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Abstract

As camera quality improves and their deployment moves to areas with limited bandwidth, communication bottlenecks can
impair real-time constraints of an intelligent transportation systems application, such as video-based real-time pedestrian
detection. Video compression reduces the bandwidth requirement to transmit the video which degrades the video quality.
As the quality level of the video decreases, it results in the corresponding decreases in the accuracy of the vision-based
pedestrian detection model. Furthermore, environmental conditions, such as rain and night-time darkness impact the ability
to leverage compression by making it more difficult to maintain high pedestrian detection accuracy. The objective of this
study is to develop a real-time error-bounded lossy compression (EBLC) strategy to dynamically change the video compres-
sion level depending on different environmental conditions to maintain a high pedestrian detection accuracy. We conduct a
case study to show the efficacy of our dynamic EBLC strategy for real-time vision-based pedestrian detection under adverse
environmental conditions. Our strategy dynamically selects the lossy compression error tolerances that maintain a high
detection accuracy across a representative set of environmental conditions. Analyses reveal that for adverse environmental
conditions, our dynamic EBLC strategy increases pedestrian detection accuracy up to 14% and reduces the communication
bandwidth up to 14 X compared to the state-of-the-practice. Moreover, we show our dynamic EBLC strategy is independent
of pedestrian detection models and environmental conditions allowing other detection models and environmental conditions
to be easily incorporated.

Keywords Error-bounded lossy compression (EBLC) - Efficient bandwidth usage - Real-time processing - Vision-based
object detection - Pedestrian detection

1 Introduction
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The number of pedestrian fatalities has risen each year with
over 6000 reported deaths in 2018 alone, an increase of over
30% compared to 2009 [1]. The presence of a pre-crash
warning system, which tracks both vehicles and pedestrian
movements, could have prevented most of these pedestrian-
related crashes. Addressing the number of traffic fatalities
is a matter of national importance [2]. As transportation
begins to shift toward autonomous and self-driving vehicles,
roadways and intersections are being outfitted with safety
devices, such as cameras and sensors to improve pedestrian
Department of Civil, Construction and Environmental safety [3, 4]. Even modern vehicles include an in-vehicle
E’;%i“eering’ The University of Alabama, Tuscaloosa, AL, vision-based pedestrian warning system to assist drivers in

avoiding pedestrian-related crashes [5, 6]. However, in-vehi-
cle pedestrian warning systems do not provide any pre-crash
warning to pedestrians.
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Vehicle-to-pedestrian (V2P) communication can provide
a 360° view, where a human driver in a connected vehicle
as well as a pedestrian at an intersection can receive a safety
warning notification if there is a potential pedestrian-vehicle
collision risk. However, a pedestrian must carry a hand-held
device, which must have a low latency wireless communica-
tion technology, and a pedestrian must turn on the pedestrian
safety application in his/her phone. The C-V2X (cellular
vehicle-to-everything) direct or sideline communication is
an example of a low latency communication technology. It is
unlikely that such communication technology will be avail-
able to all pedestrians’ hand-held devices and the pedes-
trian safety application will be activated in their devices
while they are crossing an intersection. Thus, cameras on
poles covering the intersection area can be used to monitor
pedestrians at an intersection and transmit the video to a
roadside transportation infrastructure with wireless commu-
nication capabilities. A vision-based safety alert system uses
an object detection algorithm to detect pedestrians, gener-
ates safety warnings and broadcasts these warnings to sur-
rounding connected vehicles (i.e., a vision-based pedestrian

safety alert system) as presented in [6]. For a non-connected
vehicle, generated safety warnings from the system can be
carried out through dynamic message signs for drivers, or
audible warnings or warning signs for pedestrians at an
intersection to warn approaching drivers and pedestrians,
correspondingly, of an impending collision risk. With this
strategy, there is no requirement for pedestrians to carry a
low latency communication technology enabled handheld
device.

Figure 1 presents such a pedestrian safety alert system,
where the cameras are on a light pole at an intersection
equipped with vision-based safety alert systems in Clem-
son, South Carolina, USA [6]. As vision-based pedestrian
detection relies on image processing of frames taken from
roadside cameras (as shown in Fig. 1) at signalized inter-
sections, the video data must be sent to a roadside video
image processing unit (i.e., a part of a roadside transporta-
tion infrastructure, as shown in Fig. 1) or to the cloud for
video processing. As the size of the video increases, so too
does the latency to transfer video from a video camera to a
roadside video image processing unit. Increasing the latency
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decreases the likelihood that pedestrians are detected reli-
ably, where the reliability will depend on satisfying the real-
time latency requirement as needed by the corresponding
application, and without detection of pedestrians within the
low latency threshold for any safety critical applications,
improvements to safety on roadways will be infeasible.
Moreover, as high-resolution cameras and an increase in
the number of connected devices compete for the available
communication bandwidth, the bandwidth available may
prohibit any safety—critical applications, such as the vision-
based safety alert system. Thus, an efficient communica-
tion of video data, from video cameras to processing units,
for pedestrian detection is required to ensure the safety of
pedestrians on roadways in the vision-based safety alert
system presented here. The lossy data compression strategy
presented in this paper can significantly decrease the data
transmission latency in a communication network between
a camera and a video image processing unit of a roadside
transportation infrastructure, as well as reduce video data
storage requirements.

