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Abstract— The recent development of Robot-Assisted Mini-
mally Invasive Surgery (RAMIS) has brought much benefit to
ease the performance of complex Minimally Invasive Surgery
(MIS) tasks and lead to more clinical outcomes. Compared to
direct master-slave manipulation, semi-autonomous control for
the surgical robot can enhance the efficiency of the operation,
particularly for repetitive tasks. However, operating in a highly
dynamic in-vivo environment is complex. Supervisory control
functions should be included to ensure flexibility and safety dur-
ing the autonomous control phase. This paper presents a haptic
rendering interface to enable supervised semi-autonomous con-
trol for a surgical robot. Bayesian optimization is used to tune
user-specific parameters during the surgical training process.
User studies were conducted on a customized simulator for
validation. Detailed comparisons are made between with and
without the supervised semi-autonomous control mode in terms
of the number of clutching events, task completion time, master
robot end-effector trajectory and average control speed of the
slave robot. The effectiveness of the Bayesian optimization is
also evaluated, demonstrating that the optimized parameters
can significantly improve users’ performance. Results indicate
that the proposed control method can reduce the operator’s
workload and enhance operation efficiency.

I. INTRODUCTION

The advent of Robotic-Assisted Minimally Invasive

Surgery (RAMIS) has brought much benefit to help realize

the full potential of MIS. Most of the existing robotic

platforms for RAMIS are developed based on master-slave

control [1], [2]. For example, the da Vinci Surgical System

(dVSS) can be regarded as a representative. Surgeons can

benefit from its endo wrist design for dexterous operation.

The functions of tremors removal and motion scaling can

enable precise operation during robotic surgery. However,

no autonomy is incorporated in the dVSS. The current trend

for surgical robots development is towards safer, smaller,

smarter embodiment to ensure wider clinical uptake [3] in

the years to come. In pursuit of a higher level of autonomy,

Artificial Intelligent (AI) can be incorporated into current

surgical operation workflow [4].

The semi-autonomous robot can reduce the cognitive load

of the operator and potentially shorten the operation time,

which enables the surgeons to focus on the most critical

tasks and lessen the fatigue for repetitive tasks [5]. Given
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the advances in surgical robotic technologies, collaborative

working between surgeons and robotic systems will lead to

better clinical outcomes. For example, a robot can operate

precisely and stably given the desired task, while human

guidance can ensure safety, make diagnostic and procedural

decisions, and adjust the operation according to the patient’s

anatomy and situations. Moreover, a human operator can

conduct complex operations through fine-tuning control and

handle the emergency with decision-making. Therefore, to

enable the human operator to maintain the control of the

robot, a shared control method can be designed to enable

semi-autonomous control.

The importance of adjustable roles during human-robot

interaction has been emphasized in [6]. Though the concept

of human-robot cooperative control has already been imple-

mented in a master-slave paradigm [7], the role adaption

between the human and the robot during semi-autonomous

control has not been fully exploited.

Some of the existing autonomous surgical systems provide

supervisory functions in different modes. These include the

preoperative model acquisition or computer-assisted surgical

planning, such as planning, teaching, monitoring, and inter-

vening [8], [9]. Suppose that the control input is generated by

the operator and the robot, the level of control assigned to the

operator and the robot can be adjusted to facilitate a smooth

workflow in a surgical operation. The human control input

during the autonomous mode can be defined as supervisory

functions for semi-autonomous control.

For human-in-the-loop control, user-specific parameters

require fine-tuning. Bayesian optimization is a common

method for nonlinear optimization [10] for applications

which involve human-robot interaction [11]. It is a data-

efficient approach [12], since only a few samples are needed

for optimization [13]. Therefore, in this work, Bayesian

optimization is used to tune the parameters for the user-

specific role adaption between the human operator and the

robot during an autonomous task.

