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MULTIPLICITY ONE AT FULL CONGRUENCE LEVEL

DANIEL LE, STEFANO MORRA, AND BENJAMIN SCHRAEN

ABSTRACT. Let F' be a totally real field in which p is unramified. Let 7 : Gp —
GL2(Fp) be a modular Galois representation which satisfies the Taylor-Wiles
hypotheses and is tamely ramified and generic at a place v above p. Let m be
the corresponding Hecke eigensystem. We describe the m-torsion in the mod
p cohomology of Shimura curves with full congruence level at v as a GLa (kv )-
representation. In particular, it only depends on 7| Ip, and its Jordan—Holder
factors appear with multiplicity one. The main ingredients are a description
of the submodule structure for generic GL2(F4)-projective envelopes and the

multiplicity one results of [EGSTH].

1. INTRODUCTION

Fix a prime p and a totally real field F//Q. Fix a modular Galois representation
7 : G — GLy(F,) with corresponding Hecke eigensystem m. Fix a place v|p of
F. Mod p local-global compatibility predicts that the m-torsion subspace, which
we denote by 7, in the mod p cohomology of a Shimura curve with infinite level at
v realizes the mod p Langlands correspondence for GLy(F,) (see [Brel0]), general-
izing the case of modular curves ([Coll0, [Emelll [Pasi3]). The goal of the mod p
local Langlands program is then to describe 7 in terms of the restriction to the de-
composition group at v, 7|g, , though it is not even known whether 7 depends only
on 7lg,. One of the major difficulties is that little is known about supersingular
representations outside of the case of GL2(Q,) (see [AHHVIT]).

We now assume that p is unramified in F and that 7|g, is 1-generic (see Defi-
nition . Let K = GLy(0,) and I; C K be the usual pro-p Iwahori subgroup.
[BDJ10] and Conjecture B.1] conjecturally describe the K-socle and ;-
invariants of m—in particular they should satisfy mod p multiplicity one when the
tame level is minimal (see §5). [Geellb] and [EGSIH] later confirmed these con-
jectures. [Brel4] shows that such a 7 (also satisfying other properties known for
m-torsion in completed cohomology) must contain a member of a family of represen-
tations constructed in [BP12]. If f = 1, this family has one element, and produces
the (one-to-one) mod p Langlands correspondence for GL2(Q,). For f > 1, each
family is infinite (see [Hul0]), and so a naive one-to-one correspondence cannot
exist. Moreover, the K-socle and the I;-invariants are not sufficient to specify a
single mod p GL2(Q,)-representation when f > 1.

However, [EGST5|] proves a stronger multiplicity one result than what is used
in the construction of [BP12], namely a result for any lattice in a tame type with
irreducible cosocle. We strengthen this result in tame situations as follows (cf.
Corollary [5.4). Let K(1) C K be the kernel of the natural map K — GLa(k,).
Assume that in the definition of m we consider the cohomology of a Shimura curve
with infinite level at v and minimal tame level (see 5| for a precise statement).
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Theorem 1.1. Suppose that T is 1-generic and tamely ramified at v and satisfies
the Taylor—Wiles hypotheses. Then the GLa(k,)-representation 75 s isomorphic
to the representation Do(T|q,) (which depends only on 7|r,) constructed in [BP12).
In particular, its Jordan—Holder constituents appear with multiplicity one.

If the Jordan—Holder constituents of a GLa(k, )-representation appear with mul-
tiplicity one, we say that the representation is multiplicity free.

Corollary 1.2. For p > 3, there exists a supersingular GLo(F,)-representation
such that 75 is multiplicity free.

Remark 1.3. We know of no purely local proof of this result.

Proof. We can and do choose 7 such that 7|, is 1-generic and irreducible by [GK14]
Corollary A.3]. Then the GLo(F,)-socle 7’ of 7 is supersingular (and irreducible)
by [EGS15, Corollary 10.2.3] and [BP12, Theorem 1.5(i)], and «#'5X™1) ¢ 7K1 is
multiplicity free by Theorem [1.1 O

The theorem is obtained by combining results of [EGSI5] with a description
of the submodule structure of generic GLa(k,)-projective envelopes (see Theorem
. Note that this theorem precludes infinitely many representations constructed
in the proof of [Hul(, Theorem 4.17] from appearing in completed cohomology. It is
not clear to the authors whether the results of [Brel4l, [EGS15] uniquely characterize
m when 7 is tamely ramified.

We now make a brief remark on the genesis of this paper. The second and third
authors arrived independently at a proof of Theorem (in an unreleased preprint)
following a different argument, but related to the strategy presented here which was
outlined in an unreleased preprint by the first author. Relating the two approaches
led to this collaboration. After our paper had been written, we were notified that
Hu and Wang also obtained a similar result independently [HW18§].

We now give a brief overview of the paper. In Section[2] we describe the extension
graph, which simplifies the combinatorics of Serre weights. Section [3]is the technical
heart of the paper, where we describe the submodule structure of generic GLo(F,)-
projective envelopes. In Section [d] we use the results of Section [3] to give two
different characterizations of a construction of [BP12]. Finally, in Section [5, we
derive our main result.

1.1. Acknowledgments. Many of the ideas in this article, especially the com-
binatorics of Section [2] and proof of Proposition [3.8] came out of the joint work
[LLHLM20] of the first two authors with Bao V. Le Hung and Brandon Levin. We
thank them heartily for their collaboration. The first author thanks Florian Herzig
for answering questions and providing references on modular representation the-
ory, Yongquan Hu for answering a question about K (1)-invariants, and Matthew
Emerton for numerous long and enlightening discussions about p-adic Langlands.
The second and third authors were visitors at I.H.E.S. when they first worked on
this topic. The debt this article owes to the work of Christophe Breuil, Matthew
Emerton, Toby Gee, Vytautas Paskunas, and David Savitt will be obvious to the
reader. The first author was supported by the National Science Foundation under
agreement No. DMS-1128155.
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1.2. Notation. We introduce some notation that will be in force throughout. If
F is any field, we write I for a separable closure of F and Gr := Gal(F/F)
for the absolute Galois group of F. If F' is a global field and v is a place of F|,
we fix an embedding F — F,, and we write I, C G, to denote the inertia and
decomposition subgroups at v of Gg. We further write w, € F, to denote an
uniformizer. If Wr, < Gp, denotes the Weil group of G, we normalize Artin’s
reciprocity map Artp, : F — Wg}j in such a way that the geometric Frobenius
elements are sent to uniformizers.

Throughout the paper, the place v will divide p, and F,,/Q,, will be an unramified
extension of degree f. Let ¢ = pf. We fix a coefficient field F which is a finite
extension of F,. Without further mention, all representations will be over F. We
fix an embedding ¢ : F, < F. The letters ¢ and j will denote elements of Z/f.
Let ¢; = 1o 0 ¢* be the i-th Frobenius twist of ¢g.

Let G be the algebraic group Resg, /¢, GL2. Let Z C T (resp. Zar, C TaL,)
be the center in the diagonal torus in Resg /¢, GL2 (resp. in GL2). Note that the
choice of ¢y gives an isomorphism

(1.1) Txp, F= [] Tov, .

i€Z/f
Thus, the Weyl group W of (G,T') (and sometimes the analogous version for SLy)
is identified with Sg . Let Wi, be the Weyl group of (GLs,TgL,,), we denote by
wo the non trivial element of Wgr,.

