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Microbial rhodopsins are increasingly favored over chlorophyll
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Originality-Significance statement: High Nutrient Low Chlorophyll (HNLC) regimes cover
approximately 30% of the global ocean surface and play a crucial role in the Earth’s carbon
cycle. Here we show that microbial rhodopsins are particularly abundant in a HNLC region of
the Subantarctic ocean, where chlorophyll abundance is relatively low and photosynthesis and
respiration might be impaired due to iron limitation. These data suggest that rhodopsin
phototrophy can contribute significantly to the energy budgets of HNLC regions, capturing

meaningful amounts of light that cannot be channeled through photosynthesis.

Abstract

Microbial rhodopsins are simple light-harvesting complexes that, unlike chlorophyll
photosystems, have no iron requirements for their synthesis and phototrophic functions. Here we
report the-first environmental concentrations of rhodopsin along the Subtropical Frontal Zone off
New Zealand, where Subtropical waters encounter the iron-limited Subantarctic High Nutrient
Low Chlorophyll (HNLC) region. Rhodopsin concentrations were highest in HNLC waters
where chlorophyll-a concentrations were lowest. Furthermore, while the ratio of rhodopsin to
chlorophyll-a photosystems was on average 20 along the transect, this ratio increased to over 60
in HNLC waters. We further show that microbial rhodopsins are abundant in both picoplankton
(0.2-3pm) and in the larger (>3pum) size fractions of the microbial community containing
eukaryotic plankton and/or particle-attached prokaryotes. These findings suggest that rhodopsin
phototrophy could be critical for microbial plankton to adapt to resource-limiting environments

where photosynthesis and possibly cellular respiration are impaired.

Introduction
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The Subantarctic region of the Southern Ocean is a crucial regulator of the global climate
system. Not only is it one of the largest sinks of atmospheric CO, in the world ocean (Metzl et
al., 1999), but also the source of nutrients that ultimately fuel most of the global ocean’s primary
production through the convective formation of intermediate waters in this region (Toggweiler et
al., 1991; Sarmiento et al., 2004). For that reason, the importance of chlorophyll-based
photosynthesis in the Subantarctic waters to the global carbon budget has been studied for
decades (Boyd et al., 1999; Doblin et al., 2011). Yet, the magnitude of rhodopsin-based
phototrophy and its role in sustaining microbial communities in the Subantarctic HNLC
oceanographic regime remains unknown. Microbial rhodopsins are light-driven ion-pumps (Béja
et al., 2000) present in microorganisms of all life domains, with notably over 80% of the surface
marine bacteria containing these genes (Dubinsky et al., 2017; Sieradzki et al., 2018). The
simplicity and low synthesis cost of rhodopsin photosystems compared to chlorophyll further
suggest that they have a critical role in light energy acquisition, particularly in resource deplete
environments where photosynthesis is limited (Raven, 2009). Supporting this hypothesis, several
culture studies have shown that rhodopsin phototrophy can improve bacterial growth, survival, or
reduce respiration rates when labile organic matter resources are scarce (Gémez-Consarnau et
al., 2007; 2010; Steindler ef al., 2011). Also, in situ, the abundance of rhodopsin genes appears
to be negatively correlated to chlorophyll and inorganic nutrient concentrations (Campbell ez al.,
2008). To date, ambient rhodopsin concentrations (i.e., the number of rhodopsin photosystems
per volume of seawater) have only been reported for the Mediterranean Sea and the Eastern
Atlantic Ocean, where they also tended to be inversely related to phytoplankton biomass, nitrate,
and phosphate concentrations (Gémez-Consarnau et al., 2019). Despite this empirical evidence,

not all studies on rhodopsin phototrophy reflect a clear association with macronutrients or
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organic matter availability, suggesting that other regulating factors may exist (Pinhassi ef al.,
2016). For instance, a study in the Chesapeake Bay found that the percent of rhodopsin-
containing cells was positively correlated to salinity using a microscopy-based method (Keffer et
al., 2015; Maresca et al., 2018). Therefore, expanding rhodopsin observations to additional key
marine regions is essential to further elucidate their regulation mechanisms and overall

importance globally.

