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Abstract
As camera quality improves and their deployment moves to areas with limited bandwidth, communication bottlenecks can 
impair real-time constraints of an intelligent transportation systems application, such as video-based real-time pedestrian 
detection. Video compression reduces the bandwidth requirement to transmit the video which degrades the video quality. 
As the quality level of the video decreases, it results in the corresponding decreases in the accuracy of the vision-based 
pedestrian detection model. Furthermore, environmental conditions, such as rain and night-time darkness impact the ability 
to leverage compression by making it more difficult to maintain high pedestrian detection accuracy. The objective of this 
study is to develop a real-time error-bounded lossy compression (EBLC) strategy to dynamically change the video compres-
sion level depending on different environmental conditions to maintain a high pedestrian detection accuracy. We conduct a 
case study to show the efficacy of our dynamic EBLC strategy for real-time vision-based pedestrian detection under adverse 
environmental conditions. Our strategy dynamically selects the lossy compression error tolerances that maintain a high 
detection accuracy across a representative set of environmental conditions. Analyses reveal that for adverse environmental 
conditions, our dynamic EBLC strategy increases pedestrian detection accuracy up to 14% and reduces the communication 
bandwidth up to 14 × compared to the state-of-the-practice. Moreover, we show our dynamic EBLC strategy is independent 
of pedestrian detection models and environmental conditions allowing other detection models and environmental conditions 
to be easily incorporated.

Keywords  Error-bounded lossy compression (EBLC) · Efficient bandwidth usage · Real-time processing · Vision-based 
object detection · Pedestrian detection

1  Introduction

The number of pedestrian fatalities has risen each year with 
over 6000 reported deaths in 2018 alone, an increase of over 
30% compared to 2009 [1]. The presence of a pre-crash 
warning system, which tracks both vehicles and pedestrian 
movements, could have prevented most of these pedestrian-
related crashes. Addressing the number of traffic fatalities 
is a matter of national importance [2]. As transportation 
begins to shift toward autonomous and self-driving vehicles, 
roadways and intersections are being outfitted with safety 
devices, such as cameras and sensors to improve pedestrian 
safety [3, 4]. Even modern vehicles include an in-vehicle 
vision-based pedestrian warning system to assist drivers in 
avoiding pedestrian-related crashes [5, 6]. However, in-vehi-
cle pedestrian warning systems do not provide any pre-crash 
warning to pedestrians.
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Vehicle-to-pedestrian (V2P) communication can provide 
a 360° view, where a human driver in a connected vehicle 
as well as a pedestrian at an intersection can receive a safety 
warning notification if there is a potential pedestrian-vehicle 
collision risk. However, a pedestrian must carry a hand-held 
device, which must have a low latency wireless communica-
tion technology, and a pedestrian must turn on the pedestrian 
safety application in his/her phone. The C-V2X (cellular 
vehicle-to-everything) direct or sideline communication is 
an example of a low latency communication technology. It is 
unlikely that such communication technology will be avail-
able to all pedestrians’ hand-held devices and the pedes-
trian safety application will be activated in their devices 
while they are crossing an intersection. Thus, cameras on 
poles covering the intersection area can be used to monitor 
pedestrians at an intersection and transmit the video to a 
roadside transportation infrastructure with wireless commu-
nication capabilities. A vision-based safety alert system uses 
an object detection algorithm to detect pedestrians, gener-
ates safety warnings and broadcasts these warnings to sur-
rounding connected vehicles (i.e., a vision-based pedestrian 

safety alert system) as presented in [6]. For a non-connected 
vehicle, generated safety warnings from the system can be 
carried out through dynamic message signs for drivers, or 
audible warnings or warning signs for pedestrians at an 
intersection to warn approaching drivers and pedestrians, 
correspondingly, of an impending collision risk. With this 
strategy, there is no requirement for pedestrians to carry a 
low latency communication technology enabled handheld 
device.

Figure 1 presents such a pedestrian safety alert system, 
where the cameras are on a light pole at an intersection 
equipped with vision-based safety alert systems in Clem-
son, South Carolina, USA [6]. As vision-based pedestrian 
detection relies on image processing of frames taken from 
roadside cameras (as shown in Fig. 1) at signalized inter-
sections, the video data must be sent to a roadside video 
image processing unit (i.e., a part of a roadside transporta-
tion infrastructure, as shown in Fig. 1) or to the cloud for 
video processing. As the size of the video increases, so too 
does the latency to transfer video from a video camera to a 
roadside video image processing unit. Increasing the latency 

Fig. 1   Utilization of pedestrian detection for a vision-based safety alert system at a signalized intersection
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decreases the likelihood that pedestrians are detected reli-
ably, where the reliability will depend on satisfying the real-
time latency requirement as needed by the corresponding 
application, and without detection of pedestrians within the 
low latency threshold for any safety critical applications, 
improvements to safety on roadways will be infeasible. 
Moreover, as high-resolution cameras and an increase in 
the number of connected devices compete for the available 
communication bandwidth, the bandwidth available may 
prohibit any safety–critical applications, such as the vision-
based safety alert system. Thus, an efficient communica-
tion of video data, from video cameras to processing units, 
for pedestrian detection is required to ensure the safety of 
pedestrians on roadways in the vision-based safety alert 
system presented here. The lossy data compression strategy 
presented in this paper can significantly decrease the data 
transmission latency in a communication network between 
a camera and a video image processing unit of a roadside 
transportation infrastructure, as well as reduce video data 
storage requirements.

