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A B S T R A C T

This paper presents a correction model for malicious, unbalanced parameter false data injection cyber-attacks.
Current state-of-art solutions can detect, identify and correct balanced parameter false data injection cyber-
attacks. Thus, they consider all the parameters as equal in error, which means the methods will only work when
the same percentage attack happens to each parameter. In this paper, a new correction model using a parameter
correction Jacobian matrix, τ, and a Taylor series approximation is presented. A framework for measurement
gross error analysis is deployed in processing and analyzing cyber-attacks. Chi-square χ2 Hypothesis Testing
applied to the normalized composed measurement error (CMEN) is considered for cyber-attacks detection, while
the largest CMEN error test is used for identification. Validation is performed on the IEEE 14-bus and 118-bus
systems. Easy-to-implement model, without hard-to-design parameters, built on the classical weighted least
squares solution, highlights potential aspects for real-life implementation.

1. Introduction

As the power grid implements Smart Grid [1] technologies, the
many advantages of new metering, controls, and analysis come with
added technical challenges. Specifically, the digitalization of the power
grid and the increasing dependence on communications systems makes
the network more vulnerable to cyber-attacks [2–4]. Cyber-attacks, if
not detected and accurately corrected, can lead to misinformation to
system operators and potential collapse of the power system [5,6].
While much research has been done to address this concern, science and
technology for smart grids cyber-physical security is still seldom.

In any power system, real-time monitoring is a critical process for
reliable operation. Currently, physics-based quasi-static system model
Power System State Estimation (PSSE) is the main tool for real-time
system monitoring [7]. PSSE uses readings of sensors to provide in-
formation about the condition of the system. These readings are com-
monly transmitted to a Supervisory Control and Data Acquisition
(SCADA) system, which is where PSSE is performed. The results of PSSE
are used in many applications for power systems operation. One of the
most important applications is its error processing capability. Mea-
surements that are obviously incorrect or inconsistent are discarded in a
pre-filtering step, still a post-processing step called bad data analysis is
performed afterwards [8]. The goal of bad data analysis is to detect the

existence of bad data among the dataset. Bad data are called Gross
Errors (GE) and are modelled as statistically large errors.

As the Smart Grid becomes more of a reality, and more vulnerable to
cyber-attacks, the bad data analysis process of PSSE becomes more
critical to reliable operation. One type of cyber-attack is the false data
injection (FDI), where a subset of data values are modified by an at-
tacker such that the power grid operation is disrupted [9–11]. Most
research in this area focus on the detection of measurement FDI
[12–17]. However, as illustrated in Fig. 1, a similar strategy can be used
by an attacker where instead of attacking the measurements themselves
(attack a), the attacker modifies the values of logical status data for
switches on the system (attack b), or the stored parameters values of the
power system (attack c).

System parameters include values such as transmission line series
impedance and shunt capacitance, and are typically values with no
dynamics [19]. This data, named here static data, is stored in a database
that is not subject to the same pre-processing steps as real-time mea-
surements, meaning if it is compromised, it will not be filtered out or
corrected before the PSSE process. Since these parameters are used to
build the model of the system, they are most important to the accuracy
of PSSE.

Parameter error analysis has been proposed in the previous work
[20]. Abur and Expósito [20] uses an augmented state vector based
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approach, which can lead to observability issues on low redundancy
systems. Furthermore, this approach can’t handle multiple simulta-
neous attacks. In previous work of the authors, parameter cyber-attack
correction models have been presented [18,21]. However, these have
been limited to either single parameter attacks or multiple attacks of
equal magnitude. An intelligent FDI attack otherwise could modify in-
dividual parameters in such a way to make the attack as stealthy as
possible. For example, rather than modifying only the susceptance
parameter value of a transmission line, an attacker could change the
susceptance and conductance parameter values of a line. Furthermore,
each value could be changed by a different magnitude, making the
attack an unbalanced one. One should note that the solution in [21]
would only successfully correct both attacks types if they were of the
same magnitude percentage (balanced). As in previous works [21], it is
not necessary for an attacker to have complete knowledge of the system
in order to implement an unbalanced attack on the system parameters.
Simple knowledge of the parameters being altered are necessary for an
attack. For attacks considered in this paper, that means the attacker
needs only information about one or two lines of the system.