Data compression trades computational time for a reduc-
tion in data size. Video compression algorithms employ
lossy data compression, which trades inaccuracies in the
video’s frames for larger reductions in video size [7]. How-
ever, as the level of loss increases, the quality of the video
decreases. For image and video compression algorithms,
this typically results in “blocking,” where pixel blocks are
approximated by a single value [8]. Quantifying the level
of acceptable loss defines the video compression limit for a
given algorithm. Common metrics to evaluate the level of
loss in video data include peak signal-to-noise ratio (PSNR),
root-mean-squared error (RMSE), and structural similarity
index (SSIM) [9]. Lossy compression algorithms that ensure
a fixed level of loss in the compressed data are referred to as
error-bounded lossy compression (EBLC) algorithms.

Through the judicious use of EBLC, video streaming
companies, such as Netflix and YouTube, optimize the
video quality given the amount of available bandwidth
[10]. Our prior work shows the utility of using EBLC
for real-time pedestrian safety applications to reduce
the bandwidth requirements to transmit video data by up
to 30x without deterioration in the pedestrian detection
accuracy [5]. Although showing the potential of EBLC
for pedestrian detection, our prior work has several lim-
itations. First, in the prior work, we use a single static
error tolerance for the deployment. Thus, the static error
tolerance of the system does not adapt to different situa-
tions, hurting utility and safety. Next, in our prior work,
compressed data is fed into a detection model trained for
uncompressed data. This degrades the detection accu-
racy and decreases pedestrian safety. Finally, our prior
work evaluates the EBLC system with a limited number

of environmental conditions. However, as we show in
Sect. 5 of this paper, environmental conditions (e.g., rain,
darkness) impact the ability to leverage EBLC by mak-
ing it more difficult to maintain high pedestrian detection
accuracy. Thus, adapting the error tolerance based upon
environmental conditions ensures pedestrian detection
accuracy does not deteriorate in adverse environmental
conditions.

The objective of this paper is to reduce bandwidth
requirements for pedestrian detection in adverse envi-
ronmental conditions by developing a real-time EBLC
strategy to dynamically change the video compression
threshold depending on the current environmental con-
ditions while maintaining a high pedestrian detection
accuracy. Moreover, to further improve pedestrian detec-
tion accuracy, we calibrate the detection model based on
the compression level to improve detection accuracy on
highly compressed data. Using this strategy, we maintain
an appropriate pedestrian accuracy across a representative
selection of environmental conditions.

2 Contribution of the paper

The primary contribution of our paper is the development
of a dynamic EBLC strategy for video feeds from a roadside
camera to edge devices, such a roadside computer, used
for real-time pedestrian detection and potential crash alert.
The dynamic EBLC strategy accounts for environmental
factors and ensures a defined pedestrian detection accuracy
is maintained while effectively reducing the communica-
tion bandwidth requirements for a wireless video streaming
application. We demonstrate that our strategy is independ-
ent of any specific pedestrian detection model such that any
pedestrian detection model can be used within the strategy
presented in this paper. In addition, any other environmental
factor, such as snow and rain, can be incorporated in our
dynamic EBLC strategy by following the steps presented
in the Sect. 4 of the paper for incorporating any new envi-
ronmental condition, such as snow. Moreover, our strategy
is dynamic, which is applicable to image recognition appli-
cations beyond pedestrian detection, where environmental
conditions or the visual quality of video feeds vary over-
time. The dynamic EBLC strategy reduces the communica-
tion bandwidth usage of a video feed, which allows more
videos to be transmitted concurrently through a fixed band-
width. Furthermore, dynamic EBLC significantly reduces
the storage requirements for video archiving for later offline
analysis. Thus, the dynamic EBLC strategy presented in this
paper allows storage of videos of longer duration without
the need of modifying the underlying hardware.
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3 Related work

This section describes existing work related to EBLC,
pedestrian detection, and image classification methods.
Examining the limitations of the existing methods, we
identify an appropriate lossy video compression technique,
pedestrian detection, and image classification method for
our dynamic EBLC strategy.

3.1 Error-bounded lossy compression

Lossless data compression, such as the Lempel-Ziv algo-
rithm (LZ77) [11], allows for the reduction in the data
size with no loss in the data’s accuracy. Lossy compres-
sion (LC) significantly reduces data sizes and offers better
compression ratios than lossless compression, but at the
expense of inaccuracies in the decompressed data [12].
In the context of video compression, LC compresses by
introducing noise into each frame by representing the
frame with fewer bits [7]. Typically, the larger the loss
in data accuracy, the larger the compression ratio [10,
13]. Current state-of-the-art LC algorithms known as
EBLC algorithms offer the ability to control the level of
loss introduced when compressing the data [14]. Modern
video compression algorithms, such as H.264 [15] and
high-efficiency video coding (HEVC) [16], are optimized
for high-resolution videos by encoding more information
into each compressed bit. H.264 and HEVC compress
videos by identifying regions of inter- and intra-frame
similarity and then applying transforms, such as the dis-
crete cosine transform [17] and encoding the coefficients
or using delta encoding to encode the differences between
two frames.

