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ABSTRACT

The AP Computer Science A course and exam continually exhibit
inequity among over- and under-represented populations. This
paper explored three years of AP CS A data in the Chicago Public
School district (CPS) from 2016-2019 (N = 561). We analyzed the
impact of teacher and student-level variables to determine the
extent AP CS A course taking and exam passing differences existed
between over- and under-represented populations. Our analyses
suggest four prominent findings: (1) CPS, in collaboration with
their Research-Practice Partnership (Chicago Alliance for Equity in
Computer Science; CAFECS), is broadening participation for
students taking the AP CS A course; (2) Over- and under-
represented students took the AP CS A exam at statistically
comparable rates, suggesting differential encouragement to take or
not take the AP CS A exam was not prevalent among these
demographics; (3) After adjusting for teacher and student-level
prior experience, there were no significant differences among over-
and under-represented racial categorizations in their likelihoods to
pass the AP CS A exam, albeit Female students were 3.3 times less
likely to pass the exam than Males overall; (4) Taking the Exploring
Computer Science course before AP CS A predicted students being
3.5 times more likely to pass the AP CS A exam than students that
did not take ECS before AP CS A. Implications are discussed
around secondary computer science course sequencing and lines of
inquiry to encourage even greater broadening of participation in the
AP CS A course and passing of the AP CS A exam.
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1 Introduction

As the population of the United States continues to diversify, our
school systems have been charged with how we can also diversify
the pathways and pipelines leading toward STEM and Computer
Science (CS) careers. While early equity analyses have focused
primarily on gender representation in CS and programming [9, 17,
27], more recent calls for equity in CS challenge the field to
recognize the importance of the intersections between gender and
race representations [23, 30]. Additionally, there has been a strong
push to leverage the cultural affordances of diverse students’
positional identities that could plausibly lead to ways of developing
transformative and innovative initiatives to broaden participation
and success in CS by drawing from social justice paradigms to
think about the future of the field at K-12 grade levels [7, 37, 41].
Given the current state of the field, the focus on CS scope and
sequence (as well as curriculum and pedagogy) has remained
primarily at pre-Advanced Placement CS course levels. However,
AP CS A course participation and exam success rates remain a
prominent area of inquiry for equity initiatives and research studies.
The focus on AP CS A, in turn, seeks to ameliorate who does and
does not have the opportunity to experience high-quality and
rigorous programming-specific learning in K-12. Given this area of
interest, we sought to explore the following Research Questions
related to AP CS A course taking and exam passing rates from three
years of data in a large, urban midwestern city in the United States:

1. To what extent has Chicago Public Schools (CPS) been
successful at broadening participation in the AP CS A course
for under-represented populations in computer science?

a. What differences in prior school experiences are
significant between over- and under-represented groups
taking the AP CS A course?

2. What variables predict differences in AP CS A exam passing
(i.e., college credit receiving; >3 score on the exam) rates
among over- and under-represented populations in CPS?

a.  What prior school experiences are significant predictors
of AP CS A exam passing among these groups?
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2 Background

There is a paucity of prior research exploring AP CS A course
taking and exam passing, and with the onset of the new AP
Computer Science Principles course leading the field as the
lynchpin for equity in CS [8, 10, 40], such studies are still needed
given the differences in the demographic makeup of students taking
each course and the differences in these courses’ curricular content
[11, 21, 22]. Many studies examining such course taking and exam
passing related to AP CS A are intervention-based studies that
examine impact of designs to improve cognitive and/or affective
outcomes leading to latent improvement in AP CS A exam passing,
though sample sizes are small. However, these studies do not give
an accurate picture of what equity in AP CS A looks like on larger
scales in relation to work done that may involve Research-Practice
Partnerships (RPP) to increase CS participation and success. This
creates insufficient understandings of how and to what extent AP
CS A, and other programming courses, become scaled at whole
district levels to broaden participation among under-represented
students in CS. Because there are few district-level analyses, the
current field requires more studies on this scale that are useful when
thinking about ameliorating inequity in the state of CS at a systems
level, as well as who is being served best by those scaling efforts.