This paper presents a model for unbalanced parameter FDI cyber-
attacks processing. Presented model considers estimated power losses,
and real and reactive power flows measurements. An enhanced cyber-
physical security framework for smart grids FDI attacks processing is
presented. FDI attacks are detected through a Chi-squared test based on
the Innovation concept [18], while considering the extension of the
Gauss approach for the solution of an overdetermined set of algebraic
non-linear equations [16]. Cyber-attacks are identified with the com-
posed normalized error test [21]. Cyber-attacks are otherwise corrected
through a parameter correction Jacobian matrix τ and Taylor series

approximation based model. Simultaneous measurement and parameter
FDI cyber-attacks are iteratively detected, identified, and corrected. It is
vital that all three of these steps are reliable and accurate. Even if a
cyber-attack is properly detected and identified, improper correction
does not fix the problem at hand. Therefore, a miscorrected attack can
still be considered stealthy since the true nature of the attack is not
completely known and addressed. The model is tested on the IEEE 14
and 118 bus systems. Comparative test results highlight the model’s
security and dependability, even when there are simultaneous un-
balanced parameter and measurement FDI cyber-attacks, presenting a
clear contribution to the state-of-the-art of power systems cyber-phy-
sical security.

The specific contributions of this paper towards the state-of-the-art
are as follows:

- Unbalanced parameter correction model against false data injec-
tion attacks.

- Cyber-physical security framework for detection, identification
and correction of false data injection attacks.

The remainder of the paper is organized as follows. Section 2 pre-
sents a review on the Smart Grid and the Innovation based quasi-static
model weighted least squares state estimation solution. A model for
unbalanced parameter cyber-attack correction and a framework for
smart grids real-time cyber-security against FDI are presented in
Section 3. Case studies are presented in Section 4. Section 5 presents the
conclusions of this work.

Nomenclature

C Threshold value of Chi-square distribution
z Measurement Vector
e Measurement error vector
τ Parameter correction Jacobian matrix
N State variables vector space
m Measurement vector space
J(.) Objective function
h(.) Continuous nonlinear differentiable function
σ Standard deviation
R Measurement covariance matrix
N Number of unknown state variables
H Jacobian matrix of h(.)
x̂ Estimated state vector
ẑ Estimated value of z
x* Operating point of state
K Projection matrix
eU Undetectable error
eD Detectable error

CME Composed measurement error
II Innovation Index
CNE Composed normalized error
Hp Jacobian of parameter

−gk m Conductance from bus k to bus m
−bk m Series Susceptance from bus k to bus m
−bk m
sh Shunt Susceptance from bus k to bus m
−S*k m Conjugated complex power flow
−Ik m Complex current in transmission line from bus k to m
−Pk m Real power flow from bus k to m
−Qk m Reactive power flow from bus k to m

Vk Voltage at bus k

−yk m Admittance from bus k to bus m
−Pk m loss( ) Real power loss from bus k to m
−E E| |k m magnitude of the voltage drop from bus k to m

Pk Real power injection at bus k
Qk Reactive power injection at bus k
CMEN Normalized composed measurement error
△p Parameter error

Fig. 1. Various FDI attacks on PSSE (adapted from Bretas et al. [18]).
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2. Background information

2.1. Smart grid

As described in [1], the driving idea towards a Smart Grid is to
transform the power system by using Information and Communication
Technology (ICT) aiming to create a more sustainable, efficient, and
controllable network. ICT allows for two way communication
throughout the grid, giving utilities more insight into energy con-
sumption. The Smart Grid will be able to operate distributed genera-
tion, reroute the distribution network in real-time though advanced
switching equipment enabling self-healing capabilities, and enable real-
time monitoring through numerous sensors.