Let X*(T) := X*(T xg, Fp) be the character group which is identified with
(Z*)/ by and let e/ € X*(T') correspond to the f-tuple which is (1,0) in the
i-th coordinate and (0,0) otherwise. Let n = >~ e;. We denote by Cy the base p-
alcove in X*(T) ®z R, i.e. the set of A € X*(T') @z R such that 0 < (A\+7,a") <p
for all positive coroots aV. (We define the positive coroots with respect to the
Borel of upper triangular matrices in all embeddings.) Let X°(T) C X*(T) be the
subgroup generated by ¢; o det for i € Z/f. We say that a weight p is p-restricted
if 0 < (u,av) < p for all positive coroots a¥. It is customary to write X;(T) for
the set of p-restricted weights.

Let Gdor = Resg, /¥, SL2 and T9er be the diagonal torus. We write Ay =
X*(T9r) for the weight lattice for G and Agr C Ay for the root lattice.

Note that the root lattice of G is canonically isomorphic to Ag, and we fix
this identification from now on. Note moreover that the restriction map induces
a surjection X*(T') — Ay with kernel X°(T). Let ¢; be the image of &, via the
surjection X*(T') — Aw .

Let 7 be the action of Frobenius on X*(T') so that, for instance, wej = ¢} ;.

For a dominant character p € X*(T') we write V(u) for the Weyl module defined
in [Jan03} I1.2.13(1)]. It has a unique simple G-quotient L(u). If p =3, ugz), where
wi € X*(Tg,) and ,uz(-l) = 1;0p; for i € Z/f, is p-restricted then L(u) = ®;L(1;)®
by the Steinberg tensor product theorem as in [Her09, Theorem 3.9] (as usual
L(1;)® denotes the i-th Frobenius twist of L(y;)). Let T' be the group G(F,) =
GL2(F,). Let F(u) be the I'-representation L(u)|p, which remains irreducible by
[Her09, A.1.3]. Note that F((u) = F(A) if and only if 4 =2 X mod (p — ) X%(T).

Let W denote the affine Weyl group for G4¢* which is canonically isomorphic
to the affine Weyl group W, of G. It is the semidirect product Ag xW. Let W be
the extended affine Weyl group of G and W' be the extended affine Weyl group
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of G9'. They are defined as the semidirect product X*(7) x W and Ay x W
respectively. Note that we have a surjective morphism W — W9 induced by
X*(T) - Aw. If A € Ag (resp. A € X*(T), resp. A\ € Ay ) we write ty for the
image of A € Ag (resp. A € X*(T), resp. A € Ay ) under the usual embedding
Ar = W, (resp. X*(T) — W, resp. Ay < Wder), i.e. ty is the translation
by A. Note that we can extend the Frobenius action on the affine Weyl groups
by declaring (7s); = sj41 for s € W. There is a multiplication by p isomorphism
W — pX*(T) x W sending @ = t,w — @, = tp,w. For @ € W we will use - to
denote the p-dot action @ - p = wy,(pu +n) — 7.

Let Q C W be the stabilizer of Co under the p-dot action and Q4° its image
under the map W — Wder For instance, when f = 1, the set Qd° is formed by the
elements id and (12)¢t_.. (Note that, in the notation of [LLHLM?20],  and Qder
would be denoted as W;" and W; %" respectively.)

2. THE EXTENSION GRAPH

In this section, we describe what is called the extension graph in [LLHLM?20| §2]
for GLy. The modifications from GLg3 are straightforward.

Definition 2.1. Let S, = {g;};. For J C S, let
(2.1) wy = Z w.
wedJ

The inclusion Ay, < Wder (resp. X*(T) — W) induces an isomorphism (4" :

Aw /Ag =5 WA jWder (resp. 12 X*(T)/Ar = W/W,). Let P C Ay x Q4 be
the subset of pairs (w,w) with (4" (—7 =1 (w) + Ag) = wWder.

We similarly define P C X*(T) x Q. Note that restriction gives a natural sur-
jection P —» Pder,

The following lemma is easily checked.

Lemma 2.2. The map (w,w) — w induces a bijection B : P 5 Ayy.

Given J C S, we write (wy,w ) for the element of P" mapped to wy via 3,
with decomposition wy = wyt_,-1,,, where w; € W.
Following [LLHLM20], Definition 2.1.2] we have

Definition 2.3. We say that a weight A € X1 (7T) is reqular p-restricted (or simply
p-regular) if 0 < (A, ") < p—1 for all positive roots & € Agr. We write X,eq(T) C
X1(T) for the set of regular p-restricted weights.

Let u be an element of X,ee(T)/(p — m)X°(T). While we will often fix some lift
of p in X*(T), the constructions below will not depend on the choice of this lift.
We define a map

(2.2) Pler 5 XH(T)/(p — m) X°(T)
(W, W) =" - (u—n+w),

where (w',w’) € P is a lift of (w,w). The map (2.2]) does not depend on the choice
of lift. Then we define

t,: Aw — X*(T)/(p — ) X°(T)
to be the composition of 37! with (2.2)).
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Define Afj, to be the set
Ay ={weAw :0< (w+p,a’) <p}.

(where we take the image of x in Aw). Let t, be the restriction of t], to Af.
We establish some properties of t,,.

Proposition 2.4. Let p € X,oo(T). If w € Ay, then any lift to X*(T) of t,(w) is
regular and p-restricted. Moreover, the map t,, is injective.

Proof. The proof is analogous to that of [LLHLM20| Proposition 2.1.3]. |
The following proposition gives symmetries of the extension graph.

Proposition 2.5. Let i € Xyop(T). Let w € Al and let X —n be a lift of t,(w)
and 71 (w) = (w,w). Then

) = t(w () + )
for v € A}y, where w € W is the image of w.

Proof. This follows by a direct computation analogous to the one in the proof of
[LLHLM20, Proposition 2.1.5]. O

We now recall the definition of the depth of a weight.

Definition 2.6. Let A € X*(T') be a dominant weight and let n € N. We say
that X lies n-deep in its alcove if for each positive coroot oV there exists an integer
me € Z such that pme +n < (A +n,a") < p(mg +1) —n.

Note that Definition [2.6] above is consistent with [LLHLM20, Definition 2.1.9]
and that A € X1(T) is p-regular if and only if it is O-deep.

Definition 2.7. Let =", ul(-l) € X*(T) be a p-restricted weight.

We say that p is generic if 4 —n (which lies in the closure of the alcove Cp) is
1-deep.

An element of u € X*(T)/(p — m)X°(T) is generic if any lift of u is. Note that
a generic weight is p-regular.

Following [LLHLM20], we introduce the notion of adjacency in the extension
graph.

Definition 2.8. Two elements w, w’ € Aj;, are said to be adjacent if w—w’ € {£¢;}
for some index j.

We now justify the term “extension graph”. Recall that I" denotes the group
G(Fp) = GL2(F;). A Serre weight is an absolutely irreducible representation of
I" over an F-vector space. Each Serre weight is obtained by restriction to I" from
an irreducible algebraic representation of G of highest weight A\ € X;(T), and this
process gives a bijection between from X;(T)/(p — 7)X%(T) to the set of Serre
weights of I (as described in [Her09, Theorem 3.10]). As we mentioned in §1.2
given A € X1(T') we write F'(\) for the Serre weight corresponding to A\. We say
that a Serre weight F' is p-regular if F = F(\) where A € X;(T) is regular p-
restricted (cf. Definition . Given p € Cy and w € Ay, we get a corresponding
p-regular Serre weight F(t,(w)). One can prove (cf. [LLHLM20, Propositions 2.1.3
and 2.1.4]) that F(t,(—)) induces a bijection between the set A}, and the set of
p-regular Serre weights of I" with the same central character as F'(u — 7).
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Proposition 2.9. Let p € Cy. Let w,w’ € Ay, such that A —n = t,(w) and
N —n:=1t,(w") are generic. Then

dim Exth(FO\— ), PO\ — 7)) = dim Exth(F(\ — ), FO\— 1)) < 1
with equality if and only if w and W' are adjacent in the graph A%, .

