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Abstract: In the modern power system networks, grid observability has greatly increased due
to the deployment of various metering technologies. Such technologies enhanced the real-time
monitoring of the grid. The collection of observations are processed by the state estimator in which
many applications have relied on. Traditionally, state estimation on power grids has been done
considering a centralized architecture. With grid deregulation, and awareness of information privacy
and security, much attention has been given to multi-area state estimation. Considering such, state-
of-the-art solutions consider a weighted norm of residual measurement model, which might hinder
masked gross errors contained in the null-space of the Jacobian matrix. Towards the solution of
this, a distributed innovation-based model is presented. Measurement innovation is used towards
error composition. The measurement error is an independent random variable, where the residual is
not. Thus, the masked component is recovered through measurement innovation. Model solution is
obtained through an Alternating Direction Method of Multipliers (ADMM), which requires minimal
information communication. The presented framework is validated using the IEEE 14 and IEEE 118
bus systems. Easy-to-implement model, build-on the classical weighted norm of the residual solution,
and without hard-to-design parameters highlight potential aspects towards real-life implementation.

Keywords: innovation; Jacobian matrix null-space; masked errors; alternating direction method of
multipliers; multi-area state estimator

1. Introduction

Power System State Estimation (PSSE) was originally introduced by Schweppe in the
early 1970s [1], and the operation of the grid has relied on such model ever since. Through
State Estimation (SE), the operators in the control rooms are able to make decisions and
perform actions in order to operate the grid efficiently and reliably. Hence, SE is an essential
part of monitoring the status of the grid in real-time. With the advent of the Smart Grid
(SG) concept, the architecture of the grid has changed by the integration of many different
technologies [2]. In specific, new sensors technology are deployed in order to enhance
monitoring of the grid. Such integration has not only advanced the SE accuracy, but also
has increased the computation burden considering real-time monitoring.

As the existing power networks are migrating to the SG paradigm, one of the nu-
merous additional challenges is privacy and security [3]. The power network is typically
composed of a large number of buses that are operated and monitored by several regional
centers. With grid deregulation, the need of a distributed real-time monitoring process of
large inter-connected power grid becomes imperative towards reliable operation. Since
PSSE are traditionally performed in a centralized architecture, substantial research efforts
aimed towards developing distributed approaches for advancing the SE process have been
in place.
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One main characteristic of Distributed State Estimation (DSE) is enabling regional
control centers to perform their own SE process with enhanced robustness. Considering
DSE, the state-of-the-art literature can be divided into two categories: hierarchical and
neighbor-to-neighbor SE. In the hierarchical approach, each local control center performs
their own SE, and upon convergence, estimated states are communicated with a central
control for coordination. The works in [4–10] have explored this approach. The main
shortcoming of this method is that there is still a need for a central controller to consent
the global estimation of the states by matching with the boundary bus measurements.
The neighbor-to-neighbor SE approach, on the other hand, eliminates the need for the
central processor. In this approach, the communication happens between neighboring
control centers. The authors in [11–15] have proposed different techniques for designing
a fully DSE. In [11], a relaxed semidefinite programming non-linear SE is used to achieve
near-optimal solution. However, the method may fail in the absence of voltage magnitude
meters at all buses. In [12], a distributed non-linear SE is presented. However, the main
drawback is the need for estimating the global state vector for each local area. In [14],
a decomposition method is proposed. However, local observability is required and conver-
gence is not always guaranteed. In [15], the authors developed a DSE based on Alternating
Direction Method of Multiplier (ADMM). However, the method considers only a linear
measurement model, known as DC SE. In the DC SE model, measurements are assumed to
be linearly related with the system states. DC SE model is an approximation model that
might not be suitable for applications where accurate representation of the underlying
physical system is needed. In fact, the relationships between recorded measurements and
state variables are non-linear [16,17]. A review on the concept of multi-area SE can be
found in [18].

This paper presents a distributed non-linear multi-area state estimator which is based
on the Gauss solution. The specific contributions of this work towards the state-of-the-art
are two-fold:

• A distributed measurement model for non-linear multi-area state estimation which
utilizes ADMM;

• Applying the Innovation Concept, which takes into account the masked error compo-
nent in the Jacobian range space.