While there are many advantages of the Smart Grid, the increasing
amount of ICT leaves the system more vulnerable to cyber-attacks. In
[2], relatively simple simulations are run which show that cyber-at-
tacks, gone undetected, can easily trigger widespread outages. Wang
et al. [3] discusses the current standards of the power system and
concludes that as the Smart Grid is implemented, special care should be
taken to address the security of ICT and the algorithms that use the data
collected by Smart Grid devices. Ashok and Govindarasu [5], Margos-
sian et al. [6] also show the potential for damaging cyber-attacks
through FDI attacks of both real-time measurements or network to-
pology, which is based on mostly static data. Namely, an undetected
FDI attack on network topology can lead to violations of system oper-
ating limits. This is both damaging to the system equipment and can
trigger unnecessary outages.

In real-life, there have already been numerous cases of cyber-attacks
which highlight the impact they can have. The first confirmed blackout
caused by a cyber-attack on a power grid caused a power outage that
affected 225,000 customers in Ukraine [22,23]. Another example of a
malicious cyber-attack on a power grid was the Stuxnet malware used
to attack the Iran’s Nuclear Technology Center [24]. Both cases are
examples of how cyber attacks can cause physical harm to the grid, and
customers to lose power for an extended period of time.

2.2. Innovation based state estimation theory

A power system with n buses and m measurements can be modeled
as a set of non-linear algebraic equations as follow [19]:

= +z h x e( ) , (1)

where ∈z m is the measurement vector, x ∈ N is the state variables
vector, h(x) : N →  >m N, ( ),m is a non-linear differentiable function
that relates the states to the measurements, and e is the measurement
error vector assumed with zero mean, standard deviation σ and having
Gaussian probability distribution. = −N n2 1 is the number of un-
known state variables which consist of the voltage magnitudes and
angles.

The weighted least squares state estimator searches for the best
estimates of the states x which minimizes the cost function as follow:

= ∥ − ∥ = − −−
−J x z h x z h x R z h x( ) ( ) [ ( )] [ ( )],
R

T2 1
1 (2)

where R is the measurement covariance matrix. J(x) is geometrically a
norm in the measurements vector space m. Let x̂ be the solution of the
aforementioned minimization problem, then the estimated measure-
ment vector is =z h x^ (^). The residual is defined as the difference be-
tween ẑ and z, which means = −r z ẑ . Linearizing (1) at a certain
operating point x* yields:

△ = △ +z H x e, (3)

where = ∂
∂H h
x is the Jacobian matrix of h calculated at the point x*.

△ = − = −z z h x z z( *) * and △ = −x x x* are the correction of mea-
surement and state vectors, respectively. It is important to note that in
the context of a parameter FDI, the values in both h and H will be
directly affected [21]. PSSE considers the static data to estimate the
system states, however incorrect parameter values will drive PSSE to an
incorrect solution.

The state estimation can be formulated as a projection. Let K be a
linear operator such that △ = △x K z^ and the residual vector
= △ − △r z ẑ . Then, the vector △ = △z H x^ ^ is orthogonal to the re-

sidual vector r, since K projects the measurement vector mismatch △z
orthogonally in the range space of H, as shown in [14]. Equivalently,

< △ > = △ △ − △ =−z r H x R z H x^, ( ^) ( ^) 0,T 1 (4)

Solving (4) for △x̂ , one can obtain the following:

△ = △− − −x H R H H R z^ ( ) ,T T1 1 1 (5)

In other words, the projection matrix K is the idempotent matrix that
has the following expression:

= − − −K H H R H H R( ) ,T T1 1 1 (6)

The geometrical position of the measurement error in relation to the
range space of H provides another way of interpreting the state esti-
mation. Hence, as the measurement vector can be decomposed into two
subspaces, it is possible to decompose the measurement error vector
into two components as follows:

Fig. 2. Data flowchart of the cyber-physical security framework.

Table 1
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1
= > =J x C( ) 148.57 132.14 Attack Detected!

