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ABSTRACT KEYWORDS
Undergraduate mathematics instructors are called by many cur- Geometry; transformations;
rent standards to promote prospective teachers’ learning of  secondary teacher education;
geometry from a transformation perspective, marking a change classroom applications
from previous standards. The novelty of this situation means it is

unclear what is involved in undergraduate learning and teaching

of geometry from a transformation perspective. To approach this

problem, we illustrate how specific in-class activities and design

principles might help prospective teachers make conceptual links

between congruence proofs and a transformation approach to

geometry. Additionally, to illustrate these activities for instruc-

tors, we provide examples of prospective teachers’ work on some

of these problems.

1. INTRODUCTION

Instructors of secondary teacher preparation programs face a transition in geom-
etry instruction. In the past several decades, geometry has been taught primarily
from a perspective based on Euclid’s Elements [12]. More recently, a transformation
perspective has come to the fore [9, 8]. Thus, many K-12 teachers may have to teach
geometry from a different perspective from the one they learned. Consequently,
college geometry instructors will need to support teachers’ transition to a new per-
spective. Unfortunately, at any level, there has been “limited research explicitly on
the topics of congruency and similarity, and little on transformation geometry” ([6],
p. 139).

To illustrate the pedagogical impact of the perspective, consider the well-
known triangle congruence criterion “Angle-Side-Angle” (ASA): For all AABC
and ADEF such that AB = ED, {BAC = {EDF, and £ABC = £DEF, we have
AABC = ADEF. In secondary and college geometry texts using an Elements
approach, this criterion is often taken as a postulate: a mathematical truth with-
out proof. Typically, instructors help future teachers establish conviction in such
postulates through empirical exploration, such as constructing pairs of triangles
satisfying the congruence criterion and measuring the remaining side lengths and
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2 J.ST.GOAR AND Y. LAI

angles. In contrast, ASA is often a theorem in the transformation approach (e.g.,
[2,16]). To show that AABC and ADEF are congruent, one must show that no
matter the triangles” locations, there exists a sequence of rigid motions that map
the triangles to each other (see Wu [16] for a schematic for such a proof). Even
if empirical exploration is beneficial, it is insufficient for this triangle congru-
ence theorem in a transformation context. Moreover, strictly empirical exploration
can undermine the development of deductive schema (e.g., [4]). An instructor
must thus help future teachers move toward deductive proof. In an Elements
approach when taking ASA to be a postulate, a proof would be mathematically
impossible.

We note that ASA does not have to be a postulate; it is just simply taken as one in
various sources (e.g., [1,3,7,11]). As Venema [15] notes, taking at least one triangle
congruence criterion (e.g., SSS, ASA, or SAS) as a postulate is necessary in an Ele-
ments approach. Whether it is ASA or another triangle congruence criterion, one
of them must be taken as a postulate.

In the current transition from an Elements approach to a transformation
approach, some prospective teachers (as well as practicing teachers) may be unfa-
miliar with what can (or cannot) be proven and how proofs operate. This situation
informs our agenda: How can we better understand prospective teachers’ thinking and
work on transformation congruence proofs so that we can become more reflective and
adaptable geometry instructors? What design principles for in-class college geometry
activities could support prospective teachers’ understanding of congruence proofs from
a transformation perspective? On what basis do we (continue to) make improvements
to these activities?

We focus on congruence because it is a fundamental and relatively unexamined
area where differences between Elements and transformation approaches are salient
[6,15]. To our knowledge, even in the existing studies (e.g., [5]), there are few results
on teachers” understandings of congruence proofs, particularly of figures beyond
basic triangle congruence proofs.

In this paper, we first discuss the basic structure of transformation congruence
proofs. We then describe design principles, based on our previous work [13], for
in-class activities and for possible strategies spanning multiple lesson plans. Finally,
we discuss the potential impact of these strategies as well as a deeper dive into
prospective teachers’ understanding of congruence proofs.

