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Fast Retinomorphic Event-Driven Representations
for Video Gameplay and Action Recognition

Huaijin Chen
Ashok Veeraraghavan

Abstract—Good temporal representations are crucial for video
understanding, and the state-of-the-art video recognition frame-
work is based on two-stream networks. In such framework, besides
the regular ConvNets responsible for RGB frame inputs, a sec-
ond network is introduced to handle the temporal representation,
usually the optical flow (OF). However, OF or other task-oriented
flow is computationally costly, and is thus typically pre-computed.
Critically, this prevents the two-stream approach from being ap-
plied to reinforcement learning (RL) applications such as video
game playing, where the next state depends on current state and
action choices. Inspired by the early vision systems of mammals and
insects, we propose a fast event-driven representation (EDR) that
models several major properties of early retinal circuits: (1) log-
arithmic input response, (2) multi-timescale temporal smoothing
to filter noise, and (3) bipolar (ON/OFF) pathways for primitive
event detection. Trading off the directional information for fast
speed (>9000 fps), EDR enables fast real-time inference/learning
in video applications that require interaction between an agent
and the world such as game-playing, virtual robotics, and domain
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adaptation. In this vein, we use EDR to demonstrate performance
improvements over state-of-the-art reinforcement learning algo-
rithms for Atari games, something that has not been possible with
pre-computed OF. Moreover, with UCF-101 video action recogni-
tion experiments, we show that EDR performs near state-of-the-art
in accuracy while achieving a 1,500x speedup in input representa-
tion processing, as compared to optical flow.

Index Terms—Smart cameras, retina, real-time systems,
streaming media, cells (biology), reinforcement learning, video
signal processing, video.

I. INTRODUCTION

EEP learning and related techniques have resulted in
D substantial advances in image understanding over the
last decade [27], [35], [37], resulting in a new-found sense
of optimism regarding possibilities in many application areas,
including autonomous robots and self-driving cars. The current
state of practice in video understanding tasks is either to (a)
process each frame in the video sequence independently in a
frame-by-frame fashion, or (b) pre-compute the temporal rep-
resentations, as seen in the two-stream architecture for video
recognition [63]. The latter is efficient but necessarily precludes
applications like reinforcement learning (RL), where the next
state depends on the current state and the actions taken by the
agent. Therefore, if the two-stream approach were to be used
in RL, the temporal representation will have to be computed
on-the-fly. Taking the Atari Centipede gameplay as an example,
reinforcement learning usually converges to the optimal strategy
after 70 millions steps of trials and errors. At each step, assuming
4 frames of video frames are considered to decide an action,
then under the conventional OF-based two-stream framework,
there will be 70 M x (4 — 1) = 210 M frames of OF field to be
calculated across the entire training process on-the-fly. Even if
we use a relatively fast OF algorithm (i.e. TV-L1 [53] which
runs at 30 fps for 320 x 240 inputs), it will still take more than
210 M/30 = 7 M seconds = 81 days to just compute the OF.
As such, there are still significant gains to be captured in speed,
accuracy, bandwidth and energy, by explicitly leveraging the
temporal redundancy structure in video.

Why haven’t we seen such progress? We believe there are
two principal reasons for the slow pace of progress in video
understanding using deep networks. First, the massive size and
data rates needed in video, make even the simplest feed-forward
processing computationally challenging to accomplish, espe-
cially in settings like game-playing where real-time processing
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is needed. A natural solution to this problem is to use event-
driven cameras, such as DVS and DAVIS [8], [39], or input
representations, which bring orders of magnitude reduction in
sensor power consumption and data bandwidth, which are both
especially helpful on energy-constrained platforms. However,
existing efforts in this vein focus mostly on optimizing net-
work architecture [29]. Second, a good input representation
for temporal dynamics — one that accounts for and exploits
the inherent redundancy — is crucial to good performance in
video understanding. For example, optical flow has significant
added value in video understanding tasks, but it is expensive
to compute, making it impossible for many tasks that require
real-time video input, such as reinforcement learning (Fig. 2(a)
and 2(b)). As a result, despite recent breakthroughs in static
image understanding [27], [35], much more research is needed
in developing new fast, temporally-aware representations for
video understanding.

Contributions: In this paper, we propose a retinomorphic
learnable Event Driven Representation (EDR) for video. Our
EDR has tunable parameters, enabling us to capture meaningful
task-relevant events from the data. In the proposed EDR, we
captured some of the simple properties of the biological retina
and the visual cortex. Our implementation is preliminary and
we only conduct first-order studies of EDR, and yet the perfor-
mance gains (near state of art classification performance with
potentially order of magnitude reductions in data throughput
and power requirements) strongly suggest that retinomorphic
event-driven representations are worthy of further study. The
main contributions of our work are:

1) We propose a retinomorphic event-driven representation
(EDR) for video, instantiated as an recurrent neural net-
work (RNN) layer, that realizes three important func-
tions of the biological retina: logarithmic transformation,
ON/OFF pathways for event detection and the integration
of multiple timescales (Section III).

2) We show systematic improvements in the performance
(accuracy, response time, latency, throughput) and learn-
ing speed for our proposed learned EDRs as compared to
Frame Driven Representations (FDRs) on the task of Atari
game playing via reinforcement learning and UCF-101
action recognition (Section IV-A, IV-B).

3) On asmaller KTH datasets, we analyze the EDR’s energy
efficiency in terms of network activation and evaluate
performance of EDR on different network designs on
action recognition tasks (Section IV-C).

4) We are able to apply the EDR model to an event-driven
camera hardware, showcasing a joint software/hardware
event-driven motion vision system that performs high-
level visual understanding tasks with order of magnitude
reductions in data throughput and power per voxel com-
pared to traditional-image-sensor based implementations
(Section IV-D). With the high efficiency of the EDR, we
are also able to implement it on smartphones (Fig. 2(c)).

Limitation: EDR is derived and optimized as a representa-
tion best suited to analyse and characterize high-speed events
and actions in an efficient manner. Ideally, this work would
lead to practical implementations of EDR cameras that realize

multiple time-scales and soft-thresholding, both critical features
for optimizing performance. Unfortunately, currently available
event sensor hardware do not allow for either feature extraction
at multiple time-scales or soft-thresholding at the sensor level.
Given this limitation of current sensors, in most of our current
experiments, (except for the hardware experiments, where the
DVS camera was used to directly capture the video clips dis-
played on the monitor and had its stream fed into the network pre-
trained using EDR data), EDR was mostly used as a processing
step after the RGB frame is captured. Moreover, even though the
EDR has learnable parameters and is differentiable, which opens
up the potential for gradient descent and back-propagation, we
have not fully explored that for end-to-end parameter learning
due to instability in the gradients. Our preliminary experimen-
tation with end-to-end learning of the parameters found the gra-
dients to be unstable, resulting in vanishing/exploding gradient
problems. Since EDR only has a few parameters, we did 2D
grid search as our learning algorithm for the EDR parameters.
The experimental results we show used the best two key EDR
parameters through grid search. We are releasing the code with
option to use gradient-based learning for any interested user to
help us study this problem further.

