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Abstract—Due to I/0O bandwidth limitations, intelligent in
situ data reduction methods are needed to enable post-hoc
workflows. Current state-of-the-art sampling methods save data
points if they deem them spatially or temporally important.
By analyzing the properties of the data values at each time-
step, two consecutive steps may be very similar. This research
follows the notion that if neighboring time-steps are very similar,
samples from both are unnecessary, which leaves storage for
adding more useful samples. Here, we present an investigation of
the combination of spatial and temporal sampling to drastically
reduce data size without the loss of valuable information. We
demonstrate that, by reusing samples, our reconstructed data
set reduces the overall data size while achieving a higher post-
reconstruction quality over other reduction methods.

Index Terms—Data Reduction, Data Sampling, Importance
Sampling, Feature Preservation

I. INTRODUCTION

Modern high-performance computers have increasingly high
computation capabilities, being able to simulate previously in-
tractable problems. These simulations produce petabytes worth
of data [1], [2], which, due to I/O limitations, is generated
faster than the system can store. The combination of massive
output data and I/O bottleneck makes traditional full post-hoc
analysis and visualization increasingly less viable [3]-[6].

Many researchers have aimed to solve this issue by reducing
the overall data size. Lossy compression is one approach
capable of achieving high compression ratios by introducing
controlled error in the compressed data [7]-[9]. Data sampling
is another prevalent approach to data reduction with existing
efforts using simple uniform random selection techniques to
determine which samples to keep [10]-[12].

Due to the limited memory present in in situ processes,
high compression ratios are crucial to working on large data
sets. Preserving regions of interest (ROI) within these data sets
with high quality is critical to meet current domain scientists’
demands. Both lossy compression algorithms and existing data
sampling efforts reduce overall data size uniformly, conse-
quently reducing quality within the ROI. However, biased
sampling based on importance to the user and better preserves
the ROI in post-reconstruction visualizations without needing
prior knowledge of the data set [4], [13], [14].

In this paper, we combine concepts from existing data
reduction techniques that sample data using spatial prop-
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erties [13] or temporal properties [15] to improve post-
reconstruction quality in both the ROI and overall data set.
Our specific contributions are as follows:

o We propose a data sampling technique that uses both
spatial and temporal data properties to improve post-
reconstruction data quality.

e We detail our workflow of selecting previous samples
based on value histograms or error tolerance, and how
we utilize them in the form of reuse or additions.

e We provide a detailed analysis of our novel approach
when applied to various time-series data sets while also
comparing the differences in bandwidth and quality of
our approach, a state-of-the-art sampling method, and the
ZFP lossy compressor. We find our approach achieves
higher qualities than other data reduction schemes at low
sampling rates while preserving the region of interest.

The rest of this paper is organized as follows. In Section II,

we discuss related works. In Section III, we describe a few
existing sampling methods that combine to form our sampling
approach, which we discuss in detail in Section IV. Then
we run experiments and provide a detailed evaluation in
Section V. In Section VI, we discuss the different situations
in which our method configurations would be applicable. We
also give a comparison to compression in Section VII. Finally,
in Section VIII, write our concluding statements.

II. RELATED WORKS

Basic data sampling uses simple uniform random selection
techniques [10]-[12]. While these techniques accurately reflect
the original data distribution, they do not consider a data
point’s value or importance to the user. Biasing samples
based on importance enhances the visualization process by
ensuring the preservation of ROIs during reconstruction [4],
[13], [14]. Nouanesengsy et al. developed a basic adaptive
sampling approach, using a user-defined importance function
to determine the ROI [4]. A statistical data sampling method
based on entropy maximization is proposed in [14] to utilize
a histogram of data values to set importance factors.

Complex simulation models also often have a temporal
aspect as the data changes over time. Due to the size of
time-series data produced by supercomputers, offline visual-
ization and examination of multiple time-steps can become
overwhelming for users. For large-scale time-varying data
sets, key time-step selection aids in reducing the number of
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(a) Time-Step 11

(b) Time-Step 12

(c) Time-Step 12

Fig. 1: Hurricane Isabel Pressure Visualizations. Figures a) and b) show the data set divided into regions of dimension
25 x 25 x 25. Figure c) highlights our definition of Region of Interest for this data set.

frames a user has to rebuild, visualize, and interact with.
Akiba et al. developed a method that classifies the time-
variant features within time-series data sets to help choose the
most representative frames [16]. Zhou and Chiang developed a
time-step selection method using information theory to extract
the most optimal time-steps within a data series [15]. Other
works develop techniques where users manually select areas of
interest to make connections and visualize smaller portions of
the time series by employing a time-warp function to enhance
the user’s ability to understand the data series [17] or by
visualizing the hierarchical state transition relationships [18].

