
ARC: An Automated Approach to Resiliency for Lossy
Compressed Data via Error Correcting Codes

Dakota Fulp
dakotaf@clemson.edu

Holcombe Department of Electrical
and Computing Engineering
Clemson, South Carolina, USA

Alexandra Poulos
alpoulo@clemson.edu

Holcombe Department of Electrical
and Computing Engineering
Clemson, South Carolina, USA

Robert Underwood
robertu@clemson.edu
School of Computing

Clemson, South Carolina, USA

Jon C. Calhoun
jonccal@clemson.edu

Holcombe Department of Electrical
and Computing Engineering
Clemson, South Carolina, USA

ABSTRACT
Progress in high-performance computing (HPC) systems has led
to complex applications that stress the I/O subsystem by creating
vast amounts of data. Lossy compression reduces data size consid-
erably, but a single error renders lossy compressed data unusable.
This sensitivity stems from the high information content per bit
in compressed data and is a critical issue as soft errors that cause
bit-flips have become increasingly commonplace in HPC systems.
While many works have improved lossy compressor performance,
few have sought to address this critical weakness.

This paper presents ARC: Automated Resiliency for Compres-
sion. Given user-defined constraints on storage, throughput, and re-
siliency, ARC automatically determines the optimal error-correcting
code (ECC) configuration before encoding data. We conduct an ex-
tensive fault injection study to fully understand the effects of soft
errors on lossy compressed data and how to best protect it. We
evaluate ARC’s scalability, performance, resiliency, and ease of use.
We find on a 40 core node that encoding and decoding demonstrate
throughput up to 3730 MB/s and 3602 MB/s. ARC also detects and
corrects multi-bit errors with a tunable overhead in terms of storage
and throughput. Finally, we display the ease of using ARC and how
to consider a systems failure rate when determining the constraints.

CCS CONCEPTS
• Theory of computation → Data compression; • Software
and its engineering → Software fault tolerance.

KEYWORDS
error-bounded lossy compression, SZ, ZFP, soft error, error correct-
ing codes, error propagation, silent data corruption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460638

ACM Reference Format:
Dakota Fulp, Alexandra Poulos, Robert Underwood, and Jon C. Calhoun.
2021. ARC: An Automated Approach to Resiliency for Lossy Compressed
Data via Error Correcting Codes. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’21), June 21–25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3431379.3460638

1 INTRODUCTION
High-performance computing (HPC) systems have become a critical
part of scientific discoveries and have made solving previously in-
tractable problems possible. However, HPC applications are rapidly
producing vast amounts of data, causing significant bottlenecks
in the I/O subsystem [14, 24]. Scientists often use various types of
compression to reduce the size of these datasets.

Lossless compressors, such as GZip [11] and ZStd [5], reduce
data size with no loss in precision through statistical modeling and
data value mapping. However, due to the high entropy of the man-
tissa bits in HPC floating-point data, they suffer from suboptimal
compression ratios [30].

Lossy compressors, such as the industry-standard compressors
SZ [7] and ZFP [20], achieve higher compression ratios by re-
ducing data precision, making them ideal for HPC floating-point
data [3, 4, 7, 10, 18, 20, 36]. The user controls the precision reduction
through an error-bounding value and mode, allowing them to set
the tolerable amount of error to introduce.

The likelihood of encountering soft errors exist for all HPC
applications and data. Using Sridharan et al.’s work, in Section 6.4,
we calculate soft error failures occur every 1.9 days on the Cielo
HPC system [31, 33]. However, this rate does not include undetected
soft errors, which cause silent data corruption (SDC). Figure 1
demonstrates the impact of a single-bit soft error at two different bit
locations in the SZ lossy compressed Hurricane Isabel dataset when
using an error bound of 0.1. In Figure 1(b), the error occurs in bit
400,005 of the compressed data, while in Figure 1(c), the error occurs
in bit 465,840. When decompressed, both resulting datasets have a
high percent of incorrect elements, defined as the number of data
points whose error violates the user set error bound. Specifically,
Figure 1(b) and Figure 1(c) have 49.6% and 99.4% incorrect elements.
While lossy compression demonstrates a severe sensitivity to soft

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

57

https://doi.org/10.1145/3431379.3460638
https://doi.org/10.1145/3431379.3460638

(a) Control (b) 49.6% Incorrect (c) 99.4% Incorrect

Figure 1: Effect of a single-bit soft error at two different lo-
cations in the Hurricane Isabel pressure dataset compressed
with SZ-ABS and an error bound of 𝜖 = 0.1.

errors, few works have aimed to understand the effects on and
protect lossy compressed data from these errors [15, 16, 22, 28].

In this paper, we obtain a better understanding of bit corrup-
tion’s impact on lossy compressed data through an extensive fault
injection study. Using these findings, we develop ARC: Automated
Resiliency for Compression, which automatically secures lossy
compressed data fidelity using error-correcting codes (ECC) while
following user constraints on storage, throughput, and resiliency.
Without ARC, a single soft error renders lossy compressed data
unusable; by using ARC, error propagation and SDC are no longer
likely. Specifically, our novel contributions are as follows:

• We conduct an extensive fault injection study on two of
the most notable lossy compressors, SZ [7] and ZFP [20].
Our findings show the effects of a single soft error range in
severity based on the location of the bit corrupted and the
lossy compression algorithm used.

• Using the results of our fault injection study as a guide, we
develop ARC to preserve data fidelity in the presence of soft
errors. User-defined constraints on storage, throughput, and
resiliency allow ARC to choose and apply the optimal ECC
configuration to secure lossy compressed data while still
being flexible for use in various HPC domains.

• We evaluate ARC’s abilities on the criteria of scalability,
performance, resiliency, and ease of use. We find ARC meets
user constraints on storage, throughput, and resiliency while
demonstrating encoding and decoding throughput of 3730
MB/s and 3602 MB/s, respectively, on a 40 core node. We
also find that ARC requires minimal effort to integrate and
protects from multi-bit errors while having a tunable storage
and throughput overhead.

2 BACKGROUND
2.1 Lossy Compression Algorithms
HPC scientists often use compression to reduce data sizes and re-
solve I/O bottleneck issues [3, 4, 7, 10, 18, 36]. Lossless compressors,
such as GZip [11] and ZStd [5], compress data with no accuracy
loss. However, they are suboptimal for HPC floating-point data as
they can only achieve compression ratios of 1× to 4× [30]. Lossy
compressors, such as the industry-standard SZ [7] and ZFP [20],
use data approximation and partial data omission to represent the

original data at a lower precision. High compression ratios are pos-
sible by introducing user-bounded error, and the effect of this error
has been studied widely across various domains [3, 21, 23, 26].

2.1.1 SZ. uses a block-wise prediction-based compression model
with three main steps [17]. These steps include data point predic-
tions, linear-scale quantization to convert the data to integer codes,
and compression of the integer codes using lossless compression.

In this paper, we examine three error bounding modes of SZ.
Using the absolute (SZ-ABS) mode, each data value uses the same
user-specified error bound, ensuring uniform precision for all val-
ues. Using the point-wise relative (SZ-PWREL) mode, the product
of a data value and the set error bound determine its specific error
bound. This mode assumes larger data values can tolerate more
error while smaller ones require extra precision. Using the peak-
signal-to-noise ratio (SZ-PSNR) mode, the data is compressed to
retain a minimum PSNR rating. PSNR is a prevalent metric that
assesses data distortion when using lossy compression. This mode
focuses on overall data integrity over any single value.

2.1.2 ZFP. uses a block-wise transformation-based compression
model with three main steps [20]. These steps include fixed-point
representation conversion, near orthogonal block transformations,
and embedded coding to encode each bit-plane.

In this paper, we examine two error bounding modes within ZFP.
Using ZFP’s accuracy (ZFP-ACC) mode, each data value uses the
same user-specified error bound, similar to SZ-ABS. Conversely,
ZFP’s fixed-rate (ZFP-Rate) mode divides the data into 4𝑑 sized
blocks, where 𝑑 is the data dimensionality. The product of the user-
defined rate and 4𝑑 determines each block’s compressed size with a
lower rate leading to higher compression and less precision in the
data. Out of all modes we examine, ZFP-Rate mode is the only one
that supports random access as it decouples dependencies between
4𝑑 sized blocks of data. However, as a trade-off, ZFP-Rate mode
cannot bound the introduced error or achieve the other algorithms’
higher compression ratios.

