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Abstract— The recent development of Robot-Assisted Mini-
mally Invasive Surgery (RAMIS) has brought much benefit to
ease the performance of complex Minimally Invasive Surgery
(MIS) tasks and lead to more clinical outcomes. Compared to
direct master-slave manipulation, semi-autonomous control for
the surgical robot can enhance the efficiency of the operation,
particularly for repetitive tasks. However, operating in a highly
dynamic in-vivo environment is complex. Supervisory control
functions should be included to ensure flexibility and safety dur-
ing the autonomous control phase. This paper presents a haptic
rendering interface to enable supervised semi-autonomous con-
trol for a surgical robot. Bayesian optimization is used to tune
user-specific parameters during the surgical training process.
User studies were conducted on a customized simulator for
validation. Detailed comparisons are made between with and
without the supervised semi-autonomous control mode in terms
of the number of clutching events, task completion time, master
robot end-effector trajectory and average control speed of the
slave robot. The effectiveness of the Bayesian optimization is
also evaluated, demonstrating that the optimized parameters
can significantly improve users’ performance. Results indicate
that the proposed control method can reduce the operator’s
workload and enhance operation efficiency.

I. INTRODUCTION

The advent of Robotic-Assisted Minimally Invasive
Surgery (RAMIS) has brought much benefit to help realize
the full potential of MIS. Most of the existing robotic
platforms for RAMIS are developed based on master-slave
control [1], [2]. For example, the da Vinci Surgical System
(dVSS) can be regarded as a representative. Surgeons can
benefit from its endo wrist design for dexterous operation.
The functions of tremors removal and motion scaling can
enable precise operation during robotic surgery. However,
no autonomy is incorporated in the dVSS. The current trend
for surgical robots development is towards safer, smaller,
smarter embodiment to ensure wider clinical uptake [3] in
the years to come. In pursuit of a higher level of autonomy,
Artificial Intelligent (AI) can be incorporated into current
surgical operation workflow [4].

The semi-autonomous robot can reduce the cognitive load
of the operator and potentially shorten the operation time,
which enables the surgeons to focus on the most critical
tasks and lessen the fatigue for repetitive tasks [5]. Given
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the advances in surgical robotic technologies, collaborative
working between surgeons and robotic systems will lead to
better clinical outcomes. For example, a robot can operate
precisely and stably given the desired task, while human
guidance can ensure safety, make diagnostic and procedural
decisions, and adjust the operation according to the patient’s
anatomy and situations. Moreover, a human operator can
conduct complex operations through fine-tuning control and
handle the emergency with decision-making. Therefore, to
enable the human operator to maintain the control of the
robot, a shared control method can be designed to enable
semi-autonomous control.

The importance of adjustable roles during human-robot
interaction has been emphasized in [6]. Though the concept
of human-robot cooperative control has already been imple-
mented in a master-slave paradigm [7], the role adaption
between the human and the robot during semi-autonomous
control has not been fully exploited.

Some of the existing autonomous surgical systems provide
supervisory functions in different modes. These include the
preoperative model acquisition or computer-assisted surgical
planning, such as planning, teaching, monitoring, and inter-
vening [8], [9]. Suppose that the control input is generated by
the operator and the robot, the level of control assigned to the
operator and the robot can be adjusted to facilitate a smooth
workflow in a surgical operation. The human control input
during the autonomous mode can be defined as supervisory
functions for semi-autonomous control.

For human-in-the-loop control, user-specific parameters
require fine-tuning. Bayesian optimization is a common
method for nonlinear optimization [10] for applications
which involve human-robot interaction [11]. It is a data-
efficient approach [12], since only a few samples are needed
for optimization [13]. Therefore, in this work, Bayesian
optimization is used to tune the parameters for the user-
specific role adaption between the human operator and the
robot during an autonomous task.

