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A B S T R A C T

As the industries transit towards industrial integration and informatization, the many advantages from
interdisciplinary collaborations come with added technical challenge, especially in large scale and complex
systems. Different from typical objects, the interconnected power system is the largest system ever built in
industrialized world. Since the development of Power System State Estimation (PSSE), it has predominantly
been a centralized process that relies on consistent measurement data availability. In a centralized architecture,
a single point of failure can impact the entire system. While in distributed topology, the damage could
be decreased with exchanging information between neighboring sub-systems. In other fields, distributed
architectures have been widely used to avoid this issue, however shallow number of works are reported in
PSSE literature. This paper presents a distributed nonlinear PSSE innovation based model that uses an adaptive
penalty parameter to improve the convergence and accuracy of the PSSE output such as bus voltage and
bus phase. The alternating direction method of multipliers is modified and used to optimize the distributed
PSSE while an innovation-based nonlinear model is used to represent the sub-areas composed measurement
error. The distributed PSSE algorithm is tested on the IEEE-14 and 118-bus systems using load characteristics
from the Electricity Reliability Council of Texas (ERCOT). Numerical results show that the penalty parameter
successfully adapts to optimal condition and the objective function has better performance compared to
state-of-the-art models after convergence. Easy-to-implement model towards industrialization, built on the
weighted least squares (WLS) solution, without hard-to-design parameters, highlight potential aspects for
real-life implementation.
1. Introduction

As the fast transition from industries towards industrial integration
and informatization, it has significantly increased the amount of infor-
mation being collected from industrial process. Since the concept of
industrial information integration engineering was initially proposed
by Xu in 2005 [1–3], it draws a lot of awareness from academic
circle and industrial practitioners [4,5]. Since then, industrial infor-
ation integration engineering has been widely applied in different
ndustrial sectors, including manufacturing, agriculture, environmen-
al protection, and defense industries. The quantity of literature on
ndustrial Information Integration grew at a remarkable pace [2–5].
hen has published two literature review papers on industrial in-
ormation integration engineering [4,5]. Industry 4.0 is the ongoing
utomation of traditional manufacturing and industrial practices, using
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modern smart technology. Large-scale machine-to-machine commu-
nication (M2M) and the internet of things (IoT) are integrated for
increased automation, improved communication, self-monitoring and
production of smart machines that can analyze and diagnose issues
without the need for human intervention. Accordingly, industrial in-
formation integration engineering can be widely applied in different
types of industrial sectors, such as wireless communication, hypersonic
vehicle, manufacturing, agriculture, and so on. Wang [6] presented a
simple but scalable crack detection algorithm that is based on SegNet,
which can realize the pixel-wise inspection of concrete or asphalt
pavement and bridge deck cracks. Nazarenko [7] discussed the analysis
of relevant standards for manufacturing systems which was performed
for the Digital Manufacturing Platforms (4DMP) cluster in order to
identify those standards that might be relevant for Zero Defects Man-
ufacturing (ZDM), as well as for further projects or manufacturing
platform designers.
vailable online 28 May 2021
452-414X/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jii.2021.100223
Received 2 January 2021; Received in revised form 28 April 2021; Accepted 1 May
 2021

http://www.elsevier.com/locate/jii
http://www.elsevier.com/locate/jii
mailto:tieruizou@ufl.edu
https://doi.org/10.1016/j.jii.2021.100223
https://doi.org/10.1016/j.jii.2021.100223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2021.100223&domain=pdf


Journal of Industrial Information Integration 24 (2021) 100223T. Zou et al.
Meantime, as a sensor, communication, control and other technolo-
gies continue to advance into digital age, the power system industry
begins to transit to Smart Grids (SG) with integration of increased
information as well [8,9]. Power system state estimation (PSSE) is
a critical process for real-time monitoring for power industries. This
process uses real-time wide-area information to gain awareness of the
system state, which is then used in many applications for industrial
process, such as power system protection, control and operation. As
the power system transitions to the Smart Grid (SG) using new sen-
sors, communications and controls, the role of PSSE only becomes
more important to real-time monitoring. The SG will integrate pha-
sor measurement units (PMU), advanced meter infrastructure (AMI)
and two way communications networks with the existing Supervisory
Control and Data Acquisition (SCADA) systems [10,11]. This industrial
integration and informatization trend will enable fully multi-area real-
time control and protection. These technologies are critical for the
SG of the future, however this transition towards to power industrial
integration and information also increases the potential for failures in
PSSE [12]. There have already been many reported blackouts on power
systems [13–16]. All of these changes have direct impacts on the PSSE
process, as more information becomes available for power industries.

While more information is generally considered to be positive in
state estimation for many power industries, the distributed power inte-
gration planning and evaluation are essential for a more comprehensive
understanding of power system operational reliability. How to use
integrated information is an important issue. By ensemble learning
and Bayesian learning, several novel methodologies based on neural
networks are presented recently [17,18]. Meantime, it can present a
technical challenge to current PSSE, since it is historically implemented
in a centralized architecture. Luenberger observer and Kalman filter are
two ways which use a series of measurements to estimate unknown
state variables [19,20]. While a typical power system contains thou-
sands of buses, each with their own measurement data, and classical
PSSE, usually performed in the control center of power industries
estimates the states of all of these buses in a centralized process [21].
The addition of new data can rapidly increase the computational cost of
PSSE when done in a centralized way. Furthermore, cyber-attacks often
impact the PSSE process by manipulating real-time measurements that
the PSSE depends on [22,23]. If a cyber-attack on a single measurement
goes undetected, it can have a great impact throughout the operation
of industrial process, since PSSE outputs impacts several grid applica-
tions [24]. In order to address these issues, considering the centralized
architecture, some research has been done towards a distributed PSSE
process, which would significantly reduce computational burden of
PSSE and enhance power system stability [25,26].

