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Abstract: Smart grid (SG) systems are designed to leverage digital automation technologies for monitoring, control and
analysis. As SG technology is implemented in increasing number of power systems, SG data becomes increasingly vulnerable
to cyber-attacks. Classic analytic physics-model based bad data detection methods may not detect these attacks. Recently,
physics-model and data-driven methods have been proposed to use the temporal aspect of the data to learn multivariate
statistics of the SG such as mean and covariance matrices of voltages, power flows etc., and then make decisions based on
fixed values of these statistics. However, as loads and generation change within a system, these statistics may change rapidly.
In this study, an adaptive data-driven anomaly detection framework, Ensemble CorrDet with Adaptive Statistics (ECD-AS), is
proposed to detect false data injection cyber-attacks under a constantly changing system state. ECD-AS is tested on the IEEE
118-bus system for 15 different sets of training and test datasets for a variety of current state-of-the-art bad data detection
strategies. Experimental results show that the proposed ECD-AS solution outperforms the related strategies due to its unique
ability to capture and account for rapidly changing statistics in SG.

Nomenclature

d number of measurements — R'*'

z vector of measurements — R'*¢

4 training set — R**X1

Z testing set — R?*X2

K, number of samples in training set — R'*"

K, number of samples in testing set — R'*'

N number of states — R'*'

z covariance of measurement vector — R?*¢

5FCP-AS  squared Mahalanobis distance value — R"*"

u mean of measurement vector — R'*¢

T threshold value to classify abnormal samples on ®p —
Rl x1

T threshold value to classify abnormal samples on ¢,, —
Rl x1

T set of 7 (R"*M)

a weight value for incoming data sample — R

n magnitude parameter for threshold estimation — R'*"

B window size for threshold update — R'*'

M number of buses/local CorrDet detectors with adaptive
statistics - R'™'

Ix1

Y label for training samples — R’ K1

Y label for testing samples — R’ Kz

D symbol for mth Local CorrDet with adaptive statistics
detector

(o symbol for Ensemble CorrDet with adaptive statistics
detector

(O symbol for CorrDet detector

Hetrr.m mean of the Mahalanobis distance values of z,, of all
normal samples in training data

Othr.m variance of the Mahalanobis distance values of z,, of all

normal samples in training data

1 Introduction
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As a sensor, communication, control, and other technologies
continue to advance into the digital age, the power systems
industry begins to transition to the smart grid (SG). These next-
generation power systems aim to achieve greater stability,
efficiency and robustness of the physical processes on the grid
through the integration of control, communication and
computation. With the transition toward the SG paradigm and
advanced technology implementations, there is an increasing
vulnerability to cyber-threats, especially among critical
infrastructures [1]. Although the technologies themselves have
advanced rapidly, research into the cyber-physical security of SGs
is still immature. In recent years, two major cyber-attacks on power
grids have occurred. The first confirmed blackout from a cyber-
attack on a power grid happened in Ukraine and caused a power
outage that affected 225,000 customers [2, 3]. The Stuxnet
malware was used to implement a malicious cyber-attack on Iran's
Nuclear Technology Center, destroying a large number of
centrifuges [4].

To guarantee the reliable operation of power grids, it is crucial
to have accurate monitoring of the power system. Currently, real-
time monitoring is performed using Power System State Estimation
(PSSE) [5]. PSSE uses static and dynamic data to provide
information about the condition of the system. These readings are
commonly transmitted to a Supervisory Control and Data
Acquisition (SCADA) system, which implements centralised
monitoring and control for the electrical grid, Before state
estimation, the data is pre-filtered to discard measurements that are
clearly inconsistent or incorrect. After state estimation using pre-
filtered data, a post-processing step called ‘bad data analysis’ is
performed to detect bad data or gross errors (GEs), which
correspond to statistically large errors.

To guarantee cyber-security, SG research must address relevant
types of cyber attacks. One key concern is false data injection
(FDI).

In an FDI attack, a subset of measurement values is modified by
an adversarial attacker aiming to disrupt the operation of the power
grid. Physics-model based Bad Data Analysis is capable of
detecting many instances of GE via tests such as J(x) [5], largest
normalised residual [6], or innovation-based [7-10] approaches.
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However, cyber-attacks can be engineered to be very difficult to
detect in measurement data [11-18]. Methods devised to treat FDI
attacks include Generalised Likelihood Ratio Detector with L-1
Norm Regularisation [19], a scheme for protecting a selected set of
measurements and verifying the values of a set of state variables
independently [20] and the estimation of the normalised composed
measurement error for detection of malicious data attacks [8, 9].

Another advancement in bad data analysis in power systems is
the surge in machine learning and artificial intelligence research.
These studies are mainly based on neural network, deep learning
and fuzzy clustering approaches [21-24]. More recently, physics-
model based solutions have been integrated with data-driven
solutions [25, 26] to take advantage of the temporal characteristics
of real-time data. However, these solutions struggle with the fast-
changing state of power systems. As both loads and generation
change on a power system, the statistics used by data-driven
solutions can change rapidly. In [26], the authors introduce the
Ensemble CorrDet (ECD) algorithm, a hybrid physics-model based
and data-driven method of FDI detection. However, the ECD
algorithm described and leveraged in [26] uses fixed estimated
mean and covariance of normal samples after training rather than
adapting to the changing state of power systems. This means that
when applied to a realistic load profile for power systems, ECD
statistics will quickly become outdated and the performance of the
algorithm will decrease. There is a need for new algorithms that
can adapt to the real-time environment. This can be accomplished
by applying prediction techniques, such as using the maximum
likelihood estimate of the prediction weights in a linear prediction
model [27].

In this paper, we present an enhanced, adaptive and responsive
data-driven method for FDI cyber-attack detection, called
Ensemble CorrDet with Adaptive Statistics (ECD-AS), that
accounts for the rapidly changing power system state of the SG.
This new algorithm makes the following novel contributions:

« Explores the time-varying nature of real-time power systems
and their impact on bad data detection, using a common daily
load profile-based data set.

» Employs ‘adaptive statistics’, including adaptive mean, adaptive
covariance, and adaptive anomaly thresholds.

* Implements a sliding window approach to update the statistics
based on recent samples.