2.2 Error Correcting Codes
Error-correcting codes (ECC) allow for detection and, depending on
the ECC used, correction of one or more errors by adding redundan-
cies to data. ECC is a popular approach to protecting data because
it is application and data agnostic, and it requires significantly less
overhead compared to keeping multiple copies of a dataset. For this
reason, we choose to use ECC to protect lossy compressed data
from errors. In this work, we use four different ECC algorithms.

Parity codes use a single bit to ensure an even number of bits are
set to 1 in the data. After applying parity, if an odd number of bits
set to 1 occurs, the parity bit becomes incorrect and alerts to the
fault. Parity codes have little overhead and detect all odd multi-bit
errors but cannot correct errors or detect even multi-bit errors.

Hamming codes are able to detect and correct a single bit in error
using a parity check matrix and a syndrome to locate the corrupt bit.
The number of bits used to protect each data block depends on the
block’s size, with the overhead decreasing as block size increases.

SEC-DED (Single-Error Correct Double-Error Detect) codes are
a variation of Hamming codes that include an additional parity bit.
Similar to standard Hamming codes, SEC-DED codes are able to

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

58

detect and correct single-bit errors. The additional parity bit allows
them to also detect double-bit errors.

Reed-Solomon codes break data into blocks, called data devices,
and use them to create parity code devices. A Reed-Solomon code
can correct𝑚 corrupted devices, where𝑚 equals the number of
earlier produced code devices. Reed-Solomon encoding introduces
high amounts of overhead but is ideal for handling burst errors.

3 RELATEDWORK
3.1 Fault Injection Studies
Soft errors are becoming increasingly commonplace in HPC sys-
tems, and many previous studies have investigated their impacts [8,
13, 27, 29, 31–34]. While factors such as node temperature and lo-
cation affect the possibility of soft errors [31], failure rates and root
causes vary among systems. With this in mind, few studies have
explored the effects of such errors on compressed data specifically.

In 2017, Avramenko et al. analyzed the effects of soft errors to
gauge their impact on lossless compressed data [1]. In 2020, Li et al.
analyzed SZ’s internal subroutines to discover their susceptibility
to SDC [15]. In 2020, Tao et al. used error distribution-based fault
models to simulate lossy compression errors in HPC applications
to discover the effects of the errors on the application’s results [28].
While each of these works study errors in compressed data, they
focus on lossless compression, internal subroutines, or application-
specific effects of lossy compression errors. This study is broader
as we do not focus on protecting a single lossy compressor, and we
also perform an extensive soft error injection study. To the best of
our knowledge, our work is the first to offer this perspective. When
combined with prior works, this work enables a more complete
analysis of compression soft error sensitivities.

3.2 Error Resiliency Works
As HPC soft errors cannot be prevented entirely, resiliency is vital,
and many previous studies focus on this concept [2, 6, 9, 12, 37].
While their methods vary, the goal of producing error-resilient
systems is central throughout these efforts. However, only a few
studies have aimed to create more error-resilient compressed data.

In 2005, Nguyen et al. developed a fault-tolerant error-detecting
system for the JPEG 2000 image compression standard [22]. In 2020,
Li et al. developed an SDC resilient version of SZ to protect SZ’s
internal operations from errors [15]. In the same year, they also
developed a series of data-analytic-based fault tolerance methods
for applications using lossy compression [16]. Similarly, ARC aims
to protect lossy compressed data but in a decoupled black-box way
that does not require extra knowledge of or changes to existing lossy
compressors and is not bound to any current or future algorithm.

4 SOFT ERROR EFFECTS ON LOSSY
COMPRESSED DATA

Soft errors are a potential threat to all HPC applications and data,
but this is especially true for lossy compressed data as a single
soft error renders the data unusable, as we show in Figure 1. More-
over, HPC data spends long durations compressed, which further
compounds its sensitivity tomemory soft errors. To develop a frame-
work to protect this data effectively, we must fully understand how

soft errors interact with lossy compressed data. In particular, we
aim to examine how soft errors in lossy compressed data lead to
error propagation and reductions in data quality.

4.1 Experimental Design
4.1.1 Compressors. In this paper, we evaluate the resiliency of
two leading lossy compressors: SZ 2.1.8.1 [17] and ZFP 0.5.5 [20].
As we state in Section 2.1, for SZ, we examine three error bounding
modes, and for ZFP, we examine two. We use an error bound of
𝜖 = 0.1 for SZ-ABS, SZ-PWREL, and ZFP-ACC, a PSNR rating of 90
for SZ-PSNR, and a rate of 8 for ZFP-Rate. We chose these bounds
to maintain consistency with other works [17]. We also adjust the
error bounds to test compression ratios of 50×, 25×, 13×, and 7×.

To simplify all interactionswith SZ and ZFP, we leverage the com-
pression abstraction library LibPressio [35]. LibPressio abstracts
user interactions with various lossless and lossy compressors while
normalizing their outputs.

4.1.2 Datasets and System. In our trials, we use three industry
HPC datasets from SDRBench1 that are commonly used in com-
pression studies [7, 17]. First, the CESM dataset is a global climate
model sponsored by the National Science Foundation (NSF) and
U.S Department of Energy. From this dataset, we use the 25.82 MB
2D CLDLOW data. Next, the Hurricane Isabel dataset reflects the
2003 hurricane visualization produced by theWeather Research and
Forecast model, courtesy of NCAR and the NSF. From this dataset,
we use the 100 MB 3D pressure data. Finally, the NYX simulation
studies dark matter in the universe, and from this dataset, we use
the 536 MB 3D temperature data. We use these datasets as they
differ in size and come from a range of scientific domains.

We run all fault injection trials on nodes containing an Intel
Xeon E5-2665 16 core CPU with 128GB of memory.

4.1.3 Evaluation Metrics. In each experiment trial, we flip a
single bit of the compressed dataset stored in application memory.
As exhaustive testing for a single dataset results in between 1million
and 2.7 trillion trials, we use a uniform sampling approach to select
target bits, thus making the study tractable. We conduct a 1%, 0.1%,
and 0.01% uniform sampling of CESM, Hurricane Isabel, and NYX,
respectively, with these sampling sizes chosen based on data size.

After flipping a bit, we attempt to decompress the data and record
the decompression return status. These statuses allow us to deter-
mine the percentage of trials that continue to use the defective data
and, in turn, lead to error propagation and silent data corruption
(SDC). If the data decompresses, we analyze the resulting data to
quantify its integrity and accuracy with regard to the original data.

We employ four metrics to analyze the data integrity. First, we
record the percent of incorrect elements, defined as the number of
data values whose error violates the set error bound. This enables
us to assess the extent of error propagation in the data. We collect
this metric in all trials except those using the SZ-PSNR mode, as
PSNR does not bound error at each value. Second, we record the
maximum absolute difference between the corrupted and original
dataset. Without corruption, this value is within the set error bound.
Using this metric, we quantify the extent to which the data cor-
ruption violates the error bound. Third, we record the PSNR of the

1https://sdrbench.github.io/

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

59

https://sdrbench.github.io/

Figure 2: Distribution of return statuses for all fault injection trials.

corrupted data to compare its data quality to the original. When
calculating PSNR, we first compute the root-mean-squared error
(RMSE), as seen in Equation 1, where 𝑁 is the data size, 𝑑𝑖 is each
data point of the original data, and 𝑑 ′

𝑖
is the corresponding data

point in the corrupted data. Using this, we compute the PSNR, as
seen in Equation 2, where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the maximum and
minimum values of the original data. Finally, we record the cor-
rupted data decompression bandwidth to expose any changes in
throughput caused by the error. Using these metrics, we discover
all changes in decompression and the resulting data quality.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑
𝑖=1

(𝑑𝑖 − 𝑑′
𝑖
)2 (1)

𝑃𝑆𝑁𝑅 = 20 × 𝑙𝑜𝑔10 (
𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

𝑅𝑀𝑆𝐸
) (2)

4.2 Error Effects on Decompression Process
Using our results, we start by examining all return statuses and
group them into four categories: Completed, Compressor Exception,
Terminated, and Timeout. In Completed trials, the data successfully
decompresses with the error present, leading to a high risk of error
propagation and SDC. Compressor Exception trials end when the
compressor throws an exception due to the error invalidating the
data. Terminated trials end less gracefully and instead crash the
application suddenly due to the corrupted data. Both Compressor
Exception and Terminated trials do not lead to error propagation
or SDC, but instead lead to lost productivity. Lastly, Timeout trials
mean the trial spent 3× the average time trying to decompress and
are due to corruptions in decompression loop controlling metadata.