Proof. By Proposition we can assume without loss of generality that w = 0.
Then the extensions of o := F(u—n) are given by the first layer of the cosocle filtra-
tion of the projective envelope of . The proposition now follows from Propositions
and (which do not depend on this proposition). a

We next show that a set of modular Serre weights forms a hypercube in the
extension graph.

We write # for the set of Serre weights. By the discussion preceeding Proposition
this is in bijection with the image of X1 (7T) in X*(T)/(p—m) X (T). Write #;eq
for the set of regular Serre weights which is in bijection with the image of X,eg(T')
in . We have a bijection R : X*(T) — X*(T') (also called Herzig reflection)
defined by A — wot_; - A. It induces a bijection R : #ieg —+ Wreg-

Definition 2.10. A Serre weight F' is said to be n-deep (resp. generic) if we can
write F' = F(\) for a weight A € X;(T') which is n-deep (resp. generic).

For s € W and a character p € X*(T), we denote the corresponding Deligne—
Lusztig representation as in [Her09, Lemma 4.2] by Rs(u).

We always assume that R,(u) is defined over W (F'), the ring of Witt vectors of
F. Given a Deligne-Lusztig representation Rg(i) as above, we write JH(R,(x)) to
denote the set of Jordan—Holder constituents of the mod p reduction of a I'-invariant
W (F)-lattice inside R4 ().

It is easy to see that if u — 7 is n-deep then any weight F(A —n) € JH(Rs(u))
is n — 1-deep. In particular, if 4 — 7 is 1-deep, then # JH(R (1)) = 27 and all the
Jordan-Holder constituents in JH(R4(p)) are 0-deep. Following [GHSIS, §9.1] an
L-parameter for G is, in our context, equivalent to a continuous homomorphism
Ir, — GLy(F) which extends to Gp,. Given an inertial L-parameter 7 we can
associate a Deligne-Lusztig representation Vy(7) following [GHSI8| Proposition

9.2.1]. We define the set W7(7) as
Wi(r) = {R(F), F € JH(Vy(7))}

where, similarly as above, the notation JH(V,(7)) stands for the set of Jordan—
Holder constituents of the mod p reduction of a I'-invariant W (F)-lattice inside

Vo (7).
Proposition 2.11. Suppose that T is an inertial L-parameter such that Vy(r) =
Rs(p). Assume that pn—n is 1-deep. Then W' () = F(t,({swy : J C Se})).

Proof. The obvious crystalline lifts, in the sense of [GHSI8| §7.1], have Hodge—Tate
weights wtsrw—pw (1), Where wt_,, ranges over all elements of 2. Noting that

wtswfpfrflw(,u’) -—n= wt*ﬂ'*lw : (p’ + sw — 77) mod (p - 7T))(O(zj)
= t,(sw) mod (p — m)X%(T)
and that the image of {w | wt_,, € Q} in Aw is {wy | J C S.}, we have that, in the

notation of [GHSIS], Wy (1) = F(t,({swy : J C Sc})). Finally, W (1) = Wby (7)
(see |Geellal §4.2]). O
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3. GENERIC GL3(F,;)-PROJECTIVE ENVELOPES

In this section, we describe the submodule structure of generic GL2(F,)-projective
envelopes, i.e. GLy(F,)-projective envelopes of Serre weights which are generic in
the sense of Definition 2101

Recall that I' is the group G(F,) = GLy(F,) and if R is a I'-representation, we
write R® to denote its i-th Frobenius twist. In what follows we set p = E{:_Ol ,ul(-i) €
X*(T) where p; = (a;,b;) € Z2.

Assume that g — 7 is dominant. If we write yu—n = sz;ol rieh 4+ Zf;ol di(1,1)®
Breuil and Paskunas define a I'-representation (R(,,),) ® det>:?'% in [BP12],$3.
We define R, to be the dual of the representation (R(,,),) ® det > P4,

The following known theorem gives a coarse description of generic I'-projective
envelopes.

Theorem 3.1. Assume that 1 < a; —b; < p—1 for alli. Then R, = ®{;01R82,
where
(1) R,, is a I'-representation with a filtration Fil° R, = R,,, Fil! R,, =
V(wot(—11) - (i — €p)), Fil* Ry, = F(p; — €}), and Fil’ R,,, = 0, and
(2) gr’ R, and gr* R,,, are isomorphic to F(p; —e()) and gr' R,,, is isomorphic
to Fwot - (i — =) @ F(=) (V.
Moreover, if there exists an index © such that a; — b; > 1 then R, is a projective
(and injective) envelope of the weight F(u—mn). FElse, if a;—b; = 1 for all i, then the
representation R, is isomorphic to the direct sum of the projective (and injective)
envelope of the weight F(u —n) and a twist of the Steinberg representation.

Proof. See [BP12, §3, Lemmas 3.4, 3.5]. O

The filtrations on R, induce a tensor multifiltration on R,. More precisely,
the set {0,1,2}/ has a partial order so that (k;); = k < k' = (k.); if k; < k! for
alli € Z/f. We write k < k' if k < k’ and k # k’. For k = (k;); € {0,1,2}/,
let FilX R, := @, Fil*+' R{). Then Fil* R, C Fil* R, if and only if k < K. Let
FiI"*R, = Y, . FiI¥ R,. Let gr* R, = Fil*R,,/Fil"¥ R,. To ease notation,
we will also denote grk R, by Wi. For k = (k;); € {0,1,2}/, let |k| =k =, k;.
There is also the tensor filtration Filg R, = Zlklz & Fil* R,,. Note in particular that
for all k € {0,1,2}/ we have a natural surjection R,/Fil”* R, — R#/Fillg'1 R,

whose restriction to Wy C Ru/ Fil”k R, is injective.
Proposition 3.2. grf R, = &y Wk.
Proof. This follows from general facts about tensor products of filtered objects. [

To describe the representations Wy, we will need the following translation prin-
ciples.
Proposition 3.3. Let A—n, w € X*(T) be dominant weights in alcove Cy. Assume
that L(w)|r is multiplicity free and that for all weights v of L(w)|r, A —n+ v is
still in alcove Cy. Then we have an isomorphism

(1) F(A=n) @ F(w) = @pern(r(w)n (A —n+v).

Assume moreover that (\ —mn,a") > 0 for at least one positive coroot a¥. Then we
have an isomorphism
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(2) Ry ® F(w) = ®uesn(r(w)r) Pr-n+v)
where we have written Pp(x_y1.) to denote a projective envelope of the Serre weight
F(A=n+v). (In particular, Ppx—p4+v) = Rayy if F(A=n+v) is not a character.)

Remark 3.4. In the statement of the Proposition assume that (w,a") <1 for
all positive coroots V. It is then easy to check that the proposition applies with
w = ¢} for all 7 as soon as A — 7 is 1-deep.