* It is demonstrated that CD and ECD cannot capture the temporal
changing dynamics of the various buses and fail to separate
normal samples from anomalous samples, while these cases can
be successfully addressed in the proposed ECD-AS framework.

The remainder of the paper is organised as follows. A literature
review and relevant background information for the proposed
framework are shown in Section 2. Section 3 presents the details of
the proposed ECD-AS algorithm. The numerical results, as well as
an analysis of the tests used in the performance evaluation, are
shown in Section 4. Finally, Section 5 presents the conclusions of
this work.

2 Background information

This section provides a review of background literature and
information about the foundational work related to the presented
framework.

2.1 Literature review

Since the invention of PSSE, the problem of bad data detection has
been a topic of great interest [5]. At first, GEs were considered to
come only from faulty meters or communication errors, but the
advent of SG has introduced the threat of cyber-attacks and
increased potential for system-harming GEs [1-4]. The FDI attack
in which a subset of measurement values is modified can have
significant impacts on a power system if it goes undetected. These
impacts include overloading transmission lines, damaging
equipment, or potentially causing blackouts [28-32].
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2.1.1 Physics-based techniques: To combat the problem of GEs
in PSSE, much research has been done using the physics-model
based framework, i.e. using the known topology of a power
system, along with real-time measurements, to estimate the
voltages at each bus throughout the system (the state). The results
of PSSE are the state estimation itself and residual value for each
real-time measurement used to complete the PSSE process. The
basic approach to detecting GE is to analyse those residual values
using the common chi-square test to determine if the residuals are
statistically large for that set of measurement values [5]. From
there, research in [6] explored the use of the largest normalised
residual test as a detection method. Later on, the authors of [33]
expand upon the chi-square test, using the normalised residual
within the test itself and showed significant improvement. Another
significant improvement upon the chi-square test came along when
the geometrical interpretation of the measurement residuals was
explored [34]. With this geometrical view of the PSSE process, it
was discovered that errors and residuals were in different
mathematical spaces. Because of this, there existed an undetectable
component of the measurement error that was not captured by the
residual values. The Innovation Index was developed to
mathematically calculate this undetectable component, which was
used to compute the Composed Measurement Error. The
Innovation concept was explored and expanded upon in a variety
of papers [7-10, 35].

Other potential methods of FDI treatment such as [19, 20]
deviate from the standard processes of utility companies without
enough improvement upon chi-square test strategies to warrant
their implementation. All of the chi-square based methods above
are easily implemented using the already existing results of the
PSSE process. Therefore, this paper uses the method from [9] as
the baseline test for physics-model based FDI detection. However,
one major limitation that all of these physics-model based methods
share is that they are quasi-static strategies, meaning they
essentially look at a single snapshot in time and analyse only that
single snapshot. Especially with the increasing amount of data that
comes with the SG, it makes sense to develop a strategy that uses
not only spatial information (topology and measurements), but
temporal information as well (previous measurements). This makes
machine learning techniques an obvious candidate, which has led
to much research applying machine learning to the PSSE bad data
analysis problem.

2.1.2 Machine learning-based techniques: A variety of
machine learning methods have been developed to detect FDI
attacks in the literature. Some methods rely on neural network-
based approaches to identify FDI samples, such as using a simple
neural network architecture [24] or deep belief networks [21, 23].
Neural network-based methods are capable of learning a non-linear
classifier to detect abnormal samples but with the high cost of
computation complexity especially when the network is deep.
Another work by Ozay et al. [22] investigated some of the
commonly used machine learning methods, such as K-nearest
neighbour (KNN), support vector machine and sparse logistic
regression to detector FDI samples. However, only temporal
information of data is considered in these models, while spatial,
localised relationship are ignored. The authors in [36] proposed
ELM-based One-Class-One-Network framework to detect FDI
attacks and test it on IEEE-14 bus system. This framework
considers a distributed approach by having a separate deep learning
model for each bus and a global layer for final decision making
which enables the framework to detect multiple simultaneous FDI
attacks. A deep learning model for each bus makes this framework
data and computation intense. Although this framework uses
spatial relationships in the grid, it fails to capture temporal
variations in the normal and abnormal data as the model does not
update over time. Modified k-NN has been proposed in [37] to
detect FDI attacks in sensors for a smart infrastructure setting. The
authors focus their tests on data collected from sensors placed
inside a single building to avoid computation issues and compare
the performance of modified k-NN with other machine learning
approaches using accuracy metric. Accuracy fails to effectively
capture model performance for unbalanced data which is usually
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Fig. 1 Comparison of measurement values for drift load profile (first row plots) and daily load profile datasets (second row plots)

the case for FDI attacks. The proposed scheme incurs high
computational cost when the number of sensors increases due to
the usage of k-NN based algorithm. Ashrafuzzaman et al. [38]
proposed a simple deep learning-based model for FDI attack
detection using Multi-Layer Perceptron Neural Network (MLPNN)
and compare the attack detection capabilities of their scheme with
other machine learning approaches on IEEE-14 bus system. The
proposed scheme fails to capture both spatial correlations of the
measurements and temporal variations in the data even when the
load profile used is not realistic. Choosing values for a variety of
hyper-parameters in the MLPNN model also becomes an issue as
large amount of training data is needed select optimal values and
model tuning.

2.2 Foundation for the proposed data-driven scheme

The CorrDet anomaly detection algorithm [27, 39] is initialised
with a sample mean and covariance matrix for the first £ number of
incoming samples that are not labelled as anomalies to generate
statistics for underlying distribution of normal samples and to make
a linear prediction of the next sample. However, in our current
implementation we simply use first kK number of incoming samples
to estimate the sample mean and covariance matrix of the normal
samples, and future work could investigate linear prediction.

Using these initialised mean and covariance values for normal
samples, the squared Mahalanobis distance [40] of a new incoming
sample is calculated. The computed distance measure is compared
to a decision threshold. If the distance measure is below the
threshold, then a new sample is detected as a normal sample.
Otherwise, the new sample is flagged as an anomaly. For the
dynamic dataset, the CorrDet detector provides a way to adapt
statistics with changing trends. Each time a new sample is detected
as normal, mean and covariance matrices can be updated using the
Woodbury Matrix Identity [41-43]. CD algorithm with fixed
statistics was proposed for FDI detection in a dataset where the
load profile was kept constant, but with random white noise added
to the system in [25]. The authors used fixed statistics in this work
as the load profile of the power system does not change for
different buses over time. CD algorithm with fixed statistics
performs poorly for a dataset that has drifting load profile and
when different buses in power systems have different local
statistics, as a full mean and covariance matrix estimated during the
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training phase of CD algorithm with fixed statistics fails to capture
these dynamics.