Figure 2 shows the distribution of return statuses of all trials.
On average, we find 95.28% of all trials Completed while the other
4.72% of trials fell into the other three categories. It is worth noting
that Avramenko et al. found similar results when studying lossless
compressed program variables, with 41.9% – 96.1% of fault injections
leading to silent data corruption [1]. Comparing our results from
the different datasets, we see similar results with some outliers,
which we attribute to the sample space we test on. These results
are troubling as Completed trials do not acknowledge soft errors
and have a high probability of error propagation and SDC. More
troubling is 100% of trials using ZFP Completed indicating ZFP
will never inherently catch soft error data corruption. Therefore,
if soft errors impact lossy or lossless compressed data, SDC may
potentially alter and degrade the data quality.

4.3 Error Effects on Error Bounding Capability
We next gauge the impact a corruption has on a compressor’s
error bounding ability by focusing only on the Completed trials.
To determine whether the decompressed values violate the error
bound, we calculate the difference between each corresponding pair
of values in the original and decompressed dataset with corruption.
We quantify the frequency for all trials but only show CESM trials
in Figure 3 as the other datasets display similar results.

Figure 3(a), (b), and (c) show the results for SZ-ABS, SZ-PWREL,
and ZFP-ACC, respectively. From this data, we find a single error in
the compressed data leads to an average of ∼10% incorrect elements.
When using SZ-ABS, this percentage ranges from 0.01 – 80%, when
using SZ-PWREL ranges from 0.03 – 64.4%, and when using ZFP-
ACC ranges from 0.002 – 53.6%. This is problematic as, on average,
a single soft error propagates to 10% of data values leading to SDC.
If used, the SDC propagates and corrupts future calculations.

Our findings confirm that certain bits are more important in the
decompression process and are used to reconstruct numerous data
values. If corrupted, these bits lead to corruption in the bulk of the
data. If an error causes order-of-magnitude shifts in the data this

0 49178

(a) SZ-ABS (Avg: 10.04%)

0 543996

(b) SZ-PWREL (Avg: 9.57%)

0 1421540

(c) ZFP-ACC (Avg: 10.32%)

0 6480000

(d) ZFP-Rate (Avg: 3.53 Elements)

Figure 3: CESM: Percent of elements which violate the set
error bound per fault injection location.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

60

could alert the user to the corruption, but this cannot be relied on
as order-of-magnitude shifts do no happen in all cases.

Unlike the other threemodes, we find that when using ZFP-Rate a
single error leads to an average of only 3.53 data values violating the
error bound when decompressed and ranges from 0 – 16 data values.
This can be seen in Figure 3(d) and demonstrates the resiliency block
compression algorithms have due to the removed dependencies
between data blocks. ZFP-Rate mode removes dependencies by
dividing the data into 4𝑑 sized blocks, which prevents the error
from propagating outside of a given block. However, as a result, it
only achieves a compression ratio of 4× while SZ-ABS, SZ-PWREL,
and ZFP-ACC achieve compression ratios of 500×, 45×, and 17×.

4.4 Error Effects at Various Levels of Loss
To fully understand error effects on data compressed to different
levels, we run additional experiments with each dataset and the
SZ-ABS, SZ-PWREL, and ZFP-ACCmodes. We omit ZFP-Rate mode
here as we find consistent results across all compression ratios. By
altering each mode’s error bound, we achieve compression ratios
of 50×, 25×, 13×, and 7× for each mode. We only show the CESM
dataset results as we find similar results with the other datasets.

In Figure 4, the top row corresponds to SZ-ABS, the middle
to SZ-PWREL, and the bottom to ZFP-ACC. Each row of graphs
displays similar trends with higher compression ratios handling soft
errors better, leading to lower percentages of incorrect elements.
We achieve these compression ratios using less strict error bounds,
which tolerate more error in the data and mask small soft errors in
the data as compression errors. For example, to achieve compression
ratios of 50× or 25× with ZFP-ACC, we use error bounds of 10 and
0.5, respectively. While the average value in the CESM dataset is
0.3298, these error bounds introduce too much distortion in the
data to be used in a real-world context. Therefore, while corruption
seems less likely with high compression ratios, the bounds that
mask these errors are ill-suited for scientific data.

From these results, we also find artifacts of the compression
process. As the compression ratio reduces to 13× and 7×, all graphs
exhibit a similar downward slope, with soft errors in bits closer to
the compressed data’s start causing the most corruption.

(a) CR: 50× (b) CR: 25× (c) CR: 13× (d) CR: 7×

Figure 4: CESM: Percent of elements which violate the set er-
ror bound per fault location at increasing levels of loss nor-
malized by compression ratios (CR).
Top: SZ-ABS, Middle: SZ-PWREL, Bottom: ZFP-ACC.

SZ’s compression algorithm uses multiple steps to predict and
efficiently encode the data using a Huffman tree to reduce the num-
ber of bits required for each data value. As a final pass, ZStd further
compresses this data. ZStd starts with a dictionary matching stage
to further reduce the data before performing finite-state entropy
encoding and Huffman encoding. These figures show the structure
of ZStd’s encoding process, with elements used during the recon-
struction process more often towards the start of the compressed
data and the less used elements towards the end.

Conversely, ZFP first splits the data into equal-sized blocks,
aligns them, and converts them to signed integers. ZFP then uses
near orthogonal block transformations to decorrelate block values
before grouping the data by leading zeros, truncating it, and encod-
ing each bit-plane one by one. These figures show the effects of this
grouping and encoding step with a similar pattern to SZ emerging.

4.5 Error Effects on Data Integrity
As the final step in assessing error effects in lossy compressed
data, we quantify the drop in data integrity due to a soft error. To
quantify this, we record the decompression bandwidth and compute
the maximum absolute difference and PSNR for all Completed trials.
Figure 5 shows the averages and variances for each of these metrics
for each configuration and their corresponding control cases.

Decompression Bandwidth: When examining the gathered
decompression bandwidths, we find that all corrupt trials’ average
bandwidth is close to the control trials. In contrast, the standard
deviation of all corrupt trials is higher than the equivalent control
trial. These variances are due to unexpected changes in data values
and cause more unstable decompression bandwidths.

In rare instances, we find very high and low decompression
bandwidths. These are due to corruptions in metadata that control
the decompression process, ending the process early or making the
process loop near infinitely. This drastic change in decompression
bandwidth is an indication of corruption in the data.

Full Dataset Metrics: To investigate the resulting data’s in-
tegrity after an error, we analyze each trial’s maximum absolute
difference and PSNR rating. We find the average maximum dif-
ference in all trials greatly exceeds the set error bound and is on
the order of 1019 – 1038. This orders-of-magnitude shift is due to
soft errors in bits used to rebuild the more significant bits of data
values. The largest shifts occur when the error is in bits used to
reconstruct the exponents of data values. However, looking at the
variance, these orders-of-magnitude shifts are not always the case.
Reviewing the PSNR rating of all trials, we find corrupted trials
have significant drops in average PSNR in most cases. However,
trials using ZFP-Rate mode did not experience such drops due to its
block compression approach. By removing dependencies between
data blocks, the error cannot propagate, resulting in the retention
of a higher PSNR rating. Looking at all trials’ variance, we find the
PSNR rating is not easily predicted and fluctuates depending on the
error location. This is because the PSNR depends on the percent of
incorrect elements and the magnitude shifts experienced.