With the restructuring of power industry, distributed generation
units have been widely deployed and are being connected to existing
distribution networks with the aim of improving power quality, service
reliability and energy efficiency of the power systems. Distributed
architectures have been used in many other areas, including controls,
communications, and machine learning with much success [27–31].
Both centralized and distributed architectures have their pros and
cons. Distributed solution may have more robustness and efficiency
due to the isolated topology and fast convergence while this solu-
tion may lose information of data from neighboring areas. For power
industries, distributed solution can also bring better load regulation,
increased flexibility, maintainability, redundancy, better power and
heat management which are their primary considerations. For PSSE,
comparatively with centralized architectures, a shallow number of
distributed approaches have been presented in the literature [32–34].
In [35], state estimation within a hierarchical framework was pre-
sented, where the local estimation results are globally coordinated with
a control center. However, this hierarchical solution has reported poor
reliability. [36] presents a distributed architecture for WLS estimation
based on Richeardson iterative equations. This method can adapt to
2

different scenarios of topology, however, the convergence performance
reported might hinder real-life applications. Authors of [37] presented
a multi-area PSSE based on sub-regions individually performing local
state estimation while considering a central control center coordinating
towards optimal solution. This method though does requires a global
communication network. In [38], a distributed PSSE approach is pre-
sented based on alternating direction method of multiplier (ADMM).
The presented model is linear, which has limited accuracy, and uses
a fixed step-size for model solution, which does not optimize con-
vergence. A consensus based approach considering the classical WLS
model is presented in [39]. This solution is most interesting and reports
improved convergence rates, however it also uses a constant step-size.

In recent years the use of phasor measurement units (PMU) have
enabled the development of hybrid measurement models for industrial
information integration in power system, considering PMU SCADA
mixed observations [40]. Considering such models, PMU angle mea-
surement errors are addressed in [41] considering a limited information
exchange between neighboring areas. In [42], a distributed hybrid state
estimation model with mixed measurements was presented and solved
by the alternating direction multiplier method.

Considering the previously mentioned distributed PSSE solutions,
some common aspects can be highlighted. First, all measurement mod-
els presented are residual based, where the goal is to minimize the
weighted norm of the residual, which has been proven to not represent
the mask component of the error [43–46], thus potentially converging
to a non optimal solution. Second, considering distributed models
solution, coordination is consensus or fixed penalty parameters based,
which do not adapt to operation conditions, thus increase computa-
tional costs for power industries. On the other hand, centralized power
system state estimators based on nonlinear measurement models are
used worldwide in nearly all power industries. In addition, there are
some research work for distributed power system state estimation.
However, most of this work is focusing on linear measurement models
which is not able to satisfy the fast transition towards integration and
information of power industries. In this paper, otherwise, a nonlinear
distributed PSSE is presented by adapting system penalty parameter
with integrating the load information from the Electricity Reliability
Council of Texas (ERCOT). Further, an alternating direction method of
multipliers (ADMM) introduced in [27] is used to create an adaptive
penalty parameter. The adaptive penalty parameter is used to ensure
the shared states within the distributed PSSE architecture are estimated
to be sufficiently close together such that neighboring areas can help
each other converge to accurate PSSE solutions. On the other hand,
adaptive penalty parameter is used based on primal and dual residue of
system optimization to guarantee convergence performance. Therefore,
the specific contributions of this work towards the state-of-the-art are
threefold:

1. Nonlinear innovation based distributed state estimation model
for power industries operation;

2. Adaptive penalty parameter developed with an alternative di-
rection method of multipliers towards fast convergence of dis-
tributed architecture.

3. Integrating data characteristics from ERCOT to perform pre-
sented solution.

The remaining of this paper is divided as follow. Section 2 presents
background information in regards to classical state estimation method
used in power industries, such as General Electric company (GE) and
Schneider Electric Company (SE). Section 3 presents the data integra-
tion of actual load characteristics from Electricity Reliability Council of
Texas (ERCOT). Section 4 presents the distributed nonlinear state esti-
mation model. The adaptive penalty parameter approach is presented
on Section 5. Case study is presented on Section 6. Section 7 presents

the conclusions of this work.
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2. Background information

2.1. Problem formulation

A power system is composed of a set of interconnected systems
where each monitored area contains a subset of buses that are su-
pervised by a control center. Control centers collects local area mea-
surements, communicate with their neighboring control centers and
perform sufficient computational tasks such as state estimation. In a
centralized PSSE architecture, information of all areas of the grid, such
as system topology and measurement collection, is required in order
to estimate the system state. Therefore, computational efficiency will
be reduced due to high-dimensional of search space and financial cost
increase due to necessary large-scale communication infrastructure. In
contrast, a distributed PSSE (D-PSSE) would require minimal informa-
tion for each control center that is mostly constituted by their local
and neighboring state information in order to have an estimate of the
system state.

A power system with 𝑛 buses and 𝑚 measurements can be modeled
as a set of non-linear algebraic equations, as follows:

𝑧 = ℎ(𝑥) + 𝑒, (1)

where 𝑧 ∈ R𝑚 is the measurement vector, 𝑥 ∈ R𝑁 is the state variables
vector, ℎ(𝑥) ∶ R𝑁 → R𝑚, (𝑚 > 𝑁), is a non-linear differentiable function
that relates the states to the measurements, and 𝑒 is the measurement
residual vector assumed with zero mean, standard deviation 𝜎 and
having Gaussian probability distribution.

From (1), one can the rewrite the non-linear algebraic expression
for a distributed power system with 𝑘 areas as:

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝑒. (2)

The distributed WLS state estimator searches for the best estimates of
the system states 𝑥𝑘 which minimizes the cost function:

𝐽𝑘(𝑥𝑘) = ‖

‖

𝑧𝑘 − ℎ𝑘(𝑥𝑘)‖‖
2
𝑅−1
𝑘

= [𝑧𝑘 − ℎ𝑘(𝑥𝑘)]𝑇𝑅−1
𝑘 [𝑧𝑘 − ℎ𝑘(𝑥𝑘)]. (3)

where 𝑅𝑘 is the measurement covariance matrix in area 𝑘. 𝐽𝑘(𝑥) is
geometrically a norm in the measurements vector space R𝑚𝑘 of area
𝑘. One should notice 𝑅𝑘 of each area is a positive definite symmetric
matrix where each diagonal element is defined by the magnitude of
corresponding measurement. Then, the objective cost function for a dis-
tributed state estimation architecture is equal to the sum of individual
area functional:

min
𝑥𝑘∈𝜒𝑘 ,𝑥𝑘𝑙

𝐾
∑

𝑘=1
𝐽𝑘(𝑥𝑘),

𝑠.𝑡. 𝑥𝑘[𝑙] = 𝑥𝑙[𝑘],∀ 𝑙 ∈ 𝛤𝑘,∀ 𝑘.