Proof. We prove the analogous results for G4°*. By [Pil93, Lemma 5.1(i)] we have
a G4 -decomposition L(A) ® L(w) = @yeyn(r(w)|r)L(A +v) and the first statement
for G4 follows by restriction to the finite group G4°*(F,).

As for the second statement, we need to recall some standard facts about injective
envelopes of Frobenius kernels. Let Tgp, be the standard torus of SLy g, . For
any r > 1 we let (SLs), denote the r-th Frobenius kernel of SLo and, for any
weight A € X, (Ts1,) we write @,(A) for the injective envelope of L(A)|(sL,), 7sy, -
Under our assumption on p the (SLs),Tsr,-module @,-(\) has a unique SLy-module
structure, as well as a SLs-equivariant decomposition:

(3.1) Qr(A) 2 ®Z3Q1(A)

if A decomposes as \ = Z::_Ol p'A; with each \; € X*(TsL,) being p-restricted.

Assume now that w € X, (T, ) is such that L(w) is multiplicity free and A + v
lies in the same alcove as A for any weight v € JH(L(w)|r). By [Pil93] Lemma
5.1(ii)] and we have a decomposition

(32) Qr(A\)®L(w) = Bpein(r(w)r) @A+ 1) = Sein(iiw)e) @ig @1 (i + i)

where we have written v = Y27_ p'y; with v; € X, (Tg,) for all v € JH(L(w)|7).
The second statement of the Proposition for G follows now from
The statements for G' are now deduced from the previous results on G9°" by a
formal argument, cf. for instance [LLHLM20], Theorem 4.1.3. |

From now on we assume that p —n is 1-deep. In particular R, is the projective
envelope of the weight F(u — 7).

Definition 3.5. Let S = {+e;};, and J be the set of subsets of S. For J € J
define wy 1= c;w € Aw and o7 := F(t,(ws)). Finally, let k(J) := (ki(J)); €
{0,1,2}f where k;y1(J) := #{£e;} N J, and let k(J) := #J = |k(J)|.

The following key multiplicity one result allows one to give a reasonable descrip-
tion of the submodule structure of generic I'-projective envelopes.

Proposition 3.6. Let k € {0,1,2}/. Then W = &b oy. Moreover, this
Je3, k(J)=k
sum is multiplicity free.

Proof. By definition and Theorem (2) we have Wi = ®;(F(\i —eh) ® F(v;))®
where \; — g, = wot ¢y - (i —ep) if ki1 = 1 and N\, — e = p; — €f, otherwise,
and v; = ) if k; = 1 and v; = 0 otherwise. Note that A\; — gj is n-deep in
its alcove Cy if and only if u; — &) is n-deep in its alcove. By Proposition
F(\i—e)) @ F(el)) 2 F(\;) @ F(\; + (—=1,1)). In particular, Wy is semisimple and
of length 2%, where § = #{i : k; = 1}.

Suppose that J € J such that k(J) = k. Then t,(ws); = (\; — &( + w)) where
wl=0if k; # 1 and is g) or wpe(, otherwise. By the last paragraph, there is an
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inclusion o5 < Wy. One easily checks that #{J € J : k(J) =k} = #{w; : k(J) =
k} = 29, Since #{w; : k(J) = k} = #{o; : k(J) = k} by Proposition [2.4] and W
is semisimple and of length 2%, we are done. O

By abuse of notation, o; will often denote the o ;-isotypic component of Wiy,
which is isomorphic to o; by Proposition |3.6
In what follows we fix k € {0,1,2}/ and let k = |k|. Let

Wicsern 1= Fil* R, / (FUET Ry, OFIl* By,) C FilG R/ FilG™ Ry,

The module Wy k41 is endowed with the induced filtration from Fil% R, / Fil’(gz.
This is a two step filtration with associated graded pieces described as follows. We
have gr® Wi x+1 = Wy and grktl Wik k41 = @ Wi where the direct sum ranges
over the elements k' € {0,1,2}/ satisfying k < k/ and &' — k = 1. We have the
following refinement of Proposition [3.6

Lemma 3.7. Keep the previous hypotheses and notation. The graded piece
grk—H Wk,k+1 C grgﬂ RM
is multiplicity free.

Proof. Suppose that o € JH(gr*+! Wy k+1) is a constituent appearing with mul-
tiplicity. By Proposition we deduce the existence of Jy,Jo € J with k(Jy) #
k(J), 05, 20 =0y, and k(J1), k(Jz) are of the form k' above. In what follows,
we write (k1,;); = k1 := k(J1) and similarly ko := k(J2). Let j1,j2 € {0,..., f—1}
be the unique elements such that £;, 1 +1 = kq j,+1 and kj,1 +1 = k2 j,41. Then
J1 # jo, and hence kj,41 + 1 = k1 j,+1, from which we see that the j; component
of wy, and wy, must differ. By Proposition we conclude that o; 2 0,, a
contradiction. O

Let now k’ € {0,1,2}/ be as above and let j € Z/f be such that k;41 = &/, for
i#jand kji1+ 1= k) ;. We define

Wik = ®iz; gr* ' RY @ (FilY+ R, /Fil"+= T2 R, )0
which is a quotient of Wy k1. We endow Wy i with the induced quotient filtration

from Wy x+1; it is a two step filtration with graded pieces grk Wgx = Wg and
grk‘H Wk,k/ = Wk/.

Proposition 3.8. Suppose that J C J and #J'\J =1. Let k =k(J) and k' =
k(J"). Then there is a subquotient of Wy x which is the unique up to isomorphism
nontrivial extension of oy by oy .

Proof. Suppose that J'\ J C {£e,} and that k;41 = 0 (resp. k;j41 = 1). It suffices
to show that o (resp. o) is not in the cosocle (resp. the socle) of Wy /. Indeed,
this would show that the image of the extension Wy i under the map (canonically
defined up to scalar) Exty (Wi, Wi) — Extr (Wi, o0) (resp. Extp (Wi, Wie) —
Ext (0.7, Wier)) is nonzero. Since by Proposition the map (canonically defined
up to scalar) Ethl—x(Wk, UJ/) — EXt%w(O'.], 0]/) (resp. Ethlﬂ(O',], Wk/) — EXt%w(U'J, 0]/))
is an isomorphism, we would be done. We show the following: if k;41 = 0 (resp.
k;jy1 = 1), then the cosocle (resp. the socle) of Wy i+ is isomorphic to Wy (resp.
Wier).

Assume that kj1 = 0. We freely use the notation in the proof of Proposition
Recall that Wy = @;(F(\; — ) @ F(v;))®, which is semisimple. There is
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a surjection ®@;(Ry, ® F(v;))®) — Wy . Noting that \; — &} is 1-deep for all i
we see that Proposition [3.3| applies and hence the latter surjection is actually the
projective envelope of the semisimple representation Wy. We conclude that the
cosocle of Wy i is Wy, as desired.

If kj41 = 1, one makes the dual argument using the injection Wy — ®;(Rx, ®
F (Vi))(i)~ O

Fix J € J. Recall that by Proposition [3.6] there is a unique submodule of
Wi C R#/Fil>k(‘]) R,, isomorphic to 0. Let us write k := k(J) and k := |k| in
what follows. Let P, be a projective envelope of ;. Then Homr (P, ,, gr’grl R,) =
Homr (o, gr%+1 Ru) =0 by Propositionand the fact that o5 = o implies that
wy = wy by Proposition which implies that #J = #J’ mod 2. Then since
P, , is projective, the natural map

Homr(P,,,Fil§ R,/ Fill;™ R,,) — Homr(P,,,grk R,)

is an isomorphism between vector spaces of dimension 1. Thus a fixed morphism
P,, » 05 C Wy C grlg@ R,, (unique up to scalar), uniquely lifts to a morphism
vy Py, — Fil% R#/Fill(g"2 R,,. Note that since o5 C Wy, we could also take a
lift of P,, - 05 C Wx in Homrp(P,,, Wk k+1), which must coincide with P by
uniqueness. We conclude that the image of v lies in Wy i+1. Let V; be the image
of ¢ 7, which obtains a filtration from Wy k1. The following describes the structure
of VJ.