The proposed supervised semi-autonomous control
method based on Bayesian optimization is validated with a
customized simulator based on a peg transfer task, while
comparisons were made to assess the differences between
with and without using the supervised semi-autonomous
control method. Further user studies are conducted to
evaluate the effectiveness of the Bayesian optimization.

The remainder of this paper is organized as follows.
Section II introduces the implementation of the semi-
autonomous control method. The adaptive mechanism is
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The general steps of the proposed supervised semi-autonomous

described in detail, as it leads to the construction of the
supervised semi-autonomous control. Moreover, the user-
specific parameters tuning based on Bayesian optimization
is introduced. Section III presents the user study design and
results analysis. Conclusions are drawn in Section IV.

II. METHODOLOGY

In this section, the key procedures of the implementation
of the proposed semi-autonomous control are illustrated. The
supervisory function is introduced to facilitate the supervised
semi-autonomous control. The user-specific parameters tun-
ing based on Bayesian Optimization is introduced.

A. Overview

The overall workflow of the supervised semi-autonomous
control is illustrated in Fig. 1. The first step is database
construction with data registration and labelling. The second
step is task segmentation, which divides a surgical procedure
into two phases that require different control modes, i.e. 1)
manual control by the operator, ii) autonomous execution of
a pre-defined trajectory. The manual control can be realized
based on the traditional master-slave with suitable motion
scaling to ensure precision for fine control. Virtual fixture is
incorporated into the control for safety consideration, which
can be regarded as the third step. With virtual fixture, the
risk of tissue damage can be reduced. The autonomous
control phase is built with learning from demonstration
(LfD), which is the fourth step. LfD can generate the desired
trajectory for task automation, which is an effective method
in pursuit of a higher level of autonomy [14]. The final
step is incorporating the supervisory functions to achieve
supervised semi-autonomous control. More details about
task segmentation, model regression for desired trajectory
generation, the implementation of semi-autonomous control
and the supervisory functions are described in the following
subsections.

Due to the difference in the user’s experience and control
preferences, the proposed semi-autonomous control method
has to be tuned to suit each individual user. Therefore,
Bayesian optimization is required to improve this control
scheme in a user-specific manner.

B. Task Segmentation

Surgical tasks can be decomposed into basic rudimentary
gestures, named surgemes [15]. For example, seven types
of surgemes are defined for the ring transfer task in [16],
while fifteen types of surgemes for the knot-tying task, the
suturing task and the needle-passing task have been defined
in JIGSAW(JHU-ISI Gesture and Skill Assessment Working
Set) [17]. Based on the characteristics of different tasks, the
surgemes can be further divided into coarse motions and fine
movements [16], [18]. The surgemes used in this paper is
defined in Table I.

TABLE I
THE DEFINITIONS OF SURGEMES FOR THE PEG TRANSFER TASK.

Index Description Type
Pl Lifting object with right-hand tool Precise motion
P2 Lifting object with left-hand tool Precise motion
P3 Moving with right-hand tool Coarse motion
P4 Moving with left-hand tool Coarse motion
P5 Placing object with right-hand tool Precise motion
P6 Placing object with left-hand tool Precise motion
P7 Transferring object from right to left ~ Precise motion
P8 Transferring object from left to right ~ Precise motion

Fine movements include bimanual operation, which re-
quires the control of two surgical tools during the opera-
tion. As for coarse motions, the gross positioning, moving
the surgical tool to another distant target for operation,
transferring the object from one position to another. These
procedures can be performed by the robot automatically with
enhanced efficiency and reduced errors to the desired path.
For example, P3 and P4 refer to coarse motions while the
others represent fine motions respectively in this paper.

After constructing the database, the kinematic data can
be manually annotated with specific surgemes defined at the
frame level by analyzing the video. The kinematic data of
the coarse surgemes can then be selected from the database
to train a model for trajectory regression based on LfD,
which paves a way for the implementation of the autonomous
execution phase.