Data compression trades computational time for a reduc-
tion in data size. Video compression algorithms employ 
lossy data compression, which trades inaccuracies in the 
video’s frames for larger reductions in video size [7]. How-
ever, as the level of loss increases, the quality of the video 
decreases. For image and video compression algorithms, 
this typically results in “blocking,” where pixel blocks are 
approximated by a single value [8]. Quantifying the level 
of acceptable loss defines the video compression limit for a 
given algorithm. Common metrics to evaluate the level of 
loss in video data include peak signal-to-noise ratio (PSNR), 
root-mean-squared error (RMSE), and structural similarity 
index (SSIM) [9]. Lossy compression algorithms that ensure 
a fixed level of loss in the compressed data are referred to as 
error-bounded lossy compression (EBLC) algorithms.

Through the judicious use of EBLC, video streaming 
companies, such as Netflix and YouTube, optimize the 
video quality given the amount of available bandwidth 
[10]. Our prior work shows the utility of using EBLC 
for real-time pedestrian safety applications to reduce 
the bandwidth requirements to transmit video data by up 
to 30× without deterioration in the pedestrian detection 
accuracy [5]. Although showing the potential of EBLC 
for pedestrian detection, our prior work has several lim-
itations. First, in the prior work, we use a single static 
error tolerance for the deployment. Thus, the static error 
tolerance of the system does not adapt to different situa-
tions, hurting utility and safety. Next, in our prior work, 
compressed data is fed into a detection model trained for 
uncompressed data. This degrades the detection accu-
racy and decreases pedestrian safety. Finally, our prior 
work evaluates the EBLC system with a limited number 

of environmental conditions. However, as we show in 
Sect. 5 of this paper, environmental conditions (e.g., rain, 
darkness) impact the ability to leverage EBLC by mak-
ing it more difficult to maintain high pedestrian detection 
accuracy. Thus, adapting the error tolerance based upon 
environmental conditions ensures pedestrian detection 
accuracy does not deteriorate in adverse environmental 
conditions.

The objective of this paper is to reduce bandwidth 
requirements for pedestrian detection in adverse envi-
ronmental conditions by developing a real-time EBLC 
strategy to dynamically change the video compression 
threshold depending on the current environmental con-
ditions while maintaining a high pedestrian detection 
accuracy. Moreover, to further improve pedestrian detec-
tion accuracy, we calibrate the detection model based on 
the compression level to improve detection accuracy on 
highly compressed data. Using this strategy, we maintain 
an appropriate pedestrian accuracy across a representative 
selection of environmental conditions.

2 � Contribution of the paper

The primary contribution of our paper is the development 
of a dynamic EBLC strategy for video feeds from a roadside 
camera to edge devices, such a roadside computer, used 
for real-time pedestrian detection and potential crash alert. 
The dynamic EBLC strategy accounts for environmental 
factors and ensures a defined pedestrian detection accuracy 
is maintained while effectively reducing the communica-
tion bandwidth requirements for a wireless video streaming 
application. We demonstrate that our strategy is independ-
ent of any specific pedestrian detection model such that any 
pedestrian detection model can be used within the strategy 
presented in this paper. In addition, any other environmental 
factor, such as snow and rain, can be incorporated in our 
dynamic EBLC strategy by following the steps presented 
in the Sect. 4 of the paper for incorporating any new envi-
ronmental condition, such as snow. Moreover, our strategy 
is dynamic, which is applicable to image recognition appli-
cations beyond pedestrian detection, where environmental 
conditions or the visual quality of video feeds vary over-
time. The dynamic EBLC strategy reduces the communica-
tion bandwidth usage of a video feed, which allows more 
videos to be transmitted concurrently through a fixed band-
width. Furthermore, dynamic EBLC significantly reduces 
the storage requirements for video archiving for later offline 
analysis. Thus, the dynamic EBLC strategy presented in this 
paper allows storage of videos of longer duration without 
the need of modifying the underlying hardware.
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3 � Related work

This section describes existing work related to EBLC, 
pedestrian detection, and image classification methods. 
Examining the limitations of the existing methods, we 
identify an appropriate lossy video compression technique, 
pedestrian detection, and image classification method for 
our dynamic EBLC strategy.

3.1 � Error‑bounded lossy compression

Lossless data compression, such as the Lempel-Ziv algo-
rithm (LZ77) [11], allows for the reduction in the data 
size with no loss in the data’s accuracy. Lossy compres-
sion (LC) significantly reduces data sizes and offers better 
compression ratios than lossless compression, but at the 
expense of inaccuracies in the decompressed data [12]. 
In the context of video compression, LC compresses by 
introducing noise into each frame by representing the 
frame with fewer bits [7]. Typically, the larger the loss 
in data accuracy, the larger the compression ratio [10, 
13]. Current state-of-the-art LC algorithms known as 
EBLC algorithms offer the ability to control the level of 
loss introduced when compressing the data [14]. Modern 
video compression algorithms, such as H.264 [15] and 
high-efficiency video coding (HEVC) [16], are optimized 
for high-resolution videos by encoding more information 
into each compressed bit. H.264 and HEVC compress 
videos by identifying regions of inter- and intra-frame 
similarity and then applying transforms, such as the dis-
crete cosine transform [17] and encoding the coefficients 
or using delta encoding to encode the differences between 
two frames.