Previous work in the area of lossy compression and
object detection have considered approaches to improve
both the bitrate of communication and the accuracy of
object detectors run on the video frames. In one approach
[18], object saliency maps are used as a preprocessing
step to improve the compression of the video frames. This
video encoding method enables performance benefits in
the communication bitrate and accuracy of the object
detection model. Another approach [19] finds that tem-
poral fluctuations in irrelevant background portions of
the frames caused degradation of object detection perfor-
mance. To remedy this performance deficit, the authors in
[19] propose an encoding method to stabilize the temporal
fluctuations in the frames. As a result of this encoding
scheme, the bitrate and accuracy of detection improve.
The methods proposed in this paper tackle generalizing
lossy compression by focusing on error-bounded lossy
compressors such that we determine the quality level
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of compression and its impact on pedestrian detection.
Moreover, we consider pedestrian detection in dynami-
cally changing environments using compression, which is
not considered in prior research.

Due to the need to understand the impact of inaccura-
cies on the quality-of-service, EBLC has not received
much attention in the intelligent transportation systems
(ITS) domain. In the context of pedestrian detection,
quality-of-service is determined by maintaining fixed
detection accuracy. Any deterioration in the detection
accuracy can lead to unsafe situations for pedestrians.
Our prior work [5] shows that using EBLC and a static
error tolerance reduces bandwidth requirements for
pedestrian detection by over 30X with no deterioration in
detection accuracy. Furthermore, this prior work shows
that a single static lossy compression tolerance does not
work as well on cloudy or rainy weather conditions as it
works in sunny weather conditions. Throughout the day
and year environmental conditions change, degrading
the utility of a static lossy compression approach. By
dynamically adapting the error tolerance and the per-
formence of the detection model, we maintain a high
pedestrian detection accuracy in adverse environmental
situations.

3.2 Machine learning methods for pedestrian
detection and environment classification

The advent of deep learning significantly improved the
accuracy and computational time of object detection and
classification. The state-of-the-art deep learning-based
object detection models operate in real time and provide a
high detection accuracy. Object detection models are clas-
sified into two categories: (i) region-based object detec-
tion and (ii) single-shot object detection. Region-based
object detection models include: Region-Convolutional
Neural Network (R-CNN) [20]; Fast R-CNN [21]; and
Faster R-CNN [22]. The single-shot object detection mod-
els include: Single Shot MultiBox Detector (SSD) [23] and
You Only Look Once—Version 3 (YOLOvV3) [24]. Single
Shot Multibox Object Detectors encapsulate all computa-
tion within a single network. This allows for easy training
and easy integration into systems that need object detection.
SSD is a comparable method to YOLOV3 as they tend to
have similar mean Average Precision (mAP) scores. Their
primary difference is inference speed in which YOLOv3
tends to beat SSD. By generalizing our results across, these
two models we can establish the baseline validity of our
results across all single SSD models. All these deep learn-
ing models run in real time. However, in terms of pedes-
trian detection accuracy, YOLOvV3 shows a better detection
accuracy (81% at 20 fps) [5]. Deep learning excels in the
domain of object and image classification [23]. In the area
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of deep learning, Convolution Neural Networks (CNNs)
excel in image classification tasks [24]. The state-of-the-art
CNN-based classification models include: Visual Geometry
Group (VGG) [25] and InceptionV3 [26]. Visual Geometry
Group (VGG-16) is a 16-layer convolutional neural network
that is known for its high classification accuracy on a small
number of classes and its real-time performance. Inception
V3 is also known for high detection accuracy and is built
with convolution, average pooling, max pooling, concatena-
tion, and fully connected layers.

4 Dynamic error-bounded lossy video
compression strategy

Compressing a video with a low-quality level greatly
improves the compression ratio and reduces the bandwidth
requirement to transfer the video but causes visual artifacts
in the video. However, as the quality level of the video
decreases, its ability to be used for video analytics decreases
as well as features become less pronounced. For pedestrian
detection, this results in lower detection accuracy. Further-
more, environmental conditions (e.g., rain, night-time dark-
ness, fog) alter the compression ratio and makes pedestrian
detection more difficult by obscuring pedestrians. Dynami-
cally adapting the video compression quality level based on
the current environmental condition ensures that we always
detect pedestrians with high accuracy throughout the day
and the year.

Figure 2 presents our framework for our dynamic EBLC
strategy that uses machine learning to detect pedestrians.
This paper develops a dynamic feedback control system that
adapts the compression level to maintain the same detec-
tion accuracy of a system communicating the raw lossless
video data. Figure 1 (see Sect. 1) presents a real-world

deployment of our dynamic EBLC strategy. In our system,
aroadside video monitoring camera collects video data and
transfers it to an attached video compression unit [27]. The
video compression unit compresses the raw video stream
using a set tolerance level. In our experiments, we set the
tolerance based on the PSNR ratio between the raw video
and the resulting compressed video. The exact PSNR value
depends on the environmental conditions (e.g., rain and
night-time darkness). We use H.264 for video compression
but note that other video compression algorithms work
with our dynamic EBLC strategy. After compression, the
compressed video streams are sent wirelessly to the road-
side edge computing infrastructure. This edge computing
infrastructure contains three main components: (i) a set of
pre-trained and calibrated pedestrian detection models for
different environmental conditions; (ii) the active pedestrian
detection model to process video image; and (iii) an envi-
ronmental condition detection model to identify the current
environment for a given video.