C. Model Regression

Gaussian Process Regression (GPR) is a nonparametric
Bayesian approach for regression, which is a data-efficient
method and can allow uncertainty during predictions. With
the limited training data, GPR can calculate the posterior and
compute the predictive posterior distribution on the desired
points.

Suppose that ¢ represents the time step, P is the trajectory
comprised of n time steps obtained during the demonstration
phase, where p = [z,y, 2] (p = P(t)). p* = [x*,y*, 2] is
the desired location for the regressed model, which can be
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Fig. 2. The overview of the supervised semi-autonomous control framework.

known as the test observation. f(p*) is the prediction result
based on Gaussian Process.

A Gaussian process prior, specified using a mean function
and a covariance function is described by (1). With an
infinite-dimensional multivariate Gaussian distribution, all
the data in the training set are joint Gaussian distributed.

f(p)~GP(M(p), K(p.p*)) (1)
where M(p) = E(f(p), K.p*) = E(f(p) —
M)(f(p*)—M(p*))(p = z,y, z respectively). A kernel is

required to generate the covariance matrix K. In this paper,
we used the squared exponential kernel.

Considering that the training data may be noisy, we
assume that f(p) contains additive independent identically
distributed Gaussian noise € with variance o2. After nor-
malization to ensure prior mean distribution of zero, the
prior of the distribution of joint f(p) and f(p*) can be
obtained. The predictive distribution can be generated based
on conditioning the joint Gaussian prior distribution on the
observations [19].

The Gaussian process can model a sequence of observa-
tions, such as the desired trajectory of the surgical robot
end-effector. Therefore, we implement GPR to realize au-
tonomous phase in this paper.

D. Semi-Autonomous Control

Semi-autonomous control includes two phases, i.e. 1) man-
ual control phase, ii) autonomous phase. The overview of the
supervised semi-autonomous control framework is shown in
Fig. 2.

1) Manual Control Phase: For the manual control phase,
in order to achieve intuitive control of the slave robot, the
orientation of the end-effector of the slave robot is the same
as that of the master controller. As for the position control
during the manual control phase, the master end-effector

displacement and the position of the end-effector of the
slave robot are the control input and output respectively. The
position change of the master is mapped to the slave by a
scaling factor 7 for more precise control of the end-effector
with fine movements. The end-effector position p, () at time
step ¢ can be calculated as follows.

Ps(t) = ps(0) + 7(Pm(t) — Pm(0)) 2

where p,,(t) is the end-effector position of the master
controller at time step t.

During fine operation, virtual fixture is used to ensure safe
operation where movement constraints are introduced with
force feedback, since bimanual operation should avoid the
collision between the two surgical tools. As for the tool-tissue
interaction, delicate manipulation is required. With virtual
fixture, the potential damages to critical anatomical structures
can be avoided by limiting the force exerting on the tissue
during a surgical operation.

2) Autonomous Phase: As for the autonomous phase, the
robot takes the lead and executes the learned trajectory,
which is generated based on GPR. v, (t) is the autonomous
control component generated by the robot based on the pre-
defined trajectory. Suppose that P, (t) is the desired trajec-
tory generated by the GPR model, vq (t) = (P (t)— Py (t
1))/At, where At is the time increment. Therefore, the end-
effector position ps(t) at time step ¢ can be calculated as
follows.

ps(t) = ps(t 3)

The velocity profile of the autonomous surgical tool con-
trol is important to be explored. The initial velocity is set to
zero at the control phase switching point. When the control
mode is switched from manual mode to autonomous mode, it

1) + va () At
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increases gradually. After it reaches the maximum velocity
value, it remains the same and then gradually decrease to
zero when the control mode is switched back to the manual
mode.

E. The Supervised Functions

Supervisory functions have been used for autonomous
systems, which includes planning, teaching, monitoring, and
intervening [20]. The advantages of supervised autonomous
control have been demonstrated in [21]. Therefore, we try
to incorporate supervised functions in an intervening man-
ner for the autonomous control phase, which leads to the
supervised semi-autonomous control.