(4)

For every two neighboring areas 𝑘 and 𝑙, the vector 𝑥𝑘[𝑙] contains states
in area 𝑘 that overlap with area 𝑙 and ordered as they appear in the state
vector 𝑥. For example, the state variables in 𝑥𝑘[𝑙] and 𝑥𝑙[𝑘] correspond
to the shared state between area 𝑘 and area 𝑙. Non-shared state elements
in 𝑥𝑘[𝑙] and 𝑥𝑙[𝑘] will be zero since no information of these elements
need to be exchanged. 𝑥𝑘𝑙 is an auxiliary variable used to be reference
state between area 𝑘 and 𝑙. The set 𝛤𝑘 denotes the areas sharing the
same state variables.

Eq. (4) forces adjacent areas to be concordant with their shared
variables. To enable a truly decentralized solution, an auxiliary variable
𝑥𝑘𝑙 is introduced for each pair of neighboring areas 𝑘 and 𝑙 (𝑥𝑘[𝑙] =
𝑥𝑘𝑙 , 𝑥𝑙[𝑘] = 𝑥𝑘𝑙). Then, Eq. (4) can be alternatively expressed as:

min
𝑥𝑘∈𝜒𝑘 ,𝑥𝑘𝑙

𝐾
∑

𝑘=1
𝐽𝑘(𝑥𝑘),

𝑠.𝑡. 𝑥𝑘[𝑙] = 𝑥𝑘𝑙 ,∀ 𝑙 ∈ 𝛤𝑘, 𝑘 = 1, 2,… , 𝐾.

(5)
3

Further illustration will be introduced in next subsection. t
2.2. Linear D-PSSE based on alternating direction method of multipliers

Previous research [38] has presented a linear Distributed PSSE
model using the ADMM. The method has been successfully applied for
distributed optimization problems. One can define the problem as an
augmented Lagrange function as follows:

Ł(𝑥𝑘, 𝑥𝑘𝑙; 𝑣𝑘,𝑙)

=
𝐾
∑

𝑘=1
[𝐽𝑘(𝑥𝑘) +

∑

𝓁∈𝛤𝑘

(𝑣𝑇𝑘,𝑙(𝑥𝑘[𝑙] − 𝑥𝑘𝑙)) + 𝜌∕2 ‖
‖

𝑥𝑘[𝑙] − 𝑥𝑘𝑙‖‖
2
2]

(6)

In ADMM, Lagrange multipliers 𝑣𝑘,𝑙 ∈ R|𝑆𝑘𝑙 | are applied as con-
straints of each area in (6). The set 𝛤𝑘 denotes the areas sharing
the variables 𝑥𝑘[𝑙] with area 𝑘, the penalty parameter 𝜌 > 0 is an
empirically chosen constant in linear PSSE. The penalty parameter will
not determine the results, but it will affect the convergence rate in the
linear PSSE model. Considering 𝑡 as the iteration index, ADMM can be
performed through the following calculations:

𝑥𝑡+1𝑘 ∶= 𝑎𝑟𝑔 min Ł (𝑥𝑘, 𝑥𝑡𝑘𝑙; 𝑣
𝑡
𝑘,𝑙 ∣ 𝑥𝑘 ∈ 𝜒𝑘) (7a)

𝑥𝑡+1𝑘𝑙 ∶= 𝑎𝑟𝑔 min Ł (𝑥𝑡+1𝑘 , 𝑥𝑘𝑙; 𝑣𝑡𝑘,𝑙) (7b)

𝑣𝑡+1𝑘,𝑙 = 𝑣𝑡𝑘,𝑙 + 𝜌(𝑥𝑡+1𝑘 [𝑙] − 𝑥𝑡+1𝑘𝑙 ),∀ 𝑘,𝓁. (7c)

In the first ADMM step illustrated in (7a), each area updates their own
states in iteration 𝑡+1 by minimizing their local objective function. This
is done using information from auxiliary variables 𝑥𝑘𝑙 and Lagrange
multipliers 𝑣𝑘,𝑙 from the previous iteration 𝑡 as shown in (7b) and (7c).
To further simplify ADMM iterations, an updated expression of (7) was
presented in [38] in the following format:

𝑥𝑡+1𝑘 = (𝐻𝑇
𝑘 𝐻𝑘 + 𝜌𝐷𝑘)−1(𝐻𝑇

𝑘 𝑧𝑘 + 𝜌𝐷𝑘𝑝
𝑡
𝑘) (8a)

𝑠𝑡+1𝑘 (𝑖) ∶= 1
|𝛤𝑘|

∑

𝓁∈𝛤𝑘

𝑥𝑡+1𝑙 (𝑖),∀ 𝑖 𝑤𝑖𝑡ℎ 𝛤𝑘 ≠ ∅ (8b)

𝑡+1
𝑘 (𝑖) = 𝑝𝑡𝑘(𝑖) −

𝑥𝑡𝑘(𝑖) + 𝑠𝑡𝑘(𝑖)
2

,∀ 𝑖 𝑤𝑖𝑡ℎ 𝛤𝑘 ≠ ∅. (8c)