II. RELATED WORK

A. Biological Retinas

In order to survive in a hostile environments, animals have
evolved visual systems with fast reaction times, and the retina
is the first stage of processing. The retina has many interesting
properties both in its structure and in its variety of responses.
However, there is reasonable consensus [12], [56] that at least
these five major features are essential for motion-based vision
(see Fig. 1(a)): (1) Photoreceptors have alogarithmic response to
luminance input; (2) event detection happens in paralle]l ON/OFF
pathways in multiple cell types (e.g. bipolar and ganglion cells)
where ON/OFF events are generated based on spatiotemporal
changes in luminance [22], [50], [67]; (3) Fast/slow pathways for
distinguishing/integrating events across different time scales [4].
(4) Primitive motion detection for the cardinal directions (e.g.
LPTC or DSGC cell types [45], [73]); and (5) 4-channel color
vision cone (RGB) and rod (grayscale) cells [9]. Several re-
cent studies propose computational neuroscience models for the
retina and learning process [26], [43], but those models were not
designed for practical deep learning tasks. This is by no means
an exhaustive list; indeed the structure and function of the retina
are active areas of ongoing research. In this paper, we focus on
the event-driven nature of the retina, instantiating and exploring
properties (1), (2) and (3) above, and leaving others — listed or
not — for future work.

B. Retinomorphic Cameras

Research on neuromorphic image sensor and systems has
developed over several decades [2], [10], [21], resulting in some
impressive research prototypes [11], [55], including a sensor that
reproduces all five layers of the retina [75]. Recently, retinomor-
phic event driven image sensors have been commercialized,
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Cane Receptars
(a) Biological Retina Layers

(b) Biological Retina Circuit (c) Proposed EDR Architecture

(a) Neural circuit of biological early motion vision system vs.
EDR: We focus on three key features of the retina: (1) Logarithmic
response, (2) ON/OFF event pathway, and (3) integration of multiple
timescale events. The left-most column is the biological neural circuit,
the middle column (adapted from [172]) is the abstracted circuit, and
the right most column is our EDR implementation of the abstracted

circuit.
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(b) EDR as a Retinomorphic Primitive Event Detector: From the
frame-driven inputs, we first apply an exponential moving average
filter to smoothen the event estimation. We then calculate the relative
changes/return in the input stream. Finally we threshold the relative
changes/return and generate binary On/Off events.

Fig. 1. Overview of the proposed EDR.

such as the Dynamic Vision Sensor (DVS) [39], Dynamic and
Active-pixel Vision Sensor (DAVIS) [8], [13] and Asynchronous
Time-based Image Sensor [55]. Unlike conventional cameras
that output grayscale or color intensities for each pixel and
each frame, event cameras detect and report only significant
changes in intensity at each pixel. As a result, DVS is capable of
dramatically higher throughput and lower latency as compared
to a conventional camera. We have seen recent applications
of event-driven cameras in many areas of computer vision
and robotics, such as structured light active 3D imaging [44],
multi-view stereo [57], high-speed tracking [49], panoramic
tracking [59], face detection and intensity reconstruction [7],
visual odometry [16], [58], motion flow [6] and real-time 3D
scene reconstruction [34].

Despite the amount of work on using event cameras for
low-level vision tasks, there still remains a gap between event
cameras (e.g. artificial retinas) and high-level semantic under-
standing (e.g. artificial cortex). An early exploration was carried
out by [54], in which the authors attempted to map DVS camera
output events back to image frames, which in turn were fed to a
5-layer ConvNet that infers motion cardinal direction. In recent
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work of [64], the authors proposed new representation based on
the event camera inputs, and use the proposed representation to
achieve better object classification.

C. Neural Network for Temporal Sequences

Recent works in video recognition using both deep learn-
ing [3], [63], [74] and traditional hand-designed features [20],
[60], suggest that efficiently modeling/integrating information
across time is very important for performance. On this note,
there are work using temporal features extracted from video
codec [31], [71], instead of computing decoded frame for ef-
ficiency. Recurrent Neural Networks (RNNs) with Long- and
Short-term Memory (LSTM) [25], [28] —employed successfully
for speech recognition and natural language processing — might
be a promising model for such problems. Marrying ConvNets to
LSTM resulted in the long-term recurrent ConvNets (LRCN),
which has shown some promising but not outstanding results in
video recognition [20]. LRCNs begin to integrate information
across time but do so at later stages in the visual processing archi-
tecture. This is in stark contrast to the biological visual system,
wherein temporal feature detection and event generation happen
at the earliest stages yielding an architecture that is event-
driven from end fo end. Recent sigma-delta quantized networks
(SDQN) [51] also investigate sparse temporal representations.
However, the main goal of SDQNs is reducing computation
(FLOPs) by passing quantized activation differences through
time. EDR, on the other hand, is an event-driven input represen-
tation, looking for meaningful task-specific changes in the input.

D. Two-Stream Architectures for Video Inference

Recently, deep architectures have been used to obtain better
performance on standard video inference benchmarks, such as
UCF-101 [66] and HMBD-51 [36]. The state-of-the-art methods
for those benchmarks are based on the two-stream ConvNets
framework proposed by Simonyan, ef al. [63]. Such framework
uses two separate ConvNets to handle RGB frames and optical
flow derived from the RGB frames, respectively. The final pre-
diction is based on the consensus of both networks. The success
of the two-stream framework demonstrated the importance of a
good temporal representation, however, the temporal represen-
tation itself is much less discussed in many two-stream-based
frameworks. Even the state-of-the-art two-stream frameworks,
such as the Temporal Segmentation Networks (TSN) [70], Long-
Term ConvNets(LTC) [68] and Inflated 3D ConvNets (I3D) [17],
simply use off-the-shelf algorithms to precompute a costly but
accurate optical flow (OF) field.

In short, the difference between EDR and OF is that EDR’s
On/Off events are based solely on a single pixel’s intensity
changes. Optical flow, on the other hand, infers the velocity
vector (magnitude and direction) of a moving pixel based on
a neighborhood of pixels. This velocity may carry extra infor-
mation relevant to the task. OF is costly to compute, but may
not be necessary, as suggested by recent work [23], [72], [76],
which proposed that a task-driven flow can be jointly learned
end-to-end as a fast alternative to conventional OF. Neverthe-
less, those task-driven flows can only be computed at frame
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rates of up to 12—120 fps, which is still prohibitively slow for
computing on-the-fly at training time, especially for applications
like reinforcement learning of video gameplay.

E. Reinforcement Learning-Based Video Game Play

Deep networks have been very successful in solving rein-
forcement learning video game problems and demonstrated
great capability in environment transition and agent behavior
modeling. To name a few, Minh et al. [47] first introduced Deep
Q-learning (DQN) by approximating the Q function using a
neural network and enabled Q-learning to achieve near or over
human performance on Atari video games. Minh ef al. [46]
approximates the advantage and policy vectors using a single
network and have multiple agents asynchronously explore the
environment, which largely improved performance over DQN.
Built on top of A3C, Parallel Advantage-Actor-Critic (PAAC)
[18] implements A3C on CPU and shortens A3C training time
to one day. However, recent RL improvements are mostly on
RL strategy, problem formulation and network structure. To our
knowledge, none of the existing work utilize the two-stream
framework for RL due to the slow OF computation. We believe
we are the first to investigate the event-driven temporal input
representation for RL, whereas all the existing RL approaches
largely rely on RGB or grayscale frame-based input.