In terms of AP CS A course supplements and their impact on
exam passing, one program in Georgia has showcased state- and
district-focused attempts to broaden participation of under-
represented populations in CS and increase rates of achieving
credit-bearing status that is transferrable to post-secondary contexts
from the AP CS A exam (>3 score), with promising results that
such scaling of AP CS A is both possible and productive [12, 13].
This systemic support intervention model is laudable, especially as
there still remains persistent inequity among under-represented
populations across the United Stated that function at district,
school, and teacher levels [11, 19, 26, 43]. However, to complicate
this AP CS A/P landscape and its importance to college success in
introductory computer science courses, a 2020 HLM analysis
sampled over 2,700 college students to study the most impactful
high school computer science content and pedagogy variables that
predict higher grades in introductory computer science courses at
the post-secondary level [2]. The data support the following:

When controlling for demographic and other factors, students
who reported experiencing higher frequencies of coding
practice in their most advanced HS CS course tended to receive
higher grades in introductory college CS ... However, the
positive effect of coding appears to apply only to those students
who did not receive parental support in computing
[moreover] none of our pedagogical predictor variables had
significant (p <.01) interactions with gender, ethnicity, or race
... [and] having taken AP Computer Science A in HS [high
school] — as opposed to a non-AP CS course — did not
significantly predict grades in college CS.

This analysis presents an intriguing piece to the puzzle related to
the impact of (1) broadening participation through more novel AP
CS coursework, such as AP CS P, that doesn’t provide extensive
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coding exposure; (2) increasing CS success for under-represented
students via outside-of-school initiatives; and (3) to what extent we
may want to reconsider the interaction between AP CS A courses
and what role they play in larger conversations about the purpose
of CS at the K-12 level currently being researched [7, 37, 41].
Even given this backdrop of questioning the importance of AP
CS A in terms of its relative impact toward students’ pursuit and
success in introductory computer science courses at the post-
secondary level, inquiry into who participates in AP courses and
the extent to which those populations are successful at achieving
college credit at the high school level still remains a pertinent area
of research across all disciplines [24, 26]. Indeed, the impact of AP
coursework on undergraduate degree attainment is still a prevalent
predictor to improve equitable participation and success across any
disciplinary coursework beyond high school [1, 14, 38]. What is
also of great importance when considering AP CS A course success
is if, and how, prior experience with an introductory computer
science course, such as Exploring Computer Science (ECS) [20,
36], may play a role in supporting an initial content groundwork
presentation of CS from which AP CS A coursework could build
upon to increase success in AP CS A exam passing. This
background led to the current study researched and presented here.

3 Methods

This study used Generalized Linear Modeling (GLiM) techniques
to predict any significant effects in relation to differences between
over- and under-represented populations in AP CS A course taking
(Research Question 1 and 1a), and then used this same statistical
method to study the passing rates of the AP CS A exam (Research
Question 2 and 2a). Generalized Linear Modeling (GLiM) is an
alternative to General Linear Modeling (i.e., linear regression,
ANOVA, etc...) that allows for non-normal dependent variable
predictions (e.g., binomial, Gaussian, and Poisson count
distributions), while also not requiring the stringent assumptions
for traditional General Linear Modeling techniques [32]. Namely,
GLiM permits additivity of effects, heteroscedasticity of data, and
normality violations of residual errors. However, even given these
liberal advantages of GLiM techniques, insufficient sampling sizes
of covariate and categorical independent variables can still yield
over-dispersed and inaccurate predictions in such models. To
explore these smaller sampled relationships, we leveraged Fisher’s
Exact Tests of Independence [16], as this statistic allows for
significance calculations of multi-leveled count variables to
observe any difference in proportion that may be important to
consider when making claims about any regression predictions.