CMEN Descending List

Measurement II CMEN

−Q02 03 0.9635 6.0474
−P04 05 4.0873 −5.8763
−Q03 02 0.7432 3.5401
−P03 02 6.6220 −3.4331
−P02 03 6.4898 3.4063
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   ⏟= + −e Ke I K e( ) ,
e eU D (7)

The component eD is the detectable error, which is the residual in the
classical model, while the component eU is the undetectable error. eD is
in the orthogonal space to the range space of Jacobian whereas eU is
hidden in the Jacobian space. In order to quantify the undetectable
error, the Innovation Index (II) is introduced [17] and is presented in
the following:

=
∥ ∥
∥ ∥

=
−

II
e
e

K
K

1
,i

D
i

U
i

ii

ii (8)

Low Innovation index means there is a large component of error that is
not reflected in the residual. Therefore, the residual will be very small
even if there is a gross error. By analysing the norm of (7) and sub-
stituting in (8), the composed measurement error can be expressed in
terms of the residual and the innovation index as follow [17]:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

CME r
II

1 1 ,i i
i
2 (9)

If the normalized residual is used instead, one can obtain the Composed
Normalized Error (CNE) as follow:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

CNE r
II

1 1 ,i i
N

i
2 (10)

Where riN is the normalized residual of meaurement i. Otherwise, CME
can be normalized as follow:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

CME r
σ II

1 1 ,i
N i

i i
2 (11)

where σi is the standard deviation for measurement i.

2.3. Parameter error analysis

In (1), the possibility of errors in the parameter data is not con-
sidered. Instead, if one considers = +z h x p e( , ) , where p is the para-
meter in error, this function can be developed into a Taylor Series [21]:

= +
∂

∂
△z h

h x p
p

p
( , )

,i i
i

,0
(12)

where △p is the parameter error. From (12), the parameter error can
be calculated to be as follow:

△ =
−

p
z h
H

,i i

p

,0

,0 (13)

where Hp,0 is the Jacobian of parameters. All the quantities are known,
so one can calculate the parameter error through (13), which is called
here the relaxed model, since it considers the measurements without
error. Through this model one can correct parameter errors using the
measurement value of reactive power flow corresponding to the line

Table 2
Corrected Parameters using the parameter correction Jacobian matrix τ.

Parameter correction
Parameter Database Erroneous Presented correction State-of-the-art correction

(Approximation error) (Approximation error) [21]

−g02 03 1.1350 1.0783 1.1313 (0.326%) 1.1295 (0.485%)

−b02 03 −4.7819 −4.5428 −4.7617 (0.422%) −4.7586 (0.487%)

−b sh02 03 0.0219 0.0208 0.0217(0.913%) 0.0217 (0.913%)

Fig. 3. Correction for line 02–03 using presented model.
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where the parameter attack happened through iterations. However,
network parameter values includes three components, which are series
conductance g, series susceptance b and shunt susceptance bsh. At the
same time, the weights of these three components depend on the net-
work parameter database, so one can only correct the parameter error
through this model when these three components have the exactly same
percentage attack, lets say, 10% on g, 10% on b, and 10% on bsh. Thus

unbalanced FDI in parameter values are not considered by this model,
for example, 30% on g, 20% on b,and 10% on bsh. To address this issue,
an unbalanced correction model is presented in this paper.

3. Unbalanced parameter attack correction model

Consider the conjugate of the complex power flow [19]:

=
= − +

− −

−
− ( )

S E I
y V e V e V e jb V

* *

,
k m k k m

k m k
jθ

k
jθ

m
jθ

km
sh

k
2k k m (14)

The expressions for the real and reactive power flows can be obtained
by identifying the corresponding coefficients of the real and the ima-
ginary parts of (14):

= − −−P V g V V g θ V V b θcos sink m k km k m km km k m km km
2 (15)

= − + + −−Q V b b V V b θ V V g θ( ) cos sin ,k m k km km
sh

k m km km k m km km
2 (16)

Fig. 4. Correction for line 02–03 using state-of-the-art solution in [21].

Table 3
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1
= > =J x C( ) 1078.163 132.14 Attack Detected!

CMEN Descending List

Measurement II CMEN

−Q02 03 1.0204 39.0369
−Q03 02 0.7220 −37.2976
−Q03 04 2.7513 31.3345
−Q04 03 3.2326 −30.3003

P05 0.2010 −27.3349
−Q04 09 0.8963 22.1735
−P03 02 6.3665 −17.7507

Q03 2.0920 17.6771
−P02 03 1.8594 17.5790
−P04 05 4.1028 −6.9408

P03 4.5145 5.5459

Table 4
Corrected Parameters using the parameter correction Jacobian matrix τ .