III. BACKGROUND

1) Simple Random Sampling: Simple Random Sampling
gives each data point an equal opportunity to be sampled. Per
point, a random number £ is generated before being compared
with a user-specified sampling percentage «, where &, a €
[0,1]. If £ < «, the point is included in the data sample.

2) Importance-Based Sampling: Importance-Based Sam-
pling assumes that rare data values are more important to
the user and biases these values when choosing samples.
The method provided by Biswas et al. gives an importance
factor to each data point such that more frequent values are
assigned a lower priority, while unlikely values are considered
more valuable to the user [13], [14]. The importance factor is
generated using the histogram distribution of values with the
resulting sample set over-representing rare values without ig-
noring common values. Upon deciding all importance factors,
a random number ¢ is generated for each data point. If £ is less
than the importance factor of the data value, the point is stored,
with this process repeating until reaching the sample size. The
data set is sampled down to user specifications through this
process while retaining high quality in important areas. We
use this sampling process as the control method to compare
and evaluate our method.

3) Time-Step Selection: The time-step selection process
analyzes the differences between sequential time-steps to
determine which steps provide a representative overview of the
entire data series. For example, assuming the previous time-
step (tx—1) has previously been selected, we need to decide
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whether to select the current time-step () as well. Upon
comparing the two, if ¢ is similar enough to #;_1, we do
not need to select it as f;_1 is a sufficient representation.

IV. HYBRID SAMPLING METHOD

The related works we previously described explicitly study
how to dynamically sample the most representative subsets
of data points or the best overall time-steps for post-hoc
visualization. In our work, we combine the concepts of both
spatial and temporal techniques to enable improvements in
data reduction.

Within many HPC simulations, large data areas transform
slowly over time with only specific region of interest (ROI)
changing quickly, such that there is a visual difference between
two sequential time-steps. Studying Figures 1a and 1b, we find
that region A changes rapidly between time-steps, region B
changes slightly, and region C stays consistent. As the data in
region C did not alter visually, we use samples from this region
of time-step 11 when gathering samples for time-step 12.
Therefore, by leveraging the data regions that remain relatively
consistent, we utilize previous samples of these regions in
future time-steps to save time and storage.

Our approach leverages both spatial and temporal data
aspects to produce a sampling method that improves post-
reconstruction data quality. To accomplish this, we first need to
quantify the similarities between two corresponding regions of
neighboring time-steps. When determining whether a region is
similar, we first check the distribution of data values within the
corresponding regions. As histograms are lightweight and add
little overhead, they are a valuable way to compare two data
regions. If the two distributions are similar enough, we utilize
the previous samples. However, even though this approach is
fast and lightweight, histograms lack spatial awareness, often
resulting in lower quality than achievable with other similarity
metrics.

Therefore, we introduce the concept of RMSE to quantify
similarity. Using this method allows the user to set an error
tolerance such that only regions with a smaller error between
the current and previous time-steps are reused. While this
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Fig. 2: A schematic workflow of Hybrid Approach.

method produces higher qualities, it does take longer to sample
and requires more storage space.

Figure 2 shows an overview of our process, which consists
of three steps: Division, Decision, and Usage. When sampling,
we first divide each time-step of the data set into equally sized
regions and examine each region’s temporal aspects using an
approach similar to the one seen in Section III-3.

We compare each region of ¢; with the same region of
ti—1 either by inspecting the value histograms or quantifying
the error between data values to decide how similar they are.
Suppose we determine the corresponding regions are too dif-
ferent. In that case, samples from ¢, are necessary to represent
the different data, and in this case, we use the Importance-
Based sampling process from Section III-2 to gather samples
from t;. However, if the two regions are similar enough and
samples from ¢; are not necessary, we either choose to reuse
the samples from t;_; for ¢, or use them in addition to new
samples from ;. Overall, our approach includes two internal
methods for comparing regions over time-steps (2. Decision)
and two for determining what to do with those regions (3.
Usage). To enable a more tailored approach, the user has
control over all options.