ITI. EVENT-DRIVEN REPRESENTATION

We propose a simple event detector: a thresholded exponen-
tial moving average (tEMA) of (relative) changes in the input.
Despite its simplicity, this simple detector is widely used as a
temporal event detector and descriptor in many areas including
high-frequency finance [41] and the mammalian retina [52],
[65]. In both cases, fast response times are critical. We now
describe the structure of the tEMA which is composed of three
components: (1) an exponential moving average filter, (2) a
relative change computation and (3) a thresholding operation.
‘We show the conceptual diagram of such procedure in Fig. 1(b).

A. Exponential Moving Average (EMA)

For each pixel location x, the pixel intensity I;(¢) is noisy
and variable. In order to smoothen the estimate, we apply an
exponential moving average (EMA) filter to the sequence I ()
to get the filtered sequence I.(t;71/2) = EMA(IL(t);71/2)
where the half-life parameter 71/, € R ; controls the memory
of the filter. Intuitively, a new data point affects the EMA for
71,2 timesteps before decaying into half of starting amplitude.
Effectively, an EMA weighs the recent past exponentially more
than the distant past.

One computational advantage of the EMA is that it can be
computed recursively as

L(t) =Lt — 1)+ a(l(t) — I(t — 1))
=(1—a)l;(t—1)+ al.(t),
where I.(t) is the EMA of input I(¢) at time ¢ and pixel
location = and we have suppressed the dependence on the

memory parameter Ty /,. In fact, the dependence on 7y ;5 will
be indirectly specified through another tunable parameter oo =

(&)

1—27Y/72 € 0,1]. A larger o (smaller 7y,,) places more
weight on the most recent inputs and thus forgets earlier inputs
I.(t) more quickly. Note that this recursive update for the EMA
is linear in I;(¢), I.(#) and so can be implemented as a linear
recurrent neural network (RNN).

B. Relative Changes/Returns

We next need to define a way to compute changes in the input
stream. One simple approach is to compute the relative change
of the input with respect to past inputs i.e. a return. Given a
smoothed estimate I,.(¢) of the input stream, this return stream
is defined as

o (B)" o no-nn(E)

Note that returns are dimensionless measures of changes in
the input stream just like e.g. stock price returns in finance.
Intuitively, when the input stream is constant I;(¢) = I the
return stream r,(¢) — 1 since the EMA I, (t) — Iy in O(7y 2)
timesteps. If the input stream is an impulse, the return stream
jumps quickly to its peak response and then decays with half-life
7172 back to 1 (see Fig. 1(b)). The amplitude of the peak response
is controlled by S, € R. Intuitively, increasing/decreasing S,
makes the event detector more/less sensitive to changes in the
input (e.g. pixel intensity changes in the scene).

C. Event Detection via Thresholding

Given a sequence of real-valued returns, we now define a sim-
ple event detector via a thresholding operation that determines
whether a change is “significant,” analogous to a noise floor in
a signal detection problem.

Our soft thresholding operation employs a bipolar structure,
inspired by the retina, that detects two kinds of input events: ON
and OFF. The output event streams are mathematically defined
as

Eron(t) =[ra(t) — (1 +von)], €Ry 2)
Ez,opp(t) = [T‘x(t) — (1 — VOFF)] = R+, (3)

where [b] is defined as 1 if statement b is true and 0 if it is false,
and [r]; = ReLU(r) e Ry, [r]. = ReLU(—r) € R are the
positive and negative parts, respectively, of the real number r €
R. The threshold parameters vy, Vo p determine how large a
relative change in the inputs is required for an ON/OFF event to
be generated. For example, if vony = +5% then a 5% increase
in the input I,.(t) relative to its EMA I.(¢) is needed in order
for an ON event to be generated. A similar relationship holds
for vor . This mimics the retinal firing rates after the ON/OFF
event is detected.

Note the similarities and differences between the bipolar
events and a standard weighted ReLU layer in a recurrent
ConvNet. Both can be written as recurrent weight layers with
a biased ReLU. Despite this similarity, there are a few key
differences inspired directly from the retina. First, our EDR
possesses bipolar (ON/OFF) semantics, i.e. there are two parallel
channels whose purpose is to detect significant changes in the
two possible directions. Second, the weight and bias (3, vz ¢
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are interpretable as sensitivity parameters and detection thresh-
olds, respectively. Third, The input into the bipolar ReLU is
a hand-designed feature — the log-returns stream of the inputs —
that is hand-designed to be a trend detector. The log — inspired
by retinal photoreceptor responses — enables the processing of
inputs with large dynamic range. (This primitive event detector
is also commonly used in high-frequency finance.)

D. Multiple Timescale Events

Biological retinas have synapses/connections that combine
events from fast and slow pathways to form an event stream
that is sensitive to different time scales. We mimic this by
providing log-return from short, medium, and long time scales
{as,an,ar} EDR. Note that the different timescales have
different (learnable) weights {8s, B, A1} associated.

rz(t) = {rz(t;2;)},5 € {S,M, L} (C)

E. Temporal Dynamics Representation Comparison

There are several input representations that aim to capture the
temporal dynamics, namely optical flow [15], [24], DVS [39]
camera hardware, and simple inter-frame difference. We com-
pare the EDR with them, and summarize the differences in
Table 2(b). The major features of EDR are 1) a larger temporal
receptive field (RF) for capturing events of different timescales,
2) temporal smoothing to handle the noise and 3) soft thresh-
olding that allows distinguishing events while keeping some of
the texture of moving objects. We also plot out the response of
different input representations across time for a random pixel
location in the first “Archery” clip of the UCF-101 datasets
in Fig. 3(b). The visualization of corresponding frames can be
found in Fig. 3(a).

IV. EXPERIMENTS AND RESULTS

To evaluate and compare the performance of our proposed
retinally-inspired input representations in a variety of appli-
cation scenarios, we carry out experiments on reinforcement
learning of Atari game play (Section I'V-A), as well as action
recognition benchmarking of the UCF-101 (Section IV-B). To
understand the proposed EDR’s performance in detail, we also
performed several ablation studies of EDR on a smaller action
recognition dataset, KTH (Section IV-C). In addition, using the
model trained with KTH datasets, we show hardware experi-
ments with transfer learning in Section I'V-D.