Proposition 3.9. We have that gr% Vj=o05 and gr%HVJ = @y oy where the

sum runs over J' such that J C J' and #J — #J = 1.

Proof. Since V j has irreducible cosocle isomorphic to oy and oy C gr’é Vi, gr’é V=
oy. By Proposition for every J’ as in the statement of the theorem there is a
subquotient o ;- of Wi k41 which is a nontrivial extension of o; by 0. Conse-

. — . .
quently there exists a non zero map vy : P,, — Wk whose image contains o ;.

By uniqueness, the composition of 1 ; with projection to Wiy is th and therefore
o,y is a quotient of V ;. We see that @ o C gr’g;r1 V.

Since gr%+1 Wy x+1 is multiplicity free by Lemma it suffices to show that if
oy C gr%+1 Wy x+1 is a Jordan-Holder factor of gr’grl V7 then J’ has the above
form. Since V; has Loewy length two and cosocle isomorphic to o, if oy is a
Jordan—Holder factor of grg*'1 V 7, V7 must have as a quotient a nontrivial extension
of oy by 0. Hence wy —w; = *e; for some j by Proposition @ Since o5 C
gr’éJrl Wy x+1, we deduce, from Proposition and the description of gr’%ﬁ'1 Wy k+1,
that k(J') > k(J) and |k(J")| = |k(J)| + 1; in particular k;(J') — k;(J) = 0;;.
So if i # j, then J N {=*e;} = J' N{=*e;}. While if ¢ = j, then J N {£e;} =
JN{*e;} U{w) —ws}. Hence J' is of the above form. O

Fix J € J. Recall that by Proposition there is a unique submodule of
Wiy C Ru/Fil>k(‘]) R,, isomorphic to o;. If P,, is a projective envelope of
oy, then the morphism P,, — o5 C Wy C Ru/Filgk(J) R, lifts to a map
vy : Py, — R,. Welet V; be the image of 1. The following proposition partially
describes the graded pieces of V.
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Proposition 3.10. Let J € J. The filtration Fil* on R,, induces a filtration on
the submodule V. Then for all J' such that J C J', oy C gr*U0) V.

Proof. We proceed by induction on k = k(J'). Suppose that k& < k(J). Then
J ¢ J', and there is no J’ as in the statement of the theorem. Thus the theorem
holds in this case.

If k = k(J), then J C J’ implies that J' = J. By construction, o; C gr*() V7,
and so the theorem holds in this case.

Now assume that & > k(J) and that the theorem holds for grg_1 V. Suppose
that J’ € J such that J C J" and k(J’) = k. Then there exists a J” € J such that
J C J" CJ and #J" = k — 1. By the inductive hypothesis o, C gr¥(/") v, c
gr’g{l V;. We thus obtain a nonzero map P, , — Fﬂlggl Viy/ ]F‘ilgr1 V; which lifts

g

the map P,,, — oy C Wy(y»), and therefore must be @J”. By definition, the
image of @J” is V j». By Proposition oy C grk(‘]/) Vi C grk("l) V. [l

For Proposition [3.13] we need the following two formal lemmas about tensor
products of filtered vector spaces.

Lemma 3.11. Letk and X' € {0,1,2}/. Then FilX R, NFilX R, = FiIX" R, where
k! = max(k;, k).

Proof. Clearly, Fil¥” R, C Fil* R, N Fil¥ R,,. For each i € Z/f, choose a basis
for R, compatible with the filtration and consider the corresponding tensor basis
for R,,. Then the elements of the tensor basis in Fil* R,, (resp. Fil¥ R,,) form a
basis for Fil* R,, (resp. Fil* R,,). Thus the elements of the tensor basis in Fil* R, N
Fil¥ R,, form a basis for Fil® R, N Fil¥ R,,. These elements are in Filk” R,,, and so
FilX R, NFilX R, c FiI*" R, O

For I C {0,1,2}/, let Fil' R, := >, Fil*R,,.

Lemma 3.12. Let I and I' C {0,1,2}f. Then
Fil' B, nFil" R, = Y Fil*R, nFil* R,.
kel k'el’

Proof. Clearly, Yy e ey Fil* R,NFil* R, C Fil' R,NFil" R,,. Foreachi € Z/f,
choose a basis for R, compatible with the filtration and consider the corresponding
tensor basis for R,,. Since the elements of the tensor basis in Fil* R,, span Filk R,
for any k, the elements of the tensor basis in Fil! R,, (resp. Fil”’ R,,) span Fil! R,
(resp. Fil”’ R,) and thus form a basis for Fil' R, (resp. Fil’’ R,). Thus the
elements of the tensor basis in Fil’ R,N Fil”’ R,, form a basis for Fil! R,N Fil”’ R,.
It is easy to see that a basis element is in Fil! R, (resp. Fil”’ R,,) if and only it is in
FilX R, (resp. FilX R,) for some k € I (resp. k¥’ € I'). Thus Fill R, NFil’' R, C
Skerwer Fil* R, NFil* R,,. O

The following proposition shows that V; does not depend on the choice of lift
17, but rather just on J € J.
Proposition 3.13. Let J € J. Let ¢'; be a lift of the map Py, — 05 C Wi(y) C

Ru/Fil>k(‘]) R,,. Then the image of ¥'; lies in Vy. In other words, V; does not
depend on the choice of V.



12 DANIEL LE, STEFANO MORRA, AND BENJAMIN SCHRAEN

Proof. We recursively define maps ¢* : P,, — Fil§ R, N Fil”*()) R, and maps
Wk o Py, — Filk Vy for k > k(J). Let gF()F = o/, —4p; : P, — FillY) R, n
Fil>k() R,,. Since ¢/, and v coincide modulo Filg‘])+1 R, N Fil>k() R,,, we see
that the image of ¢*())*1 lies in Filg‘])Jrl R, NFiI"* R,

We now define ¢**1 and ¥* in terms of ¢*. We first claim that the o s-isotypic
part of gr’é Fil>k() R, lies in gr’g9 Vy for all k. Indeed, by Lemmas and
Filg Fil>k(/) R,, (resp. Filg"1 Fil>k() Ry,) is the sum >y oy ) x>k Fil* R, (resp.
D ks k(J), K[>kt 1 Fil® R,,). From this, we see that gr¥, Filr*) R, = Br>k(1), k|=k Wk,
which is @y 0 where the sum runs over J’ such that k(J') > k(J) and k(J') = k
by Proposition [3.6] If additionally o, = o, then wy = w; by Proposition [2:4]
The properties k(J') > k(J) and wy» = wy imply that for each ¢« € Z/f, either
J N {zxe;} = Jn{xe;} or JN{=Le;} is empty. In any case, J C J'. We conclude
that oy C gr¥ V; by Proposition

Thus the image of ¢ in gr% Fil”k() R,,, which is o ;-isotypic, lies in gr’é V.
Let % : P,, — Filg Vs be a lift of the map P,, — gr’é V7 induced by ¢F. Let
PRt = oF — gk P, — Filk R, NFil"*) R, Since ¢* and ¢* coincide modulo
Fils* R, NFil”*) R, the image of ¢**1 lies in Fil™ R, N FiI"*) R,,.