The ECD algorithm extended the strategies from the CD
algorithm and applied it to a dataset that has a drifting load profile
in [26]. The drift was modelled by the Ornstein—Uhlenbeck process
[44], which is a stochastic process similar to a random walk, but
has a tendency to move back towards the original load. This
presents a greater challenge to the data-driven solution since the
statistics of the different measurements in the power system will no
longer be similar. ECD algorithm provides a distributed anomaly
detection scheme while combining measurements using the spatial
information of the power system, to form local anomaly detector
that learns normal statistics for each bus based on the concept of
CD algorithm. An optimal threshold is selected for each local
anomaly detector and the results are combined with physics-based
solution to make final decisions on FDI detection. This work uses
fixed statistics for each local anomaly detector and does not update
them after initial training as the state of different buses in power
systems does not change over time in a drifting load dataset. ECD
algorithm performs poorly for a dataset that has varying system
states over time like a common daily load profile, which is more
realistic compared to constant load profile or drifting load profile.
Fig. 1 shows how different measurements such as Real Power
Injection, Reactive Power Injection, Voltage Magnitude change
over time for drifting load profile and daily load profile. We can
observe that especially different power measurements have large
varying normal statistics over time compared to drifting load
profile even though variation voltage magnitude is fairly similar for
different load profiles. The daily load profile considered in this
work has a measurement set that includes real and reactive power
flows, real and reactive power injections, and all voltage
magnitudes in the grid.

In previous work [25, 26], the anomaly detection threshold is a
fixed value estimated from the initialisation stage and not updated
with new incoming data. Specifically, the standard deviation and
mean of squared Mahalanobis distance values of initial £ normal
samples are calculated first. The threshold that results in the
highest Fl-score for k training normal samples is selected as
optimal for testing phase for the entire system in [25] and each
local anomaly detector in [26]. The authors now propose a novel
approach that integrates machine learning techniques to enable an
anomaly detection algorithm with an adaptive response to the real-
time environment.
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3 Ensemble CorrDet with adaptive statistics

We envision a machine learning layer of the smart power grid that
uses the knowledge of already verified data to learn the normal
state of a properly functioning grid. Once the normal state is
known (estimated), the system will then be able to detect anomalies
introduced into the system as well as alert a network and
communications layer (network layer). The network layer can then
identify the source of the anomaly, isolate it from the remainder of
the system and take appropriate action to prevent contamination
within the connected power distribution systems and within the
data assimilation itself.

As mentioned previously, the proposed ECD-AS algorithm
extends the work of the CorrDet [25] algorithm and the ECD
algorithm [26]. ECD-AS can be interpreted as a set of CorrDet
detectors where adaptive statistics are collected for each local
CorrDet environment. The CorrDet anomaly detector (CD) learns a
set of statistics, (#, £ and 7) for all buses ®r in power grid
topology, and ECD detector learns a series of statistics (4,,, X,, and
7,,), one for each bus ¢,,. The ECD-AS detectors learn a series of
statistics (#,,, %, and z,,), one for each bus ¢,, and then processes
them with new incoming data samples to adapt them. In this work,
an adaptive mean and covariance estimation of normal samples is
developed, as well as an adaptive threshold strategy.

Furthermore, learning the full covariance over all measurements
of all buses in the SG is costly and unnecessary (nearly sparse
covariance), especially when training data is limited. In the SG
topology, spatially neighbouring buses are more highly correlated
and can be more easily affected by an attack, while buses that are
further apart have lower correlation. We focus on data from local
buses with fewer dimensional measurement sets to offer a more
accurate statistic estimation and a computationally cheaper, more
sensitive anomaly detection. Unlike the previous algorithms, ECD-
AS prevents the numerical issue of estimating a high-dimensional
mean and covariance for the distribution of the normal samples (in
CorrDet detector) in the space of all measurements when the
number of measurements is high and the number of training
samples is low, by learning a lower-dimensional statistics in the
space of only the measurements associated with each bus.

Let the total number of measurements be d. There are
mj,m; < d, measurements on each bus m, where each bus is
considered as a local, spatial region, corresponding to one Local
CorrDet detector with adaptive statistics, ¢,,. For @, the learning
process consists of estimating g and X' from normal training
samples z (z € R'*%). A similar strategy is proposed to learn the
series of statistics for the ECD-AS detector. The learning of &g

involves the estimation of a set of Local CorrDet detectors with
adaptive statistics, ¢,,. For each ¢,,, similarly, the learning process
consists of estimating its g, and X, from the normal training
samples with selected measurements z,, (z,, is a 1 X m; vector).
First, the p,, and X, are initialised with the sample mean and
with the covariance of selected measurements of the first £ samples
that are labelled as normal. Then, the detector starts to accept new
samples and classify each new sample as follows. For each new
incoming sample z, a set of squared Mahalanobis distances,

5ECD=AS are computed using (1)

5’1;:ch 7As(zm) = (zm - ﬂm)Tz;zl (zm - ﬂm)’ (1)

where p,, is the mean and X, is the inverse covariance matrix of
normal samples on the mth local CorrDet detector. Then, the
Mabhalanobis distances are compared with the corresponding set of
thresholds, 7, where T = {z,,},,_..y- If at least one squared
Mahalanobis distance in ®g is greater than its corresponding
threshold, this incoming sample is classified as an anomaly.
Otherwise, it is classified as a normal sample.

Furthermore, for each new sample that is classified as normal,
the anomaly detector must be able to adapt with changing trends to
be able to capture data that is dynamic and changes gradually over
time. Therefore, the mean, u,, and inverse covariance matrix, X,
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are updated using the Woodbury Matrix Identity [41-43] using (2)
and (3), respectively. Note that this update is done only if the
incoming data is considered normal data. The mean will be updated
such that

Hoew.m = (- a)”m + a(z, — ﬂm)’v (2)

while the inverse covariance matrix is updated by
-1

Zzlia_;lz

new, m

(Zm - ”m)(zm - ”m)T
(1= ala) + @ — ) G — i) |

©)

where u,, is the old mean of mth local CorrDet detector with

adaptive statistics, X, is the old inverse covariance matrix of mth
local CorrDet detector with adaptive statistics and « is a hyper-
parameter value between zero and one that determines how much
importance is given to the new data sample versus the old mean.
We determine the value of k£ and a through experimentation.