A. Division

From Figure 1, we see there are many regions within
sequential time-steps where the data has changed little. Our
sampling method utilizes samples from ¢;_; in regions where
the data is near identical to the same region of ¢;. To select
which regions are similar over time, we first define each
region’s specific boundaries by dividing each time-step into
blocked regions, as we show in Step 1 of Figure 2. The user
defines the region’s size based on their data set’s properties
such that it is optimal, as discussed in Section V-C. As each
data set is unique, setting an appropriate region size is crucial
for optimal performance as a region size too small or too large
affects overall efficiency.

B. Decision

With the data divided into regions, we compare each region
of t, to the corresponding region of t;_; to decide when to
use previous samples.
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1) Histogram Intersection: A data value histogram is a
low-storage approach that shows the distribution of data values
within a particular region. By quantifying the distance between
corresponding histograms of the data values within a region in
ti and tj_1, using Histogram Intersection (see Eq. 1), we find
if they are similar enough to utilize previous samples. Here, p;
is the number of elements in the ¢th bin of the value histogram
of t;_; and g; is the number of elements in the corresponding
ith bin of the histogram of ¢, and n is the total number of
bins. We normalize the intersection value by dividing by g¢;,
such that the results are always between O (no intersection)
and 1 (identical distributions).

S min(pi, ¢;)

Z?:l (a:)

In the following experiments, we use histogram intersection
to quantify the difference between value histograms; however,
other probability distribution comparison methods were im-
plemented, including KL Divergence, Bhattacharyya Distance,
and Chi-Squared, and all show near-identical results.

Figure 3a shows the histogram intersection that is calculated
between time-steps 11 and 12 of the Hurricane Isabel Pressure
data set. In the regions where the value histograms fully
intersect (i.e. 1.00), the data value distribution of that region
has not changed; thus, we use the samples from ¢;_.

By utilizing histograms, we face the question of what
number of bins to use, as more bins create a more specific
distribution of the data, yielding higher dissimilarity probabil-
ity. In our experiments, we use 16 bins for all experiments, as
further discussed in Section V-B.

2) Error Based: The disadvantage of the histogram similar-
ity method is the loss of spatial information. Just comparing
the value distributions leads to the potential introduction of
error when reusing incorrectly placed samples. If too much
error is added, the reconstructed data set’s quality may be
lower than anticipated.

To resolve this, we look at the error between data points.
This method considers the data values and locations of previ-
ous samples for a specific region and compares them to the
current value at that location. If the root mean squared error
(RMSE) (see Eq. 2) for all previous samples within a region is
greater than the user-specified error, we do not reuse threshold
samples as they introduce more error than wanted. Here, p; is
the ith element in the region in ¢;_1, g; is the corresponding
element in ¢, and n is the number of elements within the
region. Figure 3b shows the RMSE between corresponding
regions of time-steps 11 and 12.

(D

S(pi — q;)?

n

2)

C. Usage

We utilize samples from a previous region if either the re-
gion’s value histograms are identical or if the error introduced
is low, but we need to determine what to do with these previous
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Fig. 3: Intersect and RMSE of time-steps 11 and 12 for

Hurricane Isabel Pressure data set.

samples: reuse them instead of taking current samples or use
them in addition.

1) Reuse Previous Samples Instead: The reuse methods
use regions of previous samples instead of gathering new
samples. Originally, we collected sample values and their
locations for all regions in each time-step. Using the reuse
methods, if a region in t; is similar to the same region in
ti—1, we record a flag symbol and reuse samples for this region
from t;. By only storing a flag value instead of unnecessary
samples, the resulting raw files of information are smaller than
the methods that do not reuse samples. From the information
gathered in Figure 4, we find that we save 25% - 31% of the
original storage amount by reusing samples for some regions
instead of using more space on taking new samples as we vary
sample rate.