In (8a), each area 𝑘 has a diagonal matrix 𝐷𝑘 with (𝑖𝑡ℎ, 𝑖𝑡ℎ) entry
𝛤𝑘|. |𝛤𝑘| is zero when the corresponding states are not shared by
ther neighbor area. Variable 𝑝𝑘 is a transformed multiplier vector
hich gather information from Lagrange multiplier 𝑣𝑘,𝑙, which has the
ame size of 𝑥𝑘. In (8b), 𝑠𝑘 gathers the exchanged state values from
eighboring shared buses. Meanwhile, 𝑝𝑡+1𝑘 collects current 𝑠𝑡𝑘 and then
ill be used to fix local state 𝑥𝑘 in the next iteration as shown in
8c), 𝑥𝑘(𝑖) denotes each entry of 𝑥𝑘[𝑙]. 𝑝𝑘 is recursively calculated by
liminating Lagrange multiplier 𝑣𝑘,𝑙, hence, the final expression for 𝑝𝑘
s presented in the following equation:
𝑡+1
𝑘 (𝑖) = 1∕|𝛤 𝑖

𝑘|
∑

𝑙∈𝛤 𝑖
𝑘

(𝑥𝑡𝑘𝑙(𝑖) − 𝑣𝑡𝑘,𝑙(𝑖)∕𝜌) (9)

Through this presented distributed linear power system state estima-
ion framework, the objective function minimization in (8a) and update
f transformed Lagrange multipliers 𝑝𝑘 are performed in local control
enters. Exchanged state information gathering is completed through
coordinator between neighboring areas. In this framework, only the
nformation of boundary shared states is required to be exchanged.
rom (8a), one can see no information of measurements or regression
atrix is needed to perform ADMM circulations.

. Data integration for actual load characteristics from Electricity
eliability Council of Texas (ERCOT)

Up to 2021, the Electric Reliability Council of Texas (ERCOT)
anages the flow of electric power to more than 26 million Texas
ustomers representing about 90 percent of the state’s electric load.
s the independent system operator for the region, ERCOT schedules
ower on an electric grid that connects more than 46,500 miles of
ransmission lines and 710 generation units.
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In power industries, optimal dispatch is based on load prediction
models that use historic data. Once load profile for day ahead is
confirmed, generation units are scheduled accordingly. On the other
hand, a load profile is a chart to illustrate variation in demand during
a specific time. Generation companies use this information to plan how
much power they will need to generate for an optimal dispatch at
any given time. In this paper, the load information for IEEE 118-bus
system is updated on the basis of a load modeling technique which is
based on the ERCOT customer load profile curves. In order to obtain
a realistic time series of the true state variables (bus voltages and
angles), the measurements data (including real power flow, reactive
power flow, power injection and voltage) are generated using power
system physical structure which coordinates the load information from
industrial daily profile. Actual daily load information used is shown in
Fig. 1. In Fig. 1, one can see customer peak demand is at noon time and
decreases in the afternoon. After 17:00, the demand increases again and
finally goes to a lower level at night time.

In addition, the load zone map of ERCOT is shown in Fig. 2. Area
denotes western connection; Area 2 denotes northern connection and
ayburn Electric Cooperative; Area 3 includes southern connection,
ouston area, CPS Energy, Austin Energy and Lower Colorado River
uthority.

. Nonlinear distributed PSSE model

The nonlinear state estimator is based on the nonlinear measure-
ent model as described in (1). However, the linear D-PSSE illustrated
n above section is not suitable to solve the nonlinear problem, since
ne will need to consider gradient function iteratively instead of di-
ectly calculating the new state vector 𝑥𝑡𝑘 by recorded measurements
𝑘 as shown in (8a). In this section, a new nonlinear distributed PSSE
odel is presented.
The same problem expression is used as shown in (2). However,

ℎ𝑘(𝑥𝑘) is a nonlinear model which is used to perform estimation of
the corresponding nonlinear measurements 𝑧𝑘. To solve the nonlinear
problem, an extra step to calculate the correction of state vector is
presented based on Eqs. (5) and (7). Considering the simplified ADMM-
based distributed state estimation from (8a), one can expand (7a) and
rewrite this equation as follows:

min
𝑥𝑘

𝑓𝑘(𝑥𝑘) + 𝜌∕2
∑

𝛤 𝑖
𝑘≠∅

|𝛤 𝑖
𝑘|(𝑥𝑘(𝑖) − 𝑝𝑡𝑘(𝑖))

2 (10)

for all k and i = 1, 2, . . . , 𝛤𝑘, with 𝛤 𝑖
𝑘 ≠ ∅.

In [21], the first order optimal condition for model (3) can be
written as:

𝑔𝑘(𝑥𝑘) = 𝜕𝐽 (𝑥𝑘)∕𝜕𝑥𝑘 = −
𝑚
∑

𝑗=1
(
𝑧𝑘𝑗 − ℎ𝑘𝑗 (𝑥𝑘)

𝜎𝑘𝑗
)
𝜕ℎ𝑘𝑗 (𝑥𝑘)

𝜕𝑥𝑘
= 0, (11)

here 𝜎𝑘𝑗 is the (𝑘, 𝑗)th element of the measurement error covari-
nce matrix 𝑅𝑘, 𝑔𝑘(𝑥) denotes the gradient of 𝐽𝑘(𝑥𝑘). The solution
f above nonlinear equation 𝑔𝑘(𝑥𝑘) = 0 can be found by performing
he Newton–Raphson method. Meantime, the gradient function can be
pproximated by using Taylor expansion:

𝑘(𝑥𝑘 +△𝑥𝑘) ≃ 𝑔𝑘(𝑥𝑘) + 𝐺𝑘(𝑥𝑘)△ 𝑥𝑘, (12)

where 𝐺𝑘(𝑥𝑘) is the Hessian matrix of 𝐽𝑘(𝑥𝑘) of area 𝑘. Collecting first
Taylor derivative, 𝐺𝑘(𝑥𝑘) becomes:

𝐺𝑘(𝑥𝑘) = 𝐻𝑇
𝑘 (𝑥𝑘)𝑅

−1
𝑘 𝐻𝑘(𝑥𝑘), (13)

where 𝐻𝑘 is the Jacobian matrix of objective function.
Using above equations, one can derive the first optimal condition

for nonlinear state estimator from (10):