The proposed supervised semi-autonomous control

method based on Bayesian optimization is validated with a

customized simulator based on a peg transfer task, while

comparisons were made to assess the differences between

with and without using the supervised semi-autonomous

control method. Further user studies are conducted to

evaluate the effectiveness of the Bayesian optimization.

The remainder of this paper is organized as follows.

Section II introduces the implementation of the semi-

autonomous control method. The adaptive mechanism is
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Fig. 1. The general steps of the proposed supervised semi-autonomous
control.

described in detail, as it leads to the construction of the

supervised semi-autonomous control. Moreover, the user-

specific parameters tuning based on Bayesian optimization

is introduced. Section III presents the user study design and

results analysis. Conclusions are drawn in Section IV.

II. METHODOLOGY

In this section, the key procedures of the implementation

of the proposed semi-autonomous control are illustrated. The

supervisory function is introduced to facilitate the supervised

semi-autonomous control. The user-specific parameters tun-

ing based on Bayesian Optimization is introduced.

A. Overview

The overall workflow of the supervised semi-autonomous

control is illustrated in Fig. 1. The first step is database

construction with data registration and labelling. The second

step is task segmentation, which divides a surgical procedure

into two phases that require different control modes, i.e. i)

manual control by the operator, ii) autonomous execution of

a pre-defined trajectory. The manual control can be realized

based on the traditional master-slave with suitable motion

scaling to ensure precision for fine control. Virtual fixture is

incorporated into the control for safety consideration, which

can be regarded as the third step. With virtual fixture, the

risk of tissue damage can be reduced. The autonomous

control phase is built with learning from demonstration

(LfD), which is the fourth step. LfD can generate the desired

trajectory for task automation, which is an effective method

in pursuit of a higher level of autonomy [14]. The final

step is incorporating the supervisory functions to achieve

supervised semi-autonomous control. More details about

task segmentation, model regression for desired trajectory

generation, the implementation of semi-autonomous control

and the supervisory functions are described in the following

subsections.

Due to the difference in the user’s experience and control

preferences, the proposed semi-autonomous control method

has to be tuned to suit each individual user. Therefore,

Bayesian optimization is required to improve this control

scheme in a user-specific manner.

B. Task Segmentation

Surgical tasks can be decomposed into basic rudimentary

gestures, named surgemes [15]. For example, seven types

of surgemes are defined for the ring transfer task in [16],

while fifteen types of surgemes for the knot-tying task, the

suturing task and the needle-passing task have been defined

in JIGSAW(JHU-ISI Gesture and Skill Assessment Working

Set) [17]. Based on the characteristics of different tasks, the

surgemes can be further divided into coarse motions and fine

movements [16], [18]. The surgemes used in this paper is

defined in Table I.

TABLE I

THE DEFINITIONS OF SURGEMES FOR THE PEG TRANSFER TASK.

Index Description Type
P1 Lifting object with right-hand tool Precise motion
P2 Lifting object with left-hand tool Precise motion
P3 Moving with right-hand tool Coarse motion
P4 Moving with left-hand tool Coarse motion
P5 Placing object with right-hand tool Precise motion
P6 Placing object with left-hand tool Precise motion
P7 Transferring object from right to left Precise motion
P8 Transferring object from left to right Precise motion

Fine movements include bimanual operation, which re-

quires the control of two surgical tools during the opera-

tion. As for coarse motions, the gross positioning, moving

the surgical tool to another distant target for operation,

transferring the object from one position to another. These

procedures can be performed by the robot automatically with

enhanced efficiency and reduced errors to the desired path.

For example, P3 and P4 refer to coarse motions while the

others represent fine motions respectively in this paper.

After constructing the database, the kinematic data can

be manually annotated with specific surgemes defined at the

frame level by analyzing the video. The kinematic data of

the coarse surgemes can then be selected from the database

to train a model for trajectory regression based on LfD,

which paves a way for the implementation of the autonomous

execution phase.