Then by construction, ¢/, = v¥; + Ziikw)ﬂ k. Thus imy/, C imyy +

Zzik(ﬂ-&-l imy* C V. O

The following is the main submodule structure theorem for generic I'-projective
envelopes.

Theorem 3.14. Let p € X*(T). Assume that p—n is 1-deep. Let J' and J € J
and let Vj and V; be the submodules of R, defined above Proposition |3.10} If
J C J' then Vi CVj.

Proof. Suppose that J C J'. First note that o5 C R#/Fil>k(‘]/) R,, is contained
in Vy/ Fi1>k(Jl)V] by Proposition Let ¢/, : P(,J,/ — Vj be a lift of the
composition P, , — oy C V;/Fi"*) v, ¢ R, /FiI"*Y) R, Then imy/, = Vj
by Proposition [3.13] We conclude that V;, C V. O

Recall that for J € J, we defined maps v; : P,, = V; C R, above Proposition
The following lemma will be useful for multiplicity computations.

Lemma 3.15. Let o be a Serre weight and P, a projective envelope of o. The
vector space Homr (P, R,,) is spanned by the set {1 : 05 = o}.

Proof. Since P, is a projective I'-module, Homr (P,, R,,) = @& Homr (P, gr® R,,).
Since grk R, is semisimple, Homr(P,,gr® R,) = Homr(o,gr R,). The space
Homr (o, grk R,,) is one-dimensional if there exists a J € J with k(J) = k so that
0 = oy and is otherwise zero by Proposition In the case that Homr (o, gr* R),)
is nonzero, it is spanned by the image of 1. O

4. THE BREUIL-PASKUNAS CONSTRUCTION

In this section, we use the results of Section [3] to give two distinct characteriza-
tions of a I-module constructed in [BP12].
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Let F,/Q, be an unramified extension. Fix a tamely ramified representation
p: Gp, — GL2(F), and let R, (1) = Vy(p¥ (1)) where pp = (p3); € X*(T) and
weW = (Sg)f.

Definition 4.1. We say that p is 1-generic if for all possible choices of 1 we have
that p — n is 1-deep in alcove Cy and moreover the image of 1 — 7 in the weight
lattice of G9°* is not of the form sz;ol €; nor Z{;Ol (p—3)e;. (We have 2/ possible
choices for p, a posteriori.)

Concretely, if p =3, ugz) where p; = (a;,b;) € Z* then p is 1-generic iff 2 <
a; —b; < p—2 for all i and moreover (a; — b;); ¢ {(2,...,2), (p—2,...,p—2)}.

Note that if p is 1-generic then for any F(u—n) € W’(5" (1)) the corresponding
projective envelope R, satisfies the hypotheses of Theorem Moreover, if p is
1-generic as in Deﬁnition then it is in particular generic in the sense of [BP12)
Definition 11.7] and [EGS15l Definition 2.1.1].

We assume throughout that p is l-generic. Let o := F(u —1n) € W’ (p"(1)).
Recall that the Weyl group W acts naturally on Ay . Let S, = w(S.). Then
W’ (p¥(1)) = F(t,({ws : J C Sy})) by Proposition (We adopt the notation
similar to : if J C Sy define wy:=3%" . ;w.)

Definition 4.2. Let p be 1-generic and let o := F(u—n) € W*(p"(1)). We define
the T'-representation Dy (o, p) as

DY (0:0) = Ru/ (3 V).
JCSy
#J7=1

Lemma 4.3. With the hypotheses of Definition[{.2, the space

Homp( P PR,D(\)/(a,p))

ke W’V (1)
has dimension at most one and is nonzero if and only if Kk = 0.

Proof. Let Jo € J be such that o;, = k € W*(p¥(1)). Recall from that
for any J € J we have defined a morphism ¢; : P,, — R, with image V.
By Lemma we see that the space Homr (P, ,R,), and hence its quotient
Homr (P, , DY (o,p)), is spanned by the image of {¢; : wy, = wy}. Thus it suf-
fices to show that the image of ¢; in Homp(P,, , D¢ (0,p)) is zero unless J = §
since og = 0.

Let J € J such that w; = wy,. If we; € J for some j, then V; C Vi) by
Theorem and we conclude that the image of ¥ in

HomF(PUJvD(\)/(O—,p))

is 0. Thus if the image of ¢ is nonzero, then we; ¢ J for all j.

If we; ¢ J for all j, then J C Sy, where wy € W is the longest element. Hence
wy is in the closed wow-chamber in X*(7T'), and is 0 if and only if J = (). Since
wy = wy, is also in the closed w-chamber in X*(T), we conclude that wy = 0 and
J = 0. Of course, the image of ¢y in Homrp(P,,, Dy (c,p)) is nonzero. O

Let Dy (p) = @oewr(zv(1)) Dy (0,0). Let Do(p) be (D (p))" (where (-)¥ de-
notes the Pontrjagin duality). The following proposition gives a characterization of
Dy (p), which is key for multiplicity one.
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Recall that in [BP12, Theorem 13.8] a I'-representation Dg(p) is attached to a
generic continuous Galois representation p : Gpr — GLo(F). For the sake of

readibility, we denote this ['-representation by DEF (p).

~

Proposition 4.4. Assume that p : Gp, — GL2(F) is 1-generic. Then Dy(p) =
DE¥(p). In particular the Jordan—Hélder factors of Do(p) appear with multiplicity
one.

Proof. The cosocle of Dy (p) is isomorphic to @,ew zv(1))0, and for o € W (pY(1)),
o appears with multiplicity one in D (p) by Lemma We will show that there
is a surjection from Dg (p) to any representation with these properties.

Indeed, assume that @) is any I-representation with cosocle ©gep7(5v(1))0 and
such that any o € W7(p¥(1)) appears with multiplicity one in Q. Fix o €
W’ (p¥(1)) and write ¢ = F(u — 7). We have a map R, — @ whose compos-
ite with @ — cosoc(Q) is non-zero. Let J € J be such that J C S, and #J =1
(we follow the notations as in the beginning of this section) and write @ ; for the
image of V; C R, in Q). For any J as above, if Q; = 0 then V; C ker(R, — Q). If
Q. = 0 for all J as above, then the map R,, — @ would factor through Dy (o, p). If
for all 0 € W¥(pV(1)), Qs = 0 for all J as above, then we would obtain a surjection
Dy (p) — Q. Assume for the sake of contradiction that for some o and some J as
above, Q; # 0. Then the modular weight o; would appear as a Jordan—Holder
factor of the radical of Q. However, o is also a Jordan—Hélder factor of the cosocle
of @, contradicting the multiplicity one assumption.

To conclude, note that ¢ € W*(pY (1)) if and only if 0¥ € W (p) (cf. e.g. [Her09,
Proposition 6.23]). Hence by duality, Do(p) satisfies hypothesis [BP12, Theorem
13.8(iii)]. O

Recall that we denote by W (F) the ring of Witt vectors of F. If o(7) is a tame
type defined over W(F)[1/p] and ¢°(7) C o(7) is a [-stable W (F)-lattice in it, we
denote by @°(7) the mod p reduction of ¢°(7).