This paper focuses on the development of a dynamic
EBLC strategy that is independent of the vision-based
pedestrian detection method. Given an environmental condi-
tion, the edge computing infrastructure selects an appropri-
ate model from the set of pre-trained and calibrated models.
In addition, it determines the corresponding PSNR for the
model that yields the largest reductions in bandwidth while
still maintaining the same detection accuracy. The selected
PSNR value is periodically sent to the roadside video moni-
toring camera for use when compressing the video stream.

Each time the video compression unit located near the
video camera receives a new PSNR value from the roadside
edge computing device, the compression unit dynamically
adapts its compression level. At the same time, the edge
computing device selects the calibrated machine learning
model for the current environmental condition and PSNR
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value. In our design, a pedestrian detection model is trained
with video images with different PSNR values for a specific
environmental condition. For example, we select three levels
of rain: (1) light rain; (2) moderate rain; and (3) heavy rain.
For each level of rain, we initially compress the video to
six different PSNR levels measured in decibels (dB): (10)
56 dB; (20) 49 dB; (30) 43 dB; (40) 37 dB; (50) 31 dB; and
(51) 30 dB. The value in the parentheses shows the Constant
Rate Factor (CRF) corresponding to each PSNR value. A
smaller CRF results in less error during compression. The
CREF is the error control knob we tune for the compressors
inside FFmpeg [28], a software tool used to process audio
and video files.

To determine the optimum CRF and corresponding PSNR
that maintains a high pedestrian detection accuracy, a refer-
ence lookup table is constructed offline. The reference table
contains only the models that have a pedestrian detection
accuracy equal to that of the baseline model. To construct
the reference lookup table and the catalog of corresponding
models, we train and evaluate a model on data compressed
with a CRF of 10 (highly accurate) along with computing the
PSNR. Next, we increase the CRF by 10 (degrading video
quality and improving compression) until the new model’s
detection accuracy drops below the minimum threshold. At
this point, we vary the CRF by 1 to fully explore the range
between the last valid CRF and the first invalid CRF. Again,
we evaluate each model to determine if it meets our quality-
of-service standards; rejecting any models that do not. After
exploring each CRF in the interval, we have a lookup table
that allows us to select a trained model given a requested
CRF or PSNR value.

We calculate the accuracy of the pedestrian detection
model by comparing it with manually annotated ground
truth data. To establish a baseline accuracy, we perform
pedestrian detection on the uncompressed video feed com-
ing from traffic cameras for all scenarios and calculate the
accuracy based on a manually annotated ground truth. For
a compression baseline, we compress the video stream to a
fixed quality level using standard image difference metric,
PSNR, and use a pedestrian detection model with weights
calibrated for the compressed data.

In this compression framework, there are three steps: (i)
lossy video compression; (ii) calibration of the pedestrian
detection model; and (iii) environmental condition detection
using an environment classification model. The following
subsections describe, in detail, our approach for each step
in our dynamic EBLC strategy.

4.1 Error-bounded Lossy compression (EBLC)
Using field-collected data, we compress each video using

different CRF values using the FFmpeg video compression
tool [28]. The video compression level is controlled by the
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CREF value, and the CRF range is from O to 51, where 0
indicates no compression (no loss in data accuracy), and
51 indicates the maximum compression level (high degree
of data inaccuracies). After that, we calculate the PSNR by
comparing the original video’s frames and the compressed
video file. Thus, we use the CRF of FFmpeg to compress
videos yielding different compression ratios (i.e., small for
CRFs near 0 and large for CRFs near 51). However, to make
our results independent from the FFmpeg tool, we determine
the PSNR value corresponding to each CRF value. Figure 3
presents the feedback-based EBLC algorithm, which com-
presses the video feed based on the environmental condi-
tion. The compression tool compresses the video to a com-
pression level, which maintains a high pedestrian detection
accuracy. After resizing the image of the compressed video,
a detection model is selected from a library of calibrated
pedestrian detection models that account for various envi-
ronmental conditions.

4.2 Pedestrian detection model calibration

The YOLOV3 model [24] divides an image into multiple regions
and assigns probabilities to the bounding boxes for each region,
where a feature is detected. This model can capture the global
context of the image as it looks at the whole image simultane-
ously. The YOLOv3 model consists of 53 convolutional layers
followed by 2 fully connected layers and 1 X 1 reduction layer
followed by 3 x 3 convolutional layers [24]. The YOLOv3 model
can have different input image sizes, such as 320x320x 3,
416x416x3 and 608 X 608 X 3. Based on our experiments, we
found that the input image size of 416x416X 3 provides the
highest pedestrian detection accuracy with a low computational
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cost. In this study, we use the input image size of 416 x416x3
and then normalized the image at the preprocessing layer of
the YOLOvV3 model. We also use a SSD model for pedes-
trian detection and compare its performence in terms of accu-
racy with YOLOv3 model. The backbone of our SSD model
ishethe ResNet-50 classification model, whichis a convolutional
neural network with 50 layers. An image size of 416X416%3
was also inputted to the SSD model to achieve comparable
experimental conditions to the YOLOv3 model.