2. Background
2.1. State Estimation with the Innovation Concept

The power system with n buses and m measurements is modeled as a set of non-linear
equations as follows [19]:

z = h(x) + e (1)

where z ∈ Rm is the measurement vector, x ∈ RN is the state variables vector, h(x):Rm →
RN , (m > N) is a non-linear differentiable function that relates the states to the measure-
ments, e is the measurement error vector assumed with zero mean, standard deviation σ
and having Gaussian probability distribution, and N = 2n− 1 is the number of unknown
state variables.

Weighted Least Square (WLS) is a classical state estimator that searches for the best
estimates of the states x of the well-known problem that minimizes the cost function
as follows:

J(x) =
∥∥z− h(x)

∥∥2
R−1 = [z− h(x)]T R−1[z− h(x)] (2)

where R is the measurement covariance matrix. J(x) index is a norm in the measure-
ments vector space. Let x̂ be the solution of the aforementioned minimization problem.
Then, the estimated measurement vector is ẑ = h(x̂). The residual is defined as the
difference between ẑ and z: r = z− ẑ.

Linearizing (1) at a certain operating point x∗ yields:
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4 z = H4 x + e (3)

where H = ∂h
∂x is the Jacobian matrix of h calculated at the point x∗. 4z = z− h(x∗) = z− z∗

and4x = x− x∗ are the correction of measurement and state vector, respectively.
Under an observable condition, i.e., rank(H) ≥ N, the vector space of measurements

can be decomposed into two sub-spaces that are orthogonal to each other. Let P be a linear
operator such that 4ẑ = P4 z and the residual vector r be 4z−4ẑ. Then, the vector
4ẑ = H4 x̂ is orthogonal to the residual vector r, since P projects the measurement vector
mismatch4z orthogonality in the range space of H. Equivalently, in mathematical form
one can write the following:

< 4x̂, r >= (H4 x)T R−1(4z− H4 x̂) = 0 (4)

Solving for4x̂, one can obtain the following:

4 x̂ = (HT R−1H)−1HT R−14 z (5)

The projection matrix P is found to be the idempotent matrix that can be derived as
follow: using the solution in (5), the estimated increment in measurement is:

4 ẑ = H4 x̂. (6)

Therefore, by substituting (5) into (6), the projection matrix P can be calculated using
the following expression:

P = H(HT R−1H)−1HT R−1. (7)

It is possible to decompose the measurement error vector into two components.
The component eD is the detectable error which is the residual in the classical WLS model
while the component eU is the undetectable error. eD is in the orthogonal space to the
range space of Jacobian whereas eU is hidden in the Jacobian space. Hence, the error can be
written as follows:

‖e‖2 =‖eD‖2 +‖eU‖2 . (8)

The error vector in (8) is called Composed Measurement Error (CME). In order to find
the masked error and compose it, the Innovation Index (II) introduced in [20] is used to
quantify the undetectable error as presented in the following:

I Ii =

∥∥∥ei
D

∥∥∥∥∥∥ei
U

∥∥∥ =

√
1− Pii√

Pii
. (9)

A low Innovation Index, i.e., II, indicates there is a large component of error which
is not reflected in the residual. Therefore, the residual will be very small even if there is
a gross error. By using (8) and (9), the CME in its normalized form will be as follows:

CMEN
i =

ri
σi

√1 +
1

I Ii
2

. (10)

where σi is the standard deviation of the measurement i. Since measurement error has
a unique decomposition, the authors in [19] showed that the minimization should be
performed on the norm of the error in the detection stage. Therefore, the objective function
in SE to be minimized is the following:

minx

m

∑
i=1

(
1 +

1
I Ii

2

)
R−1

ii r2
i . (11)
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2.2. Alternating Direction Method of Multiplier (ADMM)

The algorithm was introduced in 1970 by Gabay, Mercier, Gowinski, and Marrocco [21].
ADMM is a simple algorithm that incorporates the features of Dual Ascent and the Method
of Multipliers. The powerful feature of dual ascent is that in some cases, decomposition
can be applied. The method of multipliers, on the other hand, provide robustness to the the
dual ascent in a sense that convergence can be achieved without strict assumptions on the
objective function. Therefore, ADMM can be used towards the solution of a multi-area state
estimation, as the interconnected system measurement model in a distributed architecture.
The general form of ADMM can be written as follows [21]:

minimize f (x) + g(z)

subject to Ax + Bz = c
(12)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. By using the
method of multiplier, the augmented Lagrangian can be written as follows:

Lρ(x, z, v) := f (x) + g(z) + vT(Ax + Bz− c) +
(

ρ

2

)
‖Ax + Bz− c‖2

2 . (13)

Therefore, the structure of ADMM consists of the following iterations:

xt+1 := arg min
x

Lρ

(
x, zt, vt

)
(14)

zt+1 := arg min
z

Lρ

(
xt+1, z, vt

)
(15)

vt+1 := vt + ρ
(

Axt+1 + Bzt+1 − c
)

(16)

where ρ > 0. The iteration in (14) is just a minimization over x while fixing other variables,
i.e., z and v. Then, a minimization over z is performed in (15) while fixing v and using
updated x from (14). The last iteration is simply an update of the dual variable v. Actually,
the dual variable can be viewed as a running sum of the error, analogous to integrator
controller in control theory. This version of ADMM is often called unscaled form. Another
version of ADMM known as scaled version can be obtained. The process starts by defining
the residual r = Ax + Bz − c , and combining the linear and quadratic terms in the
augmented Lagrangian function to be as follows:

vTr +
(

ρ

2

)
‖r‖2

2 =

(
ρ

2

)∥∥∥∥∥r +

(
1
ρ

)
v

∥∥∥∥∥
2

2

−
(

1
2ρ

)
‖v‖2

2

=

(
ρ

2

)
‖r + u‖2

2 −
(

ρ

2

)
‖u‖2

2

(17)

where u =
(

1
ρ

)
v is the scaled dual variable. Hence, the ADMM cycles in the scaled version

can be expressed as follows:

xt+1 := arg min
x

(
f (x) +

ρ

2

∥∥∥Ax + Bzt − c + ut
∥∥∥2

2

)
(18)

zt+1 := arg min
z

(
g(z) +

ρ

2

∥∥∥Axt+1 + Bz− c + ut
∥∥∥2

2

)
(19)

ut+1 := ut +
(

Axt+1 + Bzt+1 − c
)

(20)

From the provided two versions of ADMM iterations, both approaches are equivalent.
The scaled form, however, is relatively shorter regarding formulation size.
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3. Multi-Area AC State Estimation Model Using ADMM

The power system network is a wide-area interconnected system that is typically
partitioned into regions based on geographical location. The system states of each region
are monitored and supervised by a local control center. The overall PSSE goal is to estimate
the states in each control region in an optimal way. If each control center estimates their
local states without communicating with neighboring regions, then the estimated solution
is sub-optimal. At the same time, if there are measurements pertaining to lines connecting
boundary buses between areas or injection measurements associated with those boundary
buses, then there is a need for communication between those control centers in order to
utilize those measurements. For illustration purposes of interconnected power network,
the IEEE 14 bus system is partitioned into four areas as shown in Figure 1. As seen, area
1 has a connection with area 2 through the tie-lines connecting buses 5 and 2 (in area 1)
with buses 3 and 4 (in area 2), respectively. At the same time, area 1 has a connection
with area 3 through the transmission line connecting bus 5 with bus 6. Therefore, towards
optimal estimation, area 1 would require to communicate with areas 2 and 3. This could
be done through information sharing of states of buses 3, 4, and 6 if there is a power flow
measurements in those lines and/or power injections at buses 2 and 5. Similar scenario is
applied for other areas. Hence, for a multi-area state estimation, each area would augment
shared states with neighboring areas to their local states when performing local SE.

Figure 1. IEEE-14 bus system divided into four areas. Dotted lassos shows the the boundary buses
between areas.

The advantage of ADMM algorithm in the state estimation process is pertained to
the decomposition of the process of state estimation while constraining the estimates of
bordering buses if they are shared with neighboring areas. In that way, communication is
limited only between neighboring regions, which leads to estimating the system states in
fully distributed manner and without a central process. In addition, upon convergence,
global estimation is optimal and carried out with minimal computations (and requirements
of information sharing).