The supervised functions can be included to the au-
tonomous control as a form of human guidance. Therefore,
the operator can maintain control over the robot. The control
input from the operator during the autonomous phase can en-
sure safety during the task execution. Moreover, this enables
the dynamic augmentation of the task, which could rectify
the uncertainty caused by the unprecise model regression.

The control input is generated by the master controller
end-effector position, which is controlled by the operator.
While the control output is the additional velocity vector,
which can alter the trajectory of the surgical robot end-
effector movements during the autonomous task execution
phase.

During the autonomous mode, the end-effector of the
master robot will remain in the same place, the position
of which is p;. Suppose that at time step ¢, the updated
end-effector position controlled by the user is p,,(t). The
position control vector py(t) generated by the operator is
proportional to the master position increment controlled via
the master manipulator. py, (t) is generated by (4).

Pr(t) = K(pm(t) — 1) 4)

where K is a user-specific control mapping factor.

In this way, the supervisory functions can be realized
by mapping the displacement and direction from the fixed
master device end-effector position to the magnitude and
direction of velocity to control the slave robot.

To provide feedback to the operator, the control interface
is augmented through force feedback on the regressed path
during the autonomous control phase. The feedback Fp,(t)
can enable the operator to have a sense of how velocity is
commanded.

Frn(t) = Q(pm(t) — p1) (5)

where @ is a parameter to enable the user to adjust the force
feedback intensity.

In this way, the final control commands are generated by
combining both of the desired trajectory and the operator’s
control input. The final end-effector position can be defined
by (6).

Ps(t) = ps(0) + pr(t) +va(t)At (6)

FE. Parameters Tuning

Several key parameters for the supervised semi-
autonomous control are required to be tuned by the users
to reach the optimal control property using the simulator
during the surgical training.

1) Robot Control Parameter: This parameter indicates the
maximum velocity v,,q, controlled by the robot during the
autonomous phase. The autonomous control component is
Va(t) = Vmazs(x), where s(z) = 7t is a sigmoid
function to make the transition process to be smooth. s(z)—0
indicates the entrance of the fully manual control phase.

2) Human Control Parameter: The key parameter of
the human-input control component is K, which alter the
intensity of the supervised function during the autonomous
control. K—0 indicates fully automatic control, where the
supervised function is disabled.

3) Force Rendering Parameter: The force rendering pa-
rameter () can also be tuned, which is the relationship
between the haptic feedback and the position increment
control commands generated by the operator.

G. Preference-Based Bayesian Optimization

Bayesian optimization is used to find the optimal user-
specific parameters. Suppose that m is the number of pa-
rameters for optimization, X € D™ is the set of user-
specific parameters for optimization, F'(X) is the objective
function which is used to evaluate how much benefits of a
system can bring to a user. The target is to find out X,
= argr)r(né%F(X ). F(X) is a black-box function that does

not have a specific meaning, which is only used to represent
how the user like the system for preference consideration.
An acquisition function is required to decide where to sam-
ple the next data for testing [22]. F,,[.] indicates the expecta-
tion taken under the posterior distribution given evaluations
of F at X,,(1<m<n). Suppose that Fmax=£rn13)7§F(Xm).

This posterior distribution is given by the GPR.

The next set of parameters for evaluation can be deter-
mined by X,,+1 = argmaxET,(X). The expected improve-
ment (EI) evaluates at the point with the largest expected
improvement, which can be calculated as follows.

EI = E,[maz(0, F(X) — Fra)] =
{ZJ(X)W(Z) + 0(X)P(Z), (Frnaz < F(X)) (7
0, otherwise

where Z = %, &(.) represents the probability

density function and ¥(.) represents cumulative distribution
function of standard normal distribution (N ~ (u, o)).