C. Model Regression

Gaussian Process Regression (GPR) is a nonparametric

Bayesian approach for regression, which is a data-efficient

method and can allow uncertainty during predictions. With

the limited training data, GPR can calculate the posterior and

compute the predictive posterior distribution on the desired

points.

Suppose that t represents the time step, P is the trajectory

comprised of n time steps obtained during the demonstration

phase, where p = [x, y, z] (p = P (t)). p∗ = [x∗, y∗, z∗] is

the desired location for the regressed model, which can be
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Fig. 2. The overview of the supervised semi-autonomous control framework.

known as the test observation. f(p∗) is the prediction result

based on Gaussian Process.

A Gaussian process prior, specified using a mean function

and a covariance function is described by (1). With an

infinite-dimensional multivariate Gaussian distribution, all

the data in the training set are joint Gaussian distributed.

f(p)∼GP (M(p),K(p, p∗)) (1)

where M(p) = E(f(p)), K(p, p∗) = E(f(p) −
M(p))(f(p∗)−M(p∗))(p = x, y, z respectively). A kernel is

required to generate the covariance matrix K. In this paper,

we used the squared exponential kernel.

Considering that the training data may be noisy, we

assume that f(p) contains additive independent identically

distributed Gaussian noise ε with variance σ2
n. After nor-

malization to ensure prior mean distribution of zero, the

prior of the distribution of joint f(p) and f(p∗) can be

obtained. The predictive distribution can be generated based

on conditioning the joint Gaussian prior distribution on the

observations [19].

The Gaussian process can model a sequence of observa-

tions, such as the desired trajectory of the surgical robot

end-effector. Therefore, we implement GPR to realize au-

tonomous phase in this paper.

D. Semi-Autonomous Control

Semi-autonomous control includes two phases, i.e. i) man-

ual control phase, ii) autonomous phase. The overview of the

supervised semi-autonomous control framework is shown in

Fig. 2.

1) Manual Control Phase: For the manual control phase,

in order to achieve intuitive control of the slave robot, the

orientation of the end-effector of the slave robot is the same

as that of the master controller. As for the position control

during the manual control phase, the master end-effector

displacement and the position of the end-effector of the

slave robot are the control input and output respectively. The

position change of the master is mapped to the slave by a

scaling factor τ for more precise control of the end-effector

with fine movements. The end-effector position ps(t) at time

step t can be calculated as follows.

ps(t) = ps(0)+ τ(pm(t)− pm(0)) (2)

where pm(t) is the end-effector position of the master

controller at time step t.
During fine operation, virtual fixture is used to ensure safe

operation where movement constraints are introduced with

force feedback, since bimanual operation should avoid the

collision between the two surgical tools. As for the tool-tissue

interaction, delicate manipulation is required. With virtual

fixture, the potential damages to critical anatomical structures

can be avoided by limiting the force exerting on the tissue

during a surgical operation.

2) Autonomous Phase: As for the autonomous phase, the

robot takes the lead and executes the learned trajectory,

which is generated based on GPR. va(t) is the autonomous

control component generated by the robot based on the pre-

defined trajectory. Suppose that Pa(t) is the desired trajec-

tory generated by the GPR model, va(t) = (Pa(t)−Pa(t
1))/Δt, where Δt is the time increment. Therefore, the end-

effector position ps(t) at time step t can be calculated as

follows.

ps(t) = ps(t 1) + va(t)Δt (3)

The velocity profile of the autonomous surgical tool con-

trol is important to be explored. The initial velocity is set to

zero at the control phase switching point. When the control

mode is switched from manual mode to autonomous mode, it
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increases gradually. After it reaches the maximum velocity

value, it remains the same and then gradually decrease to

zero when the control mode is switched back to the manual

mode.

E. The Supervised Functions

Supervisory functions have been used for autonomous

systems, which includes planning, teaching, monitoring, and

intervening [20]. The advantages of supervised autonomous

control have been demonstrated in [21]. Therefore, we try

to incorporate supervised functions in an intervening man-

ner for the autonomous control phase, which leads to the

supervised semi-autonomous control.