𝑔𝑘(𝑥𝑘) = 𝐻𝑇
𝑘 (𝑥𝑘)𝑅

−1
𝑘 𝐻𝑘(𝑥𝑘)𝑥𝑡𝑘 −𝐻𝑇

𝑘 𝑅
−1
𝑘 𝑧 + 𝜌𝐷𝑘𝑥

𝑡
𝑘 − 𝜌𝐷𝑘𝑝

𝑡
𝑘 = 0. (14)

Rearrange Eq. (14):
𝑇 −1 𝑡 𝑇 −1 𝑡
4

(𝐻𝑘 (𝑥𝑘)𝑅𝑘 𝐻𝑘(𝑥𝑘) + 𝜌𝐷𝑘)𝑥𝑘 = 𝐻𝑘 𝑅𝑘 𝑧 + 𝜌𝐷𝑘𝑝𝑘. (15)
The nonlinear state estimate 𝑥𝑡+1𝑘 of area k is then obtained by the
following iterative process:

(𝐻𝑇
𝑘 (𝑥𝑘)𝑅

−1
𝑘 𝐻𝑘(𝑥𝑘) + 𝜌𝐷𝑘)△ 𝑥𝑡𝑘 = 𝐻𝑇

𝑘 𝑅
−1
𝑘 𝑟𝑡𝑘 + 𝜌𝐷𝑘 △ 𝑝𝑡𝑘, (16a)

△ 𝑝𝑡𝑘 = 𝑝𝑡𝑘 − 𝑝𝑡−1𝑘 , (16b)

𝑥𝑡+1𝑘 = 𝑥𝑡𝑘 +△𝑥𝑡𝑘. (16c)

𝑟𝑡𝑘 = 𝑧 − ℎ(𝑥) denotes the measurement residue in the 𝑡th iteration
which is used as incremental value △𝑧𝑘 of measurement 𝑧𝑘. One will
notice△𝑝𝑡𝑘 is not a nonlinear model based vector as 𝑟

𝑡
𝑘 which is shown

in (9), so the state estimate updating will have a direct derivation
of the gradient through the above model. The next section will solve
this problem through adapting the penalty parameter 𝜌 by analyzing
the Lagrange multiplier residue and primal residue of ADMM. In this
section, a conclusive model of nonlinear PSSE is presented as the
following:

△ 𝑥𝑡𝑘 = (𝐻𝑇
𝑘 𝐻𝑘 + 𝜌𝐷𝑘)−1[𝐻𝑇

𝑘 𝑟𝑘 + 𝜌𝐷𝑘(𝑝𝑡𝑘 − 𝑝𝑡−1𝑘 )] (17a)

𝑥𝑡+1𝑘 = 𝑥𝑡𝑘 +△𝑥𝑡𝑘 (17b)

𝑠𝑡+1𝑘 (𝑖) ∶= 1
|𝛤𝑘|

∑

𝓁∈𝛤𝑘

𝑥𝑡+1𝑙 (𝑖),∀𝑖 𝑤𝑖𝑡ℎ 𝛤𝑘 ≠ ∅ (17c)

𝑝𝑡+1𝑘 (𝑖) = 𝑝𝑡𝑘(𝑖) −
𝑥𝑡𝑘(𝑖) + 𝑠𝑡𝑘(𝑖)

2
,∀𝑖 𝑤𝑖𝑡ℎ 𝛤𝑘 ≠ ∅. (17d)

5. Adaptive penalty parameter

In ADMM based linear D-PSSE, the penalty parameter 𝜌 is an
empirically defined constant. This parameter will not affect the final
estimation results, however it will affect the convergence performance.
In nonlinear PSSE, however, this penalty parameter will decide the
convergence process and final results since 𝜌 is used to determine the
step length in the approximated gradient function which is derived
from the Taylor expansion (17). As mentioned in the previous section,
the incremental value of the transformed Lagrange multiplier △𝑝𝑡𝑘,
which is not a nonlinear based vector since it is only the difference
of 𝑝𝑡𝑘 in two following iterations, will cause insufficient state estimate
updating due to lacking an appropriate penalty parameter as a fixing
property. One can notice the penalty parameter 𝜌 is a multiplier of△𝑥𝑡𝑘
s shown in (17), so setting up a unique and constant penalty parameter
or each area is not practical for the nonlinear PSSE. In order to
ccurately update shared state variables and improve the convergence,
method based on adaptive penalty parameter is presented to update
in every iteration.
The necessary and sufficient optimal conditions for the ADMM

roblem (4) are primal and dual feasibility [47]. In presented model
17), primal feasibility is defined as

(𝑥∗𝑘[𝑙] − 𝑥∗𝑘𝑙) = 0, (18)

here 𝑥∗𝑘[𝑙] is the sub-state of 𝑥𝑘 which consists of the overlapping
tates with area 𝑙, 𝑥𝑘𝑙 is auxiliary variable between the pair of over-
apping areas 𝑘 and 𝑙. One can define the difference between vector
𝑘[𝑙] and 𝑥𝑘𝑙 as the primal residue at iteration 𝑡 shown in following:

𝑟𝑝𝑟𝑖𝑚
𝑡

𝑘 = 𝜌(𝑥𝑡𝑘[𝑙] − 𝑥𝑡𝑘𝑙), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑙. (19)

The value of the primal residue 𝑟𝑝𝑟𝑖𝑚𝑘 illustrates how far the current
shared states in area 𝑘 are from the auxiliary vector 𝑥𝑘𝑙 determined
by area 𝑘 itself and neighboring areas 𝑙 together during each iteration.
Generally, one can also understand the primal residue as the difference
between previous Lagrange multiplier 𝑣𝑡𝑘,𝑙 and the multiplier 𝑣

𝑡+1
𝑘,𝑙 at the

current iteration (7c).
Dual feasibility is defined as:

0 ∈ 𝜕𝑓 (𝑥∗) + 𝑣∗𝑘,𝑙 . (20)