Paraview [19] is a common tool for visualizing large data
sets; among its Visualization ToolKit file formats is the Vi-
sualization Toolkit Polygonal Data (VTP) file, that aids in
visualizing unstructured polygonal data sets of combinations
of vertices. Upon time for the user to view the sampled data,
we create a VTP file by locating all of the samples in flagged
regions and are conglomerated. The VTP file containing all
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Fig. 4: The amount of storage each method needs to save
samples, using the Hurricane Isabel Pressure data set.

samples for this time-step is only dependent on the sample
files of the previous time-step, as regions from ¢;_; are
only considered for reuse if it did not reuse samples from
tx—o. This method alleviates any domino-like dependencies,
thus to visualize and analyze the data for t;, we only need
access to samples from the two time-steps t; and ¢;—1. Once
we conglomerate current samples with previous samples in
flagged regions, we use this VTP file to reconstruct the data
set.

These reuse methods take less storage by sacrificing post-
reconstruction quality. In some scenarios, it is beneficial to
accept the slight drop in quality from reusing samples in trade
for less storage space; however, we design our methods behind
the concept that the user has specified a storage constraint in an
in situ situation. Since the user specifies a budget for storage,
it reasons that they want to utilize all of that space in order
to yield higher post-reconstruction quality. To fill this unused
storage budget, we add a layer of simple random samples on
top of the samples gathered thus far in regions that are not
reusing previous samples.

Each method now generates enough new samples to fill the
storage constraint, without going over. The reuse methods have
access to more samples overall than the control method. This
means that the reuse methods yield higher qualities on average
than methods that do not reuse samples, because more samples
generally means higher quality, as we have more true values
of the data, and fewer data points need to be reconstructed.

2) Use Previous Samples in Addition: The reuse methods
use simple random sampling to gather more samples, while the
addition-based methods choose samples solely using advanced
methods. Here, we sample according to the data set’s value
histogram as described in Section III-2 for every time-step,
then we use samples from ¢;_; in addition to what we sample
for ;. We go through the same process of determining which
regions are similar enough to utilize the samples from their
previous time-step and flag those regions. Upon construction
of the VTP file, these previous samples are gathered together.
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D. Method Combinations

Below, we specify the four combinations of our method,
based on when and how to utilize previous samples as “HR,”
“ER,)” “HA)” and “EA.” We also define the baseline for
evaluating our methods as “control.”

1) “HR” - Histogram Based Reuse: Reuses samples from
ti—1 instead of taking samples from ¢y, if the value histograms
between corresponding regions are identical.

2) “ER” - Error Based Reuse: Reuses samples from ¢5_;
instead of taking samples from ti, if the RMSE between
corresponding regions is less than a user specified error
threshold.

3) “HA” - Histogram Based Additions: Appends samples
from t;_; to the samples gathered for the same region in
ty, if the value histograms of the corresponding regions are
identical.

4) “EA” - Error Based Additions: Appends samples from
ti—1 to the samples gathered for the same region in ¢, if the
RMSE is tolerable.

5) “Control” - Spatial, Time Independent Method: We use
the value-based importance method implemented by Biswas
et. al [13] as the base comparison for our methods, as it is the
state-of-the-art algorithm that we found our methods upon.

V. EXPERIMENTS

All experiments are run on Clemson University’s Palmetto
cluster using phase 8c nodes which have a 16 core Intel Xeon
E5-2665 CPU and 64GB of DDR3 RAM.

A. Data Sets

1) Hurricane Isabel: The Hurricane Isabel Data models
the 2003 hurricane in the west Atlantic region [20]. This data
was produced by the Weather Research and Forecast model,
courtesy of NCAR, and the U.S. National Science Foundation.
In the following experiments, we use the pressure variable, as
it provides a distinct representation of the eye of the hurricane,
the ROI of this data set (Fig. 1c). We use 48 time-steps with
a down-sampled spatial resolution of 250 x 250 x 50.

2) Exascale Additive Manufacturing Project: (ExaAM)
uses exascale simulations to design Additive Manufacturing
components [21], [22]. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S.Department of Energy Office of Science
and the National Nuclear Security Administration. For the
following experiments, we use 108 time-steps with its full
spatial resolution of 20 x 200 x 50. We experiment with this
data set primarily to show the difference in results when using
a smaller data set that has more time-steps. Figure 5 shows
time-step 64 of this data set, with highlighted ROI.