4.6 Error Effect Observations
With our results, we gain a more in-depth knowledge of how soft
errors affect lossy compressed data. First, we find that all tested

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

61

Figure 5: Average data integrity metrics for all trials.

error-bounding modes, excluding ZFP-Rate mode, cannot suffi-
ciently protect against soft errors. Specifically, 95.28% of all trials
did not recognize the data’s error during the decompression pro-
cess, leading to error propagation and SDC in later calculations. We
also find the location of an error impacts the percent of incorrect
elements that occur. However, as the more error sensitive loca-
tions depend on a range of factors, all bits require equal protection.
Next, we find similar trends across compressors and error bounding
modes when varying the compression ratio. These similarities are
due to the final encoding stages found within both SZ and ZFP.
When analyzing the resulting decompression bandwidth, we find it
is not affected heavily by the error in most cases. However, when
finding a very high or low bandwidth, this signals possible data
corruption. Finally, when examining the resulting data integrity,
we find the maximum difference and PSNR rating after an error
cannot be easily predicted and can vary drastically.

Out of all error bounding modes tested, we confirm ZFP-Rate
mode as the most resilient to soft errors. This is due to it using
fully decoupled block-based compression, which prevents errors
from propagating. However, as we discuss in Section 2.1, its lower
compression ratios and its inability to bound lossy compression
error are limiting factors to its broader use.

Overall, we find that neither SZ nor ZFP handles soft errors effec-
tively while maintaining high compression levels in their current
state. While adjusting the other modes of SZ and ZFP to function
in a similar block-compression manner increases their resiliency,
doing so reduces the compression ratios they can achieve. However,
efforts are necessary as a single error in their current state leads to
an average of ∼10% of data values becoming incorrect.

5 ARC: AUTOMATED RESILIENCY FOR
COMPRESSION

We use the knowledge obtained in Section 4 to combat the error sen-
sitivity exhibited by lossy compressed data. Our results show that
most soft errors go undetected during the decompression process.
As such, we must ensure no errors are present before decompres-
sion occurs. We also must provide equal protection to all bits since it
is difficult to determine the most sensitive in a black box approach.

Current standard techniques to protect data include duplicating
data, algorithm-based fault tolerance (ABFT), and ECC. ECC is a
popular approach as it requires less space than keeping full backups

of data and is application and data agnostic, unlike ABFT. However,
with so many ECC approaches, choosing the optimal protection
scheme is difficult without knowing each implementation’s details.

While hardware-based ECC, such as Chipkill, protects appli-
cation memory, we choose to use a software-based approach for
several reasons. First, hardware-based methods are not always avail-
able such as in an OpenScience Grid computing situation. Second,
in Section 4, we find that lossy compressed data is susceptible to
soft errors, and, as this data stays in storage for long durations, the
level of protection provided by hardware may be insufficient. Using
a software-based approach enables us to ensure lossy compressed
data has sufficient protection that is always available.

To alleviate the difficulty of using ECC and the shortcomings of
hardware-based solutions, we develop ARC: Automated Resiliency
for Compression as a lightweight software-based solution to stream-
line the protection of lossy compressed data.

5.1 ARC Interface
The first element of ARC’s design and its primary point-of-contact
with users is the ARC Interface. The user’s data must first be in the
form of a uint_8 byte array to use ARC. Most lossy compressors
return the compressed data in this form, but by generalizing the in-
put, any uint_8 byte array can use ARC for protection. Avramenko
et al. found that faults in lossless compressed program variables
often leads to silent data corruption [1]. By generalizing, ARC is
capable of resolving lossless and lossy sensitivities.

Figure 6: ARC training cost with various numbers of max-
imum OpenMP threads and the resulting ARC configura-
tions trained.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

62

To use the ARC Interface functions, the user must call ARC’s ini-
tialization function, arc_init(), and provide the maximum num-
ber of OpenMP threads available to ARC. OpenMP 2 is a shared-
memory multiprocessing programming interface often used to
improve the throughput of highly parallelizable tasks. ARC uses
OpenMP to apply thread-level parallelism to boost its throughput
since different configurations of ARC’s ECC approaches do not
significantly differ in runtime. Providing the maximum number
of OpenMP threads sets a resource utilization cap for ARC and is
useful when the host application is fully utilizing system resources,
but the user can send ARC_ANY_THREADS to remove thread restric-
tions. With this input, ARC’s initialization function loads encoding
information resources and begins its configuration training phase.

During this phase, ARC checks its installation directory for a
cache of previously saved configurations and loads them if possible.
If this is the first time running ARC on a system, ARC trains all
ECC configurations on an increasing number of threads up to the
maximum available threads and saves the results. If ARC finds only
a subset of configurations, it loads the available ones and trains as
needed to obtain information on the missing ones. Figure 6 shows
the total training time when initializing ARC with various numbers
of maximum OpenMP threads on an Intel Xeon 6248G 20 core 2-
Way Hyper-Threaded CPU with 372GB of memory. From this graph,
we see that as more threads are available, ARC generates more con-
figurations. By having more configurations to choose from, ARC is
more capable of meeting the user’s constraints. While training extra
configurations takes extra time, the overhead increase is logarith-
mic as ARC uses more OpenMP threads for each training step. This
process is only required once for each number of threads. As such,
ARC’s training phase represents a decreasing amount of ARC’s
total uptime as it is used more on a system. Once initialized, ARC
is ready to encode any uint_8 byte array using the arc_encode()
function, which optionally takes a memory constraint, a throughput
constraint, and a resiliency constraint.

The memory constraint acts as an upper bound on storage and
limits the storage ARC uses when encoding. ARC defines this con-
straint as the fraction of the byte array size the user wants to add as
protection, but the user provides ARC_ANY_SIZE to remove this stor-
age restriction. If the user does not want the input size to increase
more than 25%, a memory constraint of 0.25 ensures ARC does not
exceed this budget. ARC limits its memory overhead through this
constraint, enabling it to maintain high data compression ratios.

The throughput constraint acts as a lower bound for the en-
coding throughput and is defined in units of MB/s, but the user
provides ARC_ANY_BW to remove this throughput restriction. If the
user requires the encoding process to maintain a throughput of
200 MB/s, a value of 200 ensures ARC uses the necessary OpenMP
threads to maintain this throughput. As throughput varies on dif-
ferent machines, the training phase’s results help parameterize this
model. ARC limits its temporal overhead through this constraint,
allowing the application to retain close to its original performance.

The resiliency constraint acts as a filter by limiting potential
ECC methods to those chosen by the user. This constraint takes an
array of any combination of ECC method flag values (ARC_PARITY,

2https://www.openmp.org/

ARC_HAMMING, ARC_SECDED, and ARC_RS), error-response flag val-
ues (ARC_DET_SPARSE, ARC_COR_SPARSE, and ARC_COR_BURST), or
the number of expected uniformly distributed soft errors per MB of
data. When using the ECC method flags, ARC uses only the speci-
fied ECC methods. When using the error-response flags, ARC uses
only the ECC methods capable of detecting sparse uniformly dis-
tributed errors, correcting sparse uniformly distributed errors, and
correcting densely packed burst errors, respectively. Lastly, when
directly entering the number of expected uniformly distributed soft
errors per MB of data, ARC uses only the ECC methods capable of
correcting those errors. For instance, if the user predicts over a six-
teenth of each MB of data will encounter a soft error, ARC only uses
Reed-Solomon due to the high possibility of burst errors. However,
at lower rates, ARC uses SEC-DED or Reed-Solomon as the likeli-
hood of burst errors occurring is lower. Through this constraint,
ARC guarantees to provide the desired level of resiliency.

Using these constraints, ARC encodes the data as we show in
Figure 7a. ARC begins by passing these constraints to the encoding
optimization functions. It then uses the resiliency constraint to filter
the potential ECC configurations down to the user-specified set.
ARC then looks through this set of configurations to find the one
whose memory overhead is under but closest to the memory con-
straint and whose throughput is above but closest to the throughput
constraint. If no configuration meets these requirements, ARC used
the ECC method with the memory overhead closest to the memory
constraint and the configuration of this method whose throughput
is closest to the throughput constraint. Using this configuration,
the ARC Engine then encodes the uint_8 byte array and passes
the encoded data back to the user through the ARC Interface.