The supervised functions can be included to the au-

tonomous control as a form of human guidance. Therefore,

the operator can maintain control over the robot. The control

input from the operator during the autonomous phase can en-

sure safety during the task execution. Moreover, this enables

the dynamic augmentation of the task, which could rectify

the uncertainty caused by the unprecise model regression.

The control input is generated by the master controller

end-effector position, which is controlled by the operator.

While the control output is the additional velocity vector,

which can alter the trajectory of the surgical robot end-

effector movements during the autonomous task execution

phase.

During the autonomous mode, the end-effector of the

master robot will remain in the same place, the position

of which is pl. Suppose that at time step t, the updated

end-effector position controlled by the user is pm(t). The

position control vector ph(t) generated by the operator is

proportional to the master position increment controlled via

the master manipulator. ph(t) is generated by (4).

ph(t) = K(pm(t)− pl) (4)

where K is a user-specific control mapping factor.

In this way, the supervisory functions can be realized

by mapping the displacement and direction from the fixed

master device end-effector position to the magnitude and

direction of velocity to control the slave robot.

To provide feedback to the operator, the control interface

is augmented through force feedback on the regressed path

during the autonomous control phase. The feedback Fh(t)
can enable the operator to have a sense of how velocity is

commanded.

Fh(t) = Q(pm(t)− pl) (5)

where Q is a parameter to enable the user to adjust the force

feedback intensity.

In this way, the final control commands are generated by

combining both of the desired trajectory and the operator’s

control input. The final end-effector position can be defined

by (6).

ps(t) = ps(0)+ ph(t)+ va(t)Δt (6)

F. Parameters Tuning

Several key parameters for the supervised semi-

autonomous control are required to be tuned by the users

to reach the optimal control property using the simulator

during the surgical training.

1) Robot Control Parameter: This parameter indicates the

maximum velocity vmax controlled by the robot during the

autonomous phase. The autonomous control component is

va(t) = vmaxs(x), where s(x) = 1
1+e x is a sigmoid

function to make the transition process to be smooth. s(x)→0
indicates the entrance of the fully manual control phase.

2) Human Control Parameter: The key parameter of

the human-input control component is K, which alter the

intensity of the supervised function during the autonomous

control. K→0 indicates fully automatic control, where the

supervised function is disabled.

3) Force Rendering Parameter: The force rendering pa-

rameter Q can also be tuned, which is the relationship

between the haptic feedback and the position increment

control commands generated by the operator.

G. Preference-Based Bayesian Optimization

Bayesian optimization is used to find the optimal user-

specific parameters. Suppose that m is the number of pa-

rameters for optimization, X ∈ D
m is the set of user-

specific parameters for optimization, F (X) is the objective

function which is used to evaluate how much benefits of a

system can bring to a user. The target is to find out Xmax

= argmax
X∈D

F (X). F (X) is a black-box function that does

not have a specific meaning, which is only used to represent

how the user like the system for preference consideration.

An acquisition function is required to decide where to sam-

ple the next data for testing [22]. En[.] indicates the expecta-

tion taken under the posterior distribution given evaluations

of F at Xm(1≤m≤n). Suppose that Fmax=max
m≤n

F (Xm).

This posterior distribution is given by the GPR.

The next set of parameters for evaluation can be deter-

mined by Xn+1 = argmaxEIn(X). The expected improve-

ment (EI) evaluates at the point with the largest expected

improvement, which can be calculated as follows.