Previous work in the area of lossy compression and 
object detection have considered approaches to improve 
both the bitrate of communication and the accuracy of 
object detectors run on the video frames. In one approach 
[18], object saliency maps are used as a preprocessing 
step to improve the compression of the video frames. This 
video encoding method enables performance benefits in 
the communication bitrate and accuracy of the object 
detection model. Another approach [19] finds that tem-
poral fluctuations in irrelevant background portions of 
the frames caused degradation of object detection perfor-
mance. To remedy this performance deficit, the authors in 
[19] propose an encoding method to stabilize the temporal 
fluctuations in the frames. As a result of this encoding 
scheme, the bitrate and accuracy of detection improve. 
The methods proposed in this paper tackle generalizing 
lossy compression by focusing on error-bounded lossy 
compressors such that we determine the quality level 

of compression and its impact on pedestrian detection. 
Moreover, we consider pedestrian detection in dynami-
cally changing environments using compression, which is 
not considered in prior research.

Due to the need to understand the impact of inaccura-
cies on the quality-of-service, EBLC has not received 
much attention in the intelligent transportation systems 
(ITS) domain. In the context of pedestrian detection, 
quality-of-service is determined by maintaining fixed 
detection accuracy. Any deterioration in the detection 
accuracy can lead to unsafe situations for pedestrians. 
Our prior work [5] shows that using EBLC and a static 
error tolerance reduces bandwidth requirements for 
pedestrian detection by over 30× with no deterioration in 
detection accuracy. Furthermore, this prior work shows 
that a single static lossy compression tolerance does not 
work as well on cloudy or rainy weather conditions as it 
works in sunny weather conditions. Throughout the day 
and year environmental conditions change, degrading 
the utility of a static lossy compression approach. By 
dynamically adapting the error tolerance and the per-
formence of the detection model, we maintain a high 
pedestrian detection accuracy in adverse environmental 
situations.

3.2 � Machine learning methods for pedestrian 
detection and environment classification

The advent of deep learning significantly improved the 
accuracy and computational time of object detection and 
classification. The state-of-the-art deep learning-based 
object detection models operate in real time and provide a 
high detection accuracy. Object detection models are clas-
sified into two categories: (i) region-based object detec-
tion and (ii) single-shot object detection. Region-based 
object detection models include: Region-Convolutional 
Neural Network (R-CNN) [20]; Fast R-CNN [21]; and 
Faster R-CNN [22]. The single-shot object detection mod-
els include: Single Shot MultiBox Detector (SSD) [23] and 
You Only Look Once—Version 3 (YOLOv3) [24]. Single 
Shot Multibox Object Detectors encapsulate all computa-
tion within a single network. This allows for easy training 
and easy integration into systems that need object detection. 
SSD is a comparable method to YOLOv3 as they tend to 
have similar mean Average Precision (mAP) scores. Their 
primary difference is inference speed in which YOLOv3 
tends to beat SSD. By generalizing our results across, these 
two models we can establish the baseline validity of our 
results across all single SSD models. All these deep learn-
ing models run in real time. However, in terms of pedes-
trian detection accuracy, YOLOv3 shows a better detection 
accuracy (81% at 20 fps) [5]. Deep learning excels in the 
domain of object and image classification [23]. In the area 
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of deep learning, Convolution Neural Networks (CNNs) 
excel in image classification tasks [24]. The state-of-the-art 
CNN-based classification models include: Visual Geometry 
Group (VGG) [25] and InceptionV3 [26]. Visual Geometry 
Group (VGG-16) is a 16-layer convolutional neural network 
that is known for its high classification accuracy on a small 
number of classes and its real-time performance. Inception 
V3 is also known for high detection accuracy and is built 
with convolution, average pooling, max pooling, concatena-
tion, and fully connected layers.

4 � Dynamic error‑bounded lossy video 
compression strategy

Compressing a video with a low-quality level greatly 
improves the compression ratio and reduces the bandwidth 
requirement to transfer the video but causes visual artifacts 
in the video. However, as the quality level of the video 
decreases, its ability to be used for video analytics decreases 
as well as features become less pronounced. For pedestrian 
detection, this results in lower detection accuracy. Further-
more, environmental conditions (e.g., rain, night-time dark-
ness, fog) alter the compression ratio and makes pedestrian 
detection more difficult by obscuring pedestrians. Dynami-
cally adapting the video compression quality level based on 
the current environmental condition ensures that we always 
detect pedestrians with high accuracy throughout the day 
and the year.

Figure 2 presents our framework for our dynamic EBLC 
strategy that uses machine learning to detect pedestrians. 
This paper develops a dynamic feedback control system that 
adapts the compression level to maintain the same detec-
tion accuracy of a system communicating the raw lossless 
video data. Figure 1 (see Sect. 1) presents a real-world 

deployment of our dynamic EBLC strategy. In our system, 
a roadside video monitoring camera collects video data and 
transfers it to an attached video compression unit [27]. The 
video compression unit compresses the raw video stream 
using a set tolerance level. In our experiments, we set the 
tolerance based on the PSNR ratio between the raw video 
and the resulting compressed video. The exact PSNR value 
depends on the environmental conditions (e.g., rain and 
night-time darkness). We use H.264 for video compression 
but note that other video compression algorithms work 
with our dynamic EBLC strategy. After compression, the 
compressed video streams are sent wirelessly to the road-
side edge computing infrastructure. This edge computing 
infrastructure contains three main components: (i) a set of 
pre-trained and calibrated pedestrian detection models for 
different environmental conditions; (ii) the active pedestrian 
detection model to process video image; and (iii) an envi-
ronmental condition detection model to identify the current 
environment for a given video.