To access the encoded data, users call ARC’s decode function,
arc_decode(), as we see in Figure 7b. In this case, the ARC Inter-
face passes the encoded data to the correct ARC Engine decoding
function, which checks for data errors. If errors are detected and
cannot be corrected, ARC sends an error to the user. When ARC

Input Data

Compression

ARC

Hurricane Isabel NYXCESM

SZ ZFP

arc_init()

arc_encode()

Floating-Point Data

Byte Array

Parity

ECC Encoding Methods

Hamming SECDED Reed-Solomon

Encoded Data Array

Encoding Optimization

memory throughput resiliency

LibPressio . . .GZip

(a) Encoding.

Input Data

ARC arc_init()

arc_decode()

Parity

ECC Decoding Methods

Hamming SECDED Reed-Solomon

Error Detected &
Uncorrectable

Error Corrected
or Error Free

Raise Error

Encoded Data Array

Decompression

SZ ZFP LibPressio . . .

Decompressed Input Data

By
te

 A
rr

ay

GZip

(b) Decoding

Figure 7: Overview of ARC.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

63

https://www.openmp.org/

finds no errors or the errors are correctable, the byte array is re-
paired, if necessary, and returned to the user.

When ARC is no longer needed, users must call the arc_close()
function. This function calls the arc_save() function to update all
cached configurations with up-to-date versions gathered during
normal ARC operations. This step is critical as ARC’s throughput
may fluctuate, and this ensures all estimations are kept accurate.
Finally, this function frees all memory ARC is currently using.

5.2 ARC Engine
Another way to interact with ARC is through the ARC Engine
functions we list in Table 1. These functions are split into two main
categories: constraint optimization and encode/decode functions.

The constraint optimization functions consist of three functions:
arc_memory_optimizer(), arc_throughput_optimizer(), and
arc_joint_optimizer(). Each of these accepts a resiliency con-
straint as well as a memory constraint, throughput constraint, or
both. These functions provide ARC’s suggestions on which config-
uration best suits the provided constraints. However, the user can
ignore these suggestions for any reason.

The encode/decode functions consist of four pairs of functions,
with each pair corresponding to an ECC approach we discuss in
Section 2.2. ARC’s first ECC is single-bit even parity, which applies
a minimal amount of redundancy to each equally-sized data block
in the form of a single parity bit to reduce the possibility of SDC.
To use this ECC directly, the user must provide the number of
data bytes per parity bit. While this approach introduces the least
overhead, it is vulnerable to multi-bit errors. The second and third
approaches offered are standard Hamming and SEC-DED codes.
Both generate parity bits for one byte or eight byte data blocks at a
time. While both algorithms have more overhead than parity, they
both detect and correct single-bit corruptions, with SEC-DED able
to detect 2-bit errors. The final ECC ARC offers is Reed-Solomon
encoding by leveraging the abilities of Jerasure3. Jerasure is an
erasure coding library that efficiently encodes data with various
erasure coding algorithms. While Reed-Solomon encoding provides
the highest protection of all algorithms, it does result in the most
storage overhead and slowest throughput. By offering these ECC
algorithms, the ARC Engine offers a full range of protection levels.

Using the ARC Engine directly gives users more control over
how their data is protected and enables developers to integrate ARC
Engine functions directly into their applications. By integrating
ARC as the last step in a lossy compression algorithm or library
such as LibPressio, lossy compressed data is vulnerable for a shorter
period. However, ARC is not restricted to these ECC or constraint

3http://web.eecs.utk.edu/∼jplank/plank/www/software.html

Functions

arc_memory_optimizer() arc_hamming_decode()
arc_throughput_optimizer() arc_secded_encode()

arc_joint_optimizer() arc_secded_decode()
arc_parity_encode() arc_reed_solomon_encode()
arc_parity_decode() arc_reed_solomon_decode()

arc_hamming_encode()

Table 1: Available ARC Engine functions.

and supports further custom ECC algorithms and constraints to
support user needs.

6 ARC EVALUATION
When developing ARC, we set four main goals for its design: scala-
bility, performance, resiliency, and ease of use. To evaluate ARC,
we examine how it scales with extra resources, meets user needs,
provides protection, and we demonstrate ARC’s ease of use on two
recently decommissioned real-world HPC systems.

6.1 Scalability Evaluation
As ARC intends to solve HPC system soft error issues, it is critical
to scale efficiently so the host application maintains performance.
Therefore, to evaluate ARC’s scaling capabilities, we must under-
stand how each ECC algorithm scales with more OpenMP threads.

When evaluating how ARC’s provided ECC algorithms scale, we
run on an Intel Xeon 6248G 20 core 2-Way Hyper-Threaded CPU
with 372GB of memory and set the maximum number of threads
for ARC to 40. We run ten trials using the CESM dataset for each
ECC and thread count combination with the averages and standard
deviation for the encoding and decoding processes and show the
results in Figure 8 and Figure 9. From Figure 8, we see nearly all
encoding processes scale nearly linearly with more threads. We find
the throughput of all methods ranges from 0.04 – 3730 MB/s. When
checking the 40 to 1 thread speedup, we find Parity, Hamming, SEC-
DED, and Reed-Solomon demonstrate speedups of 19.7×, 26.8×,
33.9×, and 16.4×, respectively. We find similar results in Figure 9
when looking at the decoding processes. In this case, we find the
throughput of all methods ranges from 10.64 – 3602 MB/s. When
looking at the 40 to 1 thread speedup, we find Parity, Hamming,
SEC-DED, and Reed-Solomon demonstrate speedups of 18.6×, 33.5×,
33.5×, and 18.3×, respectively. For both encoding and decoding, we
find a wide range of throughputs available to ARC as each ECC
algorithm scales differently in parallel. Upon comparing ARC’s
range of throughputs to SZ’s and ZFP’s throughputs, we find ARC
is more than capable of keeping pace with the less than 200 MB/s
SZ and ZFP demonstrate [19]. However, as soft errors require more
computations in the decoding process, we must also ensure the
decoding process scales when soft errors are present.

To evaluate how soft errors affect the decoding process, we per-
form two experiments. First, we inject a single correctable soft error
into the encoded blocks of data. Second, we inject 100,000 random
correctable soft errors into the encoded blocks of data. When in-
jecting the soft errors, we randomly inject the soft errors into the
encoded data but also ensure the soft errors are correctable. We do
this to evaluate how the correction process affects the throughput.
We also do not test single-bit parity as it is only capable of throwing
errors and cannot correct the soft errors injected.

Figure 10 demonstrates the resulting throughput when a single
and 100,000 correctable soft errors are present in the encoded data.
From these graphs, when a single correctable error occurs, the
only algorithm’s throughput that changes is Reed-Solomon. This is
due to Reed-Solomon’s high repair costs, which drops the speedup
at 40 threads from 18.3× to 2.7×. Comparing the single soft error
scenario to the worst-case scenario in which 100,000 correctable
soft errors are present, we see significant drops in the throughput

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

64

http://web.eecs.utk.edu/~jplank/plank/www/software.html

0

1000

2000

3000

4000

5000

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(a) Parity

0

100

200

300

400

500

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(b) Hamming

0

100

200

300

400

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(c) SEC-DED

0

0.4

0.8

1.2

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(d) Reed-Solomon

Figure 8: ARC’s encoding scalability.

for all three ECC methods. Specifically, the 40 thread speedup of
standard Hamming, SEC-DED, and Reed-Solomon drop to 2.64×,
2.43×, and 1.1×, respectively. However, even with these large drops,
all three maintain a workable throughput above 7 MB/s and correct
the data. Therefore, more correctable errors drop the decoding
throughput, but it takes many more errors than would likely occur
to reduce the decoding throughput to such low levels. In the more
likely case a single correctable soft error occurs, ARC’s decoding
process maintains its original speedup, with Reed-Solomon being
the only exception, which drops 6.7× due to its higher repair costs.