B. Determining Number of Bins

To better understand the effects number of bins has on
the amount of data intersection between two corresponding
regions over two time-steps and to determine the optimal
number of bins to use, we evaluate the effects different
numbers of bins have on our results. This evaluation uses the
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Fig. 6: Amount of distribution intersection with varying num-
ber of histogram bins at three regions with varying entropy
within the Hurricane Isabel Pressure data set, seen in Figure 1.

three regions specified in Figures 1a and 1b from the Hurricane
Isabel Pressure data set and plots the histogram intersection
between time-steps 11 and 12 for each region.

From Figure 6, we find fewer histogram intersections be-
tween the two histograms as we increase the number of bins
used to construct them. Using more bins, we parse values
out to more specific bins, reducing the areas where both
histograms can overlap. This trend is especially true within
regions of high entropy, like region A. We find this concern-
ing as, without enough intersections, our method is left un-
optimized and will rarely utilize previous samples. Conversely,
using a lower number of bins enables our method to group
more items. Still, too few bins lead to excess intersections,
resulting in high levels of error in the data. We confirm these
results by running similar experiments using the ExaAM data
in which we found similar results.

In order to better understand the correlations between the
number of bins we use and the region size we use, we evaluate
different combinations of each. From Figures 7a and 7b, we
likewise find varying the number of bins has similar effects,
independent of region size. Specifically, we find using a higher
number of bins leads to much lower levels of reuse for all
region sizes we test. Therefore, based on these results, we use
16 bins for all our experiments as we find this number of
bins enables an adequate amount of sample reuse while also
retaining high levels of quality in the data.

When determining whether to utilize previous samples from
a particular region, we only do so when both histograms are
identical, enabling us to maintain high data quality. From
Figure 6, we find the number of bins directly affects what
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Fig. 7: Percentage of previous regions utilized, varying number of bins and region sizes.

percentage of regions are reused, with more bins leading to
less reuse. This is due to the higher number of bins leading
to more specific bins, making identical histograms less likely.

C. Determining Region Size

As the number of data regions affects sampling results,
we evaluate the effects of multiple different region sizes and
quantify their impact. Specifically, in Figure 8, we assess
region sizes that split the time-steps 11 and 12 of the Hurricane
Isabel Pressure data set into regions ranging from O to 25,000
regions. In this assessment, we compare the percentage of
regions utilized from time-step 11 when gathering samples
for time-step 12, using 16 bins in our histograms. We repeat
this process in Figure 8 where we assess region sizes that split
the time-steps 64 and 65 of the ExaAM data set into regions
ranging from 0 to 25,000 regions.

Analyzing both these figures, we find dividing the data
into more regions enables our method to reuse more samples
than when dividing the data into fewer regions. With more
regions, our method utilizes more data from the previous time-
step, as we further separate regions of high entropy from
those of low entropy. However, adding additional regions also
increases the number of similarity comparison computations,
which drastically slows down the algorithm, as shown in
Figures 9a and 9b. From these two figures, we find increasing
the number of regions the data is split into generally leads
to reduced bandwidth. The process slows down with more
regions because we calculate the similarity between every
corresponding region between two neighboring time-steps;
thus the more regions we have, the more calculations that
have to be made. Therefore, when determining the number
of regions to divide the data set into, we choose a middle-
ground number to have a more general amount of previous
time-step utilization.

Based on our findings, we divide the Hurricane Isabel data
set into 200 (sized 25 x 25 x 25) regions and ExaAM into 400
(sized 5 x 10 x 10) regions for the following experiments.
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D. Sampling Bandwidth

As reducing the overhead incurred while gathering samples
is critical to optimizing our approach, we analyze the sampling
overhead independent of I/O and reconstruction overhead. Fig-
ure 11 shows the average bandwidth of each sampling method
over the 48 time-steps of the Hurricane Isabel Pressure data
set. The control method performs with the highest bandwidth,
as all of the other methods are based upon it, but spend
extra time checking every region to determine to use previous
samples or not. While the control and HR methods maintain a
reasonably consistent bandwidth as the sample rate increases,
the ER linearly decreases because the higher the sampling
rate, the more samples that are kept for each time-step. Since
we keep more samples, more work is needed to calculate
RMSE, which linearly increases the amount of time it takes to
calculate which previous regions to use and affects the overall
sampling bandwidth. HA and EA both decrease as sample rate
increases because we have to check the location of samples
taken for ¢;_; to make sure they do not overlap any of the
samples taken for ¢;. If there is any overlap, we remove those
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Fig. 9: Bandwidth (MB/s) of calculating which previous regions to utilize.

samples from t; and pick new samples for that time-step.
When evaluating the ExaAM data set, we find comparable
results.