X = Umaz, K, Q is used in this paper as variables for
fine-tuning. The range of v,,., iS set to be ranged from
3mm/s to 9mm/s, while the K and @ are set to be ranged
from 0.6 to 1.8 and -1.5 to -3.5 respectively. For the initial
test, we defined the parameters v,,q, = 6mm/s, K = 1.2,
@@ = —2.5 empirically. The value of the parameters can
be adjusted based on the Bayesian optimization protocol,
which enables the users to reach the best performance with
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the desired operation. More technical details of the Bayesian
optimization can be found in [10].

III. USER STUDIES

In this section, user studies for validating the proposed
framework are introduced, the results of the experiments are
analyzed based on several evaluation metrics.

A. Experimental Setup

A customized simulator is developed based on Asyn-
chronous Multi-Body Framework (AMBF) for user studies
and user-specific parameters acquisition [23]. For surgical
training, compact master manipulators are preferred, instead
of using the master manipulators of the original control con-
sole [24]. Therefore, two Geomagic Touch devices are used
as the compact master manipulators for surgical training.

A peg transfer task was selected for validating the pro-
posed. The peg transfer task is performed using a standard
Fundamentals of Laparoscopic Surgery (FLS) training board
[25]. In order to reduce the difficulties for participants
who do not have surgical operation experience, the task is
simplified. The overview of the experimental setup and the
operational scene by a subject is shown in Fig. 3.

B. Experimental Protocol

The peg transfer task for the simulator is shown in Fig. 4.
The initial position of the right tool is located at A, while
the left tool is located parallel to A. The initial position of
the grippers are fixed to ensure the comparisons between
different trials are fair. The whole procedures for ring transfer
task are as follows:

e 1) Control Right gripper to grasp the peg from A, pass
it to Left gripper and place it on B.

o 2) Control Left gripper to grasp the peg from B and
place it on C.

o 3) Control Right gripper to grasp the peg from C, then
place the peg on A.

Fig. 4. The simulator for user studies and the illustration of the experi-
mental protocols.

C. User Studies Design

Six subjects were recruited in the user studies. All the
participants are right-handed. Two of the subjects have tele-
operation experience with the simulator. The first user study
was conducted for comparisons between manual control
mode and the semi-autonomous control mode. The second
user study is developed for comparisons between with and
without Bayesian optimization using the supervised semi-
autonomous control mode.

Each subject performed the same experiment for three to
five trials. Participants are required to use the virtual grippers
to grasp, locate, transfer and place the peg in different
locations. Experiments would not start until they met the
baseline proficiency to be included in the user studies. Then,
all the qualified subjects were asked to go through the
whole procedure at least twice to get accustomed to the
experimental protocols. Once the subjects felt familiar with
the control and experimental protocol, task execution began.
To obtain a fair comparison, the initial poses of the robot’s
end-effectors were set to the same value at the beginning.

D. Evaluation Methods

The usability of the proposed method based on user studies
is analyzed quantitatively through four evaluation metrics,
i.e. i) master robot total trajectory length (M (m)), ii) task
completion time (7(s)), iii) average velocity for the slave
robot control (A(mm/s)), and iv) number of clutching
events (C). To reduce the fatigue of the surgeon during
the operation, the smaller M (m) is preferred. Clutching is
a process of cutting off the mapping between master and
slave and re-centring the master without moving the slave.
It is useful when the master manipulator reaches its physical
boundary. In pursuit of higher operation efficiency, the less
number of clutching and the shorter task completion time and
the higher average slave robot control speed can optimize the
surgical workflow.

The p-value is used to identify whether the data have
significant differences or not. p < 0.05 represents that statis-
tic differences can be observed. Normality tests (Shapiro-
Wilk test) at 0.05 significance level were performed to
verify whether the evaluation metrics have non-parametric
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nature or not. Wilcoxon signed-rank tests were conducted
for non-parametric statistical comparison between variables
(completion time and master robot trajectory), while T-tests
were conducted for the other metrics which satisfy the nor-
mal distribution assumption. A p-value<0.05 is considered
significant.