EI = En[max(0, F (X)− Fmax)] ={
Zσ(X)Ψ(Z) + σ(X)Φ(Z), (Fmax < F (X))

0, otherwise

(7)

where Z = μ(X)−Fmax

σ(X) , Φ(.) represents the probability

density function and Ψ(.) represents cumulative distribution

function of standard normal distribution (N ∼ (μ, σ)).
X = vmax,K,Q is used in this paper as variables for

fine-tuning. The range of vmax is set to be ranged from

3mm/s to 9mm/s, while the K and Q are set to be ranged

from 0.6 to 1.8 and -1.5 to -3.5 respectively. For the initial

test, we defined the parameters vmax = 6mm/s, K = 1.2,

Q = −2.5 empirically. The value of the parameters can

be adjusted based on the Bayesian optimization protocol,

which enables the users to reach the best performance with
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Fig. 3. Overview of the experimental setup and the operational scene.

the desired operation. More technical details of the Bayesian

optimization can be found in [10].

III. USER STUDIES

In this section, user studies for validating the proposed

framework are introduced, the results of the experiments are

analyzed based on several evaluation metrics.

A. Experimental Setup

A customized simulator is developed based on Asyn-

chronous Multi-Body Framework (AMBF) for user studies

and user-specific parameters acquisition [23]. For surgical

training, compact master manipulators are preferred, instead

of using the master manipulators of the original control con-

sole [24]. Therefore, two Geomagic Touch devices are used

as the compact master manipulators for surgical training.

A peg transfer task was selected for validating the pro-

posed. The peg transfer task is performed using a standard

Fundamentals of Laparoscopic Surgery (FLS) training board

[25]. In order to reduce the difficulties for participants

who do not have surgical operation experience, the task is

simplified. The overview of the experimental setup and the

operational scene by a subject is shown in Fig. 3.

B. Experimental Protocol

The peg transfer task for the simulator is shown in Fig. 4.

The initial position of the right tool is located at A, while

the left tool is located parallel to A. The initial position of

the grippers are fixed to ensure the comparisons between

different trials are fair. The whole procedures for ring transfer

task are as follows:

• 1) Control Right gripper to grasp the peg from A, pass

it to Left gripper and place it on B.

• 2) Control Left gripper to grasp the peg from B and

place it on C.

• 3) Control Right gripper to grasp the peg from C, then

place the peg on A.

Fig. 4. The simulator for user studies and the illustration of the experi-
mental protocols.

C. User Studies Design

Six subjects were recruited in the user studies. All the

participants are right-handed. Two of the subjects have tele-

operation experience with the simulator. The first user study

was conducted for comparisons between manual control

mode and the semi-autonomous control mode. The second

user study is developed for comparisons between with and

without Bayesian optimization using the supervised semi-

autonomous control mode.

Each subject performed the same experiment for three to

five trials. Participants are required to use the virtual grippers

to grasp, locate, transfer and place the peg in different

locations. Experiments would not start until they met the

baseline proficiency to be included in the user studies. Then,

all the qualified subjects were asked to go through the

whole procedure at least twice to get accustomed to the

experimental protocols. Once the subjects felt familiar with

the control and experimental protocol, task execution began.

To obtain a fair comparison, the initial poses of the robot’s

end-effectors were set to the same value at the beginning.

D. Evaluation Methods

The usability of the proposed method based on user studies

is analyzed quantitatively through four evaluation metrics,

i.e. i) master robot total trajectory length (M(m)), ii) task

completion time (T (s)), iii) average velocity for the slave

robot control (A(mm/s)), and iv) number of clutching

events (C). To reduce the fatigue of the surgeon during

the operation, the smaller M(m) is preferred. Clutching is

a process of cutting off the mapping between master and

slave and re-centring the master without moving the slave.

It is useful when the master manipulator reaches its physical

boundary. In pursuit of higher operation efficiency, the less

number of clutching and the shorter task completion time and

the higher average slave robot control speed can optimize the

surgical workflow.

The p-value is used to identify whether the data have

significant differences or not. p < 0.05 represents that statis-

tic differences can be observed. Normality tests (Shapiro-

Wilk test) at 0.05 significance level were performed to

verify whether the evaluation metrics have non-parametric
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nature or not. Wilcoxon signed-rank tests were conducted

for non-parametric statistical comparison between variables

(completion time and master robot trajectory), while T-tests

were conducted for the other metrics which satisfy the nor-

mal distribution assumption. A p-value<0.05 is considered

significant.