E. Samples Gathered

Each of our sampling configurations generates a different
number of total samples, based on which and how many
regions they determine to utilize. Table I shows the average
percentage of utilized previous regions and the total number of
samples gathered when sampling the Hurricane Isabel Pressure
data set with varying sample rate. The ER method has the least
number of samples because it is the most selective of which
regions to reuse. When we reuse fewer regions, fewer random
samples are added, therefore lowering the overall number of
additional samples. The HA method has the most number
of samples because using histogram intersection to determine
which regions to reuse allows more regions to be reused.

The time series data set’s unchanging regions are most likely
not part of the ROI, as the interesting data values usually move
and change over time. Since the HR and ER methods reuse
samples in regions that do not change much between time-
steps, they have more storage available to add more samples
from these interesting features randomly. Figures 10a and 10b,
demonstrate this notion, as when sampling the ExaAM data
set at a 0.1% sample rate, the HR and ER methods have more
samples clustered around the ROI. The HA and EA methods,
however, use the previous samples in addition to samples taken
for the current time-step; thus, Figures 10c and 10d show more
samples outside of the ROI.

Our sampling methods do not explicitly find the boundaries
of the ROI, nor do they take in an extra parameter to specify
these bounds. By their nature, they either have more samples
in the static regions (HA and EA) or in the dynamic regions
(HR and ER), which usually corresponds to regions outside
and inside the ROI, respectively.

F. Post-Reconstruction Quality

We use linear interpolation using a Delaunay triangulation
to reconstruct the data set from our samples, then compare the
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quality of our new visualization of the data with the original
by calculating the signal-to-noise (SNR), defined as

UTG/UJ

SNR =20 x logw (3)

Onoise

where 0,4, is the standard deviation of the original data
and 0,.ise 1S the standard deviation of the error of the
reconstruction (calculated as the difference between original
and reconstructed data values). Error bars of the standard
deviation are included to show the average range of each of
the methods as well.

We first experiment with the Hurricane Isabel Pressure data
set. Since this data set has a relatively small number of time-
steps, we are able to manually specify an independent ROI
boundary for each of the 48 time-steps after we have gathered
our samples and reconstructed the data set. We do so to
calculate the average SNR of both the overall data set and
the ROI across time.

Figure 12a shows that over the entire region, as sample rate
increases, the SNR of all methods scale linearly and the ER
method yields the highest quality. Specifically looking at the
quality of the ROI, Figure 12b shows that HR and ER yield
the highest SNR.

When experimenting with the ExaAM data set, we measure
quality only for the overall data set, as manually defining the
ROI for over 100 time-steps becomes too time-consuming and
not practical for the typical end-user. Even without being given
specific ROI dimension and location, our method innately
yields higher quality in the vastly changing data set regions,
which are usually part of the ROI. Figure 12c¢ shows that
overall, the reuse methods again choose samples that yield
the highest SNR. We achieve higher overall SNR values for
the ExaAM data set, because our methods work best with data
sets that evolve smoothly over time. The Hurricane Isabel data
set has an identifiable ROI to track over time, but the data in
other regions, like clouds, are moving more sporadically while
ExaAM consists of a ROI and static surrounding areas.
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Fig. 10: Samples in Our Four Method Combinations, Using the ExaAM data set and a sample ratio of 0.1%

| Ratio | Control | HR ER HA EA

0.5% 0 53% 35% 53% 63%

Regions 1% 0 53% 35% 53% 63%
Reused 2% 0 53% 35% 53% 63%
0.5% 15.6k 192k  18.7k 192k  19.2k

Samples 1% 31.3k 38.8k 37.8k 39.0k 38.8k
2% 62.5k 79.8k  77.1k  80.0k  79.4k

TABLE I: Hurricane Isabel Pressure Data set comparison of
samples gathered per method (16 bins; 200 regions).