Here, 𝜕 denotes the subdifferential vector [47]. When function 𝑓 is
ifferentiable, then subdifferential 𝜕𝑓 can be replaced by ▽𝑓 and ∈

can be replaced by =.
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Fig. 1. Actual daily load profile from ERCOT.
Fig. 2. Electricity Reliability Council of Texas (ERCOT) load zone map.
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Since 𝑥𝑡+1 minimizes Ł(𝑥𝑘, 𝑥𝑡𝑘𝑙; 𝑣
𝑡
𝑘,𝑙) as shown in (7) by definition, let

us expand Eq. (7a):

∈ 𝜕𝑓 (𝑥𝑡+1) + 𝑣𝑡𝑘,𝑙 + 𝜌(𝑥𝑡+1𝑘 [𝑙] − 𝑥𝑡𝑘𝑙) (21)

e can eliminate vector 𝑥𝑡+1𝑘 [𝑙] by adding the primal residue (19) at
+ 1 iteration as an extra term. This leads to:

= 𝜕𝑓 (𝑥𝑡+1) + 𝑣𝑡𝑘,𝑙 + 𝑟𝑝𝑟𝑖𝑚(𝑡+1)𝑘 + 𝜌(𝑥𝑡+1𝑘𝑙 − 𝑥𝑡𝑘𝑙) (22)

urther, to eliminate the Lagrange multiplier 𝑣𝑡𝑘,𝑙 in the 𝑡th iteration
nd primal residue 𝑟𝑝𝑟𝑖𝑚(𝑡+1) in 𝑡 + 1𝑡ℎ iteration, one can replace these
5

𝑘 𝑟
two terms using (7c). Then

= 𝜕𝑓 (𝑥𝑡+1) + 𝑣𝑡+1𝑘,𝑙 + 𝜌(𝑥𝑡+1𝑘𝑙 − 𝑥𝑡𝑘𝑙), (23)

r equivalently,

𝑓 (𝑥𝑡+1) + 𝑣𝑡+1𝑘,𝑙 = 𝜌(𝑥𝑡𝑘𝑙 − 𝑥𝑡+1𝑘𝑙 ). (24)

ne should notice that the left hand side of the above equation is
xactly the condition of dual feasibility optimization as shown in (20).
hile the right hand side can be expressed as follows:

𝑑𝑢𝑎𝑙 = 𝜌(𝑥𝑡 − 𝑥𝑡+1), (25)
𝑘 𝑘𝑙 𝑘𝑙
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Fig. 3. Flowchart of distributed SE process adapted from [22].
and 𝑟𝑑𝑢𝑎𝑙𝑘 can be viewed as the dual residue in the dual feasibility
condition (20). From the above expression, one can see the dual residue
is actually the difference between the auxiliary variable 𝑥𝑡𝑘𝑙 at 𝑡th
iteration and 𝑥𝑡+1𝑘𝑙 at 𝑡 + 1𝑡ℎ iteration which is used as reference state
between two neighbor areas.

To improve the gradient deviation in the presented nonlinear state
estimation update in (17), the adaptive penalty parameter 𝜌 is used
o balance the primal residue 𝑟𝑝𝑟𝑖𝑚𝑘 and the dual residue 𝑟𝑑𝑢𝑎𝑙𝑘 . For
alance of these two residues, the novelty here is to adjust the penalty
arameter 𝜌𝑘 in each area to constrain

‖

‖

‖

𝑟𝑝𝑟𝑖𝑚𝑘
‖

‖

‖

≈ ‖

‖

‖

𝑟𝑑𝑢𝑎𝑙𝑘
‖

‖

‖

, which means
ifferent areas will have penalty parameters themselves to monitor the
terative updating process. From [27], an increase in 𝜌 strengthens
he penalty term, leading to smaller primal residues and larger dual
esidues; a decrease in 𝜌 will yield larger primal residue but smaller
ual residue.
To constrain these two residues, ‖‖

‖

𝑟𝑝𝑟𝑖𝑚𝑘
‖

‖

‖

≈ ‖

‖

‖

𝑟𝑑𝑢𝑎𝑙𝑘
‖

‖

‖

, which means
hey will simultaneously converge to 0. An adaptive penalty parameter
ethod is completed by the following algorithm considering 𝑟𝑝𝑟𝑖𝑚𝑘 and

𝑑𝑢𝑎𝑙
𝑘 .

𝑡+1
𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜐𝑖𝑛𝑐𝜌𝑡𝑘
‖

‖

‖

𝑟𝑝𝑟𝑖𝑚𝑘
‖

‖

‖2
> 𝜇 ‖

‖

‖

𝑟𝑑𝑢𝑎𝑙𝑘
‖

‖

‖2

𝜌𝑡𝑘∕𝜐
𝑑𝑒𝑐 ‖

‖

‖

𝑟𝑑𝑢𝑎𝑙𝑘
‖

‖

‖2
> 𝜇 ‖

‖

‖

𝑟𝑝𝑟𝑖𝑚𝑘
‖

‖

‖2
𝜌𝑡𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(26)

his equation shows each area has their own penalty parameter 𝜌𝑘.
hey could start with the same penalty parameter or they could not
ince 𝜌𝑘 will adjust itself in each area. When the system converges, 𝜌𝑘
ill converge to a fixed status based on 𝑟𝑝𝑟𝑖𝑚𝑘 and 𝑟𝑑𝑢𝑎𝑙𝑘 . The algorithm
as three parameters with the following constraints: 𝜇 > 1, 𝜐𝑖𝑛𝑐 > 1,
nd 𝜐𝑑𝑒𝑐 > 1. These are typically chosen to be 𝜇=10, 𝜐𝑖𝑛𝑐=2, 𝜐𝑑𝑒𝑐=2.
he idea of penalty parameter updating is meant to maintain the norm
f the primal residue and dual residue to a relative low value for each
ther so they can both converge to 0. Process of presented distributed
ethod is shown in Fig. 3.