The threshold can be assumed to be fixed for a dataset that has
constant mean and small variation in the time domain. A fixed
threshold T = {z,,},, - ,.; can be estimated using (4)

T = MPive,m + 1 X Othe, o (4)

where py » and 6y, ,, are the mean and standard deviation of the
squared Mahalanobis distance values of all normal training
samples, respectively, with selected measurements associated with
mth local CorrDet detector with adaptive statistics.

The fixed threshold assumption holds on a dataset that has
constant mean and small variation in the time domain such as
constant load profile and drifting load profile. However, for the
daily load profile dataset in this work, the statistics of normal
samples have a larger dynamically changing mean and covariance
with time as shown in Fig. 1. This ensures that the previously fixed
threshold assumption does not hold. So, in addition to adaptive
mean and covariance estimation of normal samples, an adaptive
threshold strategy is presented.

Unlike the fixed threshold estimation in CD algorithm and the
authors’ previous ECD algorithm, adaptive threshold estimation in
the proposed ECD-AS algorithm initialises the threshold values z,,
for each local CorrDet detector with adaptive statistics (bus-level)
following (4), and updates 7,, in an online sliding window fashion.
For every new incoming sample z, the threshold values z,, are
inferred from the most recent  normal samples before it. In other
words, the standard deviation (6, —p) and mean (pypem, - p) Of
squared Mahalanobis distance values of f normal samples past of
the new sample z are calculated for each local CorrDet detector
with adaptive statistics ¢,,. Here S is the sliding window size. The
threshold value 7, for each local CorrDet detector with adaptive
statistics is updated using (5) with updated py.p, - p and Gy, s
where —/f signifies the use of past f number of samples for
updating the threshold:

T = Mthrm, - g+ 1 X Othe,m, - p - ®)

Let K, and K, be the number of training and testing samples,
respectively, and let Z (Z € R*1) and Z (Z € R”**?) be the
training and testing samples, respectively. Let ¥ (Y € R' XK‘) and Y
(Y e R"*2) be the corresponding labels. &, (87, inR* ")

denotes the squared Mahalanobis distances of all training samples
with respect to the mth CorrDet detector with adaptive statistics,

bp- 03, (03, € R'*M) denotes the squared Mahalanobis distances of
the kth testing sample with respect to all local classifiers, ®g. Let B
be the squared Mahalanobis distances of all normal samples in the
sliding window with a length of 8 (B € R' xp ).

The pseudo-code for the proposed ECD-AS algorithm is shown
in Procedure 1 (Fig. 2).
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1: Train an ensemble CorrDet with adaptive statistics classifier:

Input: Z,Y, Z
2: for Every local classifier m = 1: M do
3 Initialize the mean 4, and covariance S} of normal statis-

tics using the sample mean and covariance of normal samples in

the training set with selected measurements associated with ¢m
Initialize the squared Mahalanobis distance ¢z ,,, using (1)
Initialize the threshold 7, using (4)

: end for

. Test using the ensemble CorrDet with adaptive statistics classi-

fier:
8: for Every test sample k = 1 : Ko do

9: Compute the squared Mahalanobis distance 5gk using (1)

10: if Vm, (5gk < Tm then

11: Classify z as normal sample: 7, = 0

12: Update the mean j,,, and covariance P using (2) and
3

13: Update the sliding window by adding d3, to B and
removing the oldest value from B.

14: Update the mean ti4, .y, — g and variance oypy. ,, g Of

squared Mahalanobis distances in the updated sliding window
of each local CorrDet detector with adaptive statistics

15; Update the threshold value 7, for each local CorrDet
detector with adaptive statistics using (5)

16: else

17: Classify Zj, as abnormal sample: 73, = 1

18: end if

19: end for

Output: Y

Fig. 2 Procedure 1 ECD-AS algorithm

4 Case study
4.1 Dataset

The proposed strategy for bad data detection was validated using
the IEEE 118-bus system. The measurement set includes real and
reactive power flows, real and reactive power injections, and all
voltage magnitudes, resulting in 691 measurements. Using the
MATLAB package MATPOWER, one day's worth of samples, or
measurement sets, were generated with Gaussian noise. Since
SCADA obtains measurements every 4 s, this means the dataset
has 21,600 samples, which were generated based on a common
daily load profile that was applied to all of the loads on the system
and contains the temporal information of a power system's
changing state. A total of 1080 (5%) of these samples were chosen
at random to insert an FDI into a single measurement within the
sample, which is the only type of attack considered in this work.
These FDIs were of random size between 7 and 23 standard
deviations away from the true measurement value and the standard
deviation of each measurement was 1% of the measurement value.
FDI attacks like these have been shown to have a significant
impact on the optimal power flow (OPF) application that uses the
results of State Estimation if they go undetected [28, 29]. Out of
these 21,600 samples, 1800 (K,) were used for training while the
remaining 19,800 (K,) samples were used for testing. The
implementation of the data driven machine learning model ECD-
AS and evaluation of results was conducted using Python libraries
such as NumPy [45], Pandas [46], SciPy [47], Matplotlib [48] and
Scikit-learn [49] in Anaconda environment.

4.2 Performance analysis

To properly evaluate the performance of the strategies included in
this paper, we make use of the following classification metrics
[50].