A. Atari Game Reinforcement Learning (RL)

1) RL Environment and Algorithm: A natural choice for test-
ing the proposed EDR is RL-based game play tasks, because
games involve rich visual action interactions, and visual-event-
action is a common reflex found in animals that make use of
event-driven representations. We use a subset of six (out of 55)
Atari 2600 console games in the Atari Learning Environment
(ALE) [14], namely Pong, Breakout, Pacman, Centipede, Qber-
tand and Seaquest, ranked roughly based on game difficulty from
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—
75 + Gray Diff
0 I RGB Diff
[ . AMPEG Flow
Optical | EDR *
Flow mOF - Fameback

Diff OF =TV-L1

Test Accuracy (%)
2 &
-

Flow OF - Brox
35
#EDR—t=1
50 #EDR=1=38
1 20 400 B000 160000
Frame rate (FPS)

(a) Speed Accuracy Trade-off for Temporal Representations: We
compare the proposed EDR with several common input represen-
tations for temporal dynamics. The major features of EDR are 1)
larger temporal receptive field (RF) for capturing events of different
timescales (where the temporal RF is the amount of information
from past frames used to compute the EDR signal at a pixel), 2)
temporal smoothing to handle the noise, 3) soft thresholding that
allows distinguishing events while keeping some of the texture of
moving objects, and 4) Potentially learnable parameters.

Inter-frame Event-driven
Optical Flow Diff:r;nces Camera EDR
(DVS128)
Feature Patch Pixel intensity Pixel intensity Pixel intensity
Displacement change change change
Computation High Low Low Low
Run-time  Precomputed Real-time Real-time Real-time
Temporal RF 2 frames 2 frames Multiple T frames
Timesteps
Temp.
Smooth No No No Yes
Spatial RF >10 pix 1 pix 1 pix 1 pix
Spatial
s ; Yes No No No
Thresholding No Hard Hard Soft
ON/OFF
Ch s No No Yes Yes
Leamnable
Parameters No No No Yes

(b) Quantitative and Qualitative Comparison of Different Temporal
Representations

(c) Our proposed EDR is efficient enough to run real-time on regular
smartphones. The EDR events are shown in red (OFF) and green
(ON). EDR detects the hand motion with texture-rich background
filtered out.

Fig. 2. EDR’s major features compared to other temporal representations.
easy to hard. Our baseline RL setup is Paralle] Advantage-Actor-
Critic (PAAC) [18]. PAAC is a synchronous implementation
of the state-of-the art algorithm A3C [46] in GPU. In the
baseline setup, game playing frames are fed into the controller
network directly. For the EDR comparison experiments, the
implementation details are described below.
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(a) Visualization of different input modalities of a UCF-101 frame
sequence.
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(b) Visualization of different input modalities for a random pixel
location of a UCF-101 frame sequence.

Fig. 3. Temporal input representations comparisons on UCF-101 frames:
(a) We visualize a sample frame from the UCF101 archery class. First row from
left to right: RGB, Brox flow, RGBDiff, GrayDiff. Second row from left to right:
Fast decay EDR ON, Fast decay EDR OFF, Slow decay EDR ON, Slow decay
EDR OFF. Notice the stationary lattice pattern in the background is less empha-
sized in fast decay EDR than Difference, while being responsive to the archer.
(b) Output values of different representations across time for a randomly chosen
pixel location in the first archery clip in the UCF-101 datasets are shown.

2) Network Architecture and Training Procedure: Controller
network architecture in deep reinforcement learning is important
for both extracting features and mapping them into value and
policies, and eventually affects agent performance. Here we use
the standard ConvNets described in [48] as the baseline network,
which we note as archpqse. To incorporate temporal features
across time, an RNN or LSTM is commonly needed. Recurrent
convolutional networks (RCN) [20] structure was proposed to
perform this task by connecting the LSTM layers at the end of a
ConvNet. We made some modifications to the original RCN to
better track spacial features. We name it FT-RCN (explained in
Section IV-C). Here, as acomparison, we add this FT-RCN struc-
ture to a baseline network, which we refer to as archpr_grcn.
We found that our FT-RCN gave better results than the baseline.
The results are shown in Table I. For the RL training policy, we
experimented with A3C [46] and PAAC [18]. We found that we
are able to run more experiments using PAAC because multiple
instances of PAAC training can be efficiently parallelized on
multiple GPUs. In contrast, in A3C, training agent instances
occupy multiple threads with full load, and fill up computational
resources quicker than PAAC. The reported experimental results
are on PAAC. In our PAAC experiment setup, we use 32 agents
and traverse 5 local steps before aggregating observations into
a batch. As a result, each agent in A3C has batch size of 5
and PAAC has batch size of 80. A3C learning rate starts from
0.4226 and decreases exponentially to 0 in 80 million global
steps, PAAC learning rate starts from 0.0224 and linear decay
to 0 at 80 million global steps. Entropy scaling constant is 0.01

for A3C and 0.02 for PAAC. Both A3C and PAAC ftraining
clip gradient based on L2-norm: A3C gradient is clipped at
40.0 and PAAC is clipped at 3.0. All experiments use RMSprop
optimizer and discount factor is set to 0.99. Pong training stops at
30 million global steps and training for remaining games stop at
80 million global steps.

3) Input Data Dimension: In the baseline setup, game play-
ing frames are fed into the controller network directly. We
concatenate EDR with ON and OFF channels and dimen-
sion W x H x 2 to the original FDR input with dimension
W x H x 3 inthe channel dimension. Thus, the new dimension
of the input is W x H x 5 for all our EDR comparison exper-
iments. We refer to this as FDR+EDR for all the Atari based
experiments, which is similar to the two-stream framework
approach used in video recognition tasks. The difference is
that the OF in the conventional two-stream approach is usually
pre-computed due to its complexity. Here, however, EDR is
computed on-the-fly since it’s an extremely efficient temporal
input representation compared to OF. The intuition behind using
two-stream approach in RL is similar to the motivation in the
action recognition cases: we would like not only to have a good
spatial representation for the context of a given time, but also a
temporal representation for the context across time.

Note here we concatenate the W x H x 2 EDR input with
the W x H x 3 FDR input at any given timestep, not across
time steps. The 2 and 3 in each case are actually the numbers of
channels at a given time step, not the number of frames across
time to concatenate. EDR has two channels, ON/OFF. FDR has
three channels, RGB. After the concatenation, FDR+EDR will
have a W x H x 5 input at each time step, while the baseline
FDR only has a W x H x 3 input at each time step.

4) RL Experiment Results: Experimental results of 6 differ-
ent games are shown in Table I, where the min, max and mean
total reward score of over 30 different test runs are reported. We
compare the total reward scores of FDR + EDR and FDR + DIFF
inputs with those of conventional FDR inputs. It is clear that a
second input stream greatly improves the performance.

Meanwhile, an ablation study of archpgse VS. archpr_ren
is also included. The proposed archpr_ren has better perfor-
mance compared to the baseline archpqgse in most cases in terms
of average game scores regardless of the type of input given —
FDR, FDR + EDR or FDR + DIFF data. For comparison of
FDR + DIFF vs. FDR + EDR, overall, they perform similarly,
better or worse, to each other, but in several cases, the best case
scenario of FDR + EDR outperforms FDR + DIFF by a large
margin. Specifically, for archpase, FDR + DIFF out-performs
FDR + EDR, but for archpr_gren, FDR + EDR outperforms
FDR + DIFF in best and worst game scores, but is slightly worse
in average game scores compared to FDR + DIFE.