To achieve a much higher pedestrian detection accuracy
for different environmental conditions (e.g., rain and light-
ing), we train the YOLOv3 and SSD ResNet-50 model on
augmented data. We perform data augmentation for different
rain and lighting conditions to produce more realistic images
for night-time darkness and rain. To generate augmented data
for the model calibration, we alter the night-time darkness of
the images by changing the pixel values of the first channel in
the HSL (hue, saturation, lightness) color space of an image.
Based on the rain intensity, different types of rainy environ-
ments are created by adding random small lines on the image
and making the image a little blurry to replicate a realistic
rainy environment [29].

To train the models, we down sample the video at 10 frames
per second (fps) to extract frames for pedestrian safety applica-
tions [30]. After that, we have used the standard Pascal Visual
Object Class (VOC) format to annotate each extracted frame
from the video file. Each pedestrian detection model splits an
image into multiple regions and calculates the probabilities
for each region of being a pedestrian. Based on the calculated
probabilities, a detection model generates bounding boxes for
pedestrians. The YOLOvV3 and SSD ResNet-50 models can
generate multiple bounding boxes for a single pedestrian,
which reduces pedestrian detection accuracy significantly. We
have used a non-max suppression method [31] to improve the
pedestrian detection accuracy by keeping one bounding box
and excluding other unnecessary bounding boxes detecting
each pedestrian. This algorithm takes the bounding boxes for
a pedestrian and selects the one with the highest confidence

score. The intersection over unition (IOU) of this box is calcu-
lated with each of the other bounding boxes for the pedestrian.
If this score is higher than the threshold IOU set, then it is
thrown out as there is a substantial overlap of the predictions.

The primary hyperparameters to tune for these models are
the learning rate, image input size, batch size, and epochs
of the network will train. The learning rate hyperparameter
is essential to tune such that you obtain an optimal set of
weights in a sufficient amount of time. A larger learning
rate will usually result in faster learning but at the cost of a
group of suboptimal weights. When tuned too large, the per-
formance of a model may oscillate over the training period,
which is caused by a set of diverging weights. If the learn-
ing rate is too low, the model may never converge to a set
of weights. The image input size parameter can be tuned to
improve the performance of the model. In general, larger
images perform better as it is easier for models to detect
larger objects. The batch size parameter adjusts how many
samples the train on before the model updates its internal
parameters. The epoch parameter is the number of passes
the model will make through the training data set, while
the model is learning. It is essential to balance the learning
rate with batch size and the number of epochs such that the
model doesn’t overfit to its training data set. By tuning these
parameters in our models, we were able to see the perfor-
mance increases in our models.

4.3 Environmental condition detection

In this paper, to detect and classify different environmental
conditions, we use a vision-based Convolution Neural Net-
work (CNN) deep learning model. The classifier takes an
image as input and classifies it among seven different envi-
ronmental conditions: normal weather, light dark, medium
dark, high dark, light rain, moderate rain, and heavy rain (as
shown in Table 1). The model’s input image is 416 X416 X3
pixels, and the output is a 7 X 1 matrix, W. For example, as
shown in Fig. 4, an output, W=[0, 0, 1, 0, 0, 0, 017 indicates

Table 1 Selected environmental conditions and corresponding video compression scenarios

Evaluation scenarios Environmental condi-

Category of environmental

Constant rate factor (CRF) ~ Minimum average PSNR

tion condition range value corresponding to CRF
value in column 4
1 Normal Sunny weather 0-10, 56 dB (corresponding to CRF
2 Lighting condition Light dark 11-20, 10),
. 21-30, 49 dB (corresponding to CRF
3 Medium dark
) and 20),
4 High dark 31-33 43 dB (corresponding to CRF
5 Rainy condition Light rain 30), and
6 Moderate rain 41 dB (corresponding to CRF
33)
7

Heavy rain
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Fig.4 Environmental condi-
tion classifier using convolution
neural network (CNN)

Input image

a medium dark weather condition. Being a simple CNN-
based classifier, the model is able to run on a roadside
video image processing unit with less capable computation
resources.

5 Analysis and results

In this section, we describe the environmental and lossy
video compression scenarios, data generation and deep
learning model calibration for different environmental con-
ditions (see Table 1). In addition, we report the pedestrian
detection accuracy for each condition.