Anomalous samples are the ones in which an FDI attack is
introduced. True Negatives (TN) refer to normal samples that are
predicted as normal samples. True Positives (TP) refer to
anomalous samples correctly predicted as anomalous. False
Negatives (FN) refers to anomalous samples predicted to be
normal, and False Positives (FP) refers to normal samples
predicted to be anomalous.
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Accuracy is the ratio of the number of correctly predicted
samples to the total number of samples in the test dataset.
Accuracy is calculated as shown in (6):

TP + TN

Accuracy = 100 X TP+ FP+ TN+ EN (6)

Precision is the ratio of the number of correctly predicted
anomalies to the overall predicted anomalies. A model with high
precision can limit the mitigation cost by reducing unnecessary
actions due to false positives. Precision is calculated as in (7)

. TP
Precision = 100 x TP+FP" )
The recall is the ratio of the number of correctly predicted
anomalous samples to the number of true anomalous samples. A
model with a high recall can reduce the number of false negatives,
thereby reducing the number of missed FDI attacks. Equation (8)
shows the recall metric calculation

TP
Recall = 100 x TP-F—FI\I . (8)
Fl-score is the harmonic mean of Precision and Recall. The
resulting value is closer to the lower value among Precision and
Recall than arithmetic mean, hence resulting in a more appropriate
performance metric. This metric is more useful than accuracy since
we usually have an uneven class distribution for anomaly detection
problems like FDI detection considered in this work. Equation (9)
shows the F1-score calculation

2 % Recall X Precision
Fl—score = Recall + Precision ©)

4.3 Experiments for hyper-parameters in adaptive statistics

There are three hyper-parameters namely 7, f and a in the adaptive
statistics of the presented ECD-AS framework. Extensive
experimentation was conducted to choose the optimal hyper-
parameters.

The candidate parameter set for # is from 4 to 18, f is from 0 to
450 and « is from 0 to 107", Different combinations of hyper-
parameters from their candidate sets are used for training the
model, and then for evaluating the model using Fl-score on the
testing dataset. Fig. 3 shows a 3D scatter plot for 7, § and @ where
the colour and height is an indicator for F1-score. For each subplot
(certain f value), the highest F1-score is highlighted. The optimal
combination of hyper-parameters is estimated as n = 9, # = 90 and
a=8x1073. These values of 5, # and « are used in (5), (2), and (3)
during model training and update of adaptive statistics phase of the
ECD-AS framework.

The hyper-parameter # is a parameter choosing how far the
classification threshold 7,, should be away from the mean of
normal samples. In this experiment, # varies while the two other
hyper-parameters remain the same for each run. Fig. 4 shows
adaptive thresholds for various values of 5 for a fixed a = 8 x 107’
and # = 90, compared to the decision score for bus-1 (local region
number 1). The corresponding F1-scores for different values of 5
are also provided in the figure. Adaptive threshold with n =9
yields the highest Fl-score in this experiment, leading to a
moderate threshold curve with the time that is not too far from
normal samples (missing more anomalies) and not too close to the
normal samples (having more false alarms).

4.4 Numerical results

Table 1 shows the mean (y,.,) and standard deviation (o,,) values of
accuracy, precision, recall and F1-score values for 15 different sets
of training and test datasets for a variety of bad data detection
strategies included in our analysis namely, K-nearest neighbours
(KNN) [22], multilayer perceptron neural networks (MLPNNs)
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Table 1 Performance comparison of various bad data detection methodologies
Method Accuracy Precision Recall F1-score
Hey £ Ocy Hey £ Ocy Hey £ Ocy Hey £ Ocy
KNN 93.05+£02.71 13.36 £ 09.24 03.94 +03.35 04.64 £02.97
MLPNN [38] 78.04 £20.64 08.75+11.98 20.89+24.21 05.29 £ 04.09
GNB 49.81 £ 38.06 28.26 £ 38.50 51.35+39.73 07.94 £04.47
ADT 45.56 £22.03 05.66 £02.33 57.84 +23.87 09.54 £01.54
SvVC 55.68 £25.75 11.46+£12.14 60.57 £22.11 14.89+06.75
SE [9] 94.07 £00.25 36.56 +02.15 80.64 +02.21 57.03+01.92
CD [25] 04.88 £00.24 04.88 +00.24 99.07+00.00 09.31+00.43
ECD [26] 97.28+01.40 46.52 +28.03 44.08 £29.63 55.42 +£27.71
ECD-AS 99.35+00.45 87.24 +09.30 86.94 £ 09.87 92.54 +05.74

The bold values emphasise the metrics for the ECD-AS method presented in this paper.

[38], Gaussian Naive Bayes (GNB), adaptive boosting with
decision trees (ADT), support vector classifier (SVC) [22], the
physics-based state estimator (SE) [9], our previous work, CorrDet
anomaly detector (CD) [27] and ensemble CorrDet anomaly
detector (ECD) [26], and our proposed ECD-AS anomaly detector.

The SE analysis is the classical WLS SE with bad data
detection via the Chi-squared test with a confidence of 0.95 and
degrees of freedom of d - N, where N is the number of states [5].
Each experiment in the cross-validation had 1800 (K,) samples for
training and 5800 (K,) samples for testing.

We have compared the performance of ECD-AS with five
popular machine learning classification models such as KNN,
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MLPNN, GNB, ADT and SVC, a physics-based SE, and two data-
driven threshold-based anomaly detection strategies. To have a fair
comparison between the results of different methodologies, the
same samples are used for training and testing of all the models.
The hyper-parameters for the various machine learning models
were chosen through experimentation and the optimal values were
used to obtain the results shown in Table 1. The results are as
follows. For KNN, the value of the number of nearest neighbours is
chosen as 1 (higher value of k resulted in lower performance). For
MLPNN, 3 hidden layers with 250, 100 and 50 processing
elements were used, along with ReLu activation function, and an
ADAM solver for weight optimisation. For GNB, a variance
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smoothing factor of 10™° was used. For ADT, 500 decision tree
estimators each with a maximum depth of 500 were used, and
finally, for SVC, a radial basis function kernel with balanced class
weights was used. Other hyper-parameters of these models were set
with default choices from the scikit-learn library as they were
implemented using it.

In Table 1, we can observe that the proposed ECD-AS
outperforms all eight methodologies in terms of Accuracy,
Precision and F1-score. Although CorrDet anomaly detector has a
better recall score than the ECD-AS method, it results in extremely
low values of precision and F1-score (As described for (9), the F1-
score is the harmonic mean of precision and recall. An F1 score
reaches its best value at 1 for perfect precision and recall).
Compared to the results in [26] based on a drifting load profile, the
ECD performance drops when applied to the changing daily load
profile in this work. The adaptive statistics using a sliding window
approach in the ECD-AS proved to be effective in dealing with the
changing state of a daily load profile and produced a much higher
F1-score than the ECD framework.