E. Results Analysis

TABLE II

MANUAL CONTROL MODE VS. SEMI-AUTONOMOUS CONTROL MODE

Manual Semi-Autonomous p-value
M (m) 4.72 ± 1.57 2.37 ± 1.50 0.0003
T (s) 106.57 ± 50.84 111.30 ± 45.00 0.3942

A (mm/s) 9.56 ± 2.17 10.03 ± 2.94 0.6215
C 15.9 ± 6.8 8.0 ± 6.4 0.0028

TABLE III

WITH VS. WITHOUT BAYESIAN OPTIMIZATION

Without Optimization With Optimization p-value
M (m) 1.48 ± 0.51 1.44 ± 0.66 0.2145
T (s) 55.47 ± 20.64 43.34 ± 15.03 0.0038

A (mm/s) 11.01 ± 2.12 12.77 ± 2.48 0.0280
C 3.3 ± 2.5 2.4 ± 1.4 0.0018

Preliminary user studies were conducted for comparisons

between manual control mode and semi-autonomous control

mode for the simulator. The results are shown in Table II.

Results indicated that using the semi-autonomous control

mode can reduce the burden of the operator by simplifying

the master control trajectory and reducing the clutching

frequency significantly. The task completion time and the

average slave robot control speed do not have significant

differences, which is due to the fact that the maximum

velocity control speed is small, while the operator has more

freedom to increase the control speed during the fully manual

control mode.

The results from user study with Bayesian optimization are

obtained by applying different parameters through Bayesian

optimization for different subjects. As for the comparisons

between with and without using the Bayesian optimization,

the results are shown in Table III. Results indicated that with

Bayesian optimization, the task completion time is reduced

significantly, while the average control speed is enhanced.

The total path length of the master trajectory is slightly

smaller, but the differences can be overlooked since the p-

value is larger than 0.05. The surgical tool trajectories of one

study are shown in Fig .5, which illustrates the difference

between with and without Bayesian optimization.

National Aeronautical Space Agency-Task Load Index

(NASA-TLX) questionnaire is used to measure the subjects’

cognitive workload for comparisons between with and with-

out the use Bayesian optimization by scoring six subjective

subscales [26], including mental demand, physical demand,

temporal demand, performance, effort and frustration. Based

on the results of the NASA-TLX, the subjects’ cognitive

workload could be significantly reduced when using the

Fig. 5. The trajectory visualization with comparisons between with and
without Bayesian optimization.

control method with Bayesian optimization, since the average

values of NASA-TLX for the manual optimized mode and

the Bayesian tuning mode are 59.32 and 36.86 respectively.

IV. CONCLUSIONS

This paper presented a supervised semi-autonomous con-

trol method for surgical robot control. GPR is used to

generate the trajectory for the implementation of autonomous

control phase. While the bimanual operation and the in-

teraction with targeted operation areas remain operating in

the manual control mode. To verify the effectiveness of the

semi-autonomous control method, comparisons were made

between manual control mode and semi-autonomous mode

using a customized simulator. To identify the efficacy of the

Bayesian optimization method, user studies were designed

to compare the performance of the operations using the

parameters based on with and without Bayesian optimization.

The experiment results indicated that with the supervised

semi-autonomous control method, the surgical operation ef-

ficiency can be improved. The supervised semi-autonomous

control method can exploit the complementary advantages

of both the robot and the human operator. The optimal user-

specific parameters can be obtained during surgical skill

training with the simulator through Bayesian optimization,

which can improve the users’ performance significantly. The

proposed method can reduce the operator’s workload, and

bring more outcomes.

The supervised semi-autonomous control method can be

implemented on other types of surgical platforms with dif-

ferent surgical tools and tasks. Future work will include

applying this technique to more complex surgical operations

and improve the level of automation.
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