5.1 Environmental and lossy video compression
Scenarios

In this study, we consider three different environmental con-
ditions: (i) normal (sunny weather) condition; (ii) nighttime
darkness; and (iii) rain. For the lighting and rainy condi-
tions, we further break these down into three additional
categories. The categories for the lighting condition are
light, medium and high, and the categories for the rainy
condition are light, moderate and heavy. Prior work finds
that the pedestrian detection accuracy in sunny weather
decreases from the no compression baseline condition if the
CRF value is greater than 30 (PSNR 43 dB) [5]. Thus, for
each category of environmental condition, we present four
compression scenarios: (a) CRF=10 (PSNR =56 dB); (b)
CRF =20 (PSNR =49 dB); (c) CRF=30 (PSNR =43 dB);
(d) CRF=33 (PSNR =41 dB). However, in a real-world
deployment, more compression scenarios would be used.
After collecting video data for the normal weather condition,
we generate data for the different environmental conditions
and compression scenarios to evaluate pedestrian detection
accuracy. For each scenario, we calculate the pedestrian
detection accuracy to determine the maximum compression
ratio at which we maintain the baseline pedestrian detection
accuracy.
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5.2 Data generation and description

To obtain data for our baseline normal sunny weather condi-
tion (no data compression), we collect field data from the
Perimeter Road and Avenue of Champions intersection at
Clemson, South Carolina on January 4% 2019 at 12 PM.
We use a camera (i.e., Logitech C920 WEBCAM HD) on
a data collection pole and record video of the intersection
including pedestrians on the crosswalk. This data set con-
tains a total of 427 images, where pedestrians are moving in
four directions, such as north—south, south—north, east—west
and west—east. After collection of the field data, we perform
data augmentation to generate images for different environ-
mental conditions. Using data augmentation as described
in the Sect. 4.2 of Sect. 4, we create seven environmental
conditions, as shown in Fig. 5. Thus, for each environmental
condition, we generate 427 images based on the data col-
lected from the field. This data set is publicly available at
https://drive.google.com/open?id=1XA0hOfjvIb1129rvkbU
nwjN6kMj12KaD.

5.3 Pedestrian detection model training
and evaluation

To improve the pedestrian detection accuracy using the
YOLOvV3 and ResNet-50 models, we use a pre-trained
version of each model and retrained the model on our
collected and generated data set for different environ-
mental conditions and different compression levels. For
the normal sunny weather’s 427 images, we split our
data set further into train, test, and validation sets with
the following percentages 63%, 20%, and 17%, respec-
tively. In total, we evaluate 28 unique configurations (7
environmental configuration and 4 compression levels).
After data augmentation, we generate a total of 11,956
images, which includes 7,532 images for training, 2391
images for testing, and 2033 images for validation. Using
these data sets, we retrain the models. After training, to
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Fig.5 Video compression with different environmental weather conditions

further improve the pedestrian detection accuracy, we
use a non-max suppression method with an IOU value
of 0.6 [5] to suppress false positives in the pedestrian
detection output.

5.4 Environmental condition detection

To detect different environmental conditions, we use a CNN-
based deep learning model. In particular, we use the VGG-
16 model [27] as the base network, and we train on our
own data set. We normalize and resize each input image
from 416 X416 % 3 to a size of 224 X224 X 3 to match with
the VGG-16 model input layer size. The convolution net-
work with linear rectified units (ReLU), max pooling, and a
fully connected layer with ReLU acts as an image encoder
to extract the image features of various weather conditions.

CRF=20
PSNR=49 dB

CRF=30
PSNR=43 dB

CRF=33
PSNR=41 dB

As shown in Fig. 6, this classification model classifies the
image into one of the seven classes: normal-sunny weather,
light dark, medium dark, high dark, light rain, moderate rain,
and heavy rain. The model is trained on the augmented data
sets for these seven environmental conditions. Similarly, we
split the data sets into 63% for training, 20% for testing, and
17% for validation for each weather condition. Based on the
testing data set, our CNN-based model is able to classify the
weather condition with 97% accuracy.

5.5 Evaluation of dynamic EBLC framework
Our EBLC communication scheme is able to leverage multiple
machine learning models to detect pedestrians. Figure 7 shows

the pedestrian detection accuracy for the two models we con-
sider (YOLOV3 and ResNet-50) in sunny weather with various
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Fig. 7 Pedestrian detection accuracy for different compression levels
with two pedestrian detection models

levels of compression. From the figure, we observe that as the
compression level increases (higher CRF) the images become
more distorted (lower PSNR) and the ability to accurately
detect pedestrians decreases. YOLOV3 sees a 2% drop in accu-
racy over the compression levels, and ResNet-50 sees a 14.36%
drop in accuracy over the compression levels. Although, the
two models exhibit similar trends in accuracy reduction as
compression level increases, the poor baseline accuracy of
ResNet-50 (54.01%) is unacceptable for safety—critical applica-
tions. Thus, e focus on YOLOv3 model for the reminder of our
evaluation. Note that the SSD ResNet-50 model demonstrates
similar trends in terms of accuracy for different compression
scenarios; however, the pedestrian detection accuracy of SSD
ResNet-50 is always much less compared to the YOLOv3
model accuracy found in this research .