This paper focuses on the development of a dynamic 
EBLC strategy that is independent of the vision-based 
pedestrian detection method. Given an environmental condi-
tion, the edge computing infrastructure selects an appropri-
ate model from the set of pre-trained and calibrated models. 
In addition, it determines the corresponding PSNR for the 
model that yields the largest reductions in bandwidth while 
still maintaining the same detection accuracy. The selected 
PSNR value is periodically sent to the roadside video moni-
toring camera for use when compressing the video stream.

Each time the video compression unit located near the 
video camera receives a new PSNR value from the roadside 
edge computing device, the compression unit dynamically 
adapts its compression level. At the same time, the edge 
computing device selects the calibrated machine learning 
model for the current environmental condition and PSNR 

Fig. 2   Dynamic error-bounded lossy video compression strategy
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value. In our design, a pedestrian detection model is trained 
with video images with different PSNR values for a specific 
environmental condition. For example, we select three levels 
of rain: (1) light rain; (2) moderate rain; and (3) heavy rain. 
For each level of rain, we initially compress the video to 
six different PSNR levels measured in decibels (dB): (10) 
56 dB; (20) 49 dB; (30) 43 dB; (40) 37 dB; (50) 31 dB; and 
(51) 30 dB. The value in the parentheses shows the Constant 
Rate Factor (CRF) corresponding to each PSNR value. A 
smaller CRF results in less error during compression. The 
CRF is the error control knob we tune for the compressors 
inside FFmpeg [28], a software tool used to process audio 
and video files.

To determine the optimum CRF and corresponding PSNR 
that maintains a high pedestrian detection accuracy, a refer-
ence lookup table is constructed offline. The reference table 
contains only the models that have a pedestrian detection 
accuracy equal to that of the baseline model. To construct 
the reference lookup table and the catalog of corresponding 
models, we train and evaluate a model on data compressed 
with a CRF of 10 (highly accurate) along with computing the 
PSNR. Next, we increase the CRF by 10 (degrading video 
quality and improving compression) until the new model’s 
detection accuracy drops below the minimum threshold. At 
this point, we vary the CRF by 1 to fully explore the range 
between the last valid CRF and the first invalid CRF. Again, 
we evaluate each model to determine if it meets our quality-
of-service standards; rejecting any models that do not. After 
exploring each CRF in the interval, we have a lookup table 
that allows us to select a trained model given a requested 
CRF or PSNR value.

We calculate the accuracy of the pedestrian detection 
model by comparing it with manually annotated ground 
truth data. To establish a baseline accuracy, we perform 
pedestrian detection on the uncompressed video feed com-
ing from traffic cameras for all scenarios and calculate the 
accuracy based on a manually annotated ground truth. For 
a compression baseline, we compress the video stream to a 
fixed quality level using standard image difference metric, 
PSNR, and use a pedestrian detection model with weights 
calibrated for the compressed data.

In this compression framework, there are three steps: (i) 
lossy video compression; (ii) calibration of the pedestrian 
detection model; and (iii) environmental condition detection 
using an environment classification model. The following 
subsections describe, in detail, our approach for each step 
in our dynamic EBLC strategy.

4.1 � Error‑bounded Lossy compression (EBLC)

Using field-collected data, we compress each video using 
different CRF values using the FFmpeg video compression 
tool [28]. The video compression level is controlled by the 

CRF value, and the CRF range is from 0 to 51, where 0 
indicates no compression (no loss in data accuracy), and 
51 indicates the maximum compression level (high degree 
of data inaccuracies). After that, we calculate the PSNR by 
comparing the original video’s frames and the compressed 
video file. Thus, we use the CRF of FFmpeg to compress 
videos yielding different compression ratios (i.e., small for 
CRFs near 0 and large for CRFs near 51). However, to make 
our results independent from the FFmpeg tool, we determine 
the PSNR value corresponding to each CRF value. Figure 3 
presents the feedback-based EBLC algorithm, which com-
presses the video feed based on the environmental condi-
tion. The compression tool compresses the video to a com-
pression level, which maintains a high pedestrian detection 
accuracy. After resizing the image of the compressed video, 
a detection model is selected from a library of calibrated 
pedestrian detection models that account for various envi-
ronmental conditions.