The framework for the multi-area state estimation is initialized with the partition of
the grid into K control centers. Each control center is aiming to solve the following model:

zk = hk(xk) + ek (21)

where zk ∈ RMk is the measurement vector of region k, xk ∈ RNk is the state variables vector
of region k associated with the measurement in zk, hk(xk) : RMk → RNk is a non-linear
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differentiable function that relates the states to the measurements, ek is the measurement
error vector assumed with zero mean, standard deviation σ and having Gaussian probabil-
ity distribution, Mk is the number of measurements in region k, and Nk is the number of
unknown state variables in region k. The model in (1) is non-linear. Hence, a linearization
is required in order to solve the non-convex optimization problem. Using Gauss–Newton
approximation, as described in Section 2.1, one can write the following model:

4 zk = Hk4 xk + ek (22)

Solving for4x̂k, one can obtain the following:

4 x̂k = (HT
k R−1

k Hk)
−1HT

k R−1
k 4 zk (23)

Then, the estimated state can be updated simply as:

xt+1
k = xt

k + ∆xt+1
k (24)

The process is solved iteratively until a convergence criterion is achieved. In [15],
a framework for applying ADMM for distributed state estimation is established considering
a multi-area linear measurement model. In some applications, as fault diagnosis of power
systems, a more accurate model is required. Hence, the ADMM framework considering
a multi-area non-linear state estimation model is developed in this work.

The main characteristic of the power system grid is that some of the states in the
state vector xk are common between region k and their neighbors due to measurements
collected and related to those states. Hence, for neighboring regions k and l, define xk[l]
(xl [k]) to be a sub-vector of the states in region k (l) that are shared between the two
regions. One can define auxiliary variables for each shared state between two regions.
For instance, the auxiliary variable xkl can be introduced to represent xk[l]. Similarly for
region l, the auxiliary variable xlk represents the variable xl [k]. Define for a region k the
set Nk which represents the number of regions that share states with region k. In addition,
for each entry in the state vector in region k, i.e., xk(i), define the set Ni

k which consists of
the set of regions sharing the state xk(i) with region k. Since the state is a simple update
that relies on the increment (as described in Section 2.1), the augmented Lagrangian (as
described in Section 2.2) can be written for the increment of the states as follows:

Lρ(∆xk, ∆xkl , vkl) :=
K

∑
k=1

fk(∆xk) + ∑
l∈Nk

(
vk,l
(
∆xk[l]− ∆xkl

)
+

(
ρ

2

)∥∥∆xk[l]− ∆xkl
∥∥2

2

)
.

(25)

ADMM consists of the following iterations:

∆xt+1
k := arg min

∆xk

Lρ

(
∆xt+1

k , ∆xt
kl , vt

kl

)
(26)

∆xt+1
kl := arg min

∆xkl

Lρ

(
∆xt+1

k , ∆xt+1
kl , vt

kl

)
(27)

vt+1
k,l := vt

k,l + ρ
(

∆xt+1
k [l]− ∆xt+1

kl

)
(28)

By applying the minimization of the increment of states as in (23), ADMM iterations
can be simplified [15] and outlined in the following steps:
Step 1:

P = Hk

(
HT

k Wk Hk + ρDk

)
HkWk (29)

(I I)i =

√
1− Pii

Pii (30)
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(EI I
k )ii =

1 +
1(

I Ii
)2

Wii
k (31)

∆xt+1
k :=

(
HT

k EI I
k Hk + ρDk

)−1(
HT

k EI I
k ∆zk + ρDk pt

k

)
(32)

xt+1
k = xt

k + ∆xt+1
k (33)

Step 2:

vt+1
k,l := vt

k,l +
ρ

2

((
xt+1

k [l]− xt
k[l]
)
−
(

xt+1
l [k]− xt

l [k]
))

(34)

Step 3:

pt+1
k (i) =

1
2

(xt+1
k (i)− xt

k(i)
)
+

(
1
|Ni

k|
∑

l∈Ni
k

xt+1
l [i]− xt

l [i]

)
− 1

ρ|Ni
k|

∑
l∈Ni

k

vt+1
k,l [i]

(35)

where Dk is a diagonal matrix with entry (i, i) is |Ni
k|, i.e., the number of regions sharing the

state xk(i) with region k, vk,l is the Lagrange multiplier associated the constraint between
region k and region l, xl [i] is the entry in the vector xl corresponding to the state xk(i).