6.2 Performance Evaluation
As each user’s needs are unique, one of the main goals in developing
ARC is to satisfy user needs efficiently. Therefore, to assess ARC’s
success, we must evaluate ARC’s ability to satisfy user constraints
on storage and throughput with any ECC and limited ECC options.

To evaluate ARC, we use the CESM dataset using SZ-ABS and
an error bound of 𝜖 = 0.1 with other datasets yielding similar
results. We set the maximum number of threads to 40 and use
the same system as in Section 6.1. Figure 11 shows the results of
our evaluation when ARC is free to use any ECC method, while
Figure 12 shows the results of our evaluation when limiting ARC
with the resiliency constraint to use any single ECC method.

Figure 11(a) shows ARC’s performance when not limited. In
this case, ARC manages to apply the configuration that utilizes
the provided space best given the upper bound on storage. For
example, when the user does not want the input data’s size to
increase more than 20% and provides a memory constraint of 0.2,
ARC uses Reed-Solomon encoding with 15 code devices over every
241 data devices, resulting in a memory overhead of 19.5%. When
given a higher memory constraint of 0.9, ARC uses the extra storage
to add increased protection in the form of 103 code devices over
every 153 data devices, leading to a memory overhead of 88.5%.

0

1000

2000

3000

4000

5000

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(a) Parity

0

100

200

300

400

500

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(b) Hamming

0

100

200

300

400

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(c) SEC-DED

0

700

1400

2100

2800

3500

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used

(d) Reed-Solomon

Figure 9: ARC’s decoding scalability.

Figure 12(a) shows ARC’s memory performance when using the
resiliency constraint to limit ARC to any single ECC method. Here,
ARC manages to apply the chosen ECC method’s configuration
that uses the provided space best given the upper bound on storage.
However, while limiting ARC to a subset of ECC methods guar-
antees a protection level, it also reduces ARC’s ECC options, and
as a result, it cannot always use the entire storage budget. For in-
stance, both Hamming and SEC-DED only have two configurations
as stated in Section 5.2 and cannot always use the entire storage
budget. Similarly, Parity also develops a step-like function as we
only apply single-bit parity on a byte level. ARC also may need
to go over the memory constraint when given a low memory con-
straint and a single ECC method due to its limited options. For
instance, a memory constraint of 0.05 and a resiliency constraint
that requires Reed-Solomon forces ARC to go over budget, display
a warning, and use the Reed-Solomon configuration that results in
the lowest memory overhead possible. Overall, ARC uses as much
of the storage budget as possible while also avoiding going over
budget as much as possible.

0

100

200

300

400

500

600

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used
Hamming SECDED Reed-Solomon

(a) 1 Correctable Error

0

10

20

30

1 7 13 19 25 31 37

Th
ro

ug
hp

ut
 (M

B/
s)

OpenMP Threads Used
Hamming SECDED Reed-Solomon

(b) 100,000 Correctable Errors

Figure 10: Effect of 1 correctable error and 100,000 cor-
rectable errors on ARC’s decoding throughput.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

65

Conversely, Figure 11(b) shows the results of using various ARC
throughput constraints when ARC is not limited. This graph shows
that ARC manages to apply the best configuration with the appro-
priate number of OpenMP threads to maintain a desired through-
put. For instance, when given a throughput constraint of 0.5 MB/s,
ARC uses Reed-Solomon over 15 OpenMP threads, resulting in a
throughput of 0.51 MB/s. However, with a throughput constraint
of 300 MB/s, ARC cannot use the slow Reed-Solomon and instead
uses SEC-DED over 34 OpenMP threads, resulting in a throughput
of 302.4 MB/s. While ARC could always run each configuration
with the maximum number of threads, using fewer threads reduces
ARC’s impact on available resources and is useful when resources
are highly contested in an application.

Figure 12(b) shows ARC’s throughput performance when using
the resiliency constraint to limit ARC to any single ECC method.
Here, ARC applies the chosen ECC method’s configuration that
best meets the lower bound on throughput. Again, while using the
resiliency constraint does ensure a protection level, it also reduces
ARC’s options, and as such, it cannot always meet the necessary
throughput requirements. For instance, our Reed-Solomon method
is not fast and cannot meet most high throughput requirements.
However, if meeting the throughput requirement is impossible for
the chosen ECC, ARC attempts to get as close as possible.

ARC also supports using all three constraints in conjunction with
one another. When using all three, ARC first uses the resiliency
constraint to determine potential ECC configurations. At this point,
the memory constraint and throughput constraint will either syner-
gize well or conflict with one another. When these two constraints

(a) Memory Constraint (b) Throughput Constraint

Figure 11: Performance evaluation of ARC_ANY_ECC: target
memory overhead vs. observed memory overhead.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 O
ve

rh
ea

d

Target Overhead
Parity Hamming SECDED Reed Solomon

(a) Memory Constraint

0

100

200

300

400

500

0 100 200 300 400 500

Tr
ue

 O
ve

rh
ea

d
(M

B/
s)

Target Overhead (MB/s)
Parity Hamming SECDED Reed Solomon

(b) Throughput Constraint

Figure 12: Single ECC ARC Performance Evaluation: Target
Overhead vs. True Overhead.

work well together, and ARC is free to use any ECC methods, we
find results similar to those found in Figure 11(a) and (b). For ex-
ample, when given a memory constraint of 0.2 and a throughput
constraint of 0.6 MB/s, ARC uses Reed-Solomon as both other con-
straints make this possible. However, when the constraints conflict
with one another, ARC must make trade-offs to satisfy both con-
straints. For instance, if given a higher memory constraint of 1 and a
higher throughput requirement of 100 MB/s, ARC uses SEC-DED in-
stead since Reed-Solomon cannot achieve the required throughput.
This trade-off process is further complicated when ARC’s resiliency
constraint is more restrictive. When this occurs, even when the
memory and throughput constraints agree on an ECC configura-
tion, the resiliency constraint may not allow it. In this case, ARC
uses the ECC configuration from the potential ones that best uses
the available resources. ARC still satisfies conflicting constraints to
the best of its ability when using all constraints together but does
not apply the highest level of protection.

6.3 Resiliency Evaluation
To evaluate ARC’s ability to provide protection, we apply ARC to
each of the previous datasets with a resiliency constraint of 1 error
per MB and rerun our fault injection study trials (Section 4). Using
this configuration, ARC applies SEC-DED to every eight bytes of
data which guarantees to catch any single errors. Upon running
these trials, we find that ARC corrects all soft errors we inject. We
expect this outcome as ARC uses SEC-DED, but all ARC’s provided
ECC approaches prevent single-bit soft errors. However, these trials
only focus on single-bit errors, which is not always the case.

Even though single-bit errors are the most common form of soft
error, ARC must protect from multi-bit errors too. To improve the
resiliency ARC provides, users can directly choose the desired level
of protection using the resiliency constraint. To further optimize
this protection, users can provide a higher storage budget and lower
throughput requirements, allowing ARC to use stronger versions of
the desired level of protection. For example, when using ARC_RS and
providing a memory constraint of 0.2, ARC uses a Reed-Solomon
configuration with 15 code devices. However, by increasing the
memory constraint to 0.9, ARC uses a Reed-Solomon configuration
with 103 code devices. While either configuration allows ARC to
correct multi-bit and burst errors, the second configuration can
correct more corrupt data than the first. Conversely, if the user
provides ARC a memory constraint of 0.1, a throughput constraint
of 700 MB/s, and does not specify a protection level, ARC uses
single-bit even parity. With this ECC approach, ARC only detects
single-bit and odd-numbered soft errors within each block of data.
Therefore, while ARC can provide sufficient resiliency, it is up to
the user to ensure ARC has the proper inputs to protect the data.

6.4 Ease of Use Evaluation
To evaluate how easy ARC is to use on HPC systems, we demon-
strate the necessary code changes to integrate ARC and describe
how to use ARC on the two recently decommissioned production-
level HPC systems discussed in the study by Sridharan et al [31, 33].

To deploy ARC within an application, we must make the correct
code changes to integrate ARC into the application. We design ARC
so that this process is as minimal as possible, with Algorithm 1

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

66

showing the four necessary lines of code. With ARC integrated
into the code, we must determine what memory, throughput, and
resiliency constraints to provide ARC.