To investigate the impact of different environmental con-
ditions on pedestrian detection accuracy, we evaluate the
accuracy of the YOLOv3 model for pedestrian detection
in different weather conditions by training only on sunny

@ Springer

I | Fully connected + ReLu

Softmax

100

95

90

85

80

Pedestrain detection accuracy (%)

U

& WSS IS
(UTHITHEHH T

75 L
Baseline Light Medium Light Moderate Heavy
dark dark dark rain rain rain

Category of environmental conditions

Fig.8 Pedestrian detection accuracy for different environmental con-
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weather data. Figure 8 presents pedestrian detection accu-
racy for different environmental conditions with no data
compression. We find that the pedestrian detection accu-
racy continues to reduce as the weather condition continues
to deteriorate. Pedestrian detection accuracy reduces even
more if we compress the image before pedestrian detection
during adverse weather conditions. Thus, the accuracy of the
pedestrian detection model varies based on the environmen-
tal condition and the level of lossy compression. Therefore,
it is important to train the pedestrian detection model with
data for different environmental conditions and on the level
of lossy compression.

We evaluate the pedestrian detection accuracy for dif-
ferent environmental conditions with different CRF values
ranging from O to 33. We limit our CRF value to 33, as CRF
values above 33 (41 dB) yields unacceptable deterioration in
the pedestrian detection accuracy. Figure 9 shows that using
our dynamic EBLC framework that leverages models trained
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Fig.9 Pedestrian detection accuracy for different weather conditions with different compression levels

for each environmental and compression level, we improve
pedestrian detection accuracy for all adverse environmen-
tal conditions. In a heavy rain condition, we find a 14%
improvement compared to the baseline condition, i.e., no
lossy compression (see Table 2). As the weather condition
becomes more adverse, the pedestrian detection accuracy
goes down. Similarly, the detection accuracy decreases as
the CRF values increase, meaning that the pedestrian detec-
tion accuracy decreases as the compression ratio increases.
From Fig. 9, we determine the minimum video quality level
that still maintains a fixed pedestrian detection threshold.
In our case, we consider the pedestrian detection baseline
accuracy as 97%, which is the lowest accuracy we found for
all environmental scenarios without any data compression
(CRF=0). Therefore, we are able to apply compression in
all environmental conditions except in moderate and heavy

rain. Future work will explore improving the detection accu-
racy when using high levels of compression.

Table 2 shows the maximum CRF or minimum PSNR
based on the different environmental conditions. The original
communication bandwidth without any compression is 9.82
MBits/sec. The maximum CRF ranges from 0 to 30, while
the minimum PSNR ranges from 41 to 56 dB. Depending
on the PSNR value, we reduce bandwidth by 1.5 X to 18 Xin
our case study. However, our previous study [5] showed that
using EBLC and a static error tolerance reduces bandwidth
requirements for pedestrian detection by over 30 X with no
deterioration in detection accuracy. As stated in the literature
review section of the paper, the static tolerance does not
work well on adverse weather conditions, such as in cloudy
or rainy conditions. Because we use a different data set and
we compress data to a fixed-accuracy (i.e., target PSNR) in

Table 2 Maximum compression ratio achieved for different weather conditions

Weather condition Baseline Dynamic EBLC  Improvement in Maximum constant Required band- Band-
Pedestrian detection framework Pedestrian detection rate factor (CRF) (or width (MBits/ width
accuracy (no compres- Pedestrian detec- using dynamic EBLC ~ minimum PSNR) sec) reduction
sion) (%) tion accuracy framework (%)

(%)

Normal 97 97 -1 30 (41 dB) 0.53 18x

Light dark 93 97 4 30 (41 dB) 0.68 14 x

Medium dark 92 97 5 20 (43 dB) 1.01 9.5%

High dark 90 97 7 10 (56 dB) 4.05 2.5%

Light rain 89 97 8 10 (56 dB) 5.15 1.5%

Medium rain 88 97 9 0 9.82 0x

Heavy rain 83 97 14 0 9.82 0x
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the current study, it allows for variations in the compression
ratio to meet a fixed-accuracy requirement. Thus, we do not
achieve the same bandwidth reductions.

5.6 Performance modeling of our dynamic EBLC
framework

The goal of our dynamic EBLC scheme is to reduce the
bandwidth requirements and, therefore, overall time to trans-
fer video data needed for pedestrian detection. Data com-
pression trades computational time for reductions in data
size, and in turn, reduces the bandwidth requirements when
transmitting the data. However, if too much time is taken
to compress the data, then the total time of compression
and transmission can exceed the time to send the original
uncompressed data. To quantify this tradeoff, we construct
communication performance models. Let N be the number
of bytes in the original uncompressed message (i.e., a seg-
ment of video data) and B be the communication bandwidth
capacity (bytes/second), then we define the time to transmit
the message as

N
Tsendforig = E

When using data compression, we must add an additional
term, C, to account for the speed at which we compress the
data (also known as the compression bandwidth) in units
of bytes/seconds and the compressed data size in bytes N'.
Thus, we define the time to send compress data as the sum
of the time to compress and transmit the compressed data:

N N
Tsend_EBLC = E + E

Communication of the video data to a roadside edge
computing transportation infrastructure, which includes
edge computing unit and safety alert broadcasting unit, only
accounts for part of the workflow of the pedestrian safety
alert system. Upon receiving the data at the roadside edge
computing transportation infrastructure from the roadside
video monitoring unit, it is fed into the edge computing unit,
which runs a machine learning model. The model deter-
mines if pedestrians are present and generate metadata, such
as location and speed of pedestrians at a cost of Ty, e After
that, the edge computing unit transmits the acknowledgment
of pedestrian detection to the safety alert broadcasting unit
of the roadside edge computing transportation infrastruc-
ture at a cost of T, . Once the safety alert broadcasting unit
receives the acknowledgment of pedestrian detection, it
broadcasts a safety alert to the connected devices (e.g., con-
nected vehicles or roadside changeable message sign) at a
cost of T, Thus, the total time for the original workflow is
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T,

orig —

+T, +T,

process a

send_orig ck + Tbcast
Similarly, the total time for the workflow that uses EBLC
is

TEBLC = TsencLEBLC + Tprocess + Tack + Tbcasl

As we modify the compression level, the compression
bandwidth changes. In general, allowing more distortions
into the data results in larger compression ratios and larger
compression bandwidths as it takes more time (lower com-
pression rate, i.e., lower compression bandwidth) to com-
press data with little to no loss. Moreover, the selection of
computational hardware impacts compression bandwidth.
Therefore, to abstract our results for future faster hardware
and other compression algorithms, with differing compres-
sion bandwidths (both higher and lower than the achieved
14.3 MB/s in our experiments), we evaluate our models on
a range of different compression bandwidth values. For the
communication bandwidth capacity, we measure the “edu-
roam” network on Clemson’s campus when transmitting a
1 GB data file wirelessly from the roadside video moni-
toring unit to the roadside edge computing transportation
infrastructure and obtain a communication bandwidth of
5.1 MB/s. To determine under what conditions our EBLC
improves performance, we compute the speedup in commu-
nication time for sending the video data to the data process-
ing infrastructure as

Tsendﬁorig

Speedup =
send_EBLC

Thus, the speedup represents the factor by which we
improve the communication time if the speedup is greater
than 1 or the factor by which we degrade performance if the
speedup is less than 1. Figure 10 shows the speedup of the
communication time when using EBLC for 3 scenarios. Sce-
nario 1 (Fig. 10a) uses a communication bandwidth value of
0.51 MB/s and represents rural locations with a low bandwidth
capacity or high traffic volume locations, where available
bandwidth to a single user is limited. Scenario 2 (Fig. 10b)
uses the measured communication bandwidth of 5.1 MB/s
and represents a regular traffic volume scenario. Scenario 3
(Fig. 10c) uses a communication of 51 MB/s and represents a
non-bandwidth constrained environment. We observe in each
scenario that speedup (shades of red color) is possible but
depends on the compression and communication bandwidth
along with the compression ratio. When the communication
bandwidth is low, less is required from the compressor in
terms of speed and data reduction to see benefits (i.e., more
configurations are colored in shades of red indicated EBLC
communication is faster than the original communication).
However, as the achieved communication bandwidth improves
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as shown in Fig. 10b, c, the compression algorithm needs
either larger compression bandwidths or larger compression
ratios to achieve the speedup (i.e., most of the configurations
are shades of blue indicated EBLC communication is slower
than the original method of communication). If paired with an
appropriate compressor, then large speedups are possible in
all three scenarios. During our experiments, we find a maxi-
mum compression ratio of 18X and a compression bandwidth
of 14.3 MB/s leading to a speedup of 2.4Xx.

6 Conclusions

Dynamically adapting the video compression quality level
based on environmental conditions ensures the reduction of
the communication bandwidth requirement for transferring
a video wirelessly while detecting pedestrians with high
accuracy. The contribution of this study is developing a
feedback-based real-time dynamic EBLC strategy consid-
ering different environmental conditions by reducing the
communication bandwidth while maintaining a baseline
(i.e., no compression and sunny weather) pedestrian detec-
tion accuracy. Depending on different environmental factors,
our strategy dynamically selects the error tolerance for error-
bounded lossy compression that yields the best performance.
Through our dynamic EBLC strategy, we maintain a high
pedestrian detection accuracy using the YOLOv3 detection
model across a selection of the different environmental lev-
els of rain and night-time darkness. Our EBLC strategy is
independent of the pedestrian detection model, and any type
of pedestrian detection model can be used in our frame-
work. Our analysis reveals that in adverse environmental

conditions, the dynamic EBCL strategy can reduce the
bandwidth requirements for transmitting video over prior
approaches up to 14X while maintaining the baseline accu-
racy that transmits lossless videos. Results show that if the
weather condition is adverse, the bandwidth reduction is
lower. Even for moderate and heavy rainy conditions, we
could not compress video at all if we are required to main-
tain a 97% pedestrian detection accuracy. In our future study,
we will consider unexplored trade-offs, such as the energy
efficiency of our ELBC strategy and how to utilize multiple
intra-frame compression tolerances to further improve the
compression ratio to maximize the bandwidth usage.
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