4.2 � Pedestrian detection model calibration

The YOLOv3 model [24] divides an image into multiple regions 
and assigns probabilities to the bounding boxes for each region, 
where a feature is detected. This model can capture the global 
context of the image as it looks at the whole image simultane-
ously. The YOLOv3 model consists of 53 convolutional layers 
followed by 2 fully connected layers and 1 × 1 reduction layer 
followed by 3 × 3 convolutional layers [24]. The YOLOv3 model 
can have different input image sizes, such as 320 × 320 × 3, 
416 × 416 × 3 and 608 × 608 × 3. Based on our experiments, we 
found that the input image size of 416 × 416 × 3 provides the 
highest pedestrian detection accuracy with a low computational 

Fig. 3   Feedback-based real-time EBLC algorithm
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cost. In this study, we use the input image size of 416 × 416 × 3 
and then normalized the image at the preprocessing layer of 
the YOLOv3 model. We also use a SSD model for pedes-
trian detection and compare its performence in terms of accu-
racy with YOLOv3 model. The backbone of our SSD model 
ishethe ResNet-50 classification model, whichis a convolutional 
neural network with 50 layers. An image size of 416 × 416 × 3 
was also inputted to the SSD model to achieve comparable 
experimental conditions to the YOLOv3 model.

To achieve a much higher pedestrian detection accuracy 
for different environmental conditions (e.g., rain and light-
ing), we train the YOLOv3 and SSD ResNet-50 model on 
augmented data. We perform data augmentation for different 
rain and lighting conditions to produce more realistic images 
for night-time darkness and rain. To generate augmented data 
for the model calibration, we alter the night-time darkness of 
the images by changing the pixel values of the first channel in 
the HSL (hue, saturation, lightness) color space of an image. 
Based on the rain intensity, different types of rainy environ-
ments are created by adding random small lines on the image 
and making the image a little blurry to replicate a realistic 
rainy environment [29].

To train the models, we down sample the video at 10 frames 
per second (fps) to extract frames for pedestrian safety applica-
tions [30]. After that, we have used the standard Pascal Visual 
Object Class (VOC) format to annotate each extracted frame 
from the video file. Each pedestrian detection model splits an 
image into multiple regions and calculates the probabilities 
for each region of being a pedestrian. Based on the calculated 
probabilities, a detection model generates bounding boxes for 
pedestrians. The YOLOv3 and SSD ResNet-50 models can 
generate multiple bounding boxes for a single pedestrian, 
which reduces pedestrian detection accuracy significantly. We 
have used a non-max suppression method [31] to improve the 
pedestrian detection accuracy by keeping one bounding box 
and excluding other unnecessary bounding boxes detecting 
each pedestrian. This algorithm takes the bounding boxes for 
a pedestrian and selects the one with the highest confidence 

score. The intersection over unition (IOU) of this box is calcu-
lated with each of the other bounding boxes for the pedestrian. 
If this score is higher than the threshold IOU set, then it is 
thrown out as there is a substantial overlap of the predictions.

The primary hyperparameters to tune for these models are 
the learning rate, image input size, batch size, and epochs 
of the network will train. The learning rate hyperparameter 
is essential to tune such that you obtain an optimal set of 
weights in a sufficient amount of time. A larger learning 
rate will usually result in faster learning but at the cost of a 
group of suboptimal weights. When tuned too large, the per-
formance of a model may oscillate over the training period, 
which is caused by a set of diverging weights. If the learn-
ing rate is too low, the model may never converge to a set 
of weights. The image input size parameter can be tuned to 
improve the performance of the model. In general, larger 
images perform better as it is easier for models to detect 
larger objects. The batch size parameter adjusts how many 
samples the train on before the model updates its internal 
parameters. The epoch parameter is the number of passes 
the model will make through the training data set, while 
the model is learning. It is essential to balance the learning 
rate with batch size and the number of epochs such that the 
model doesn’t overfit to its training data set. By tuning these 
parameters in our models, we were able to see the perfor-
mance increases in our models.

4.3 � Environmental condition detection

In this paper, to detect and classify different environmental 
conditions, we use a vision-based Convolution Neural Net-
work (CNN) deep learning model. The classifier takes an 
image as input and classifies it among seven different envi-
ronmental conditions: normal weather, light dark, medium 
dark, high dark, light rain, moderate rain, and heavy rain (as 
shown in Table 1). The model’s input image is 416 × 416 × 3 
pixels, and the output is a 7 × 1 matrix, W. For example, as 
shown in Fig. 4, an output, W = [0, 0, 1, 0, 0, 0, 0]T indicates 

Table 1   Selected environmental conditions and corresponding video compression scenarios

Evaluation scenarios Environmental condi-
tion

Category of environmental 
condition

Constant rate factor (CRF) 
range

Minimum average PSNR 
value corresponding to CRF 
value in column 4

1 Normal Sunny weather 0–10,
11–20,
21–30,
and
31–33

56 dB (corresponding to CRF 
10),

49 dB (corresponding to CRF 
20),

43 dB (corresponding to CRF 
30), and

41 dB (corresponding to CRF 
33)

2 Lighting condition Light dark
3 Medium dark
4 High dark
5 Rainy condition Light rain
6 Moderate rain
7 Heavy rain
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a medium dark weather condition. Being a simple CNN-
based classifier, the model is able to run on a roadside 
video image processing unit with less capable computation 
resources.

5 � Analysis and results

In this section, we describe the environmental and lossy 
video compression scenarios, data generation and deep 
learning model calibration for different environmental con-
ditions (see Table 1). In addition, we report the pedestrian 
detection accuracy for each condition.