The relationship between rhodopsin phototrophy and iron availability has not been tested
thoroughly, and never in the HNLC Subantarctic waters where microbial growth is limited by the
availability of this trace element (Sedwick ef al., 1999; Sander et al., 2015). Unlike chlorophyll-
based photosynthesis, rhodopsin phototrophy does not involve any known redox reactions, and
its functioning is independent of electron carriers such as iron (Raven, 2009). Rhodopsin-like
genes have been found in populations of the diatom Pseudo-nitzschia granii from the North
Pacific HNLC region, and further culture studies revealed that the highest levels of both
rhodopsin transcripts and proteins occur under low iron conditions in a P. granii strain
(Marchetti et al., 2015). This suggests that this diatom may, indeed, rely on rhodopsin
phototrophy when iron concentrations are insufficient to adequately perform photosynthesis.
Furthermore, given the high iron requirements of the respiratory electron transport chain,
heterotrophic bacterial respiration can also be impaired in HNLC regions due to iron limitation

(Tortell et al., 1996).

Results and Discussion
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Here we studied the distributions of the two most important solar energy transducing
systems, rhodopsin and chlorophyll-a (chl-a), on a 60 km transect across the Subtropical Frontal
Zone off New Zealand (Munida Microbial Observatory Time Series; MOTS), which traverses
through three contrasting oceanographic regimes and water masses: Coastal neritic (CNW),
Subtropical (STW), and Subantarctic waters (SAW) (Jillett, 1969) (Figure 1A and
Supplementary Information). This geographical transect provides a unique opportunity to
evaluate the relative contribution of each photosystem in three contrasting environments ranging

from coastally-influenced waters to an HNLC iron-limited region (Figure 1B).

Surface rhodopsin and chl-a concentrations displayed particular spatial and temporal
trends along the transect; rhodopsin ranged from 7 to 27 pM (Figure 1C) while chlorophyll
varied substantially more (16-fold; 100-1600 pM; Figure 1D). The highest chl-a concentrations
were found in different size fractions, depending on the sampling station and season. Rhodopsins
were present in all size fractions of the microbial community, with more than 35% of the signal
being found in the large size fractions (>3pum). Although rhodopsin genes and transcripts had
previously been identified in large microbial communities (>0.8um) in a temperate estuary
(Maresca et al., 2018), these are the first data reporting actual rhodopsin quantifications in nano-
or micro-plankton in any open-waters marine system, indicating their presence in eukaryotes
and/or particle-attached prokaryotes. However, most of the total rhodopsin content (62%) was
found in the picoplankton fractions. These observations, together with rhodopsin gene data from
the global ocean (Pinhassi et al., 2016), suggest that rhodopsin phototrophy is widespread in

marine microbial communities and that it is primarily a prokaryotic light-capturing feature.
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Rhodopsins reached their highest concentrations (~30 pM) at the SAW HNLC stations,
coinciding with the lowest chl-a levels (100-140 pM; Figures 1CD, 2A), suggesting an increased
prevalence of thodopsin-containing microbial plankton or cellular rhodopsin quotas in the HNLC
region. The vertical distributions of rhodopsin (Figure 2A) revealed a maximum above the deep
chlorophyll maximum, with less vertical fluctuations than chl-a. Within a given depth profile,
chl-a concentrations fluctuated between 2-4-fold, while rhodopsin levels varied <2-fold. The
depth distributions of these photosystems are consistent with previous observations (Goémez-
Consarnau et al., 2019) and with the notion that rhodopsin synthesis is energetically

advantageous only at high irradiances (Kirchman and Hanson, 2013).

Rhodopsin photosystem abundances were on average 20 times higher than those of chl-a
throughout the transect. Yet in HNLC waters, the ratio of rhodopsin to chl-a photosystems (R:C
ratio) was significantly higher than in the other regions (4011 compared to 10+5; Figure 2B),
suggesting an increase in photoheterotrophy over photosynthesis associated with water mass
characteristics (Figure 1B). Similarly, Marchetti et al. (2015) reported an increase in the
relative abundance of rhodopsin transcripts and proteins for the diatom P. granii under iron
deplete conditions. Our observations in natural microbial communities of this HNLC region
suggest that the increased R:C photosystem ratios could also be caused by physiological
changes within the cells, as observed in P. granii. However, we cannot rule out an increase

due to the presence of a larger number of rhodopsin-utilizing organisms.