VI. DISCUSSION

The user’s constraints dictate which method is best to
use. For users with strict time constraints, the original, time-
independent method is the better option, as it spends no
extra time making comparisons between time-steps, while
our method introduces an overhead. The second best method
would be to use Histogram Based Reuse, as it will yield
slightly higher quality while taking slightly more time. Our
other three methods may take too much overhead in speed for
the improvements in quality they bring.

For users with a strict cache constraint, like an in situ
situation where large simulation data is taking the majority
of storage, both the original time independent method and the
HR method are viable options, as they use very little to no
extra space.

Lastly, if the user has a strict quality constraint, the ER
method becomes the best option, because it, on average, yields
the highest quality.

VII. COMPARISON WITH COMPRESSION

Lossy compression achieves higher compression ratios than
standard lossless compression through the addition of some
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Fig. 11: Average sampling bandwidth (GB/s) of 48 time-steps
of Hurricane Isabel data set (16 bins; 200 regions).
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| Ratio | HR_  ER  HA  EA | ZFP
0.1% | 21.13  20.16 18.89 19.08 | -
05% | 2923 2806 2551 2579 | 14.96
ROI 1% | 3139 3060 28.80 29.00 | 27.44
2% | 33.07 3257 3128 3135 | 38.64
0.1% | 1434 1475 1465 1483 | -
05% | 1666 17.08 1681 16.77 | 14.41
Overall | 1% | 17.86 1826 17.90 17.88 | 27.44
2% | 1867 1919 1915 19.07 | 39.96

TABLE II: Hurricane Isabel data set SNR comparison to ZFP
and methods, with varying sample/compression ratio.

inaccuracies within the data [9], [23]-[28]. Both lossy com-
pression and data sampling aim to reduce the overall data size
while introducing error within the data, but their approaches
are fundamentally different. In this section, we compare the
quality overall and feature regions of our novel methods to the
industry standard lossy compressor ZFP [9].

We compare our results against ZFP’s Fixed-Accuracy
mode, where the user provides an absolute error bound, which
ensures all data is kept with similar accuracy. We choose this
mode as it is the ZFP configuration that yields the highest
compression ratios while also retaining high levels of data
quality. While ZFP has a Fixed-Rate mode where the user sets
a fixed compression ratio, we set the configuration to yield the
highest compression ratio possible and were not able to reach
the high compression ratios needed for our comparison.

To accurately compare ZFP’s Fixed-Accuracy mode against
our four sampling methods, input parameters must be set
in all such that similar compression ratios are the result.
This process is straightforward when using our four sampling
methods as they are capable of reducing data size to a specified
compression ratio. However, this is not the case with ZFP, as a
trial-and-error process or a tool such as FRaZ [28] is needed to
determine an error bound that results in a specific compression
ratio, but at a high cost.

A. Evaluation

When comparing ZFP against our four methods, we use the
average of 48 consecutive time steps of the Hurricane Isabel
Pressure data set. When looking at the bandwidth of all trials
in Figure 11, we show that all of our sampling methods reduce
data size faster than ZFP; however, as sampling rate increases,
HA and EA begin to reach the speeds of ZFP.

In Table II, we list the SNR of the ROI and the overall
region. We design our sampling method to work at low
sampling rates (< 1%); thus each of our method configurations
achieve greater quality than ZFP in both the ROI and overall
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when the sample ratio is extremely low. In fact, ZFP was
unable to produce decent representations of the data after
decompression for a sample ratio of 0.1% (a compression ratio
of 1000:1); however, as the sample ratio increases, ZFP begins
to outperform the level of quality data sampling can achieve.
Across sampling rates, ZFP shows an even SNR across the
data set, while our methods consistently yield higher quality
within the ROI, which is specifically intended in our design.

VIII. CONCLUSION

In this paper, we combine spatial and temporal data reduc-
tion techniques to enable a higher post-reconstruction quality
than existing reduction methods. We show that by utilizing
samples from certain regions in the previous time-step, we
achieve an improvement in quality both overall and in the
region of interest. Our method’s process depends on user
constraints, which dictate how to determine which regions to
utilize and how to use those samples. This user input and
method flexibility enable us to have the better method in
several categories.
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