Lemma 4.5. Suppose that DY is a T-representation such that dim Homg (DY, o)
is 1 if o € W*(pY(1)) and O otherwise. Assume moreover that for any tame type
o (1) and for any W (F)-lattice c°(7) C o(7) such that soc(c°(7)) is irreducible, one
has

dim Homg (Dy,7°(7)) < 1.
Then JH(rad(Dy)) N W*(p"(1)) = 0.

Proof. Suppose that o € W¥(p¥(1)), and o is a Jordan-Hdlder factor of the rad-
ical of Dy. By properties of projective envelopes, we can choose a I'-surjection
@rewr@v)Pe = Dy. Let I, C Dy the image of P,. We have rad(Dy) =

KEW? BV (1)) rad(/,;), thus there is some & such that o is a Jordan-Holder factor

of the radical of I;. For a I'-representation M, we now denote by F il* M the coso-
cle filtration on M. Then we have o C gr* DY for some k > 0. Without loss of
generality, suppose that k is minimal among such Serre weights o € W*(p"(1)).
We claim that & = 1. Assume that k& > 1.
By minimality of k, Fil' I,/ Fil* I, does not contain any weight in W’ (5" (1)) as
a Jordan-Holder factor. Let k = F/(u—n) so that P,, = R,,. Thus that V; C ker(0)
for all J such that #.J =1 and o; € W*(p"(1)). By Lemma rad(I,;) does not
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contain any weight in W7(5Y (1)) as a Jordan-Holder factor, and in particular o.
This is a contradiction.

Thus, there is a quotient E of DY which has Loewy length two and socle iso-
morphic to o. Choose a type o(7) so that &(7) contains k and o as Jordan—
Holder factors (one can even choose (7) to have Jordan—Holder factors exactly
the set W7(5(1))). There exists a unique up to homothety lattice () such that
soc(@ (7)) = o (see [EGST5, Proposition 4.1.1]). There is an injection E < 5°(7)
by [EGSTH, Theorem 5.1.1]. Then the maps Dy — E < °(7) and Dy — o <
5°(7) are linearly independent, so that dim Homg (Dy,5%(7)) > 1, a contradic-
tion. (]

The following proposition is an alternative characterization of Dy (p).

Proposition 4.6. Suppose that Dy is a I'-representation such that Homg (DY, o)
has dimension 1 if o € W*(p"(1)) and O otherwise. Assume moreover that for
any tame type (1) and for any W (F)-lattice 0°(7) C o(T) such that soc(c°(7)) is
irreducible, one has

dim Homg (Dy,7°(1)) < 1.
Then there is a T'-surjection Dy (p) — Dy .

Proof. By properties of projective envelopes, there is a I'-equivariant surjection
Brew?(zv1) Px = Dy . Fixo € W' (p¥(1)), and let 0 = F(u—n). Let 6 : R, — Dy
be a restriction of the above surjection to one direct summand. Fix J such that
#J=1and o; € W (p"(1)). By Lemma oy does not appear in the image of
6. Thus V; C R, is in the kernel of 8, and the above surjection factors through
Dy (p)- O

5. GLOBAL APPLICATIONS

In this section, we deduce our main theorem on cohomology of Shimura curves
at full congruence level. We are going to follow closely [BD14], §3.2, 3.5 and 3.6,
and [EGSIE], §6.5.

Recall that F is a totally real field where p is unramified. We write ¥, (resp.
Yoo) the set of places of F' above p (resp. above co). We write Ar to denote the
ring of adeles of F. We fix a continuous Galois representation 7 : Ggp — GLo(F)
which satisfies the following conditions:

(i) 7 is modular;

(ii) 7lGp ¢, is absolutely irreducible;

(iii) if p = 5 then the image of 7(Gp(,)) in PGL2(F) is not isomorphic to As;
(iv) Tlap, is generic (in the sense of [EGS15], Definition 2.1.1) for all w € X,,.
We write X7 for the ramification set of T We fix the continuous character v : Gp —
F* defined by ¥ := wdet7 and write ¥ to denote its Teichmiiller lift.

Let D be a quaternion algebra with center F' and let Xp be the set of places
where D ramifies. We assume that:
o X,NY¥p = 0.

We define S := %, U (Xp \ £oo) UZ7. We note that the condition p > 3 (coming
from the genericity assumption on 7|g,, ) guarantees the existence of a place wy ¢ S
such that:

o N(w1) # 1 modulo p;



16 DANIEL LE, STEFANO MORRA, AND BENJAMIN SCHRAEN

o the ratio of the eigenvalues of 7(Frob,, ) is not in {1, N(w;)*'}; and
o if £ is a prime such that [F(v/1) : F] < 2, then w; 1 ¢

(cf. [BD14], item (iv) in the proof of Lemma 3.6.2). If £ is the unique prime number
which is divisible by w, we then define K, < (Op);, as the pro-f-Iwahori of
((’)D);l. The conditions on w; and K, guarantee that for any open compact
subgroup K** < (D ®@p AZ"")*, the subgroup K, K“* is sufficiently small in
the sense of [GK14], §2.1.2.

We define K° := H;uggs K, where K,, := (Op)% for all w ¢ S U {w;}. We now
follow the procedure of [EGS15], §6.5 to obtain a space of algebraic automorphic
forms with minimal tame level. We fix once and for all a place v € ¥, and assume
moreover that

(v) for all w € ¥p, T|g,,, is non-scalar.

Let S € ¥, UXp be the subset of finite places w € ¥, UXp such that 7|q,, is
reducible. Write W (F) for the ring of Witt vectors of F. Following [EGS15], §6.5
(which is in turn based on [BD14], §3.3 and the proof of Proposition 3.5.1 in loc.
cit.), we fix for each w € S\ {v} the following data (we refer to [EGS15] and [BD14]
for their precise definitions):

(1) if |Gy, is irreducible, the maximal compact K, := (Op)., an inertial type

Tw : Tw — GLo(W(F)) (as in [EGSIS Proposition 3.5.1] if w € ¥, as in
[BD14], Cas IV in §3.3 else), and a W (F)-lattice L, C o (7).

(2) if 7|gy,, is reducible and w ¢ S’, a compact subgroup K, < (Op),; and a free
W (F)-module L,, with a locally constant action of K, (cf. also [BD14], Cas
IIT at §3.3, and Cas (ii) in the proof of Proposition 3.5.1);

(3) if w € S’, a compact subgroup K,, < (Op)X, a free W(F)-module L,, with a
locally constant action of K, and a scalar 8,, € F* (cf. also [BD14], Cas I and
IT at §3.3 and Cas (iii) in the proof of Proposition 3.5.1).

We further remark that the K,-representation L,, has been chosen so that the

center F, N K,, acts on L,, via ¢ o Artp,. We define K§ := [] K,, KV :=
weS\{v}
K{KSand VV:= & Ly, which is a W(F)-module of finite type with a locally
weS\{v}

constant action of K§g, hence of KV by inflation. Via zZ we can and do endow V?
with an action of K”(Agfo’v))x. We write \7{5 to denote the resulting K (A%oo’v)) X
representation.

Let K := KK,. Let Rep%(Kv) be the category of F-modules of finite type,
endowed with an action of K, := (Op)X = GL3(OpF,) and such that K, N F
acts via the character ¢ o Artp, . In particular if V,, € Rep#(KT,) then the finite

(o0,v)

F-module V := ‘712’;’ ® V, is endowed with an action of K(A) ’)* which extends

naturally to an action of K(A%)*. We write V, to denote the resulting K (A )*-
representations. By construction (A)* acts on Vy, via 1.