Picoplankton displayed the highest R:C ratios, increasing 3-fold from 21£5 in the STW
and CNW to 68+21 in the SAW-HNLC region (Figure 2B). Thus, while there are several known

microbial strategies for coping with iron stress (e.g., the production of siderophores (Tagliabue et
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al., 2017); high affinity transporters and decreased cell size (Sunda and Hunstman, 1997)), our
data show that HNLC environments appear to be selectively enriched with microbial
communities that can cope with iron stress by harvesting sunlight through rhodopsins when
photosynthesis and/or respiration are compromised. In fact, the metabolic versatility gained
through rhodopsin photoheterotrophy may explain the relatively similar bacterial abundances and
respiration rates previously reported in STW and SAW despite substantial differences in iron
availability (Baltar et al., 2015). Given that respiration is the most iron-demanding process and
the primary energy-generating mechanism in heterotrophs (Raven, 1988), the increase in R:C
among picoplankton suggests that rhodopsin energy capture provides an ecological advantage
during iron limitation. Furthermore, it implies that there is an additional and still unknown
amount of solar energy fueling HNLC ecosystems that needs to be considered in energy budgets.
Identifying the major rhodopsin-containing microbial groups (both heterotrophs and eukaryotic
phytoplankton) in HNLC regions will be central to elucidate the potential ecological processes
impacted by this metabolism. Finally, revealing the intricacies of rhodopsin phototrophy as a
coping mechanism against resource limitation is likely to reshape our understanding of energy

acquisition and the present and future carbon cycle in the ocean.

Materials and Methods

Seawater samples were collected from 8 stations along the MOTS transect at several
depths on March 26 and September 20, 2018 (Figure 1; Supplementary Information). Surface
seawater (2m depth) was sampled at all stations, whereas the deep chlorophyll maximum (DCM)
was only sampled at stations 3 and 8. Approximately 10-liter samples were size-fractionated by

an in-line serial filtration system (10 um, 3um, and 0.22 pm pore sizes) using a peristaltic pump.
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Rhodopsin and chlorophyll-based photosystem concentrations were determined using
retinal and chlorophyll-a as proxies. Both pigments were extracted from the filters with methanol
(Garrido and Roy, 2015; Gémez-Consarnau ef al., 2019). Aliquots from each extract were used
for immediate fluorometric chlorophyll-a quantification using the non-acidification method
(Knap et al., 1994) while retinal concentrations were determined through LC/MS/MS (Gémez-
Consarnau et al., 2019). Rhodopsin photosystem abundances were then estimated assuming that
each rhodopsin photosystem contains one molecule of retinal (Larkum et al., 2018) and that each
chlorophyll-based photosystem contains on average 300 molecules of chl-a (Mirkovic et al.,
2016). Total rhodopsin and chl-a concentrations were calculated by adding the three size
fractions. The specific LC/MS/MS operational conditions were slightly modified from Goémez-
Consarnau et al. (2019) according to Kane and Napoli (2010) to include the use of an internal

standard (see Supplementary Information).

Total dissolved iron (dFe) concentrations (operationally defined as the fraction that
passed through a 0.45 um filter) used in this study were obtained from previous March and
September cruises and are reported in Sander et al. (2015). The samples for dFe were stored at a

pH <2 and quantified after a dithiocarbamate organic extraction (Bruland et al., 1979).

Figure captions

Figure 1. (A). Location of the sampling stations (shown in red) along the Munida Microbial
Observatory Time Series (MOTS) in Coastal Neritic (CNW), Subtropical (STW); and
Subantarctic (SAW) waters. The position of the Subtropical front, which moves seasonally,

belongs to March of 2018. Temperature and salinity plots are shown in Figure S1. (B) Surface
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concentrations of dissolved nitrate, phosphate, and iron (dFe) from discrete sampling locations.
Nitrate and phosphate concentrations belong to the March and September 2018 cruises. Average
dissolved iron concentrations are from previously reported cruises of March and September of
years 2000-2003 (Sander et al., 2015). (C) Rhodopsin and (D) chlorophyll-a levels in
picoplankton (0.2-3.0 pm), nanoplankton (3.0-10.0 pm), and >10.0 pm size fractions of the
microbial community. The narrower columns in panels C-D represent photosystem
concentrations from samples collected at three different depths, 2m, 20m, and deep chlorophyll

maximum (from left to right).

Figure 2. (A) Depth profiles of rhodopsin and chlorophyll-a concentrations measured in March
and September of 2018. Station-3 and station-8 were located in Subtropical (STW) and
Subantarctic (SAW) waters, respectively. (B) Rhodopsin to chlorophyll-a photosystem ratios in
different size fractions of the microbial community, grouped by water mass. Photosystem
abundance was calculated assuming one molecule of the retinal for rhodopsin and 300 molecules
of chlorophyll-a for each chl-a photosystem (Mirkovic ef al., 2016). Rhodopsin:Chlorophyll-a
ratios were significantly higher in the HNLC Subantarctic compared to Coastal neritic and
Subtropical water masses (Welch two sample t-test, p=6.9-10"* for 0.2-3 pm, p=1.1-10" for 3-10

pm, p=6.0-10" for >10 pm size fractions, and p=3.3-10~ for the entire community).
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