Parameter correction
Parameter Database Erroneous Presented correction State-of-the-art correction

(Approximation error) (Approximation error) [21]

−g02 03 1.1350 1.2485 1.1293 (0.502%) −1.9165 (268.854%)

−b02 03 −4.7819 −4.5428 −4.7518 (0.629%) 6.9732 (245.824%)

−b sh02 03 0.0219 0.0230 0.0217(0.913%) −0.0353 (261.187%)

Table 5
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1

= > =J x C( ) 179.8857 132.14 Attack Detected!
CMEN Descending List

Measurement II CMEN CNE
−P04 05 4.1013 −6.9725 −7.1440

T. Zou, et al. Electric Power Systems Research 187 (2020) 106490
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Through Eq. (15), one can derive the real power loss of a line:

= +
= + −
= −

− − −P P P
g V V V V θ
g E E

( 2 cos )
| | ,

k m loss k m m k

km k m k m km

km k m

( )
2 2

2 (17)

Eqs. (15)–(17) provide a model which correlates the real power flow
losses, real power flow, and reactive power flow with system para-
meters. These equations can be easily organized into matrix format:

⎛

⎝

⎜
⎜

−
− −
− − + −

⎞

⎠

⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

−

−

E E
V V V θ V V θ

V V θ V V V θ V

g
b
b

P
P
Q

| | 0 0
cos sin 0

sin cos
,

k m

k k m km k m km

k m km k k m km k

km

km

km
sh

k m loss

k m

k m

2

2

2 2

( )

(18)

(18) is a set of non-linear algebraic equations, which can be linearized
through a Taylor series, considering a Newton-Raphson method nth
iteration:

⎛

⎝

⎜
⎜

−
− −
− − + −

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
⎛

⎝

⎜
⎜

−

−
−

⎞

⎠

⎟
⎟

− −

− −

− −

E E
V V V θ V V θ

V V θ V V V θ V

g
b
b

Z h

Z h
Z h

| | 0 0
cos sin 0

sin cos

Δ
Δ
Δ

,

k m

k k m km k m km

k m km k k m km k

n
km

km

km
sh

P P
n

P P
n

Q Q
n

2

2

2 2

k m loss k m loss

k m k m

k m k m

( ) ( )

(19)

Let the parameter correction Jacobian matrix τ be defined as:

=
⎛

⎝

⎜
⎜

−
− −
− − + −

⎞

⎠

⎟
⎟

τ
E E

V V V θ V V θ
V V θ V V V θ V

| | 0 0
cos sin 0

sin cos
,

k m

k k m km k m km

k m km k k m km k

2

2

2 2
(20)

Then the correction for each parameter g, b, or bsh will be done through
iterations considering:

Table 6
Corrected measurement using the CNE .

Measurement correction

Measurement Database Erroneous Correction using CNE
(Approximation error) [15,16]

−P04 05 −0.6118 −0.6546 −0.6100 (0.294%)

Table 7
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1

= < =J x C( ) 27.5507 132.14 No attack Detected!
Measurement II CMEN

−Q02 03 0.9337 −0.5638
−Q03 02 0.7199 0.0985
−Q03 04 2.6915 −0.0696
−Q04 03 3.3602 0.3548

Q05 0.2008 −2.5676
−Q04 09 0.8929 0.0073
−P03 02 6.4259 0.2503

Q03 2.0793 −0.1400
−P02 03 6.3022 −0.0673
−P04 05 4.0994 −0.0470

P03 4.6728 −0.4800

Fig. 5. Correction for line 02–03 using presented model.
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⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

−

−
−

−
− −

− −

− −

g
b
b

τ

Z h

Z h
Z h

Δ
Δ
Δ

,
km

km

km
sh

P P
n

P P
n

Q Q
n

1n
k m loss k m loss

k m k m

k m k m

( ) ( )

(21)

Model solution converges when a pre-established convergence value
is reached. Fig. 2 presents a data flow chart of the cyber-physical se-
curity framework considering the parameter error correction model.
Gross error detection is performed by applying Chi-Squared Test to
CMEN [18]. Identification is done by the composed normalized error
test [21]. In this framework, the possibility of either or simultaneous
measurement or parameter errors are considered by analyzing the
measurement error characteristics [21]. Thus, if there are any isolated
measurement errors identified, they are corrected using the CNE
[15,16]. If a group of measurements associated with the same para-
meters have high CMEN values, parameter correction is performed by
(21) considering the parameter correction Jacobian matrix τ (20).