2. WHATIS A TRANSFORMATION APPROACH TO GEOMETRY?

Following Usiskin and Coxford [14], we take a transformation approach to (planar)
geometry as one that includes:

e Postulating preservation properties of transformations: in particular, that reflec-
tions, rotations, and translations preserve length and angle measure;
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e Defining congruence via transformations: e.g., two subsets X and Y of the plane
(e.g., two triangles or circles) are congruent if there exists a reflection, rotation,
translation, or sequence of these transformations’, that map X to Y;

Details may differ across texts, for instance, in postulates of transformations taken,
such as whether length and angle, or only length are assumed to be preserved by
transformations. Nonetheless, they have in common that the postulates are about
transformations, rather than about congruence criteria for particular objects such
as triangles. Hence, from a transformation perspective:

e [Transformations-to-Congruence] To establish a proof of congruence of two
objects in the plane, one constructs a sequence of assertions that show that there
exists a single one of or a sequence of reflections, rotations, or translations that
maps one object to the other; and

e [Congruence-to-Transformations] When two objects are congruent, the trans-
formation perspective provides that there then exists a single one of or a sequence
of reflections, rotations, or translations that maps the first object to the other.

We emphasize and name these statements, “Transformation-to-Congruence” (a
sequence of transformations is used to establish congruence of two figures)
and “Congruence-to-Transformations” (a congruence implies the existence of a
sequence of transformations mapping one figure to the other), for mathematical
and pedagogical reasons. First, mathematically, they unpack the two directions of
the definition of congruence from a transformation approach, when the definition
is taken as an if-and-only-if statement. Second, our experiences teaching geometry
suggest that prospective teachers understand these directions differently. Some-
times teachers can use one direction in their proofs, but not the other, and vice
versa [13].

Finally, in a transformation approach, a sequence of transformations used to
establish congruence of two figures must map one entire figure to the other entire
figure. For instance, if we want to show that the union of a pair of intersect-
ing triangles AABCU AAOB is congruent to a second union of two triangles
ADEF U ADPE, then it would not be enough to show that, say, AABC = ADEF
and AAOB = ADPE, by using one sequence of transformations to map AABC to
ADEF and a second, non-equivalent sequence of transformations to map AAOB to
ADPE. We would need to show that there is a single sequence of transformations
that carry AABCU AAOB to ADEF U ADPE. We point this out for mathemati-
cal and pedagogical reasons. Mathematically, it points to an advantage of geometry
from a transformation approach, that we can now work with more complex figures
than two single triangles or circles. Pedagogically, we have found that we need to
reinforce this idea over time when we are teaching. The idea of focusing on a figure

T Note that glide reflections can be expressed as compositions of reflections and translations.
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holistically, rather than focusing on parts of figures in isolation, is something that
is often new to teachers in our courses.

3. DESIGN PRINCIPLES FOR GEOMETRY PROOF ACTIVITIES

In this section, we share the design principles that we have begun using in our classes
after several iterations of teaching this material. These design principles come from
our understanding of the transformation approach combined with our experience
teaching geometry courses. The first author has taught this material three times, and
the second author has taught this material four times. We then discuss how these
principles shaped our within-lesson and across-lesson plans. Then, in Section 4,
we illustrate, by example, some patterns in teachers’ understandings based on the
design principles. Finally, we conclude in Section 5 how we believe our materials
and teaching may have impacted teachers’ understandings and takeaways for other
instructors.

3.1. Design Principles and Rubric

Our design principles for teaching geometry from a transformation perspective are
to focus teachers’ attention on:

e Map the ENTIRE figure: Mapping the entire first figure to the entire second figure

e Say WHY: Saying why their work maps the entire first figure to the entire second
figure

e Say HOW: Saying how they used the definition of congruence.

Moreover:

e During class discussion and feedback, we also help teachers pay atten-
tion to how they used the Transformation-to-Congruence or Congruence-to-
Transformation directions of the definition of congruence.

One of the most useful things we have done for ourselves as instructors is to turn
these principles into a rubric. Figure 1 shows the relationship between this rubric
and our design principles. We have found that this rubric helps us communicate
with future teachers about the mathematics, improves our grading, and clarifies for
ourselves what to emphasize in feedback, whether as a part of grading or during
class discussions.

Both authors used a rubric similar to the one shown in Figure 1, although the
rubric is most similar to the one used by the second author. We find it helpful for
more accurately and quickly assessing future teachers” work. The second author
shared the rubric with their prospective teachers as yet another tool to make the
structure of transformation congruence proofs more explicit. An added benefit of
sharing the rubric with prospective teachers is the possibility of having them grade
each other’s work as an in-class activity.
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The claim is clear. Where the proof begins and ends is
clear.
You account for orientation somehow.