In total, our population was 561 CPS high school students, and
subsequent sampling of that population was used for our regression
analyses presented in this paper. The analyses for both Research
Questions drew from three years of data collected from CPS, a large
urban district in the midwestern United States. The population data
was collected as part of the Chicago Alliance for Equity in
Computer Science RPP (CAFECS), which includes CPS. The
samples for these analyses came directly from a data-sharing
agreement containing student-level data for all CS students in that
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school district. This level of student-aligned scores and other
mediating factors provided the most accurate data set possible to
test any hypotheses of differences that may exist among over- and
under-represented demographics in AP CS A course taking and
exam passing results, as well as account for any prior student and
teacher experiences plausibly impactful for such analyses.

The variables used in these analyses included: (1) Students’ AP
CS A exam score clustered by credit-bearing status as a binary
variable (pass, > 3 score; not pass, <3); (2) Students’ self-reported
racial categorizations as a binary variable (i.e., Black + Hispanic
students clustered together to codify under-represented student in
CS; Asian + white students clustered to codify over-represented);
(3) Gender as a binary variable (male/female); (4) Whether students
took the introductory ECS course before AP CS A as a binary
variable (yes/no); (5) Students’ AP CS A course grade as a scale
covariate variable; (6) The number of years a teacher taught AP CS
A prior to the year a student took AP CS A with them as a scale
covariate variable; and (7) Students’ average course grade in their
Intermediate Math courses as a scale covariate variable.

Students’ Intermediate Math Course Grade was calculated by
taking the average grade students received from one or both of the
following Math courses that students took before taking AP CS A:
Algebra 1 and Geometry. This inclusion of average Intermediate
Math Course Grade was important, theoretically and pragmatically,
given that decades-long evidence from research supports a strong
connection between Math course grade/Mathematics aptitude and
students’ inevitable success in introductory post-secondary CS
courses [2, 4, 25, 42, 44]. This inclusion of Intermediate Math
Course grade, thus, also changes the sample sizes for the different
regression models in that not all students that took AP CS A had
previously taken this level of Math. When calculating the
difference in samples of students who did and did not take
intermediate math courses, there were no differences in gender
proportions (p>>.05); however, in racial proportions across both

samples there were significant differences in representation (p<.05).

Examined closer, differences emerged in relation to the excluded
students not in the sample. These students who we did not have
Intermediate Math course grades for had a higher proportion of
Asian and white students, compared to our sample with almost
equivalent sizes between over- and under-represented students
across racial categorizations. This became a limitation to our study.

4 Outcomes

4.1 Research Question 1: Who is Taking AP CS A,
and is there a Broadening of Participation in
AP CS A within Chicago from 2016-2019?

The first outcome that was prominent from this analysis was that
the district, in collaboration with CAFECS, is successfully
broadening participation among demographic groups taking the AP
CS A course, specifically Black and Hispanic female students. This
section elaborates on the categorical analyses of independence and
descriptive statistics found among these three years of data. As
shown in Figure 1, the rate at which genders are taking the AP CS
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A course over our three-year data set was relatively stable the first
two years and grew significantly the third year. However, a Fisher’s
Exact Test of Independence showcases that the relative proportion
of' male to female students taking the course across these three years
does not significantly change as a function of increasing the number
of students across gender taking the AP CS A course (p = .246).
Thus, in general, there remains an inequitable trend of more male
students (~3-4 times more frequently) taking the AP CS A course
than female students among schools in this district. This patterning
over time was different, however, among racial categories of over-
and under-represented students taking the AP CS A course.
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Figure 1. AP CS A course taking by gender over 3 years
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Figure 2. AP CS A course taking by race over 3 years

As shown in Figure 2, the rate at which different racial
categorizations of students who represent over- and under-
represented populations in Computer Science more broadly had
changed over the three years for our data set. Between over- and
under-represented students in our sample, the data suggests that
there was a linear increase of Asian + white students over the three
years, while the first two years for Black + Hispanic students
showcase a general plateau of participation for taking the AP CS A
course. This stagnancy of Black + Hispanic students taking the AP
CS A course, however, rose significantly for the third year in our
sample, which was also exemplified in the significant differences
between the proportion of over- and under-represented students
taking the AP CS A course found in a Fisher’s Exact Test of
Independence (p = .009). This statistic illuminates that Black +
Hispanic students began gaining greater participation in the AP CS
A course with the opportunity to take the AP CS A exam, and that



SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

the differential proportions between over- and under-represented
students who took AP CS A changed over time. The interaction
between racial categorizations and gender across these three years
in our sample also showcased that there was one specific population
that might be gaining the greatest participation to AP CS A.