4. Case study

In this case study, three different FDI attack scenarios are presented.
The validation of proposed methodology is done using the IEEE 14-bus
and 118-bus systems. The measurement set used for IEEE 14-bus system
consists 107 measurements obtained from MATPOWER [25], leading to
a global redundancy level GRL = 3.96. For the IEEE 118-bus test
system the measurement set consists of 860 measurements, leading to

Fig. 6. Correction for line 02–03 using state-of-the-art solution in [21].

Table 8
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1
J (x) = 95,762.581 > C = 132.14 Attack Detected!

CMEN Descending List
Measurement II CMEN

−Q01 05 1.8983 160.1638
−Q05 01 0.7377 −135.9005
−Q01 02 2.4522 −103.9931

Q01 1.4556 −103.4556
Q02 3.7805 72.6300
P05 0.1832 −35.7542

−Q02 05 0.8061 −60.1611
P02 0.2874 −51.0811
P04 1.2404 −35.7542

−Q05 02 1.5040 31.0782
P06 0.7437 −26.5596

−Q04 02 2.4309 21.5742
−P05 01 7.5007 −21.1503
−Q03 02 0.9015 20.6724
−P04 05 4.1894 −19.4216
−P05 04 4.1787 19.3794
−P01 05 7.2439 19.0012

Table 9
Corrected Parameters using the parameter correction Jacobian matrix τ.

Parameter correction
Parameter Database Erroneous Presented correction State-of-the-art correction

(Approximation error) (Approximation error) [21]

−g01 05 1.0259 1.3337 1.0243 (0.155%) Unable to converge (∞)

−b01 05 −4.2350 −3.3880 −4.2335 (0.035%) Unable to converge (∞)

−b sh01 05 0.0246 0.0271 0.0245(0.406%) Unable to converge (∞)

T. Zou, et al. Electric Power Systems Research 187 (2020) 106490
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Fig. 7. Correction for line 01–05 using presented model.

Fig. 8. Correction for line 01–05 using presented model.
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the GRL = 3.65. System topology and parameters are found in [26].

4.1. Parameter attack scenario I

On the IEEE 14-bus system, a balanced parameter cyber-attack to
the series and shunt parameters of line 2–3 (− 5% on parameter g,− 5%
on parameter b, − 5% on parameter bsh) is simulated. Attack processing
starts with detection, as shown in the data flowchart, where the ob-
jective function is higher than the C value for this scenario
( = =C χ 132.1442 ), as presented in Table 1. A descending list of CMEN

is built after a cyber-attack is detected. The largest CMEN, associated
with −Q ,02 03 −Q ,03 02 −P ,02 03 −P ,03 02 characterizes a parameter cyber-attack
on line 2–3 [21]. After identification, the net system parameter are
corrected using the presented model in (21). Corrected values and
comparable results are presented in Table 2. One can see that the ba-
lanced parameter attack is successfully corrected using the presented
model, from numeric results, the correction presents more accurate
performance, considering [21]. Further results in every iteration until
convergence are presented in Figs. 3 and 4. The presented model and
state of the art algorithm [21] successfully corrects the balanced
parameter cyber-attack on line 2–3, however, as one can see the pre-
sented model provides accurate and faster convergence rate[21].’s
slower convergence rate is expected since it corrects parameters syn-
chronously by considering attacks in all parameters are in same per-
centage. One should notice that only a green curve is shown in Fig. 4
since all parameters are corrected synchronously, so all three parameter
curves are overlapping. Fig. 3 has three separate curves, one for each
parameter being corrected.

4.2. Parameter attack scenario II

On the IEEE 14-bus system, we analyze two simultaneous cyber-
attacks:

1. A measurement cyber-attack of magnitude 7 σ is added to real power

flow from bus 4 to bus 5 ( −P04 05).
2. An unbalanced parameter cyber-attack to the series and shunt

parameters of line 2–3 (10% on parameter g, − 5% on parameter b,
5% on parameter bsh).