~

Map the ENTIRE The rigid motion maps the ENTIRE first figure to
fieure ithe ENTIRE second figure
&u You drew well-labelled diagram(s) showing the rigid

imotions you used.

'You describe rigid motions precisely, in terms of

variables used.

Say WHY You give reasons for all significant steps. In

iparticular, you provide a logical argument

lexplaining why your rigid motions actually map

|[the first figure to the second figure

You use all the givens. You said where you are using

these givens.

Say HOW You say how the definition of congruence is used.
The definition of congruence says that if you find

rigid motions that map figure A to figure B exactly

then 4=B.)

Rubric

Figure 1. The column on the right-hand side is a rubric similar to one the second author used in their
class. The column on the left-hand side indicates the rubric’s correspondence to our design principles.

3.2. Within-Lesson Plan Design

The first author designed new worksheets and homework assignments to sup-
port the design principles. We share one example of these worksheets in Figure 2.
Solutions are in the appendix. The first author used this worksheet to help teach-
ers understand the Map-the-ENTIRE figure principle, the Say-WHY principle,
and the Say-HOW principle, including both Transformation-to-Congruence and
Congruence-to-Transformation.

In the worksheet section Applications of Congruence, Problems 1 and 2 con-
trast the use of Congruence-to-Transformation (Problem 2) with Transformations-
to-Congruence (Problem 1). Problem 3 and 5a further explore the use of
Transformations-to-Congruence, as well as begin to approach the Map-the-
ENTIRE-figure principle. The tasks are designed to position teachers to realize
they must apply their sequence of rigid motions to the entire union and not just
to the parts. Placing these concepts side-by-side brings to life the multiple uses and
subtleties of the definition of congruence.

The worksheet then transitions to the section Applying Congruence Definition
in Proofs for Non-Triangles. This section features three non-standard proofs, the
first two of which were originally created by the second author, that offer teachers
the opportunity not only to practice applications of the definition of congruence
but also encounter all of the design principles. Such proofs with non-standard
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Page 1

Applications of congruence:
Use the definition of congruence to answer the following.

1.) Say ris a sequence of rigid motions and that r(AABC) = ADEF. Then we can conclude__

2.) Say quadrilateral ABCD is congruent to quadrilateral EFGH. Then we can construct ____

3.) | want to show that triangle AABC U D is congruent to AEFG U H where D is a point on
the interior of AABC and H is a point on the interior of AEFG. In order to show that
these figures are congruent, what do | need to show? l.e. what is my goal?

4.) Suppose triangle AABC is congruent to triangle ADEF.

a. Why do | know then that AB is congruent to DE?
b. Why do | know that £ABC is congruent to £DEF?
5.) Trickier: Suppose | am trying to show that AABC U AABO = ADEF U ADEM.
a. Whatdo | need to show to finish the proof? What is my goal?
b. Suppose | am in the middle of the proof and | have already succeeded in showing
that f(AABC) = ADEF for some sequence of rigid motions f, and | know that
AABO is congruent to ADEM. Is it true that f(AABO) = ADEM? If yes, why? If
no, why and state what | do know instead.
Page 2
Applying congruence definition in proofs for non-triangles:
Note: You may assume that any two lines and any two rays are congruent.

1.) Let £, m be lines. Among all the points that are a unit distance from £, choose one point
P. Among all the points that are a unit distance from m, choose one point Q. Prove that
no matter what points P and Q you chose, it is always truethat fUP = m U Q.

2.) Suppose ABCD and EFGH are rectangles with the same dimensions. That is suppose
assume all angles in each rectangle are 90 degrees, and assume AB = CD = EF = GH
and BC = DA = FG = HE. Show ABCD = EFGH.

3.) Consider figures ABCD U AABO and EFGH U AEFM, where ABCD and EFGH are
rectangles, O is a point in the interior of ABCD and M is a point in the interior of EFGH.
Suppose further that ABCD and EFGH have the same dimensions, AB = EF, 4AB0 =
4EFM, and BO = FM. Show ABCD U AABO = EFGH U AEFM.

Figure 2. The above is a sample worksheet that supports the design principles.

and non-triangular figures offer an opportunity for teachers to grasp the definition
of congruence more broadly and offer further opportunities to repeatedly revisit
contexts that require all of the design principles.