5.1 � Environmental and lossy video compression 
Scenarios

In this study, we consider three different environmental con-
ditions: (i) normal (sunny weather) condition; (ii) nighttime 
darkness; and (iii) rain. For the lighting and rainy condi-
tions, we further break these down into three additional 
categories. The categories for the lighting condition are 
light, medium and high, and the categories for the rainy 
condition are light, moderate and heavy. Prior work finds 
that the pedestrian detection accuracy in sunny weather 
decreases from the no compression baseline condition if the 
CRF value is greater than 30 (PSNR 43 dB) [5]. Thus, for 
each category of environmental condition, we present four 
compression scenarios: (a) CRF = 10 (PSNR = 56 dB); (b) 
CRF = 20 (PSNR = 49 dB); (c) CRF = 30 (PSNR = 43 dB); 
(d) CRF = 33 (PSNR = 41 dB). However, in a real-world 
deployment, more compression scenarios would be used. 
After collecting video data for the normal weather condition, 
we generate data for the different environmental conditions 
and compression scenarios to evaluate pedestrian detection 
accuracy. For each scenario, we calculate the pedestrian 
detection accuracy to determine the maximum compression 
ratio at which we maintain the baseline pedestrian detection 
accuracy.

5.2 � Data generation and description

To obtain data for our baseline normal sunny weather condi-
tion (no data compression), we collect field data from the 
Perimeter Road and Avenue of Champions intersection at 
Clemson, South Carolina on January 4th, 2019 at 12 PM. 
We use a camera (i.e., Logitech C920 WEBCAM HD) on 
a data collection pole and record video of the intersection 
including pedestrians on the crosswalk. This data set con-
tains a total of 427 images, where pedestrians are moving in 
four directions, such as north–south, south–north, east–west 
and west–east. After collection of the field data, we perform 
data augmentation to generate images for different environ-
mental conditions. Using data augmentation as described 
in the Sect. 4.2 of Sect. 4, we create seven environmental 
conditions, as shown in Fig. 5. Thus, for each environmental 
condition, we generate 427 images based on the data col-
lected from the field. This data set is publicly available at 
https://​drive.​google.​com/​open?​id=​1XA0h​OfjvI​b1l29​rvkbU​
nwjN6​kMj12​KaD.

5.3 � Pedestrian detection model training 
and evaluation

To improve the pedestrian detection accuracy using the 
YOLOv3 and ResNet-50 models, we use a pre-trained 
version of each model and retrained the model on our 
collected and generated data set for different environ-
mental conditions and different compression levels. For 
the normal sunny weather’s 427 images, we split our 
data set further into train, test, and validation sets with 
the following percentages 63%, 20%, and 17%, respec-
tively. In total, we evaluate 28 unique configurations (7 
environmental configuration and 4 compression levels). 
After data augmentation, we generate a total of 11,956 
images, which includes 7,532 images for training, 2391 
images for testing, and 2033 images for validation. Using 
these data sets, we retrain the models. After training, to 

Fig. 4   Environmental condi-
tion classifier using convolution 
neural network (CNN)

https://drive.google.com/open?id=1XA0hOfjvIb1l29rvkbUnwjN6kMj12KaD
https://drive.google.com/open?id=1XA0hOfjvIb1l29rvkbUnwjN6kMj12KaD
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further improve the pedestrian detection accuracy, we 
use a non-max suppression method with an IOU value 
of 0.6 [5] to suppress false positives in the pedestrian 
detection output.

5.4 � Environmental condition detection

To detect different environmental conditions, we use a CNN-
based deep learning model. In particular, we use the VGG-
16 model [27] as the base network, and we train on our 
own data set. We normalize and resize each input image 
from 416 × 416 × 3 to a size of 224 × 224 × 3 to match with 
the VGG-16 model input layer size. The convolution net-
work with linear rectified units (ReLU), max pooling, and a 
fully connected layer with ReLU acts as an image encoder 
to extract the image features of various weather conditions. 

As shown in Fig. 6, this classification model classifies the 
image into one of the seven classes: normal-sunny weather, 
light dark, medium dark, high dark, light rain, moderate rain, 
and heavy rain. The model is trained on the augmented data 
sets for these seven environmental conditions. Similarly, we 
split the data sets into 63% for training, 20% for testing, and 
17% for validation for each weather condition. Based on the 
testing data set, our CNN-based model is able to classify the 
weather condition with 97% accuracy.

5.5 � Evaluation of dynamic EBLC framework

Our EBLC communication scheme is able to leverage multiple 
machine learning models to detect pedestrians. Figure 7 shows 
the pedestrian detection accuracy for the two models we con-
sider (YOLOv3 and ResNet-50) in sunny weather with various 

Fig. 5   Video compression with different environmental weather conditions
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levels of compression. From the figure, we observe that as the 
compression level increases (higher CRF) the images become 
more distorted (lower PSNR) and the ability to accurately 
detect pedestrians decreases. YOLOv3 sees a 2% drop in accu-
racy over the compression levels, and ResNet-50 sees a 14.36% 
drop in accuracy over the compression levels. Although, the 
two models exhibit similar trends in accuracy reduction as 
compression level increases, the poor baseline accuracy of 
ResNet-50 (54.01%) is unacceptable for safety–critical applica-
tions. Thus, e focus on YOLOv3 model for the reminder of our 
evaluation. Note that the SSD ResNet-50 model demonstrates 
similar trends in terms of accuracy for different compression 
scenarios; however, the pedestrian detection accuracy of SSD 
ResNet-50 is always much less compared to the YOLOv3 
model accuracy found in this research .