4. Case Study

The presented framework is tested on two IEEE systems, i.e., IEEE-14 bus and IEEE-
118 bus system. To apply multi-area state estimation, the IEEE-14 bus system is dived into
4 control regions [4] while IEEE-118 is partitioned into 3 regions [13]. In all cases, MATLAB
package MATPOWER [22] is used to generate measurement sets with Gaussian noise for
each scenario. The measurement sets consist of line power flows (real and reactive) for
each line, bus power injections, and all voltage magnitudes. The implementation of the
proposed framework and evaluation of results were conducted using MATLAB.

4.1. IEEE-14 Bus System

In this case study, the partitioned IEEE-14 bus system is used and illustrated in
Figure 1. The multi-area non-linear state estimation model presented previously is applied
and, upon convergence, the final estimates of the states are shown in Figures 2 and 3.
As shown, in the “Area Number” axis, area number 5 is the power flow solution while the
different bars associated with a bus across areas indicate the specific bus is shared with the
corresponding areas. The results show that the converged solution are much close to the
power flow solution.
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Figure 2. Estimated state (angles) on the IEEE-14 bus system 4 regions.

Figure 3. Estimated state (magnitude) on the IEEE-14 bus system 4 regions.

To show the performance of the presented model, the error metric ek =
∥∥∥xk − xp f

∥∥∥2
/Nk

in log scale is utilized. A 100 Monte Carlo simulation is generated and the average error
curves for each area is shown in Figure 4. From the results, one can see that the presented
model is able to achieve a per area mean error smaller than 10−2 within a few more itera-
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tions compared to the centralized solution, which in this case took 11 iterations. Using the
Monte Carlo simulation, Tables 1 and 2 present the error statistics per area per state. In
other words, the difference between estimated states and power flow solution is calculated
for each state. In Table 1, local and shared states are included in the calculation while in
Table 2 only local states are considered. Table 2 further presents final estimates of the states
in each area.

Table 1. Statistic metric per state per area on IEEE-14.

State Area 1 Area 2 Area 3 Area 4

Mean Angle (degree) 1.43e− 2 2.40e− 2 2.19e− 2 2.36e− 2
Magnitude (pu) 0.8e− 3 1.7e− 3 1.4e− 3 1.5e− 3

Average std. Angle (degree) 1.09e− 2 1.79e− 2 1.69e− 2 1.81e− 2
Magnitude (pu) 0.6e− 3 1.2e− 3 0.9e− 3 1.0e− 3

Table 2. Statistic metric per state per area on IEEE-14 (local states only).

State Area 1 Area 2 Area 3 Area 4

Mean Angle (degree) 0.25e− 2 1.29e− 2 1.21e− 2 1.02e− 2
Magnitude (pu) 0.49e− 3 0.98e− 3 0.80e− 3 0.63e− 3

Average std. Angle (degree) 0.21e− 2 0.97e− 2 0.96e− 2 0.81e− 2
Magnitude (pu) 0.35e− 3 0.69e− 3 0.53e− 3 44e− 3

0 50 100 150

Iteration

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

Per area mean error curves for estimated states in IEEE-14 (4 regions)

step size 10000

Area 1

Area 2

Area 3

Area 4

Figure 4. Per area error curves on the IEEE-14 bus system 4 regions.

To evaluate the presented model’s robustness, measurements’ noise conditions are
simulated. Figures 5 and 6 show the performance index J(x), which is the norm of the
measurements error in each area after convergence, over iterations. In this figure, the index
J(x) and the χ2 threshold associated with each area are plotted on the same window. As one
can see, upon convergence, the performance index is smaller than the threshold value,
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which indicates that no gross error is present. Hence, the estimated states are optimal and
the measurements error are minimal.

Figure 5. Per area mean of J(x) on the IEEE-14 bus system 4 regions.