The FDI attack processing starts with detection, step 1, where the
objective function is higher than the C value for this scenario
( = =C χ 132.1442 ), as presented in Table 3. Once the attack is detected,
a descending list of CMEN is built. By analyzing this list, one can find
there are several values above the threshold value β = 3. The largest
values CMEN, related to −Q ,02 03 −Q ,03 02 −P ,02 03 −P ,03 02 P03, Q03, char-
acterizes a parameter cyber-attack on line 2–3 [21]. Then, the net
parameter of line 2–3 is corrected using τ in (21). The corrected para-
meters are shown in Table 4. From Table 4, one can see the final results
after convergence, with a small approximation error. After convergence
in the correction process, a new state estimation is performed and ob-
jective function J(x) is 179.8857, so a new descending list of CMEN is
built. The result is shown in Table 5. As seen, the only CMEN value
(absolute value) above the threshold is the real power flow of the line
4–5. Therefore, the measurement −P04 05 is in error. The correction of
measurements as shown in the flowchart is performed using their CNE
values. Corrected measurement is shown in Table 6. After re-running
the state estimator, no CMEN value is found to be above the threshold as
shown in Table 7. Fig. 5 presents convergence results while applying
the presented correction model. Table 4 and Fig. 6 also present the
correction results when applying [21]. As one can see, the approx-
imation errors are much larger than the presented correction model.

4.3. Parameter attack scenario III

On the IEEE 14-bus system, an unbalanced parameter cyber-attack
to the series and shunt parameter of the line 1–5 (30% on parameter g,
20% on parameter b, 10% on parameter bsh) is simulated. The attack
processing starts with detection, the result is shown in Table 8. In
Table 8, only values of CMEN above 10 are listed. In this case, the ob-
jective function J(x) is 95,762.581, which is extremely large because of
this unbalanced parameter FDI attack. Once there is an attack detected,
a descending list of CMEN is built. By analyzing this list, one can see the
largest value of CMEN is related to the measurement of reactive power
flow from line 1–5, and the CMENs of real power flow as well as the
injections on those buses are all above threshold value β=3. This si-
tuation is characterized as parameter attack on line 1–5 [21]. Then, the

Table 10
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1
J (x) = 4,627.263 > C = 978.3282 Attack Detected!
CMEN Descending List

Measurement II CMEN

−Q23 32 1.4121 −25.5929
−Q69 47 2.4033 25.2469
−Q27 25 1.5627 −18.4139
−Q32 23 1.3423 14.5728
−Q47 69 1.6006 −13.0238

Q23 0.4618 9.6543
−Q25 23 3.3068 −8.4263
−P47 69 5.8944 −7.2040

P32 1.9551 6.6656
−P69 47 5.5424 6.4778
−Q69 70 1.7417 −5.3168
−Q72 24 1.7678 −5.2636
−P23 32 4.8832 −5.2139
−P32 23 4.9319 5.1730

Table 11
Corrected parameters using the parameter correction Jacobian matrix τ.

Parameter correction
Parameter Database Erroneous Presented correction State-of-the-art correction

(Approximation error) (Approximation error) [21]

−g23 32 2.2169 1.8179 2.2385 (0.974%) 0.4369 (80.292%)

−b23 32 −8.0635 −9.0311 −8.0854 (0.271%) −2.1706 (73.081%)

−b sh23 32 0.0587 0.0551 0.0589(0.340%) 0.0133 (77.342%)

Table 12
Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1
J (x) = 1,272.218 > C = 978.3282 Attack Detected!

CMEN Descending List
Measurement II CMEN

−Q69 47 2.4023 25.4139
−Q47 69 2.5183 −11.9623
−P47 69 5.8891 −6.5504
−Q49 69 2.2762 6.0225
−P69 47 5.5366 5.6603
−Q69 49 3.2668 5.1741
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correction is performed using τ in (21). Correction results are presented
in Table 9, all parameter g, b, and bsh are effectively corrected. Fig. 7
presents convergence results of the unbalanced correction model. As
one can see from Table 9 and Fig. 8, when using the state of the art
solution [21], this method is unable to converge.