Percent AP CS A Course Taking by Race and Gender

100%

90%

Year 1:2016-2017 Year 2: 2017-2018  Year 3: 2018-2019  Total: 2016-2019
m Asian + white Males m Asian + white Females

m Black + Hispanic Males m Black + Hispanic Females
Figure 3. AP CS A course taking by race and gender

In Figure 3, the rates of different racial categorizations and
genders that took the AP CS A course were relatively stable across
our data. We conducted Fisher’s Exact Tests to confirm these
hypotheses, which suggest no significant differences in terms of the
proportions among racial categorizations and their interaction with
gender over the three years, or as a Total: Year 1 (p =.22); Year 2
(p = .38); Year 3 (p = .26); Total (p = .26). However, when taken
as a whole (Column 4, Total: 2016-2019), there seems to be a
higher female-male ratio between under-represented students than
their over-represented counterparts (Over-represented = 13.3/48.6
= 0.27 Female; Under-represented = 9.63/28.44 = 0.34 Female).
This suggests that while the general trends among race and gender
interactions do not seem to change significantly over time in terms
of who is taking the AP CS A course, the combined data set
showcases that Black + Hispanic female students are more
represented in AP CS A course taking in relation to their male racial
counterparts, specifically compared to Asian + white female-male
ratios. However, the number of female students overall taking AP
CS A remain low (~23%). We further explore the significance of
this difference in a subsequent binomial logistic regression model.

4.2 Research Question 1a: Analyzing Significant
Differences of Prior Academic Experience and
AP CS A Course Taking among Under- and
Over-Represented Students in Chicago

Building off of the previous section that analyzed the categorical
and descriptive statistics alluding to CPS having success in
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broadening participation among under-represented demographic
groups taking the AP CS A course, this section leverages predictive
statistics to give a robust analytic approach and support to this
claim. This section also presents the second prominent result that
AP CS exam taking rates among over- and under-represented
populations were not different after covariate adjustment. To
determine the extent to which under- and over-represented students
had differences between our clustered racial categorizations in
relation to broadening participation and equivalent AP CS A exam
taking rates, we first used GLiM via Binomial Logistic Regression
modeling parameters with the dependent binary values being Asian
+ white students within one category (used as referent; over-
represented students) and Black + Hispanic students as the target
comparison group (under-represented students in AP CS A).

Our final sample size out of the possible 561 students in our
population was 466, which was less than the total population, to
reiterate, because not all students took an Intermediate Math Course
before they took AP CS A. Below in Table 1 are the GLiM binomial
regression results comparing under- to over-represented students.
The dependent variable in this model was racial category with the
referent group being Asian + white students (over-represented) and
the comparison estimates (shown in Table 1) represents if and to
what extent under-represented students (Black + Hispanic) differ
significantly from their over-represented counterparts, if at all.

Table 1
Parameter estimates: Under-represented students
B Std. Error Exp(B)

(Intercept) 2.68%*** 0.67 14.61
Student Absences 0.02 0.01 1.02
Math Interm. Avg. Grade -0.85*** 0.16 043
Years Teaching APCS A -0.13* 0.05 0.88
[Student Gender] 0.45 0.24 1.56
[Took ECS Before AP] 0.45* 023 1.59
[Took AP CS A Exam] 0.09 0.36 1.10

*p<.05; ***p<.001

We controlled for student absences (p = .066), students’
intermediate Math course grade (f =-.085; p <.000; Exp [f; Black
+ Hispanic] = .4)., and educator’s number of years teaching AP CS
A (B=-.13; p=.01; Exp [B] =.9). This alluded to Black + Hispanic
students being awarded 2.3 times lower grades in their intermediate
Math courses than their Asian + white counterparts. Moreover, the
covariate results also alluded to Black + Hispanic students being
1.1 times less likely to have a teacher with one or more years of
experience previously teaching AP CS A, which will be shown to
be important later in terms of what impacts AP CS A exam passing.

