead to a sustained
interruption event (here, an event is defined as sustained if
it is greater than equal to five minutes in duration) then
we calculate the total amount of load that should be shed
according to (9). The adaptive LS approach drops loads of
buses by ranking all buses of the system according to their
VQ margins [8]. In our test, the ranking of buses in feeder-I
area was: bus-4 < bus-5 < bus-6 < bus-7. Thus loads shedding
occurs in the order: bus-4, bus-5, bus-6, bus-7 until the total
amount of load to be shed is satisfied. In contrast, our SC
approach does not prompt a power outage to all consumers of
the buses along feeder-I. The available power supply for each
customer is calculated and a decision to turn on or off the
devices is made by the controller. As the LS approach is not
an appliance scheduling strategy, we randomize appliances’
priorities for each customers and turn on as many as higher
priority appliances as long as supply can meet the demand. In
real world, the priority of a devices would be determined by
its characteristic, consumer’s behavior, time of the day, and
other environmental factors. Thus, we think it is reasonable
for our simulation to simplify this priority requirement.

1) Remainder Utility Value: Simulation results of weighted
sum of utility and loss value for both adaptive LS approach
and SC approach are shown in Fig.4, 5, 6 and 7 for various
weights. We initiate the simulation at two different times:
12:00 A.M and 12:00 P.M and assume the disturbance event
lasts for a full day. As power supply available from solar farm
varies throughout the day, we run both control approaches
every 30 minutes to follow the customer load changes. In
contrast to adaptive LS, our approach is able to serve more
consumers while maintaining power quality. When a distur-
bance event occurs at midnight in Fig. 4, both the approaches
could not gain benefit from solar energy source. We drop loads
of buses 4, 5, and 6 to reach the amount of LS requirement
Pshed = 1MW with the adaptive LS approach. The adaptive
LS approach could not exploit the intermittent nature of DER
because the amount of load to be shed is determined using
the energy available at that given instant. Our approach is
able to fully utilize renewable energy when there is more
energy available from the solar farm by turning on the devices
according to customer priority. Fig. 6, shows that more utility
is achieved by SC DSM approach when compared to adaptive
LS approach when the disturbance event occurred at night

Fig. 4: Objective function value for various weights with
additional solar energy from 12:00am

Fig. 5: Objective function value for various weights with
additional solar energy from 12:00am

time. The same result was observed when the disturbance
event occurs at daytime in Fig. 4. Fig. 4 and Fig. 6 illustrate
the value of objective function when either losses or utility is
considered when solar energy is available at 12:00 A.M and
12:00 P.M respectively. Fig. 5 and Fig. 7 illustrate the value of
objective function for various weights wu and wl when solar
energy is available at 12:00 A.M and 12:00 P.M respectively.
In both scenarios, SC approach achieved higher utilization of
the available resources while maintaining power consumption
amount below available power generation and power flows
through power lines below power line capacity. The adaptive
LS approach focuses on dropping loads of buses without
maintaining power quality. The distribution system with DERs
in our approach outperforms the adaptive LS approach even if
power flow constraint in lines is not considered in the adaptive
LS approach.

2) Power Quality: Another advantage of our presented
solution is improved voltage profile. As shown in Table. I, cor-
responding to event start times, the total number of customers∑

i Ni experiencing voltage deviations with magnitudes below
0.95 due to event is summed up. The simulation result shows
that SC approach helps improving the SARFIx power quality
and maintains better voltage profile.
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Fig. 6: Objective function value for various weights with
additional solar energy from 12:00pm

Fig. 7: Objective function value for various weights with
additional solar energy from 12:00pm

VI. CONCLUSIONS

In this paper, a DSM approach is presented considering
advancements in the smart grid infrastructure. The proposed
method is based on utility maximization while maintaining
power quality after a contingency. Control center calculates
optimal energy consumption for each consumer utilizing the
data from data centers. The results of simulation demonstrates
that the SC DSM scheme is capable of maintaining higher
aggregate utility of all consumers while efficiently maintaining
power quality following a contingency compared to optimal
adaptive load-shedding approach. The presented technique
reduces technical losses on the lines and fully utilizes available
energy from various energy sources.

TABLE I: System Average RMS Frequency Index95

Event Time Approaches
∑

i
Ni NT SARF I95

12:00am Soft 0 1500 0
Adaptive 567 1500 0.378

10:00am Soft 0 1500 0
Adaptive 466 1500 0.311

12:00pm Soft 0 1500 0
Adaptive 270 1500 0.180

4:00pm Soft 0 1500 0
Adaptive 363 1500 0.242
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