To investigate the impact of different environmental con-
ditions on pedestrian detection accuracy, we evaluate the 
accuracy of the YOLOv3 model for pedestrian detection 
in different weather conditions by training only on sunny 

weather data. Figure 8 presents pedestrian detection accu-
racy for different environmental conditions with no data 
compression. We find that the pedestrian detection accu-
racy continues to reduce as the weather condition continues 
to deteriorate. Pedestrian detection accuracy reduces even 
more if we compress the image before pedestrian detection 
during adverse weather conditions. Thus, the accuracy of the 
pedestrian detection model varies based on the environmen-
tal condition and the level of lossy compression. Therefore, 
it is important to train the pedestrian detection model with 
data for different environmental conditions and on the level 
of lossy compression.

We evaluate the pedestrian detection accuracy for dif-
ferent environmental conditions with different CRF values 
ranging from 0 to 33. We limit our CRF value to 33, as CRF 
values above 33 (41 dB) yields unacceptable deterioration in 
the pedestrian detection accuracy. Figure 9 shows that using 
our dynamic EBLC framework that leverages models trained 

Fig. 6   CNN-based environmental condition classifier

Fig. 7   Pedestrian detection accuracy for different compression levels 
with two pedestrian detection models Fig. 8   Pedestrian detection accuracy for different environmental con-

ditions with no data compression and using a model trained for base-
line data
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for each environmental and compression level, we improve 
pedestrian detection accuracy for all adverse environmen-
tal conditions. In a heavy rain condition, we find a 14% 
improvement compared to the baseline condition, i.e., no 
lossy compression (see Table 2). As the weather condition 
becomes more adverse, the pedestrian detection accuracy 
goes down. Similarly, the detection accuracy decreases as 
the CRF values increase, meaning that the pedestrian detec-
tion accuracy decreases as the compression ratio increases. 
From Fig. 9, we determine the minimum video quality level 
that still maintains a fixed pedestrian detection threshold. 
In our case, we consider the pedestrian detection baseline 
accuracy as 97%, which is the lowest accuracy we found for 
all environmental scenarios without any data compression 
(CRF = 0). Therefore, we are able to apply compression in 
all environmental conditions except in moderate and heavy 

rain. Future work will explore improving the detection accu-
racy when using high levels of compression. 

Table 2 shows the maximum CRF or minimum PSNR 
based on the different environmental conditions. The original 
communication bandwidth without any compression is 9.82 
MBits/sec. The maximum CRF ranges from 0 to 30, while 
the minimum PSNR ranges from 41 to 56 dB. Depending 
on the PSNR value, we reduce bandwidth by 1.5 × to 18 × in 
our case study. However, our previous study [5] showed that 
using EBLC and a static error tolerance reduces bandwidth 
requirements for pedestrian detection by over 30 × with no 
deterioration in detection accuracy. As stated in the literature 
review section of the paper, the static tolerance does not 
work well on adverse weather conditions, such as in cloudy 
or rainy conditions. Because we use a different data set and 
we compress data to a fixed-accuracy (i.e., target PSNR) in 

Fig. 9   Pedestrian detection accuracy for different weather conditions with different compression levels

Table 2   Maximum compression ratio achieved for different weather conditions

Weather condition Baseline
Pedestrian detection 
accuracy (no compres-
sion) (%)

Dynamic EBLC 
framework
Pedestrian detec-
tion accuracy 
(%)

Improvement in 
Pedestrian detection 
using dynamic EBLC 
framework (%)

Maximum constant 
rate factor (CRF) (or 
minimum PSNR)

Required band-
width (MBits/
sec)

Band-
width 
reduction

Normal 97 97 − 1 30 (41 dB) 0.53 18 × 
Light dark 93 97 4 30 (41 dB) 0.68 14 × 
Medium dark 92 97 5 20 (43 dB) 1.01 9.5 × 
High dark 90 97 7 10 (56 dB) 4.05 2.5 × 
Light rain 89 97 8 10 (56 dB) 5.15 1.5 × 
Medium rain 88 97 9 0 9.82 0 × 
Heavy rain 83 97 14 0 9.82 0 × 
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the current study, it allows for variations in the compression 
ratio to meet a fixed-accuracy requirement. Thus, we do not 
achieve the same bandwidth reductions.

5.6 � Performance modeling of our dynamic EBLC 
framework

The goal of our dynamic EBLC scheme is to reduce the 
bandwidth requirements and, therefore, overall time to trans-
fer video data needed for pedestrian detection. Data com-
pression trades computational time for reductions in data 
size, and in turn, reduces the bandwidth requirements when 
transmitting the data. However, if too much time is taken 
to compress the data, then the total time of compression 
and transmission can exceed the time to send the original 
uncompressed data. To quantify this tradeoff, we construct 
communication performance models. Let N be the number 
of bytes in the original uncompressed message (i.e., a seg-
ment of video data) and B be the communication bandwidth 
capacity (bytes/second), then we define the time to transmit 
the message as

When using data compression, we must add an additional 
term, C, to account for the speed at which we compress the 
data (also known as the compression bandwidth) in units 
of bytes/seconds and the compressed data size in bytes N′. 
Thus, we define the time to send compress data as the sum 
of the time to compress and transmit the compressed data:

Communication of the video data to a roadside edge 
computing transportation infrastructure, which includes 
edge computing unit and safety alert broadcasting unit, only 
accounts for part of the workflow of the pedestrian safety 
alert system. Upon receiving the data at the roadside edge 
computing transportation infrastructure from the roadside 
video monitoring unit, it is fed into the edge computing unit, 
which runs a machine learning model. The model deter-
mines if pedestrians are present and generate metadata, such 
as location and speed of pedestrians at a cost of Tprocess. After 
that, the edge computing unit transmits the acknowledgment 
of pedestrian detection to the safety alert broadcasting unit 
of the roadside edge computing transportation infrastruc-
ture at a cost of Tack. Once the safety alert broadcasting unit 
receives the acknowledgment of pedestrian detection, it 
broadcasts a safety alert to the connected devices (e.g., con-
nected vehicles or roadside changeable message sign) at a 
cost of Tbcast. Thus, the total time for the original workflow is

Tsend_orig =
N

B

Tsend_EBLC =
N

C
+

N
�

B

Similarly, the total time for the workflow that uses EBLC 
is

As we modify the compression level, the compression 
bandwidth changes. In general, allowing more distortions 
into the data results in larger compression ratios and larger 
compression bandwidths as it takes more time (lower com-
pression rate, i.e., lower compression bandwidth) to com-
press data with little to no loss. Moreover, the selection of 
computational hardware impacts compression bandwidth. 
Therefore, to abstract our results for future faster hardware 
and other compression algorithms, with differing compres-
sion bandwidths (both higher and lower than the achieved 
14.3 MB/s in our experiments), we evaluate our models on 
a range of different compression bandwidth values. For the 
communication bandwidth capacity, we measure the “edu-
roam” network on Clemson’s campus when transmitting a 
1 GB data file wirelessly from the roadside video moni-
toring unit to the roadside edge computing transportation 
infrastructure and obtain a communication bandwidth of 
5.1 MB/s. To determine under what conditions our EBLC 
improves performance, we compute the speedup in commu-
nication time for sending the video data to the data process-
ing infrastructure as

Thus, the speedup represents the factor by which we 
improve the communication time if the speedup is greater 
than 1 or the factor by which we degrade performance if the 
speedup is less than 1. Figure 10 shows the speedup of the 
communication time when using EBLC for 3 scenarios. Sce-
nario 1 (Fig. 10a) uses a communication bandwidth value of 
0.51 MB/s and represents rural locations with a low bandwidth 
capacity or high traffic volume locations, where available 
bandwidth to a single user is limited. Scenario 2 (Fig. 10b) 
uses the measured communication bandwidth of 5.1 MB/s 
and represents a regular traffic volume scenario. Scenario 3 
(Fig. 10c) uses a communication of 51 MB/s and represents a 
non-bandwidth constrained environment. We observe in each 
scenario that speedup (shades of red color) is possible but 
depends on the compression and communication bandwidth 
along with the compression ratio. When the communication 
bandwidth is low, less is required from the compressor in 
terms of speed and data reduction to see benefits (i.e., more 
configurations are colored in shades of red indicated EBLC 
communication is faster than the original communication). 
However, as the achieved communication bandwidth improves 

Torig = Tsend_orig + Tprocess + Tack + Tbcast

TEBLC = Tsend_EBLC + Tprocess + Tack + Tbcast

Speedup =

Tsend_orig

Tsend_EBLC
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as shown in Fig. 10b, c, the compression algorithm needs 
either larger compression bandwidths or larger compression 
ratios to achieve the speedup (i.e., most of the configurations 
are shades of blue indicated EBLC communication is slower 
than the original method of communication). If paired with an 
appropriate compressor, then large speedups are possible in 
all three scenarios. During our experiments, we find a maxi-
mum compression ratio of 18× and a compression bandwidth 
of 14.3 MB/s leading to a speedup of 2.4×.

6 � Conclusions

Dynamically adapting the video compression quality level 
based on environmental conditions ensures the reduction of 
the communication bandwidth requirement for transferring 
a video wirelessly while detecting pedestrians with high 
accuracy. The contribution of this study is developing a 
feedback-based real-time dynamic EBLC strategy consid-
ering different environmental conditions by reducing the 
communication bandwidth while maintaining a baseline 
(i.e., no compression and sunny weather) pedestrian detec-
tion accuracy. Depending on different environmental factors, 
our strategy dynamically selects the error tolerance for error-
bounded lossy compression that yields the best performance. 
Through our dynamic EBLC strategy, we maintain a high 
pedestrian detection accuracy using the YOLOv3 detection 
model across a selection of the different environmental lev-
els of rain and night-time darkness. Our EBLC strategy is 
independent of the pedestrian detection model, and any type 
of pedestrian detection model can be used in our frame-
work. Our analysis reveals that in adverse environmental 

conditions, the dynamic EBCL strategy can reduce the 
bandwidth requirements for transmitting video over prior 
approaches up to 14× while maintaining the baseline accu-
racy that transmits lossless videos. Results show that if the 
weather condition is adverse, the bandwidth reduction is 
lower. Even for moderate and heavy rainy conditions, we 
could not compress video at all if we are required to main-
tain a 97% pedestrian detection accuracy. In our future study, 
we will consider unexplored trade-offs, such as the energy 
efficiency of our ELBC strategy and how to utilize multiple 
intra-frame compression tolerances to further improve the 
compression ratio to maximize the bandwidth usage.
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