For our categorical independent variables, we explored
differences related to gender (p = .06), whether students took the
introductory ECS course before taking AP CS A (B = .45; p =.045;
Exp [B; Black + Hispanic] = 1.6), and whether student groups took
the AP CS A exam at comparable rates (p = .8). These categorical
independent variable comparisons, after covariate adjustment,
suggest that Black + Hispanic students are 1.6 times more likely to
take ECS before they take the AP CS A course than their Asian +
white counterparts (p = .045); though, no differences exist between
racial categories among AP CS A Exam taking rates (p = .79).
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These course taking results suggest, when combined with our
longitudinal observations of the frequency of Black + Hispanic
males and females taking AP CS A provided above, that there are
growing rates of broadened participation in AP CS A for under-
represented students. There also is a significantly higher likelihood
for Black + Hispanic students to take the ECS course before they
take AP CS A, which became a factor important in our modeling of
passing rates below. However, Black + Hispanic students are less
likely to have an educator with prior experience teaching AP CS A,
which is also important in our AP CS A exam passing analyses.
Given that we could not disaggregate the interaction between
these two racial categorizations and the genders present therein
within this GLiM modeling due to insufficient sample sizes in these
interactions, we used Fisher’s Exact Tests of Independence to
determine any further differences related to our categorical
variables. For ECS taking rates, when disaggregated among racial
categorizations and genders, there were no differences in who did
not take ECS (p = .439) or who did take ECS (.411). There were
also no differences among these race and gender interactions in
terms of who didn’t take the AP CS A exam (p = 1.00) and who did
take the AP CS A exam (p =.232). These results are combined with
a binomial logistic regression model to further explore the passing
rates of under- and over-represented students in the next section.

4.3 Research Question 2 and 2a: Predictive
Differences in AP CS A Exam Passing Rates
among Over- and Under-Represented Students

The final two pertinent findings presented here are specific to AP
CS A passing rates among over- and under-represented
populations, as well as the impact of taking ECS on AP CS A exam
passing. To determine the extent to which there were differences
among over- and under-represented populations passing the AP CS
A exam, we again used GLiM via Binomial Logistic Regression
modeling parameters with the dependent variable for this model
being students who passed the AP CS A Exam (received a 3 or
higher; used as target) compared to students that did not pass the
AP CS A Exam (received a 1 or 2; used as referent category). 506
out of the possible 561 students took the AP CSA exam; of those
506, 412 were included in this model due to sampling for students
that took one or more Intermediate Math courses before AP CS A.
Below in Table 2 are these GLiM binomial regression results.

Table 2
Parameter estimates: AP CS A Exam Passing

B Std. Error Exp(B)

Intercept =379k 0.76 0.02
Math Interm. Avg. Grade 1.32Whe 0.22 3.74
Years Teaching AP CS A 0.31%** 0.06 1.36
[Student Race] -0.75 0.51 0.47
[Student Gender] = Male 1.19* 0.58 3.30
[Took ECS Before AP] 1.26* 0.50 353
[Course Grade] -0.05 0.51 0.95
[Student Race] * [Course Grade] 0.94 0.53 2.55
[Student Gender] * [Course Grade) 0.26 0.59 1.30
[Student Race] * [Took ECS Before AP] 0.93 0.54 253
[Student Gender] * [Took ECS Before AP] 0.28 0.60 1.33
[Took ECS Before AP] * [Course Grade] 1.05 0.53 2.85

*p<.05; ***p<.001
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We controlled for students’ Intermediate Math Course grade (p
=1.32; p<.000; Exp [B] =3.7) and the number of years’ experience
the teacher had teaching the AP CS A course (f = .31; p <.000;
Exp [B] = 1.3). These covariates alluded to the importance of
students’ prior Math performance as being a predictor of success in
passing AP CS A (i.e., increasing your Intermediate Math Grade by
1 letter grade predicted a 3.7 times greater likelihood to pass the AP
CS A exam). These data also suggest that students that had a teacher
that previously taught AP CS A increases their chances of passing
the AP CS A exam by 1.3 times for each year this instructor taught
the AP CS A course. These student and teacher-level covariates,
therein, adjust all subsequent variable predictions in the model.