3.3. Across-Lesson Plan Design: Sequencing Figures

In our experience, the key aspects in the construction of a transformation con-
gruence proof require multiple experiences over time for future teachers to grasp
them. Therefore, it is advantageous to engage teachers in many examples over time,
both in class and in homework assignments. In order to have ample fodder for such
examples, it may be necessary for instructors to go beyond the stereotypical triangle
congruence proofs (e.g., Angle-Side-Angle or Side-Angle-Side) and have teachers
work on proofs with non-standard figures or other shapes such as unions of a line
and a point (Figure 3), unions of triangles (Figure 4), the union of a rectangle and
a triangle, or rectangles (Figure 2).

One possible way to approach transformation congruence proofs is to begin with
a basic figure that may be used as a scaffold for additional proofs. For instance,
the second author asked whether the claim that “line segments of equal length are
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Line-Point Task:

P’

m

Say that P is one unit from line £, and point Q is one unit from line m. Show that PRUZ =~ QSUm.
Possible Proof:

Draw segments PR and QS such that R is on ¢, S is on m, m(PR) = 1, and m(QS) = 1.

Therefore by the definition of congruence, PRU £ = QS Um.

Figure 3. The above illustrates the idea of Transformations-to-Congruence in a possible proof of the
line-point task, which was created by the second author.

Boomerang Task:

Show that the two figures above are congruent as marked.
Possible Proof:
By SSS, there exists a sequence of rigid motions r such that r(AABC) = ADEF.

ADEFUADPE.

Figure 4. The above illustrates both Transformations-to-Congruence and Congruence-to-
Transformation in a possible proof of the boomerang task, which was created by the second
author.

congruent” requires proof from a transformation perspective (it does).? Then as a
class, teachers constructed a proof via transformations. Similarly, the first author
began with a proof of the fact that vertical angles are congruent.

2 This prompt is from the Park City Mathematics Institute [10] geometry materials.
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Then, using the equal line segment activity as a scaffold, teachers in the second
author’s class discussed how this proof might be a foothold for a transformation-
based proof for the Leg-Leg (LL) right triangle congruence criterion (If two legs of
one right triangle are congruent to two legs of a second right triangle, then the two
triangles are congruent). The equal length segment proof helped make visible the
structure of a congruence proof, which then organized a discussion of approaches
to a proof of LL.

LL proofs then scaffolded proofs of the “side-angle-side” (SAS) and “angle-side-
angle” (ASA) triangle congruence criteria, and supported the Say-WHY principle.
Class discussion focused on how teachers know where the images of vertices must
be, and why the image of the entire triangle is the same as the other entire triangle.
These proofs then scaffolded even more complex problems, such as those involving
unions of a line and a point or unions of triangles, shown in Figures 3 and 4.

3.4. Across-Lesson Plan Design: Sequencing Proof Approaches

The above sequence of proofs helped teachers understand two types of proof
approaches to geometry from a transformation approach. We call these approaches:

e “from scratch” and
<« . . »
e “building on a known congruence”.

These approaches correspond to the ideas of Transformations-to-Congruence and
Congruence-to-Transformations, respectively.

In the “from scratch” approach, one explicitly constructs rigid motions that map
one figure to the other. This approach is shown in Figure 3. In the “building on a
known congruence” approach, one uses a known congruence to suppose the exis-
tence of a sequence of transformations. For example, the equal length segment claim
implies that there exists a rigid motion that maps one segment to a corresponding
segment. From there, one can show how this rigid motion can be combined with
others to map one figure exactly to the other. This approach can be seen in Figure 4.
Once teachers understand the full potential of Congruence-to-Transformations,
they gain further insight into the definition of congruence and this understanding
opens up a wider array of possible congruence proofs. This wider scope of examples
enriches class discussions and bolsters understanding of congruence proofs overall.