In addition, we visualize the EDR stream in Fig. 4, where we
can see that EDR picks up short-term events that are relevant
to winning the game. Plotting a sample training process for
Pong game in Fig. 5(a), we found that both FDR and FDR+EDR
networks achieve the maximum score of 21, but FDR + EDR
can learn 1.7x faster (3 M vs. 5 M training episodes to reach
a high score of 18) than the FDR alone. Furthermore, the
strategy learned by the FDR+EDR is superior to that learned by
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TABLEI
ATARI RL EXPERIMENT RESULTS: THE MIN, MAX AND MEAN TOTAL REWARD SCORE OF 6 DIFFERENT GAMES OVER 30 DIFFERENT PLAYS ARE SHOWN.
COMPARISONS ARE MADE BETWEEN THE CONVENTIONAL FDR INPUTS AND PROPOSED FDR+EDR INPUTS. NOTICE THAT WORST CASE PERFORMANCE FOR
FDR+EDR 1S MUCH BETTER THAN THAT OF FDR ALONE

FDR FDR+DIFF FDR+EDR
Avg. Best Worst Avg. Best ~ Worst Avg. Best  Worst
Pong 18.32 21 14 18.47 20 14 19.47 21 14
Breakout 42253 494 378  526.13 864 387  446.60 842 365
Pacman  2828.63 6682 456 654537 10751 2700 3719.67 5030 1850
Centipede 1523.20 4243 302 2915.03 5895 456 2828.63 6682 456
Qbert 17088.80 19225 11775 20579.17 22950 11575 19560.00 22800 19025
Seaquest 1691.00 1700 1280 1638.00 1760 1300 1674.00 1760 1360
Avg. gain - - - +44.23% +32.14% +90.89% +23.77% +20.89% +70.17%

(a) Experiment results of archpase

FDR FDR+DIFF FDR+EDR
Avg. Best Worst Avg. Best Worst Avg. Best  Worst
Pong 20.90 21 20 20.73 21 19 20.83 21 19
Breakout  665.97 864 397 706.80 864 423 63042 864 408
Pacman  4225.67 8450 1990 5432.67 7420 2840 4621.67 7630 1860
Centipede 1746.83 4483 228 1671.73 5206 206 2450.40 8164 704
Qbert 15662.50 16250 11525 22970.83 27325 7975 16766.67 26100 11625
Seaquest  2512.67 2560 2420 2479.33 2560 1960 2532.00 2560 2480
Avg. gain - - - +12.48% +12.01% -18.36% +8.63% +33.15% +38.84%

(b) Experiment results of archrr—ron

EDR. ON

EDR, OFF

Frame
difference

Fig. 4. Temporal input representations comparisons on RL Atari game play:
Original frame, EDR and Diff representations for 6 tested Atari games are shown.

FDR, requiring only 1 shot to defeat the opponent as compared
to multiple shots for FDR. Fig. 5(b) is an example training
process for Centipede game. We found that the addition of the
EDR representation accelerates training in PAAC. Moreover,
we find that FDR+EDR based training reaches 1.8x higher
reward than FDR alone and is still increasing when training
terminates. FDR+EDR can reach a maximum reward of 8,300
later on in training while FDR struggles to reach 3,500. More
training curves of different games can be found in the slides in
supplementary material.

B. UCF-101 Action Recognition Experiments

We compare EDR with temporal representation alternatives
on Long Term Convolutional [68] (LTC) architecture. We would

like to emphasis that the goal of this experiment is not to
compete with the state-of-the-art methods in action recognition,
but rather, understand how EDR with different parameters per-
form compared to other existing temporal input representations
on state-of-the-art baseline network (i.e. LTC). We use the
following representations for comparison: RGB, MPEG Flow,
difference between grayscale intra-frame differences (GrayD-
iff), RGB intra-frame differences (RGBDiff), TV-L! OF [53],
Farneback OF [24], Brox OF [15], fast decay soft threshold
EDR (a = 0.5) and slow decay soft threshold EDR (« = 0.166).
In addition, we test the effectiveness of the proposed EDR
as a second stream on the state-of-the-art two-stream video
recognition framework, Inflated 3D ConvNets (I3D) [17].

1) Datasets: UCF-101 [66] consists of 101 action categories
of more than 13 k video clips in 30 fps. Each clip is in 320 x
240 resolution and the average mean clip length is 7.21 seconds.
UCF-101 contains videos with rich camera motion and cluttered
background, and comes with 3 pre-determined train/test splits.
All splits are designed to balance out video nuisances such as
actors and background, ensuring fairness between training and
testing sets. We also perform standard data augmentation when
loading the data, where the details can be found in Implementa-
tion Details. We report performance on the first splits in all our
experiments.

2) Network Architecture: We use LTC to study the effective-
ness of different motion features. LTC architecture has five 3D
convolutional layers with 3 x 3 > 3 filter size, ReLU nonlinear-
ity and volumetric max pooling, followed by 2 fully connected
layers with 2048 units and dropout. LTC originally compares
different input modalities using 60 frame architecture. LTC
reaches highest 92.3% accuracy on UCF-101 when pre-trained
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(b) ‘Centipede’ Training Curve

Fig. 5. RL training: (a) Rewards over game steps at training are shown for
Pong. Higher is better. FDR+EDR learns 2x faster than the FDR alone. The
strategy learned by the FDR+EDR is superior to that learned by FDR, requiring
only 1 shot to defeat the opponent as compared to multiple shots for FDR.
(b) Rewards over game steps at training are shown for Centipede. FDR+EDR
reaches 1.8x higher reward than FDR alone.

“Retina" - EDR
Frame- | Exponential Relative  Event
Driven Moving  Changes/ Detection via
Retums  Thresholding

Input Average

Fig. 6. System architecture diagram: There are two major components in our
proposed bio-inspired architecture for video recognition. (1) A retinomorphic
front-end for generating input events. (2) A back-end spatiotemporal ConvNet
based on the state-of-the art LTC [68] that provides high-level semantic under-
standing of the events.

on Sports-1M [32], and combining Brox OF and Improved
Dense Trajectories (IDT) along with the RGB input. Here we use
the same setup, but without the Sprots-1 M pre-training to enable
fair comparison and save computation cost. For the details about
the LTC Network, we refer the reader to the original paper [68]
and the implementation details section below. We used the I3D
network to compare the performance of EDR (as the second
stream) with the conventional OF stream. We refer the reader
to [17] for the details of the I3D architecture.