For one of our categorical independent predictive variables, we
explored differences related to racial categorizations we previously
used in the above GLiM model (Black + Hispanic; Asian + white),
which, after covariate adjustment, showcased no differences in
passing rates for the AP CS A exam (p = .142). Other categorical
variables included gender (B = 1.2; p =.041; Exp [B; Male] = 3.3),
whether students took the introductory ECS course before taking
the AP CS A exam (B =1.2; p=.013; Exp [B; If Took ECS] =3.5),
and whether students received an A or below an A in the AP CS A
course (p = .9). This latter categorical variable was included given
that 58.8% of students who took the AP CS A course in our sample
(N = 561) received an A. Of those students who received an A or
below an A there were significant differences between our racial
categorizations (Asian + white students received an A grade 2.2
times more often than Black + Hispanic students; Fisher’s Exact
Test of Independence: p < .000). These main effects alluded to no
differences in passing rates among racial categorizations that are
characterized by over- and under-represented populations in CS;
however, there still remained a gendered differential effect of
passing whereby Female students were 3.3 time less likely to pass
the AP CS A exam after adjusting for prior Math performance and
teacher experience. Of positive note, students that took ECS before
AP CS A were 3.5 times more likely to pass the AP CS A exam
than those who did not, after covariate adjustment, alluding to the
importance of the introductory computer science course ECS in
preparing students for the AP CS A scope and sequence.

Further interaction effects between some categorical
independent variables were included in the regression model due
their sufficient sampling sizes. Those interactions included: Racial
categorizations by AP CS A course grade (p =.080); gender by AP
CS A course grade (p = .663); racial categorizations by whether
they took ECS before AP CS A (p = .085); gender by whether they
took ECS before AP CS A (p =.636); and AP CS A course grade
by whether they took ECS before AP CS A (p = .052; Exp [B] =
2.8). Given all of these interaction effects being insignificant, the
model alluded to the importance of ECS and its impact on students
passing the AP CS A exam to be homogenously applicable across
racial categorizations and genders. This modeling led to an
investigation of multi-layered Fisher’s Tests of Independence to
test if there were significant differences among racial
categorizations and genders within this and other interactions that
could explore relationships of passing the AP CS A exam not
sufficiently sampled for predictive quality within our GLiM model.
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Of first exploration, Fisher’s Tests of Independence for racial
categorizations by gender to determine differences in AP CS A
exam passing and not passing rates were conducted. There were no
significant differences in terms of the proportion of students by
racial categories and gender who passed (p = 1.00) or did not pass
(p=.280) the AP CS A exam, albeit there were more Asian + white
students that passed the exam (as an overall sum) when compared
to Black + Hispanic students. However, this may be explained
partially by the sample being 63.2% Asian + white students. This
data corroborates the above results of no differences among passing
rates related to racial categorizations and their gender interactions.

Our next interaction exploration sought to test if any differences
existed among racial categorizations by gender and also if ECS was
taken before the AP CS A course to examine if any differential
proportions existed in passing rates of students. All interaction
effects for these Fisher’s Exact Tests of Independence were
insignificant (p > .05). A similar set of tests for interaction effects
among racial categorizations by gender were conducted in relation
to the proportion of students who received an AP CS A course
grade of A or below A, and if those proportions were significantly
different in relation to the probability to pass the AP CS A exam.
All of these interaction effects were also insignificant (p >> .05).
Given these additional Tests of Independence for the categorical
interaction impacts unable to be input into the regression model due
to insufficient sample sizes, we can further conclude that our
original model is our best predictive analysis for this data. In turn,
the data supports that there are areas of equitable participation and
success among under-represented populations in AP CS A for CPS,
as well as areas for which there should be greater prioritization to
further ameliorate inequity among these populations and work
toward broadening participation and exam success in AP CS A.