Figure 6. Per area mean of J(x) on the IEEE-14 bus system 4 regions with standard deviation.

To further analyze the robustness of the presented model, the noise level in the
measurements is varied from 0 to 1.4% of the measurements’ standard deviation (sd).
Test result is presented in Figure 7. This figure highlights the effect of noise level in the
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measurements associated with each area on the performance index J(x). Each area has
different χ2 threshold because of different measurement set across areas. The results show
that even with noise level above 1%, the performance index J(x) per area is smaller than
the threshold value, which reduces the false positive alarms.
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2  threshold per area

Figure 7. Performance index for different noise level on the IEEE-14 bus system 4 regions.

4.2. IEEE-118 Bus System

In this case study, the multi-area non-linear state estimation model is applied to
a partitioned IEEE-118 bus system. Since the number of states in this system is large
compared to the IEEE-14 bus system, it is difficult to visualize the final estimates. However,
the same error metric used in the IEEE-14 bus system is applied to this system. Hence,
a 100 Monte Carlo simulation is generated and the average error curves for each area is
shown in Figure 8. From the shown results, one can see that the presented model has
achieved error below the order of 10−2 within less iterations compared to the system in
Figure 1. The main reason for such is that the number of shared states within an area is less,
which depicts a realistic scenario in real-life. Tables 3 and 4 present the error statistics per
area per state for the considered system. In Table 3, local and shared states are included in
the calculation while in Table 4 only local states are considered. Table 4 presents statistics
regarding area states final estimates.
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Figure 8. Per area error curves on the IEEE-118 bus system 3 regions.

Table 3. Statistic metric per state per area on IEEE-118.

State Area 1 Area 2 Area 3

Mean Angle (degree) 1.17e− 2 1.26e− 2 1.35e− 2
Magnitude (pu) 0.39e− 3 0.35e− 3 0.31e− 3

Average std Angle (degree) 0.85e− 2 0.91e− 2 1.07e− 2
Magnitude (pu) 0.33e− 3 0.30e− 3 0.22e− 3

Table 4. Statistic metric per state per area on IEEE-118 (local states only).

State Area 1 Area 2 Area 3

Mean Angle (degree) 1.01e− 2 0.79e− 2 1.27e− 2
Magnitude (pu) 0.35e− 3 0.29e− 3 0.30e− 3

Average std. Angle (degree) 0.74e− 2 0.58e− 2 1.0e− 2
Magnitude (pu) 0.29e− 3 0.25e− 3 0.21e− 3

The behavior of the performance index J(x) is recorded over the iteration process and
is presented in Figures 9 and 10. Upon convergence, the performance index is less than the
threshold value. Hence, no gross errors are detected based on χ2 test.
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Figure 9. Per area mean of J(x) on the IEEE-118 bus system 3 regions.
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Figure 10. Per area mean of J(x) on the IEEE-118 bus system 3 regions with standard deviation.

The robustness the presented model against the noise level in the measurements is also
evaluated considering this test system. Similar to the previous case study, the noise level is
varied from 0 to 1.4% of the measurements’ standard deviation. The result is presented in
Figure 11. The results show that with noise level up to 1.1%, the performance index J(x)
per area is below the threshold value, which reduces the false positive alarms.
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Figure 11. Performance index for different noise level on the IEEE-118 bus system 3 regions.

5. Conclusions

In this paper, a multi-area nonlinear state estimation model is presented. The model
considers the Innovation Index (I I) concept, which estimates the masked error component
pertaining to the Jacobian null space and then composes the measurement error. The multi-
area measurement model is solved with the alternative direction method of multipliers,
which enables minimal information sharing. Validation is made considering two IEEE
test systems. The two systems are partitioned to emulate different control centers con-
trolling and monitoring interconnected power system. Tests include comparison with the
benchmark centralized quasi-static measurement model. Test results statistics regarding
robustness to measurement noise and computational speed are analyzed. Presented results
show that the model is capable of handling noise in shared states among areas while
maintaining computational speed and precision. Further, multi-area model converges to
centralized solution within acceptable range of errors. Considering that the majority of
utilities companies software rely on a centralized nonlinear state estimation, the presented
model can be easily integrated in real-life application without major changes.
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