3) Implementation Details: For experiments run on LTC, the
architecture is shown in Fig. 6. We have two stages of input

(b)

Fig. 7. UCF-101 EDR visualization: Single frame comparison between
original, EDR and Brox [15] for a video in (a) BreastStroke class and in
(b) HandstandWalking class.

processing. The first stage happens before training and com-
putes different representations of input videos in their original
resolution. The second stage happens during training and in-
volves several data augmentation techniques. First, input videos
are scaled into 89 x 67 pixels. Second, we randomly sample a
volume with size (height, width, 60) from the re-scaled input
videos, where height and width are randomly chosen from
(1, 0.875, 0.75, 0.66) multiples of scaled video size. Randomly
sampled volumes are then scaled into network input dimension
of 58 x 58 pixels. Each video is also randomly flipped horizon-
tally with 0.5 chance. The standard evaluation metric is video
accuracy. During test time, the first 60 frames of the test video
are used as test clips. Each clip is cropped from its 4 corners and
center, forming 5 cropped clips. Each cropped clip is further
flipped horizontally to create a total of 10 cropped clips for each
test video. Class result is computed as the maximum of averaged
softmax scores of all 10 cropped clips. We use stochastic gradient
descent as our training algorithm. We treat 9000 video clips as
one epoch and stop training after 26 epochs. Learning rate is
le-3 from epoch 1 to epoch 13, le-4 from epoch 14 to 24 and
le-5 for last two epochs. Batch size is 15. For I3D experiments,
we use the original network. Note that good performance of I3D
and LTC on UCF-101 relies on pre-training with large datasets.
13D, for example, uses the Kinetics dataset [33] for pre-training,
such that the authors had to utilize a 64-GPU cluster for the
task [17]. Given that EDR is drastically different from RGB and
OF, we can not directly use the pre-trained weights. Therefore,
for fair comparison, we train the I3D and LTC networks in all
our experiments from scratch with all different inputs (i.e. RGB,
EDR, OF two-stream RGB+OF and RGB+EDR, etc), thus the
accuracy numbers may be worse than the best numbers presented
in the original work. Nevertheless, we believe the comparison
is fair and our goal here is not to beat the state-of-the-art in
video recognition, but to showcase the efficiency of the proposed
temporal representation, EDR, as compared to standard motion
features like OF.

4) EDR Visualizations: Fig. 7(a) compares a single frame of
RGB, EDR and Brox in the BreastStroke class. EDR has 60%
higher accuracy than Brox and is able to retain the texture of
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by the difference between the two for each class.

TABLE II
COMPARING DIFFERENT TEMPORAL REPRESENTATION ON THE UCF-101
ACTION RECOGNITION TASKS: WE SHOW THE TEST ACCURACY FOR

DIFFERENT INPUT REPRESENTATIONS IN THE UCF-101 ACTION RECOGNITION

TEST ON LTC. WE FOUND THAT EDR PERFORMS BETTER THAN SIMPLE
INTER-FRAME DIFFERENCE AND THE MORE COMPUTATIONALLY EXPENSIVE
FARNEBACK OPTICAL FLOW. HOWEVER, EDR 1S LESS ACCURATE THAN THE
OpTICAL FLOW METHOD PROPOSED BY BROX. NOTE THAT SPEED REFERS TO
COMPUTATION OF THE MOTION FEATURES, NOT THE TOTAL EXECUTION TIME
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Type  Representations Accuracy  Speed (FPS)
Frame RGB 57.0 [68] -
Frame Gray 59.5 37.6K
Diffs RGB 66.8 36.9K
Flow  MPEG Flow [31] 58.5 [68] 591.8 [31]
OF- Farneback [24] 66.3 [68] 273
OF - TV-L! [53] 68.0 29.1 [53]
OF - Brox [15] 748 [68] 6.3
T2 = 3.8 frames 70.7 9.8K

pool lane lines, thanks to the large color gradient between lane
lines (red and white) and water (green). Brox on the other hand,
failed to extract a discernable pattern because moving water
creates similar local pixel patches that confuses the optical flow
algorithm. Fig. 7(b) compares RGB, EDR and Brox in the Hand-
standWalking class. Brox is 3 better than EDR and captures
only body motions due to overall slow motion speed and stable
local patterns. EDR on the other hand, falls short and pickup task
irrelevant motion signals due to abundance of color gradient.
5) UCF-101 Experiment Results: A summary of different
motion features’ performance on UCF-101 on the baseline LTC
network is shown in Table II. When training from scratch on
UCF-101 data, among all the temporal representations, the
best performing temporal representation is the Brox OF, which
achieve 74.8% accuracy on UCF-101. Overall, EDR (70.7%)
performs better than FDR, MPEG Flow [31], Farneback OF [24],
TV-L! OF [53], and with a much faster computation speed mea-
sured by frame-per-second compared with all optical flow vari-
ants. Computing intra-frames difference (RGBDiff and GrayD-
iff) is indeed 4x faster than EDR, but the accuracy is noticeably
lower. Nevertheless, 9.8 K fps on EDR is fast enough to enable
real-time applications that are not practical for optical flows.
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UCF-101 Results - EDR vs. RGB FDR: Number of correctly classified videos per class between EDR and Brox [15]. Blue is EDR, green is Brox, sorted

TABLE III
EDR vs. OF IN TWO-STREAM VIDEO RECOGNITION TASK: WHEN TRAINING
FROM SCRATCH USING I3D NETWORK ON TWO-STREAM INPUTS, OUR RGB +
EDR 1S SLIGHTLY WORSE THAN RGB + OF. HOWEVER, THE EDR 1S
SIGNIFICANTLY FASTER THAN THE OF TO COMPUTE

Type 274 Stream Method ~ Accuracy  Speed (FPS)
OF + RGB Brox [15] 68.33 6.3
EDR + RGB 7y, = 3.8 frames 66.70 9.8K

We can safely conclude that EDR can trade-off accuracy slightly
(and is still among the best performing temporal representations)
for much better computing efficiency.

Fig. 8 compares number of samples correctly classified
from EDR pre-processed network and Brox pre-processed net-
work, sorted by the difference between the two, from large to
small. Overall, EDR and Brox performs similarly: both found
PizzaTossing as a difficult class and BenchPress as a simple
one. However in a small portion of classes the differences are
significant.

For two-stream experiments, we show the results in Table III.
RGB + EDR on UCF-101, using two-stream I3D, gives accuracy
of 66.7%, when training from scratch, while RGB + OF is
slightly better at 68.33% under the same conditions. However,
the computation of the EDR is significantly faster than the OF.

C. Analyzing EDR on KTH Action Recognition Datasets

In this section, we conduct the ablation studies of the proposed
EDR. To perform various ablation experiments in a timely
manner, we chose the KTH datasets [62] which are smaller than
UCF-101. We analyze the performance of EDR working with
different ConvNet front-end and recurrent back-end models for
action recognition tasks. We also study the EDR’s efficiency in
terms of network activation sparsity, as well as training efficiency
in terms of learning speed.

1) Network Architectures: Without the need to handle large
scale datasets, we scale down our network used in the experi-
ments as well. Our baseline network is a recurrent convolution
network (RCN) [5], [20] which takes frame-driven video as
input (see Fig. 10), and sends output to a deep ConvNet (DCN).
We explore two different types of DCNs, Network-in-Network
(NiN) [40] and LeNet [38]. We also explore two different
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Late Visual Cortex
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Fig.9. Comparison of different RCNs: Late recurrent stages of the proposed
FT-RCN, LRCN and GRU-RCN are shown.

types of late-stage recurrent layers in our RCNs: LSTM-based
(LRCN [20]) and GRU-based (GRU-RCN [5]).