In Algorithm 1, ARC_ANY_MEM, ARC_ANY_BW, and ARC_ANY_ECC
represent thememory, throughput, and resiliency constraints.While
ARC works with these values and provide the most robust ECC con-
figuration, users may need to change these to satisfy specific needs.
However, when choosing constraints, we recommend considering
the failure rate of the system as well.

To demonstrate how the failure rate affects the constraint choice,
we use the two systems discussed in the study by Sridharan et
al. [31, 33]. This study’s first system is Cielo, an 8,500 node super-
computer in Los Alamos, New Mexico, situated at around 7,300 feet
in elevation. The second system is Hopper and is a 6,000 node su-
percomputer in Oakland, California, situated at 43 feet in elevation.

Within this study, the authors analyze the failure rate per DRAM
device over 30 days for each system. From their findings, the authors
find Cielo has nearly twice the failure rate as Hopper. The authors
attribute this difference primarily to the difference in altitude of
the two systems. Using each of these failure rates and the number
of compute nodes on each system, we compute the mean time
between failure (MTBF) for each system. We determine Cielo has
a failure due to a soft error every 1.9 days, and Hopper ever 5.43
days. However, it is essential to note that this rate does not include
undetected soft errors, which cause SDC.Moreover, Section 4 shows
a single undetected soft error can lead to unacceptable deviations in
lossy compressed data. Thus, decreasing the time between failures.

In their papers, Sridharan et al. also provide a breakdown of all
faults they find. On Cielo, they find soft errors caused 34.9% of all
faults, and on Hopper, they found soft errors caused 42.1% of all
faults. Using this information, we find that single-bit errors caused
70.79% of Cielo’s faults, while we find single-bit errors caused 94.6%
of Hopper’s faults. Using both the failure rate and the distribu-
tion of what caused these faults, we are better equipped to choose
appropriate ARC constraints.

When running an application on Cielo, applications require more
robust protection due to this machine’s high failure rate and the
lower probability that a single-bit was the cause. Specifically, 29.21%
of faults were not from single-bit soft errors and instead were multi-
bit errors. By breaking these multi-bit errors down further, we find
most occur as burst errors in the same DRAM device. Therefore,
applications need the higher level of protection that is provided by
the Reed-Solomon algorithm. To ensure ARC uses this algorithm,
the user can use the ARC_COR_BURST flag, the ARC_RS flag, or pro-
vide a higher memory constraint and lower throughput constraints,

Algorithm 1 Integrating ARC
Input 𝑑𝑎𝑡𝑎 Input uint8_t array
Input 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 Size of uint8_t array

arc_init(ARC_ANY_THREADS);

int err = arc_encode(data, data_size, ARC_ANY_MEM,
ARC_ANY_BW, [ARC_ANY_ECC], 1, encoded, encoded_size);
...
err = arc_decode(encoded, encoded_size, decoded, decoded_size);

arc_close();

as discussed in Section 5. Alternatively, the user could also use
the ARC Engine to choose the ECC configuration manually. By
using one of the flags and relaxing the constraints further, ARC
provides further protection by using even stronger Reed-Solomon
configurations, as discussed in Section 6.3.

On the other hand, an application running on Hopper does not
require as robust of ECC that one running on Cielo needs. Hopper
has a much lower failure rate than Cielo, and single-bit flips cause
over 90% of soft errors. However, upon breaking down the fewmulti-
bit soft errors found on Hopper, we find 4.05% of these occurred
as burst errors and are spatially close to one another. With this
information in mind, more robust ECC algorithms, such as Reed-
Solomon, are unnecessary in most cases on this system. Therefore,
discussing with a system admin and entering the predicted number
of errors per MB or using the ECC method they recommend for the
system provides adequate protection when using ARC. Following
this, users can use the memory and throughput constraints to tune
ARC to their specific needs. For example, if the user decides they
not only want to detect but correct all single-bit errors, they can
enter the predicted number of errors per MB. Alternatively, they
can use the ARC_COR_SPARSE, ARC_HAMMING, or ARC_SECDED flags.
Either approach ensures no interruptions from single-bit errors.

Our evaluation shows how integrating ARC into any application
working with sensitive lossy compressed data requires only four
lines of code. We also demonstrate that while ARC allows users to
provide ideal constraints, users should consider the system’s failure
rate and the distribution of faults when setting constraints. Using
this knowledge, any user can deploy ARC within their application.

7 CONCLUSIONS AND FUTUREWORK
Compression is a powerful solution to mitigating the stress complex
HPC applications are putting on the I/O subsystem. However, a
single soft error renders compressed data unusable and few have
sought to address this critical vulnerability.

In this work, we perform an in-depth fault injection study to
understand soft error effects on lossy compressed data. We find
none of the tested error-bounding modes handle errors adequately.
While the block-based ZFP-Rate mode prevents error propagation,
its lower compression ratios limit its effectiveness. We find a single
soft error propagates to on average ∼10% of the decompressed data
when using the other three modes.

We develop ARC using the findings from our fault injection study.
ARC automatically determines the optimal ECC configuration given
user constraints on storage, throughput, and resiliency before us-
ing this configuration to encode the data. Upon evaluating ARC’s
abilities, we find ARC satisfies user constraints while displaying
encoding and decoding throughput up to 3730 MB/s and 3602 MB/s
on a 40 core node. We also find that ARC handles multi-bit errors
effectively with user-tunable storage and throughput overheads.
Lastly, we display its ease of use and how to consider a system
failure rate when determining constraints.

In future work, we plan to improve ARC’s abilities by adding
additional ECC algorithms and improving existing algorithm im-
plementations. We also plan to use other parallelization paradigms,
such as MPI or GPUs, to increase ARC’s ECC methods’ achievable

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

67

throughput. Finally, we aim to implement an API to further simplify
the addition of custom ECC algorithms and constraints.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. SHF-1910197, SHF-1943114, MRI-
#1725573, and NRT-DESE 1633608. This material is also based upon
work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Workforce Development for Teachers and Scientists,
Office of Science Graduate Student Research (SCGSR) program.
The SCGSR program is administered by the Oak Ridge Institute
for Science and Education (ORISE) for the DOE. ORISE is managed
by ORAU under contract number DE-SC0014664. All opinions ex-
pressed in this paper are the authors and do not necessarily reflect
the policies and views of DOE, ORAU, or ORISE. We thank the
reviewers and the shepherd for their guidance in improving this
work. Clemson University is acknowledged for generous allotment
of compute time on Palmetto cluster.

REFERENCES
[1] Serhiy Avramenko, Matteo Sonza Reorda, Massimo Violante, and Görschwin

Fey. 2017. A high-level approach to analyze the effects of soft errors on lossless
compression algorithms. Journal of Electronic Testing 33, 1 (2017), 53–64.

[2] Tommaso Benacchio, Luca Bonaventura, Mirco Altenbernd, Chris D Cantwell,
Peter D Düben, Mike Gillard, Luc Giraud, Dominik Göddeke, Erwan Raffin,
Keita Teranishi, et al. [n.d.]. Resilience and fault-tolerance in high-performance
computing for numerical weather and climate prediction. ([n. d.]).

[3] Jon Calhoun, Franck Cappello, Luke N Olson, Marc Snir, and William D
Gropp. 2019. Exploring the feasibility of lossy compression for PDE sim-
ulations. The International Journal of High Performance Computing Ap-
plications 33, 2 (2019), 397–410. https://doi.org/10.1177/1094342018762036
arXiv:https://doi.org/10.1177/1094342018762036

[4] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing Applications 33, 6 (2019),
1201–1220.

[5] Yann Collet and Murray Kucherawy. 2018. Zstandard Compression and the
application/zstd Media Type. RFC 8478. https://doi.org/10.17487/RFC8478

[6] Khanh N Dang, Michael Meyer, Yuichi Okuyama, and Abderazek Ben Abdallah.
2016. Reliability assessment and quantitative evaluation of soft-error resilient 3D
network-on-chip systems. In 2016 IEEE 25th Asian Test Symposium (ATS). IEEE,
161–166.