. Case study

In this case study, presented algorithm is applied on two different
istributed system scenarios. Validation is done using the IEEE 14-
us and 118-bus systems with the load information from ERCOT.
he measurement data set used for IEEE 14-bus system consists 84
easurements obtained from MATPOWER [49], leading to a global
edundancy level GRL = 3.11, leading to local GRLs for area 1, 2, 3
nd 4 are 1.72, 1.76, 1.76 and 1.30. For the IEEE 118-bus test system
he measurement data set consists of 573 measurements, leading to
he global GRL = 2.44, local GRLs for area 1, 2, 3 are 2.19, 2.14
nd 2.36. By using the daily load information shown in Fig. 1 from
ERCOT, measurement data set contains a variation on the basis of
ERCOT customer demand. In the process of generating measurement
data by integrating load information, load condition is updated every
6

four seconds. Hence, there are 21 600 samples for every daily load
Fig. 4. IEEE 14 bus system separated into 4 areas and recorded measurements
configuration adapted from [37].

Fig. 5. Distributed topology of IEEE 118-bus system adapted from [48].

profile. For detection, Chi-square test which is widely used in power
industries is implemented to evaluate the system performance. System
parameters are found in [50].
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6.1. Distributed PSSE scenario I

In this case, we use the distributed topology shown in Fig. 4 for the
IEEE 14-bus system. Measurement noise is simulated as independent
zero-mean Gaussian distribution with standard deviation equal to 1%
of each measurement. To better illustrate the advantage of presented
nonlinear PSSE model, different starting penalty parameter conditions
will be considered. True states 𝑥𝑙𝑓 from load flow [49] are used as

benchmark. Per state error curve rate is calculated by 𝑒𝑡𝑘 = 𝑙𝑜𝑔
‖

‖

‖

𝑥𝑘−𝑥𝑙𝑓
‖

‖

‖2
10 .

In Fig. 6, a scenario where starting penalty parameter 𝜌 = 100 000
are used. Two different results are presented: In constant penalty
parameter case, four areas shown in Fig. 4 have the same penalty pa-
rameter 𝜌 and they will remain the same values until convergence using
presented nonlinear PSSE model (17); in adaptive penalty parameter
ase, four areas have same starting values of 𝜌𝑘, however each area
update their 𝜌𝑘 based on the presented adaptive model (26). From

blue curve (constant penalty parameter), one can see system converge
after 105 iterations when correction of states △𝑥 is smaller than 10−4.
After convergence, per area state error 𝑒𝑡𝑘 for all four areas are below
10−3. Meantime, in orange curve (adaptive penalty parameter), system
converge at 64 iterations, while per area state error 𝑒𝑡𝑘 is below 10−3

which is around the same as constant penalty parameter case, however
using less iterations. Corrected value of penalty parameter in each area
after convergence is presented in Table 1. One will see 𝜌𝑘 in area 1
increase to 3 200000, however decrease to 25000 and 3125 in area 3
and 4 instead, while remain the same starting value in area 2. This
shows necessity to apply adaptive penalty parameter in nonlinear PSSE
implementation, since different area has different sensitivity for shared
information between interconnected areas. One should notice corrected
penalty parameter shown in Table 1 does not mean these values are
the optimal starting 𝜌𝑘 for each area, since when system starts with a
relatively small 𝜌𝑘, even 𝜌𝑘 will adapt itself during convergence, later
stage of PSSE process before convergence with larger 𝜌𝑘 will fix the
previews lost of small 𝜌𝑘 to guarantee 𝑟𝑝𝑟𝑖𝑚𝑘 and 𝑟𝑑𝑢𝑎𝑙𝑘 are corrected in
the same rate. So the optimal starting 𝜌𝑘 is actually some value in the
7

middle of starting value and corrected value after convergence. One
Table 1
Corrected penalty parameter after convergence with starting value of 100000.
Corrected penalty parameter

Penalty parameter Area 1 Area 2 Area 3 Area 4

𝜌𝑘 3200000 100000 25000 3125

should note that one will not need to find this optimal value in PSSE,
like classical ADMM algorithm requires.

To further demonstrate the advantage using the adaptive penalty
parameter model (26) in nonlinear PSSE, the cumulative residue based
bjective function 𝐽 (𝑥) =

∑𝐾
𝑘=1 𝐽𝑘(𝑥𝑘) performance in (4) with dif-

erent starting 𝜌𝑘 is presented in Fig. 7. In Fig. 7, orange scattered
oints shows penalty parameter 𝜌𝑘 is changing from range of 80 000
o 300000, when plotting objective value obtained after convergence,
ne will notice the performance of cumulated 𝐽 (𝑥) are very stable
here almost all values are near around 30. Whereas, constant penalty
arameter based PSSE (blue scattered points) shows objective function
alue 𝐽 (𝑥) will show a false positive of PSSE detection when 𝜌𝑘 is get-
ing larger. Using adaptive penalty parameter model in (26), objective
unction is free from correlating to 𝜌𝑘. From Fig. 7, one can also see
he average centralized objective function solution 56.3067 is smaller
han threshold value 75.6237. However, in presented distributed PSSE
odel, this value is decreased to 30, which characterizes a better
erformance.

.2. Distributed PSSE scenario II

In this case study, system topology in Fig. 5 is used to test presented
onlinear PSSE model and adaptive penalty parameter algorithm. There
re 3 interconnected areas in distributed IEEE 118-bus system as shown
n this topology. The measurement data set for IEEE 118-bus system
s generated with the changing load which contains information of
aily customer demand from ERCOT, this measurement characteristics
s shown in Fig. 8. Same noise as IEEE 14-bus system is used which
is independent zero-mean Gaussian with standard deviation which is
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Fig. 7. Performance of objective function value with starting penalty parameter varying
from 80000–300000.