4.4. Parameter attack scenario IV

On the IEEE 118-bus system, we analyze two simultaneous cyber-
attacks:

1. Unbalanced parameter FDI attack to the series and shunt parameter
of the line 23–32 (− 18% on parameter g, 12% on parameter b,− 6%
on parameter bsh).

2. Unbalanced parameter FDI attack to the series and shunt parameter
of the line 47–69 (13% on parameter g,− 7% on parameter b, 8% on
parameter bsh).

In this case, the parameter of two lines are simultaneously attacked
( −line23 32 and −line47 69). Different percentage FDI attacks are injected in
each parameter of each line. The first processing of the framework is
detection. Results are presented in Table 10. In Table 10, one can see
that the objective function J(x) is 4,627.263, which is much higher than
threshold value C (978.3282), thus an attack is detected. A descending
list of CMEN is built, the largest absolute value of CMEN which is

25.5929 in this list is related to reactive power flow from line 23–32. As
one can see, the CMEN value of corresponding real power flow and
injection related to line 23–32 are also above the threshold value. This
situation is characterized as a parameter attack on line 23–32 [21]. The
correction process is implemented until convergence. The results for
correction are shown in Table 11. After the correction for net parameter
of line 23–32, a new state estimation process is performed, and a new
descending lists of CMEN is built in Table 12 since the objective function
value 1,272.218 is still higher than threshold value C(978.3282). One
will notice the largest value of CMEN is related to reactive power flow in
line 69-47 and the corresponding CMENs of real power flow (positive
and negative direction) are also above threshold value. Then a para-
meter attack of line 69-47 is identified [21]. Correction is performed
and the results of this correction are shown in Table 13.

Further information of correction using the presented model is il-
lustrated in Fig. 9. One can see the corrected values of each parameter
are very close to the original values after convergence.

On the other hand, additional correction results in every iteration
for line 23–32 using the state of art solution [21] are shown in Fig. 10
and Table 11. The system is able to converge. However, each parameter
converges to an incorrect value. To illustrate the performance of the
presented model, comparable results of line 47–69 correction are pre-
sented in Figs. 11 and 12. It is interesting to point out that even though
the correction method in [21] does correction for the errors on line
47–69, it does a poor job on line 23–32. This shows that simultaneous

Table 13
Corrected parameters using the parameter correction Jacobian matrix τ.

Parameter correction
Parameter Database Erroneous Presented correction State-of-the-art correction

(Approximation error) (Approximation error) [21]

−g47 69 1.0012 1.1314 1.0088 (0.759%) 0.9698 (3.136%)

−b47 69 −3.2955 −3.0648 −3.2826 (0.361%) −2.6270 (20.285%)

−bsh47 69 0.0355 0.0383 0.0357(0.563%) 0.0328 (7.606%)

Fig. 9. Correction for line 23–32 using presented model.
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attacks can have an impact on the system even if one of the attacks is
identified and corrected decently well under the current method. The
proposed method is able to accurately correct both of line parameters,
nullifying the cyber-attacks impact on state estimation dependent ap-
plications.

5. Conclusion

This paper presents a correction model for malicious unbalanced
parameter FDI cyber-attacks. A smart grids cyber-physical security
framework for FDI attacks processing is further presented. State-of-the-
art solutions only model parameters under the same percentage of FDI.

Fig. 10. Correction for line 23–32 using state-of-the-art solution in [21].

Fig. 11. Correction for line 47–69 using presented model.
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Case studies considering the IEEE 14-bus and IEEE 118-bus highlights
presented model parameter correction precision with approximation
errors smaller than 1%, while state-of-the-art model [21] fails to con-
verge or converges to incorrect values. The advantage of presented
model in regards to the state-of-the-art is that it allows correction of
either balanced or unbalanced parameter FDI attacks. Still, the SE
software does not require major changes for the implementation of the
correction model. With the presented correction model, parameter at-
tacks that could be considered stealthy using the state-of-the-art are no
longer stealthy, preventing the potential for damage to the system and
outages.
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