4.4.1 Physical significance and impact of undetected FDI
attacks: While the F1-scores in Table 1 are significant results, few
individual samples can be analysed to show the physical
significance of undetected attacks. As discussed in [28], an attack
that leads to a 1% error in a power injection estimation can have a
large impact on the results of the OPF application, which depends
directly on the SE results. There are samples where the physics-
model based SE [9] solution failed to detect FDI and the ECD-AS
successfully detected FDI. An FDI attack directly imposed on the
real power injection measurement of bus 27 leads to an estimate
that is off by over 1%. This error would be distributed among the
lines connected to bus 27. An FDI attack on the real power flow
measurement between buses 46 and 48 would cause a power flow
error of over 1% as well. Examples like these are seen throughout
the SE failures and have a real impact on the OPF application. Just
a 1% error in OPF can cause lines on the system to be overloaded,
which can lead to line outages [28]. While these errors may not
lead to large scale blackouts they can certainly lead to outages on
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the system, damaged equipment, and loss of resources, all of which
are bad for utilities and their customers.

4.5 Analysis of adaptive threshold and decision scores

To illustrate the effectiveness of the presented ECD-AS framework
compared to other threshold-based anomaly detection schemes
considered in this analysis, we show the values of decision scores
(squared Mahalanobis distance measure) and corresponding
optimal thresholds obtained using physics-based SE [9], CorrDet
anomaly detection [25], ECD anomaly detection [26] and ECD-AS
anomaly detector in Fig. 5. It is important to notice that SE and CD
detection algorithms only provide system-level decision scores,
whereas ECD and ECD-AD provide decision scores for each bus.
We have selected region-2 as an example to show the behaviour of
decision scores and threshold obtained by fixed statistics in the
previous work ECD versus the decision score and adaptive
threshold obtained by the use adaptive statistics in the proposed
ECD-AS. Similar observations can be made for other regions in
ECD and ECD-AS results. In Fig. 5, we can notice that SE results
in a large number of false positives, hence resulting in low
precision value. The fixed statistics nature of CD and ECD bad
data detection algorithms cannot capture the temporal changing
dynamics of the measurements and fails to separate normal
samples from anomalous samples. These cases can be successfully
addressed in the proposed ECD-AS framework.

In ECD-AS, the threshold value 7, is estimated for every local
CorrDet detector with adaptive statistics, which is necessary due to
the fact that different buses (local regions) have their own
dynamics over time as they consist different measurements. Fig. 6
shows adaptive thresholds and decision score for the optimal
values of #, f and a for bus-2 and bus-10. It is noticeable that the
threshold values for bus-10 cannot be used for bad data detection
of bus-2. The adaptive threshold of bus-10 would label a large
number of the normal samples of bus-2 to be anomalous. Similarly,
the adaptive threshold of bus-2 cannot be used for bus-10 as it
would miss many of the anomalous samples in bus-10. Similar
behaviour can be observed for all the buses, which shows that each
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local CorrDet detector with adaptive statistics is needed to
effectively detect FDI attacks.

5 Conclusion

This paper presents a method to use adaptive statistics in the
detection of bad data in power systems such that the constantly
changing state of a power system is taken into account. The data-
driven bad data detection technique proposed in this paper uses
adaptive mean, adaptive covariance, and adaptive anomaly
threshold calculated with a sliding window approach for the
incoming data such that it adapts to changes in the system state. In
the case study on the IEEE 118-bus system, extensive
experimentation with the hyper-parameters of the ECD-AS process
shows an optimal solution with much better bad data detection
results than the state-of-the-art. The ECD-AS has a mean F1-score
of 92.5, whereas the ECD has a mean F1-score of 55.4 and the SE
method has mean Fl-score of 57.0. This shows that the adaptive
statistics presented are critical in bad data analysis for realistic
power system data. The distributed nature of the ECD-AS
framework using local detectors enables it to identify multiple
simultaneous FDI attacks and also helps in the identification of the
attacked buses. The improved performance of the presented
technique can be attributed for its ability to understand normal and
bad data behaviour at both spatial (local detectors at each bus) and
temporal (time-varying adaptive threshold) levels using adaptive
statistics.

6 Acknowledgment

This material was based upon work supported by the National
Science Foundation under grant no. 1809739.

7 References

[n Farag, M., Azab, M., Mokhtar, B.: ‘Cross-layer security framework for smart
grid: physical security layer’. IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), Istanbul, Turkey, 2014, pp. 1-7

2] Volz, D.: ‘U.S. Government concludes cyber attack caused Ukraine power
outage’. Reuters, 2016. Available from: https://www.reuters.com/article/us-
ukraine-cybersecurity/u-s-governmentower-outage-idUSKCNOVY 30K

[3] Fairley, P.: ‘Upgrade coming to grid cybersecurity in U.S.” (IEEE Spectrum,
2016). Available from: https://spectrum.ieee.org/energy/thesmarter-grid/
upgrade-coming-to-grid-cybersecurityin-us?
bt_alias=eyjlc2vyswqioiaimmnjzjayndytmdlkos00mzliltlizmqtnzmOyzeOzwjj
zj1kin0\%3D

[4] Zetter, K.: ‘An unprecedented look at Stuxnet, the world's first digital
weapon’ (Wired.com, USA, 2014) Available from: https://www.wired.com/
2014/11/countdown-to-zero-day-stuxnet/

[5] Monticelli, A.: ‘State estimation in electric power systems: a generalized
approach’ vol. 507 (Springer Science & Business Media, USA, 1999)

[6] Handschin, E., Schweppe, F.C., Kohlas, J., et al.: ‘Bad data analysis for power
system state estimation’, JEEE Trans. Power Appar. Syst., 1975, 94, (2), pp.
329-337

[71 Bretas, N.G., Bretas, A.S., Piereti, S.A.: ‘Innovation concept for measurement
gross error detection and identification in power system state estimation’, /ET
Gener., Transm. Distrib., 2011, 5, (6), pp. 603—608

[8] Bretas, A.S., Bretas, N.G., Carvalho, B., et al.: ‘Smart grids cyber-physical
security as a malicious data attack: an innovation approach’, Electr. Power
Syst.  Res., 2017, 149, pp. 210-219. Available from: http://
www.sciencedirect.com/science/article/pii/S0378779617301657