1% of each measurement. Starting penalty parameter is set as 300 000.
Fig. 9 show how per area state error behaves during each iteration for
IEEE 118 bus system. Orange curve (using constant penalty parameter)
shows system converges after around 47 iterations, per area state error
for area 1,2,3 are around 100, 10−3, 10−4, while one can see the
blue curve (using adaptive penalty parameter) converges with only 25
iterations, the same area state error at the same time. Blue curve shows
the model in (26) has a fast convergence rate compared to constant
enalty parameter based nonlinear PSSE. After convergence, 𝜌𝑘 for area
, 2 and 3 adapts to 600 000, 300 000 and 300000 in Table 2. One can
ee 𝜌𝑘 in area 1 increases, while remaining the same value as starting
alue for area 2 and 3. From Table 2, it is not clear to see how 𝜌𝑘 adapts
tself in nonlinear PSSE process, further analysis is done in the end of
his section.
To evaluate the objective function behavior regarding the change

f starting penalty parameter 𝜌𝑘, analysis is implemented with 𝜌𝑘
tarting values from 2500–800000. In Fig. 10, the orange scattered
oints (adaptive penalty parameter based PSSE) illustrates a stable
bjective function distribution where all values are close to 300 which
s not changing when enlarging 𝜌𝑘. On the other hand, blue scattered
oints appears in a little chaos, potentially causing false positives
t the bad data analytic. For comparison with centralized PSSE so-
ution, one can see all objective function values shown by orange
oints (adaptive penalty parameter) are below centralized solution
hich is 306.4442, which further highlights the advantage of presented
istributed nonlinear PSSE model.
In [39], authors used state information 𝑥𝑘 and consensus variables,

hich are calculated through the residue 𝑟𝑘 and the Jacobian matrix
rom boundary areas, thus not a fully distributed solution. In the results
hown in Table 3, one can see presented solution obtains an objective
8

f

able 2
orrected penalty parameter after convergence with starting value of 300000.
Corrected penalty parameter

Penalty parameter Area 1 Area 2 Area 3

𝜌𝑘 600000 300000 300000

Table 3
Compared results.

Objective
function J(x)

Numbers of
iteration

Presented algorithm (IEEE 14 bus system) 32.5765 63
Algorithm from [39] (IEEE 14 bus system) 43.5522 84
Presented algorithm (IEEE 118 bus system) 298.7467 25
Algorithm from [39] (IEEE 118 bus system) 300.7745 10

function value 32.5765, which is lower than the solution from [39],
however using less iterations regarding to IEEE 14-bus system; For
IEEE-118 system, presented solution obtains average J(x)=298.7467,
which is also lower than 300.7745 from [39]. In this case, presented
solution uses more iterations, however, process of neighboring ar-
eas exchanging information only requires states sharing, there is no
information of neighboring Jacobian area and residue needed.

To present inner PSSE process of how penalty parameter 𝜌𝑘 adapts
to fix primal residue 𝑟𝑝𝑟𝑖𝑚𝑘 and dual residue 𝑟𝑑𝑢𝑎𝑙𝑘 for optimal solution,
results from area 3 in IEEE 118-bus system is presented in Fig. 11. From
(26), one can see if norm of primal residue is larger than 𝜇 times norm
f dual residue, penalty parameter doubles, while norm of dual residue
s larger than 𝜇 times norm of primal residue, 𝜌𝑘 decrease by 2 times.
n this model, 𝜇 is usually set as 10, so system can simply adapt 𝜌𝑘 by

etermine if the value 𝛾 = 𝑙𝑜𝑔
‖

‖

‖

𝑟𝑑𝑢𝑎𝑙𝑘
‖

‖

‖

∕‖‖
‖

𝑟𝑝𝑟𝑖𝑚𝑘
‖

‖

‖

𝜇 is bigger than 1 or smaller
han -1 or otherwise. If 𝛾 is larger than 1, then decrease 𝜌𝑘; If 𝛾 is
maller than −1, then increase 𝜌𝑘; Remain the same otherwise. From
ig. 12, 𝜌𝑘 decrease at iteration 2, 8, 13 and 18 when 𝛾 is larger than 1
s shown in Fig. 11; while increase at iteration 26, 28, 29 and 32 when
is smaller than −1.
Respectively, same test for a small starting penalty parameter is

resented as follows. From Fig. 14, penalty parameter remain the same
t the beginning when 𝛾 is within the limitation −1 to 1, however
ncreases at iteration 10, 11, 13 and 14 when limitation is violated,
s in Fig. 13.
After system convergence, the final bus voltage estimates of each

rea are accordingly shown in Figs. 15, 16, 17. The results shows the
onverged estimates are much close to power flow solution.

. Conclusion

This paper presents a real-time industrial integration framework
or a distributed nonlinear PSSE model based on alternating direction
ethod of multiplier (ADMM). Adaptive penalty parameter model is
urther presented to eliminate correlation between system objective
unction value and starting value of penalty parameter chosen. Case
Fig. 8. An example of measurement characteristics by integrating load information.
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Fig. 9. State error curve in each iteration for IEEE 118 bus system.
Fig. 10. Performance of objective function value with starting penalty parameter
varying from 2500–600000.

studies consider the IEEE 14-bus and IEEE 118-bus with the load
information which is integrated from ERCOT daily load profile, high-
lighting presented model good performance of convergence rate and
objective function behavior. The advantage of presented distributed
PSSE model is final estimation solution performs better than centralized
solution, and it allows any starting penalty parameter setting without
any previews knowledge of power system. Still, the PSSE software
using by power industries does not require major changes for the
implementation of the distributed estimation model, only state values
need to be exchanged between neighbor areas.

However, the modeling accuracy of power system physical topology
in the proposed methodology is still limited considering the efficiency
of information integration. With regard to our future work, the in-
formation of Phasor Measurement Unit (PMU) optimal allocation and
Synthetic Measurement can be evaluated as additional features to test
their impact on the performance of the model.
9

Fig. 11. Correlation of dual residue and primal residue with penalty parameter in
iteration (starting with large 𝜌𝑘 800000).

Fig. 12. Adapting performance of penalty parameter in iteration (starting with large
𝜌𝑘 800000).
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i

Fig. 13. Correlation of dual residue and primal residue with penalty parameter in
teration (starting with small 𝜌𝑘 20000).

Fig. 14. Adapting performance of penalty parameter in iteration (starting with small
𝜌𝑘 20000).

Fig. 15. Bus voltage in area 1.

Meanwhile, how to integrate the current algorithms with the nature-
inspired algorithms so as to strengthen the overall effects, is a challeng-
ing and attractive issue.
10
Fig. 16. Bus voltage in area 2.

Fig. 17. Bus voltage in area 3.
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