2) Feature Tracking RCN: Since our proposed EDR extracts
temporal features, our consequent recognition pipeline should
track such features accordingly. As a matter of fact, a critical
function of biological motion perception is feature tracking
(“what target went where”) [19], [42], [61] Our solution is
a feature tracking recurrent convolutional neural (RCN) net-
work to serve as the “visual cortex” for our high-level visual
recognition tasks. We based the design on conventional RCNs,
but introduce a simple modification to the recurrent update to
address the feature tracking functionality. We name our proposed
design FT-RCN. We implement this functionality by mimicking
aspects of the recurrent within-channel connectivity observed in
the visual cortex [30].

The diagram of Long-term RCN (LRCN), Gated Recurrent
Unit (GRU) RCN and our proposed EDR feature tracking RCN
(FT-RCN) are compared against each other in Fig. 9. As the
figure shows, the differences lie in where the recurrence is
introduced, and how recurrence is performed. LRCNs employ
all-to-all recurrent connections in the last flattened fully con-
nected layer. They are capable of noticing movement, but have
lost the distinction between different features. For GRU-RCN,
recurrence happens at each convolutional layer, and is for each
same pixel location across all the different feature maps. It does
preserve feature distinctions, but has no recurrent connections
between distinct pixels, preventing it from noticing movement.
In conclusion existing LRCN and GRU-RCN architectures have
connectivity that makes tracking the movement of stable features
difficult/impossible. In contrast, for the proposed FI-RCN, it is
similar to GRU-RCN, except that the recurrence is occurring for
the entire feature map. This is similar to the like-like connectivity
in the visual cortex. Such design will help track high-level EDR
features, as the channels in the late stage of DCNs correspond
to high-level features.

We build a network that consists of three major components
(see Fig. 10):

1) Input Representation Layers: We choose between our

proposed event-driven representation and a conventional
frame-driven representation of the input video.

“Retina” “Cortex”
Frame- | Exponential Relative Event

Driven Moving  Changes/ Detection via || Deep ConvNet
Tnput Average Returns  Thresholding | Comny I

oFE__|

o _--l |

(2 + 1) == o

Fig. 10. System architecture diagram: The three major components in our
proposed bio-inspired architecture for video recognition. (1) A retinomorphic
front-end for generating input events. A neuromorphic back-end cortex that
provides high-level semantic understanding of the events, including (2) early
convolutional layers and (3) Late recurrent convolutional layers.
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2) ConvNet Layers: The ConvNet layers are used for spatial
feature extraction. We are able to choose ConvNets of
different structures here.

3) Late-stage Recurrent Layers: RCNs are used to preserve
the temporal context of a dynamic scene. Common RCN
architectures includes LRCN and GRU RCN. To this list
we also add our proposed feature tracking RCN (FT-RCN)
that accepts EDR input.

All together, we have several baseline network architectures
that we compare to our EDR-based FT-RCNs. We can assess
the value-add of each newly proposed component, and more
generally, the value-add of event-driven representations and
components.

3) Datasets: The KTH dataset contains 600 120 x 160
grayscale videos of six action classes, where each class contains
100 videos. Given the videos have various lengths with at least
90 frames, therefore we use the first 90 frames of video for
experiment. We randomly generate 75/25 train/test splits for use
in learning.

4) Results and Analysis: Using the aforementioned net-
works, we perform end-to-end training for action recognition
and compare results. Overall, the results show that with sig-
nificant amount of data throughput reduction (i.e. much less
activation) and potential computing energy savings (Fig. 12), we
can observe noticeable improvement in both classification accu-
racy (Table IV) and training speed (Fig. 11), over conventional
FDRs, achieving a near-state-of-the-art [1] results at 94.4%
accuracy for KTH datasets. Moreover, our proposed FI-RCN
“cortex” can nicely handle the event flow, and performs better
overall, compared to conventional LRCN. The detailed results
and analysis are discussed below.

Input Representation. Primitive ON/OFF Event Detector:
In this experiment, we evaluate our primitive event detector,
which simulates the ON/OFF pathways between the photore-
ceptor and the bipolar ganglion cells in the retina. As shown
in Table IV, when EDR is introduced as the input representa-
tion, we observe that the classification accuracy increases from
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TABLE IV
RCN EXPERIMENT RESULTS: OVERALL, EDR PROVIDES BETTER
CLASSIFICATION RESULTS THAN FDR IN RCN oN THE KTH ACTION
RECOGNITION DATASETS. MEANWHILE, THE PROPOSED FT-RCN SEEMS TO BE
A BETTER CORTEX FOR VIDEO RECOGNITION TASKS, AS IT IMPROVES THE
OVERALL CLASSIFICATION PERFORMANCE

RCN Properties Input Representation Properties
Conv Recurrent Frame-driven Eventdriven
Model Structures Representation ~ Representation
LeNet Long-term RCN 79.3 % 86.7 %
LeNet Feature Tracking 833 % 88.9 %
NiN RCN 90 % 94.4 %

FDR vs. EDR on Feature Tracking RCN
—— LeNet Frame-driven Feature Tracking RCN

80

70 —— LeNet Event-driven Feature Tracking RCN
=~ NiN Frame-driven Feature Tracking RCN
60 == NiN Event-driven Feature Tracking RCN

Test Error(%)

0 20 40 60 80
Epochs

(a) Learning progress on feature tracking RCN

FDR vs. EDR on LRCN

—— LeNet Frame-driven LRCN
= | eNet Event-driven LRCN

70

Test Error(%)

10
0 20 40 60 80

Epochs

(b) Learning progress on long-term RCN

Fig. 11. Learning progress of different input representations, ConvNet type
and RCN structure. One can observe that EDR results in better classification
accuracy and faster convergence.

79.6%, 83.3% and 90% (FDR) to 86.7%, 88.9% and 94.4%
(EDR), respectively. Moreover, the learning curve shows that
learning with EDR is much faster than with the original FDR
(Fig. 11).

Recurrent “Cortex” Model. Feature-Tracking RCNvs. LRCN:
In this experiment, we study the effectiveness of the proposed
FT-RCN in handling the EDR feature, compared to a vanilla
LRCN. We fixed the input representation layers to EDR and the

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

DCN layer to be LeNet, while setting the late-stage recurrent
layers to be FT-RCN and LRCN.

We show the results of different recurrent models in Table IV.
EDR-based FT-RCN achieves better performance in the action
recognition test (79.3% and 86.7% vs. 86.7% and 88.9%, respec-
tively). We believe the improvement comes from the FT-RCN’s
ability to better preserving high-level semantic features. As
one can see, FI-RCN does a good job accommodating the
EDR input, and resolves seemingly more interpretable features
compared to the LRCN.