[9] Bretas, N.G., Bretas, A.S.: ‘The extension of the Gauss approach for the
solution of an overdetermined set of algebraic non linear equations’, /EEE
Trans. Circuits Syst. II, Express Briefs, 2018, 65, (9), pp. 1269-1273

[10] Bretas, A.S., Bretas, N.G., Carvalho, B.E.B.: ‘Further contributions to smart
grids cyber-physical security as a malicious data attack: proof and properties
of the parameter error spreading out to the measurements and a relaxed
correction model’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 43-51.
Available from: http://www.sciencedirect.com/science/article/pii/
S0142061518303946

[11] Liu, Y., Ning, P., Reiter, M.K.: ‘False data injection attacks against state
estimation in electric power grids’. Proc. of the 16th ACM Conf. on
Computer and Communications Security. CCS ‘09, ACM, Chicago, IL, USA,
2009, pp. 21-32. Available from: http://doi.acm.org/
10.1145/1653662.1653666

[12] Hug, G., Giampapa, J.A.: “Vulnerability assessment of AC state estimatmion
with respect to false data injection cyber-attacks’, JEEE Trans. Smart Grid,
2012, 3, pp. 1362-1370

[13] Sridhar, S., Manimaran, G.: ‘Data integrity attacks and their impacts on
SCADA control system’. Proc. Power Energy Society General Meeting, CDC,
Minneapolis, MN, USA, 2010

IET Smart Grid, 2020, Vol. 3 Iss. 5, pp. 572-580

[14]

[15]

[1e]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[33]

[36]

[37]

[38]

(391

[40]

[41]

Xie, L., Mo, Y., Sinopoli, B.: ‘False data injection attacks in electricity
markets’. Proc. 1Ist IEEE Int. Conf. Smart Grid Communications,
SmartGridComm, Gaithersburg, MD, USA, 2010

Sandberg, H., Teixeira, A., Johansson, K.H.: ‘On security indices for state
estimators in power networks’. Proc. 1st Workshop Secure Control Systems,
Stockholm, Sweden, 2010

Esfahani, P.M., Vrakopoulou, M., Margellos, K., et al.: ‘Cyber-attack in a
two-area power system: impact identification using reachability’. Proc.
American Control Conf. (ACC), Baltimore, MD, USA, 2010

Esfahani, P.M., Vrakopoulou, M., Margellos, K., et al.: ‘A robust policy for
automatic generation control cyber-attack in two area power network’. Proc.
2010 49th IEEE Conf. Decision Control (CDC), Atlanta, GA, USA, 2018, pp.
5973-5978

Bhattarai, B.P., Paudyal, S., Luo, Y., ef al.: ‘Big data analytics in smart grids:
state-of-the-art, challenges, opportunities, and future directions’, /ET Smart
Grid, 2019, 2, (2), pp. 141-154

Kosut, O., Jia, L., Thomas, R.J., et al.: “Malicious data attacks on smart grid
state estimation: attack strategies and counter measures’. 2010 First I[EEE Int.
Conf. on Smart Grid Communications, Gaithersburg, MD, USA, 2010, pp.
220-225

Bobba, R.B., Rogers, K.M., Wang, Q., ef al.: ‘Detecting false data injection
attacks on dc state estimation’. Preprints of the First Workshop on Secure
Control Systems, CPSWEEK, Stockholm, Sweden, 2010, vol. 2010

He, Y., Mendis, G.J., Wei, J.: ‘Real-time detection of false data injection
attacks in smart grid: a deep learning-based intelligent mechanism’, IEEE
Trans. Smart Grid, 2017, 8, (5), pp. 2505-2516

Ozay, M., Esnaola, 1., Vural, Y.E.T, et al.: ‘Machine learning methods for
attack detection in the smart grid’, [EEE Trans. Neural Netw. Learning Syst.,
2016, 27, (8), pp. 1773-1786

Wei, L., Gao, D., Luo, C.: ‘False data injection attacks detection with deep
belief networks in smart grid’. 2018 Chinese Automation Congress (CAC),
Xi'an, China, 2018, pp. 2621-2625

Potluri, S., Diedrich, C., Sangala, G.K.R.: ‘Identifying false data injection
attacks in industrial control systems using artificial neural networks’. 2017
22nd IEEE Int. Conf. on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 2017, pp. 1-8

Trevizan, R.D., Ruben, C., Nagaraj, K., et al.: ‘Data-driven physics-based
solution for false data injection diagnosis in smart grids’. 2019 IEEE PES
GM, Atlanta, GA, USA, 2019

Ruben, C., Dhulipala, S.C., Nagaraj, K., et al.: “Hybrid data-driven physics
model-based framework for enhanced cyber-physical smart grid security’, IET
Smart Grid, Available from: https://digital-library.theiet.org/content/journals/
10.1049/iet-stg.201

Ho, K.C., Gader, P.D.: ‘Correlation-based land mine detection using GPR’.
Detection and Remediation Technologies for Mines and Minelike Targets V.,
Int. Society for Optics and Photonics, Orlando, FL, USA, 2000, vol. 4038, pp.
1088-1096

Liang, J., Sankar, L., Kosut, O.: ‘Vulnerability analysis and consequences of
false data injection attack on power system state estimation’, /EEE Trans.
Power Syst., 2016, 31, (5), pp. 3864-3872

Teixeira, A., Sandberg, H., Dan, G., et al.: ‘Optimal power flow: closing the
loop over corrupted data’. 2012 American Control Conf. (ACC), Montreal,
Canada, 2012, pp. 3534-3540

Ashok, A., Govindarasu, M.: ‘Cyber attacks on power system state estimation
through topology errors’. Power and Energy Society General Meeting, 2012
IEEE, San Diego, CA, USA, 2012, pp. 1-8

Margossian, H., Sayed, M.A., Fawaz, W., et al.: ‘Partial grid false data
injection attacks against state estimation’, Int. J. Electr. Power Energy Syst.,
2019, 110, pp. 623-629

Stefanov, A., Liu, C.: ‘Cyber-power system security in a smart grid
environment’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT),
Washington, DC, USA, 2012, pp. 1-3