If #(Zoo \ X D) = 1 we define the space of algebraic modular forms of level K,
coefficients in Vi, and central character 1 as:

(5.1) Sy(K, V') = Hy (X @p F, Fy,)v)
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where X is the smooth projective algebraic curve associated to K as in [BDI14]
§3.1] and ]:va is the local system on X ®p F associated to va in the usual way
(cf. [BD14l proof of Lemma 6.2]).

If #(ZOO \ X D) = 0 we define the space of algebraic modular forms of level K,
coefficients in Vi, and central character 1 as:

vy f:D*\(D@r AF)* = V), f continuous, }
e sikvi= T e K e Ry |

We have a variation of the previous spaces with “infinite level at v” defined as
follows:

Sy(K",F) = lim Su(K"U,,F)
U, <K,

where U, ranges among the compact open subgroups K,. It is endowed with a
smooth action of D) = GLy(F).

The F-modules Sy, (K, V,”), Sy,(K",F) are faithful modules over a certain Hecke
algebra which is defined as follows. Consider the F-polynomial algebra TSV{w1} .=
FITY, wé¢ SU{w}]. Forallwé¢ SU{w}, 1 <i< 2 define the Hecke operator

T as the usual double classe operator acting on Sy(K,V,)):

) v

[GLQ(OFw) (wwldi Idg_i) GL2(0F’”’)]

We then have an evident morphism of F-algebras TSU{“i} — Endy (S, (K,V,))
whose image will be denoted by T(V,). From the hypothesis (i) there is a surjection
ar : T(V,) — F such that

det (XIdy — ¢7(Frob,)) = X — ar(TV) X + N(w)ar(TP)

for all w ¢ S U {w;}. We note my := ker(as).

For w € §'U{w;} we can define the Hecke operator T acting on Sy (K, Vy Ymn
(cf. [EGS15] §6.5, cf. also [BD14], §3.3 Cas I et II), as well as scalars (3, € F*.
We write T’(V;,) for the subalgebra of Endry,)(Sy (K, V,)m,.) generated by T(V,,)

and the operators qu,l), w € 8" U{w}. In particular T(V,)m. € T/(V,) is a
finite extension of semi-local rings. If m. denotes the ideal of T'(V;,) above mz and

generated by the elements T, 1(01) — Bw, we easily see that m. is a maximal ideal in
T(V,).

Note that the choices of types o(7y), lattices L,, C o(7,) and scalars 3, (cf.
items (), and above) are exactly those of [EGST5| §6.5] (in turn based on
[BD14} §3.3-3.5]) and the m/-generalized eigenspace of the modules (5.1)), are
precisely the mL-generalized eigenspace of the spaces of fixed determinant algebraic
modular forms with V,/-coefficients and minimal level as defined in [EGST5] §6.5]

(and denoted as S™" (V.Y ). in loc. cit.).

If #(EOO \ ED) = 1 (resp. #(EOO \ ZD) = 0) we define the smooth K,-
representation 7(p,) := Homgq,)(7, Sy (K", F)[m]) (resp. 7(p,) := Sy (K", F)[m])
We set K, (1) := ker(K, — I'). From the main results in [EGS15] we have the fol-
lowing statement:
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Theorem 5.1 ([EGS15], Theorem 9.1.1 and 10.1.1). Let 7 : Gp — GLa(F) be a
continuous Galois representation satisfying the hypotheses (i)-(v) above. Then

cosoer(7(p,) V) = @ @
oeW?(p,(1)V)

Let o () be a K,-type and let o°(7) a W (F)-lattice with irreducible socle. Then
Homr ((7(7,)") ., (1),9°(7))

is at most one dimensional.

Proof. We let M, : Repi(K,) — Mod""(R,) be the fixed determinant and mini-
mal level patching functor associated to 7 as in [EGS15], §6.5]. By abuse of notation
we let mL denote the maximal ideal of Ro,. By construction of the functor M,
for any representation V,, € Repiﬁ(Kv) we have an isomorphism

(Moo (Vo) /my)" 22 Sy (KVK,, V) [my]

together with a compatible morphism of local rings R}?O = T'(Vy)me-

Since K'U, is sufficiently small for any choice of a compact open subgroup
U, < K, and since m. is non-Eisenstein, a standard spectral sequence argument
gives:

(S (K*, F)[mi]) Y = 5, (KUK, (1), F) [md].

In particular if K, (1) acts trivially on V,, € Repifi(Kv) we obtain

(5.3) (Moo (V) /m) " 2 Sy (KUK, V) [my]
= Homp(V, Sy (K" K, (1), F)[m])
=~ Homg, (Vy, (p,) <+ ™M).

If 09(7) is a lattice with irreducible cosocle in a tame type o(7), we now deduce
from [EGST5, Theorem 10.1.1] that Homg, (5°(7), 7(p,)) is at most one dimen-
sional. With ¢%(7) as in the statement of the theorem, 7°(7)" is the reduction of
a lattice in the dual type @(7)Y with irreducible cosocle and thus the second claim
in the theorem follows by Pontrjagin duality.

By (5.3), Nakayama’s lemma, and Pontrjagin duality, o is a Jordan—Holder factor
of the I'-cosocle of (7(p,)" )k, (1) if and only if M, (o) # 0. By [EGSIS, Theorem
9.1.1], M (0) # 0 if and only if o € W’(p,). Finally, from the second part of the
theorem, one sees that o appears in the I'-cosocle of (7(p,,)") k, (1) with multiplicity

one by taking any lattice in a tame type whose reduction has irreducible socle
isomorphic to o. O

From now on, we assume that:
(vi) p, :=T|ay, is semisimple and 1-generic in the sense of Definition
Proposition 5.2. Let 7 : Ggp — GL2(F) be a continuous Galois representation
satisfying the hypotheses (i)-(vi) above. There is a K,-surjection w(p,)" — Dy (p,)-
Proof. This is Pontrjagin dual to [Brel4, Proposition 9.3], noting that Dy (p,) =
(D" (Pu))" O

Theorem 5.3. Let 7 : Gp — GLo(F) be a continuous Galois representation sat-
isfying the hypotheses (i)-(vi) above. Then we have an isomorphism of T'-modules

(Tr(ﬁv)v)KU(l) = D(\)/(pv)
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Proof. By Proposition there is a surjection (1), 1y = D¢ (p,). By Theorem
(m¥) K, (1) satisfies the conditions for Dy in Proposition We conclude that
there is a surjection Dy (p,) = (7)k,1)- The composition of these surjections
is a surjective endomorphism of DY(p,), a finite length I'-module, and is thus an
isomorphism. O

We conclude with the main result of this paper:

Corollary 5.4. Let 7 : Gp — GL2(F) be a continuous Galois representation sat-
isfying the hypotheses (i)-(vi) above. Then

Sy(K K, (1), F)[mi] = Dg* (p,,).

In particular, the T'-representation Sy(KVK,(1),F)[mL] only depends on 7|;, and
is multiplicity free.

Proof. Recall from the proof of Theorem [5.1] the isomorphism:
v Ko(1) o v
(S (K", F)[my]) ™7 = Sy (KUK, (1), F)[my].

T T

The isomorphism follows now from Proposition [£:4] and Theorem [5.3] after applying
Pontrjagin duality. For the second statement, recall that Dy(p,) was defined only
in terms of W7(pY (1)) and is multiplicity free by Proposition O
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