[7] S. Di and F. Cappello. 2016. Fast Error-Bounded Lossy HPC Data Compression
with SZ. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 730–739. https://doi.org/10.1109/IPDPS.2016.11

[8] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. 2014. Lessons learned from the analysis
of system failures at petascale: The case of blue waters. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE,
610–621.

[9] Bo Fang. 2020. Approaches for building error resilient applications. Ph.D. Disserta-
tion. University of British Columbia.

[10] Lisa Fischer, Sebastian Götschel, andMartinWeiser. 2018. Lossy data compression
reduces communication time in hybrid time-parallel integrators. Computing and
Visualization in Science 19, 1 (01 Jun 2018), 19–30. https://doi.org/10.1007/s00791-
018-0293-2

[11] J. L. Gailly. 1992. GZIP. http://www.gzip.org
[12] Thaylon Guedes, Leonardo A Jesus, Kary ACS Ocaña, Lucia MA Drummond,

and Daniel de Oliveira. 2020. Provenance-based fault tolerance technique recom-
mendation for cloud-based scientific workflows: a practical approach. Cluster
Computing 23, 1 (2020), 123–148.

[13] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. 2012. Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and the implications
for system design. ACM SIGPLAN Notices 47, 4 (2012), 111–122.

[14] Ravi Kumar Jain. 1992. Scheduling data transfers in parallel computers and com-
munications systems. Ph.D. Dissertation. University of Texas at Austin.

[15] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello.
2020. SDC Resilient Error-bounded Lossy Compressor. arXiv:2010.03144 [cs.DC]

[16] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello.
2020. Towards End-to-end SDC Detection for HPC Applications Equipped with
Lossy Compression. In Proceedings of the 22nd IEEE International Conference on
Cluster Computing. IEEE.

[17] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello. 2018.
Error-Controlled Lossy Compression Optimized for High Compression Ratios of
Scientific Datasets. In 2018 IEEE International Conference on Big Data (Big Data).
438–447.

[18] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello. 2019. Improving
Performance of Data Dumping with Lossy Compression for Scientific Simulation.
In 2019 IEEE International Conference on Cluster Computing (CLUSTER). 1–11.

[19] Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan, Qing Liu, Dingwen Tao,
James Kress, Dave Pugmire, Matthew Wolf, Norbert Podhorszki, and et al. 2020.
MGARD+: Optimizing Multilevel Methods for Error-bounded Scientific Data
Reduction. arXiv:2010.05872 [cs] (Nov 2020). http://arxiv.org/abs/2010.05872
arXiv: 2010.05872.

[20] P. Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (Dec 2014), 2674–2683.
https://doi.org/10.1109/TVCG.2014.2346458

[21] Joseph Nardi, Noah Feldman, Andrew Poppick, Allison Baker, and Dorit Ham-
merling. 2018. Statistical Analysis of Compressed Climate Data. Technical Report.
NCAR.

[22] C. Nguyen and G. R. Redinbo. 2005. Fault tolerance design in JPEG 2000 image
compression system. IEEE Transactions on Dependable and Secure Computing 2, 1
(2005), 57–75.

[23] Xiang Ni, Tanzima Islam, Kathryn Mohror, Adam Moody, and Laxmikant V Kale.
2014. Lossy compression for checkpointing: Fallible or feasible?. In Poster Session
of the 2014 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14). IEEE Computer Society, Washington,
DC, USA.

[24] John Ousterhout and Fred Douglis. 1989. Beating the I/O Bottleneck: A Case
for Log-Structured File Systems. SIGOPS Oper. Syst. Rev. 23, 1 (Jan. 1989), 11–28.
https://doi.org/10.1145/65762.65765

[25] Mizanur Rahman, Mhafuzul Islam, Jon Calhoun, and Mashrur Chowd-
hury. 2019. Real-Time Pedestrian Detection Approach with an Effi-
cient Data Communication Bandwidth Strategy. Transportation Research
Record 2673, 6 (2019), 129–139. https://doi.org/10.1177/0361198119843255
arXiv:https://doi.org/10.1177/0361198119843255

[26] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. 2015. Exploration
of Lossy Compression for Application-Level Checkpoint/Restart. In Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’15). IEEE Computer Society, Washington, DC, USA, 914–922. https:
//doi.org/10.1109/IPDPS.2015.67

[27] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2011. DRAM
errors in the wild: a large-scale field study. Commun. ACM 54, 2 (2011), 100–107.

[28] Baodi Shan, Aabid Shamji, Jiannan Tian, Guanpeng Li, and Dingwen Tao. 2020.
LCFI: A Fault Injection Tool for Studying Lossy Compression Error Propagation
in HPC Programs. arXiv:2010.12746 [cs.DC]

[29] Taniya Siddiqua, Athanasios E Papathanasiou, Arijit Biswas, and Sudhanva Gu-
rumurthi. 2013. Analysis and modeling of memory errors from large-scale field
data collection. In SELSE.

[30] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei keng
Liao, and Alok Choudhary. 2014. Data Compression for the Exascale Computing
Era - Survey. Supercomputing frontiers and innovations 1, 2 (2014). http://superfri.
org/superfri/article/view/13

[31] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon
Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Memory Errors in Modern
Systems: The Good, The Bad, and The Ugly. SIGARCH Comput. Archit. News 43,
1 (March 2015), 297–310. https://doi.org/10.1145/2786763.2694348

[32] Vilas Sridharan and Dean Liberty. 2012. A study of DRAM failures in the field. In
SC’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–11.

[33] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sud-
hanva Gurumurthi. 2013. Feng shui of supercomputer memory positional effects
in DRAM and SRAM faults. In SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. IEEE, 1–11.

[34] Li Tan and Nathan DeBardeleben. 2019. Failure Analysis and Quantification
for Contemporary and Future Supercomputers. arXiv preprint arXiv:1911.02118
(2019).

[35] R. Underwood. 2020. LibPressio. https://github.com/robertu94/libpressio
[36] Robert Underwood, Sheng Di, Jon C. Calhoun, and Franck Cappello. 2020. FRaZ:

A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific
Floating-point Data. arXiv:2001.06139 [cs.DC]

[37] X. Wei, R. Zhang, Y. Liu, H. Yue, and J. Tan. 2019. Evaluating the Soft Error
Resilience of Instructions for GPU Applications. In 2019 IEEE International Con-
ference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC). 459–464.

Session: Data and I/O HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

68

https://doi.org/10.1177/1094342018762036
https://arxiv.org/abs/https://doi.org/10.1177/1094342018762036
https://doi.org/10.17487/RFC8478
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1007/s00791-018-0293-2
https://doi.org/10.1007/s00791-018-0293-2
http://www.gzip.org
https://arxiv.org/abs/2010.03144
http://arxiv.org/abs/2010.05872
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1145/65762.65765
https://doi.org/10.1177/0361198119843255
https://arxiv.org/abs/https://doi.org/10.1177/0361198119843255
https://doi.org/10.1109/IPDPS.2015.67
https://doi.org/10.1109/IPDPS.2015.67
https://arxiv.org/abs/2010.12746
http://superfri.org/superfri/article/view/13
http://superfri.org/superfri/article/view/13
https://doi.org/10.1145/2786763.2694348
https://github.com/robertu94/libpressio
https://arxiv.org/abs/2001.06139

	Abstract
	1 Introduction
	2 Background
	2.1 Lossy Compression Algorithms
	2.2 Error Correcting Codes

	3 Related Work
	3.1 Fault Injection Studies
	3.2 Error Resiliency Works

	4 Soft Error Effects on Lossy Compressed Data
	4.1 Experimental Design
	4.2 Error Effects on Decompression Process
	4.3 Error Effects on Error Bounding Capability
	4.4 Error Effects at Various Levels of Loss
	4.5 Error Effects on Data Integrity
	4.6 Error Effect Observations

	5 ARC: Automated Resiliency for Compression
	5.1 ARC Interface
	5.2 ARC Engine

	6 ARC Evaluation
	6.1 Scalability Evaluation
	6.2 Performance Evaluation
	6.3 Resiliency Evaluation
	6.4 Ease of Use Evaluation

	7 Conclusions and Future Work
	Acknowledgments
	References