ConvNet Structure. NiN vs. LeNet: In addition, we also explore
the effect of different DCN structures. Empirically speaking,
deeper DCNs usually provide better end-to-end recognition
results, since more layers means more nuisance disentanglement
and thus better higher-level feature abstraction. In our experi-
ment, we fix the input to be EDR, and the RCN to be FT-RCN,
and then train end-to-end for the video recognition task using two
DCN structures — a shallower LeNet and a deeper NiN network.
We show the classification results in Table IV. Unsurprisingly,
the NiN-based DCN delivers better overall classification results.
Fig. 11 shows the learning curves. Interestingly, it seems that
EDR provides much more benefit for the shallower LeNet, as
compared to the deeper NiN. One possible explanation is that
the EDR captures nuisance more directly, thus the higher-level
features become more linearly separable. Therefore, even a shal-
lower ConvNet structure will be able to perform more complex
tasks well.

Sparsity, Energy Saving and Computing Efficiency: Com-
pared to the FDR, the EDR provides higher sparsity. We plot
the histogram of the activation at different layers of the neural
network for both EDR and FDR input in Fig. 12. As one can
observe, in general, EDR results in a much sparse activation,
especially in the early layers. For the activation in the first couple
layers in the cortex, EDR results in a tri-mode distribution, which
is attributed to ON/OFF pathway design, while FDR’s activation
is further spread out. Furthermore, EDR’s sparsity and binary
ON/OFF pathway will significantly save the data bandwidth and
computing power required.

D. Hardware Experiments

Currently, computer vision systems for semantic understand-
ing are mostly based on a conventional camera and neural
network that are designed for RGB inputs, with a focus on
test accuracy, while power consumption and speed are largely
under-emphasized. As a result, applications in always-on or
embedded vision scenarios are greatly limited. Continuously-on
ADC and data transmission regardless of scene context results
in wasting 90% total power consumption [69]. As reviewed
earlier, the commercially available DVS camera has a similar
event-driven mechanism as our proposed EDR. Using the DVS
camera could reduce the energy consumption by up to three
orders of magnitude (Table V), while still capturing the essence
of motion dynamics in the scene. Given that DVS camera outputs
do lose some of the features of EDR, such as EMA-based
smoothing, soft-thresholding and multiple timescales, here we
hope to show that the deep learning model trained using our
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Fig. 12.  Activation distribution in the artificial cortex: Histogram of activation at different layers in EDR and FDR are compared against each other. In general,

EDR generates a much more sparse activation than FDR. The ON/OFF pathway in EDR produces a visible multimodal distribution in early layers.

TABLE V
DVS HARDWARE COMPARISON: COMPARISON OF DVS128 CAMERA AND A
MAINSTREAM INTENSITY CAMERA (ADAPTED FROM [7]). DVS HAS
SIGNIFICANT ADVANTAGES IN ENERGY, SPEED, DYNAMIC RANGE,
AND DATA BANDWIDTH

Conventional Intensity

. s Event=driven
Specification (Gr;‘h";e::er 3 Camera (DVS128)
Resolution 2048 x 2048 128 x 128
Total Power 45W 23 mW
Power per video voxel 11.9 nW / voxel <0.7 nW [ voxel

Max. Frame Rate 90 Hz 2 kHz (1M events/sec)
Dynamic Range 52.87dB 120 dB
Max. Bandwidth 360 Mbps 4 Mbps

Fig. 13. DVS hardware experiment: (a) Experimental setup. (b) Confusion
matrix of the classification results.

software-based EDR input can be easily transferred to the DVS
hardware for real-world usage. Ultimately, if EDR is imple-
mented in hardware, it may yield an energy-efficient imaging
system for dynamic event recognition. We set up an early-stage
prototype to validate this idea and showcase a hardware based
event-driven action recognition pipeline.

1) Experiments: Our network for this experiment is the
EDR-pre-trained FT-RCN from Section I'V-C. We perform trans-
fer learning using real-world DVS data to fine-tune the network
to accommodate the DVS hardware. At testing, we send the DVS
data directly to the fine-tuned FT-RCN without going through
the EDR layers. We show the hardware experiment setup in
Fig. 13(a), where we have the DVS128 event camera capture
the actions displayed on a computer screen. The action clips
are taken from the KTH datasets. We capture 10 event streams
for each of the six action classes. The raw DVS event streams
are integrated every 0.033 second to form an ON/OFF event

image. Event inputs are split by a 70/30 ratio. 70% of the event
streams are used for fine-tuning the pre-trained model, and the
rest 30% are used for testing. After 100 epochs of fine-tuning
on the training set, we perform testing on the testing set. We
achieve an overall 72.2 % classification accuracy in this six-class
classification problem. The confusion matrix of the classification
results are shown in Fig. 13(b).

2) Limitations: We note here that although the DVS camera
is used, it was capturing only the dynamics of the RGB frames
(30 fps video) displayed on the screen, not the true dynamics
of the scene. Thus it’s not fully exploiting the full benefits of
the DVS sensor that are shown in Table V. That said, we would
like to emphasize that the main point of this experiment is not
to demonstrate the benefit of the event sensor, nor advancing the
state-of-the-art results on action recognition tasks, but rather, to
show that the deep learning model trained using our software-
based EDR input can be easily transferred to the DVS hardware
for real-world usage. Ideally we should run the experiments on
real-world-captured DVS data, however data-driven high-level
visual understanding tasks require a significant amount of data to
be collected (small datasets like KTH still contain 600 videos),
which is outside the scope of our paper.

V. CONCLUSION

In summary, we propose EDR, an event-driven retinomor-
phic input representation, for extracting temporal dynamics in
video. We show that EDR improves performance in Atari game
playing reinforcement learning (Section IV-A) and dramatically
improves the speed-accuracy tradeoffs in UCF-101 action recog-
nition tasks, compared with alternative temporal representations
(Section IV-B). We then use a smaller action recognition dataset,
KTH, to analyze EDR’s efficiency and performance under a
different network “cortex” structure, and found EDR copes
especially well with a network that can track features temporally
(e.g. FT-RCN). Furthermore, as shown in Section IV-D, we build
an early-stage prototype consisting of DVS event camera hard-
ware and a light-weight FT-RCN for performing standard action
recognition tasks with orders of magnitude reduction in sensing
power and data transmission rates. Meanwhile, we acknowledge
that our current EDR architecture is an early proof-of-concept
and has some limitations. We have not yet implemented some
important properties of the retina. For instance, first, we do not
have a stable learnable EDR architecture. In our preliminary
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experiments, end-to-end learning the EDR parameters seems to
be quite unstable, probably due to the fact that EDR is formulated
as an RNN, and the Back-propagation-thru-Time (BPTT) algo-
rithm used to train it yields unstable gradients. Second, We do
not include transient and sustained cell types, resulting in some
loss of adaptability that is inherent in the retina. Lastly, We do
not simulate any spatial processing in the retina (e.g. Horizontal
and Amacrine cells), therefore our events are based solely on
temporal changes, rather than spatiotemporal changes. We hope
our preliminary studies on EDR will motivate more research in
this direction.
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