E. Results Analysis

TABLE 11
MANUAL CONTROL MODE VS. SEMI-AUTONOMOUS CONTROL MODE

Manual Semi-Autonomous  p-value

M (m) 4.72 + 1.57 2.37 + 1.50 0.0003

T (s) 106.57 + 50.84 111.30 + 45.00 0.3942

A (mm/s) 9.56 + 2.17 10.03 4+ 2.94 0.6215

C 159 + 6.8 8.0+ 64 0.0028
TABLE IIT

WITH VS. WITHOUT BAYESIAN OPTIMIZATION

Without Optimization = With Optimization p-value

M (m) 1.48 + 0.51 1.44 + 0.66 0.2145
T (s) 55.47 + 20.64 43.34 + 15.03 0.0038
A (mm/s) 11.01 &+ 2.12 12.77 + 2.48 0.0280
C 33 £25 24+ 14 0.0018

Preliminary user studies were conducted for comparisons
between manual control mode and semi-autonomous control
mode for the simulator. The results are shown in Table II.
Results indicated that using the semi-autonomous control
mode can reduce the burden of the operator by simplifying
the master control trajectory and reducing the clutching
frequency significantly. The task completion time and the
average slave robot control speed do not have significant
differences, which is due to the fact that the maximum
velocity control speed is small, while the operator has more
freedom to increase the control speed during the fully manual
control mode.

The results from user study with Bayesian optimization are
obtained by applying different parameters through Bayesian
optimization for different subjects. As for the comparisons
between with and without using the Bayesian optimization,
the results are shown in Table III. Results indicated that with
Bayesian optimization, the task completion time is reduced
significantly, while the average control speed is enhanced.
The total path length of the master trajectory is slightly
smaller, but the differences can be overlooked since the p-
value is larger than 0.05. The surgical tool trajectories of one
study are shown in Fig .5, which illustrates the difference
between with and without Bayesian optimization.

National Aeronautical Space Agency-Task Load Index
(NASA-TLX) questionnaire is used to measure the subjects’
cognitive workload for comparisons between with and with-
out the use Bayesian optimization by scoring six subjective
subscales [26], including mental demand, physical demand,
temporal demand, performance, effort and frustration. Based
on the results of the NASA-TLX, the subjects’ cognitive
workload could be significantly reduced when using the

Left Surgical Tool Trajectory Right Surgical Tool Trajectory

TT T T T
T

———  Without Optimization

——— Without Optimization

——— With Optimization ——— With Optimization

Fig. 5. The trajectory visualization with comparisons between with and
without Bayesian optimization.

control method with Bayesian optimization, since the average
values of NASA-TLX for the manual optimized mode and
the Bayesian tuning mode are 59.32 and 36.86 respectively.

IV. CONCLUSIONS

This paper presented a supervised semi-autonomous con-
trol method for surgical robot control. GPR is used to
generate the trajectory for the implementation of autonomous
control phase. While the bimanual operation and the in-
teraction with targeted operation areas remain operating in
the manual control mode. To verify the effectiveness of the
semi-autonomous control method, comparisons were made
between manual control mode and semi-autonomous mode
using a customized simulator. To identify the efficacy of the
Bayesian optimization method, user studies were designed
to compare the performance of the operations using the
parameters based on with and without Bayesian optimization.

The experiment results indicated that with the supervised
semi-autonomous control method, the surgical operation ef-
ficiency can be improved. The supervised semi-autonomous
control method can exploit the complementary advantages
of both the robot and the human operator. The optimal user-
specific parameters can be obtained during surgical skill
training with the simulator through Bayesian optimization,
which can improve the users’ performance significantly. The
proposed method can reduce the operator’s workload, and
bring more outcomes.

The supervised semi-autonomous control method can be
implemented on other types of surgical platforms with dif-
ferent surgical tools and tasks. Future work will include
applying this technique to more complex surgical operations
and improve the level of automation.
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