5 Discussion

At first glance, some of the findings we have presented here are
undoubtedly expected, and others intriguing for future inquiries.
For our first Research Question, in terms of AP CS A course
participation, given that the CAFECS team has spent years
developing their relationship with CPS to improve and broaden
participation among under-represented populations in CS by
expanding ECS throughout the district, and the CPS School Board
enacting a high-school CS graduation requirement, it was hopefully
expected that such an expansion might lead to greater AP CS course
taking among under-represented populations. Given this expansion
of ECS supported by both the work of the RPP and the district that
began in 2012, as well as accelerated in 2016 due to the imposed
graduation requirement (Year 1 of the data here), it is plausible that
by 2018-2019 (Year 3 of this data) exposing more students to ECS
can be partially attributed to this broadening of participation among
Black + Hispanic young men and women. This patterned growth
was seen in both of our descriptive and predictive models.

Within these models (Tables 1 and 2), though, there still
remains evidence of more broad systemic inequities related to other
courses connected directly to CS success such as Intermediate Math
course grades being significantly less for Black + Hispanic students,
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as well as this under-represented population being taught by CS
instructors with significantly less prior experience implementing
the AP CS A course material. However, Black + Hispanic students
were significantly more likely to take the introductory ECS course
than their Asian + white counterparts, which, when combined with
the AP CS A passing analysis (Table 2), discussed below, sheds
light on plausible ways to ameliorate inequitable participation and
success found in AP CS A research in the past [12, 13, 43].

One surprising predictor for passing the AP CS A exam was
whether a student took the introductory ECS course before they
took the AP CS A course. This is a highly impactful contribution to
the CS field, specifically in the face of advocates against such ‘non-
programming specific CS courses’ [15, 35] and recent predictions
on the importance of coding to influence post-secondary CS course
success [3]. However, given recent research analyzing ECS’s
impact toward increasing the development of programming
expertise among students who took the course [33], a connection
between ECS and AP CS A is not far-fetched. Indeed, the predictive
models for AP CS A exam passing did exhibit the importance of
more systemic changes needed broadly across curriculum such as
Intermediate Math Course success and the persistence of gender
gaps in CS seen for decades [9, 17, 19, 27, 43], but also shed light
on the equivalent passing rates across Black + Hispanic and Asian
+ white racial categorizations. These results, in sum, suggest that
during this school district’s attempts to broaden CS participation
among under-represented populations that students from races not
proportionally represented in CS more broadly were served well by
this scaling and were not ‘left in the shallow end’ [28].

6 Conclusion

With a lineage of research over twenty years showcasing multiple
dimensions that decrease female participation, interest, aspiration,
and success in CS at the K-12 and post-secondary levels [5, 6, 18,
29, 31, 34, 39], the findings presented here on the persistence of
gender disparity are disconcerting, indeed. The data also suggests,
though, that racial disparities are plausibly ameliorated when AP
CS A was scaled in Chicago, and that there are preliminary courses
that can improve success on the AP CS A exam (i.e., ECS). These
findings can advise district leaders to use evidence to make CS
policy decisions to support students that need it the most. Most
notably by leveraging ECS as a foundational CS course to decide
when a school may be ready for the implementation of AP CS A,
as well as to think more acutely about how intermediate CS courses
could be developed to support a scope and sequence of CS courses
starting with ECS and continuing through AP CS courses.

In the end, the results we present here encourage future analyses
that explore student trajectories across K-12 CS courses available
in Chicago and beyond to describe more causal links that support
under-represented students to take the AP CS A course and pass the
AP CS A exam. Finally, such inquiries should also include if and
how AP CS P could live up to its intention in order to spark interest
and build capacity for all students to succeed in CS [8, 10, 40]. This
leaves future inquiries with more questions than answers but allows
for hopeful predictions for the future of K-12 CS and AP CS A.
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