Abur, A., Exposito, A.G.: ‘Power system state estimation: theory and
implementation’. Power Engineering (Willis). (CRC Press, USA, 2004).
Available from: https://books.google.com/books?id=NQhbtFC6_40C

Bretas, N.G., Piereti, S.A., Bretas, A.S., et al.: ‘A geometrical view for
multiple gross errors detection, identification, and correction in power system
state estimation’, [EEE Trans. Power Syst., 2013, 28, (3), pp. 2128-2135
Bretas, N.G., Bretas, A.S., Martins, A.C.P.: ‘Convergence property of the
measurement gross error correction in power system state estimation, using
geometrical background’, JEEE Trans. Power Syst., 2013, 28, (4), pp. 3729—
3736

Xue, D, Jing, X., Liu, H.: ‘Detection of false data injection attacks in smart
grid utilizing ELM-based OCON framework’, IEEE Access, 2019, 7, pp.
31762-31773

Krundyshev, V., Kalinin, M.: ‘Prevention of false data injections in smart
infrastructures’. 2019 IEEE Int. Black Sea Conf. on Communications and
Networking (BlackSeaCom), Sochi, Russia, 2019, pp. 1-5

Ashrafuzzaman, M., Chakhchoukh, Y., Jillepalli, A.A., et al.: ‘Detecting
stealthy false data injection attacks in power grids using deep learning’. 2018
14th Int.Wireless Communications Mobile Computing Conf. (IWCMC),
Limassol, Cyprus, 2018, pp. 219-225

Ho, K., Gader, P.D.: ‘A linear prediction land mine detection algorithm for
hand held ground penetrating radar’, [EEE Trans. Geosci. Remote Sens.,
2002, 40, (6), pp. 1374-1384

Chang, C.I, Chiang, S.S.: ‘Anomaly detection and classification for
hyperspectral imagery’, I[EEE Trans. Geosci. Remote Sens., 2002, 40, (6), pp.
13141325

Alvey, B., Zare, A., Cook, M., et al.: ‘Adaptive coherence estimator (ACE)
for explosive hazard detection using wideband electromagnetic induction
(WEMI)’, ProcSPIE, 2016, 9823, pp. 9823-9823 Available from: https:/
doi.org/10.1117/12.2223347

579

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)


https://www.reuters.com/article/us-ukraine-cybersecurity/u-s-governmentower-outage-idUSKCN0VY30K
https://www.reuters.com/article/us-ukraine-cybersecurity/u-s-governmentower-outage-idUSKCN0VY30K
https://spectrum.ieee.org/energy/thesmarter-grid/upgrade-coming-to-grid-cybersecurityin-us?bt_alias=eyj1c2vyswqioiaimmnjzjayndytmdlkos00mzliltlizmqtnzm0yze0zwjjzjlkin0/
https://spectrum.ieee.org/energy/thesmarter-grid/upgrade-coming-to-grid-cybersecurityin-us?bt_alias=eyj1c2vyswqioiaimmnjzjayndytmdlkos00mzliltlizmqtnzm0yze0zwjjzjlkin0/
https://spectrum.ieee.org/energy/thesmarter-grid/upgrade-coming-to-grid-cybersecurityin-us?bt_alias=eyj1c2vyswqioiaimmnjzjayndytmdlkos00mzliltlizmqtnzm0yze0zwjjzjlkin0/
https://spectrum.ieee.org/energy/thesmarter-grid/upgrade-coming-to-grid-cybersecurityin-us?bt_alias=eyj1c2vyswqioiaimmnjzjayndytmdlkos00mzliltlizmqtnzm0yze0zwjjzjlkin0/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet
http://www.sciencedirect.com/science/article/pii/S0378779617301657
http://www.sciencedirect.com/science/article/pii/S0378779617301657
http://www.sciencedirect.com/science/article/pii/S0142061518303946
http://www.sciencedirect.com/science/article/pii/S0142061518303946
http://doi.acm.org/10.1145/1653662.1653666
http://doi.acm.org/10.1145/1653662.1653666
https://digital-library.theiet.org/content/journals/10.1049/iet-stg.201
https://digital-library.theiet.org/content/journals/10.1049/iet-stg.201
https://books.google.com/books?id=NQhbtFC6_40C
https://doi.org/10.1117/12.2223347
https://doi.org/10.1117/12.2223347

[42]

[43]

[44]

[45]
[46]

580

Zhao, C., Wang, Y., Qi, B, et al: ‘Global and local real-time anomaly
detectors for hyperspectral remote sensing imagery’, Remote Sens., 2015, 7,
(4), pp. 39663985

Wang, Y., Zhao, C., Chang, C.I.: ‘Anomaly detection using sliding causal
windows’. 2014 IEEE Geoscience and Remote Sensing Symp. IEEE, Quebec,
Canada, 2014, pp. 4600—4603

Bibbona, E., Panfilo, G., Tavella, P.: ‘The ornstein—Uhlenbeck process as a
model of a low pass filtered white noise’, Metrologia, 2008, 45, p. S117
Oliphant, T.E.: ‘4 guide to NumPy’ vol. 1 (Trelgol Publishing, USA, 2006)
Pandas Development Team, T.: ‘Pandas-Dev/Pandas: Pandas’ (Zenodo,
Switzerland, 2020). Available from: https://doi.org/10.5281/zenodo.3509134

[47]

[48]
[49]

(501

Virtanen, P., Gommers, R., Oliphant, T.E., et al.: ‘SciPy 1.0: fundamental
algorithms for scientific computing in python’, Nat. Methods, 2020, 17, pp.
261-272

Hunter, J.D.: ‘Matplotlib: A 2D graphics environment’, Comput. Sci. Eng.,
2007, 9, (3), pp- 90-95

Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: ‘Scikit-learn: machine
learning in Python’, J. Mach. Learn. Res., 2011, 12, pp. 2825-2830

Godbole, S., Sarawagi, S.: ‘Discriminative methods for multi-labeled
classification’, in Dai, H., Srikant, R., Zhang, C. (eds.): ‘Advances in
knowledge discovery and data mining’ (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004), pp. 22-30

IET Smart Grid, 2020, Vol. 3 Iss. 5, pp. 572-580

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)


https://doi.org/10.5281/zenodo.3509134