The authors note however that though they saw advantages in their course to
the use of Congruence-to-Transformation in constructing rigid motions, it may
be useful to require teachers to use explicit constructions earlier in the course.
This claim is backed by the last iteration of the second author’s teaching, which
spent more time early on focused on explicit constructions than the first author’s
course or any previous iteration of the second author’s geometry course. In this last
iteration, unlike any previous one, and unlike the first author’s course, almost all
future teachers showed understanding of the Map-the-ENTIRE-figure principle on
homework and exams. This is remarkable because these same future teachers had
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not shown this understanding in the first class’s activities; it was an understand-
ing that was built over time. Meanwhile, in the second iteration of the first author’s
course, where teachers abstractly constructed rigid motions using Congruence-to-
Transformation earlier in the course but who also worked on activities such as
those described in Section 3.2, many teachers showed evidence of the Say-WHY
principle but several teachers struggled significantly with the Map-the-ENTIRE
principle. The authors conclude that a combination of both approaches, requiring
explicit constructions early on but diving into Congruence-to-Transformation and
activities such as that in Section 3.2, may be beneficial.

4. FUTURE TEACHERS’ UNDERSTANDINGS

Knowledge of the design principles can help us to better understand future teachers’
work and can offer constructive insight into teachers’ brilliance and struggles. We
offer examples of teachers’ work here that can be illuminated in the light of the
design principles.

The tasks we use to illustrate these are the Line-Point task (Figure 3) and the
Boomerang task (Figure 4). The solutions to each represent a possible correct solu-
tion that a teacher could produce. As discussed earlier, in the Line-Point task, the
solution used the “from scratch” approach, with explicitly described rigid motions.
Meanwhile in the Boomerang task, the solution was a “building on known con-
gruence” and made use of Congruence-to-Transformation. For the purposes of
clarity, portions of each proof that is underlined with a solid line indicate where the
Map-the-ENTIRE-figure principle is being used. Meanwhile, portions of the proofs
underlined with a dotted line indicate where the Say-WHY principle is being used.

We note that in each of our respective courses in question in this article, we had
taught and prospective teachers had made use of these properties, which we asked
teachers to take as postulates’:

e Ray-on-directed angle (RODA): Given 7, if 7, 3,7 are all in the same plane and if
5 and 7 both form an angle of the same directed angle measure with 7, then s = 7.

e Line-segment-on-ray (LSOR): Given 7 with endpoint P, if Q and R are both on
7 and PQ = PR, then Q = R. (Note that this property could also be stated by
saying PQ and PR have equal length.)

Certainly, the list above does not constitute a comprehensive list of the postulates,
properties and assumptions prospective teachers used in our courses, but they are
particularly salient here given that teachers frequently made use of these in the
examples shown throughout this paper. For consistency, we also incorporated these
properties into our proof illustrations in the line-point and boomerang tasks. How-
ever, we are by no means claiming that instructors could not successfully make use

3 Although it may be possible to prove these properties in some axiomatic systems for geometry from a transformation
approach, we elected not to do so, in order to focus teachers’ attention on the problem-solving aspects of working
with complex figures such as in the Line-Point and Boomerang Tasks.
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Figure 5. The above shows a future teacher’s full attempt (with crossed out portions omitted) at the
boomerang problem. Marks in green are a portion of the comments written by the instructor. The
abbreviation “D.0.C."” appears to refer to the definition of congruence.

of different postulates and properties in their own courses to serve as foundations
for proof writing.

Figure 5 shows an interesting attempt at the boomerang problem that indicates
that the future teacher does not show evidence of the Map-the-ENTIRE-figure
principle. The teacher attempted to use two different statements of congruence to
conclude the existence of a single sequence of rigid motions. As we know, it is pos-
sible that Congruence-to-Transformation may lead to a different rigid motion for
each given sequence of rigid motions. As a result, the teacher shows a misunder-
standing of the applications of Congruence-to-Transformation and does not show
evidence of the Map-the-ENTIRE-figure principle because the teacher attempted
to treat multiple potentially different sequences of rigid motions as if they were the
same sequence.

Future teachers’ work like that shown in Figure 5 convinced both authors in
future iterations of their courses to insist that future teachers complete early con-
gruence proofs in the course using explicit constructions of rigid motions (that is
spelling out exactly which translations, rotations, and reflections they are using),
prior to allowing them to use Congruence-to-Transformation to conclude the exis-
tence of rigid motions. For example, the authors plan to have future teachers prove
side-angle-side and angle-side-angle using only explicit rigid motions.

Meanwhile in Figure 6, we see a future teachers’ attempt at the line point prob-
lem. Note that this teacher succeeds in explicitly constructing a sequence of rigid
motions. However, the teacher ends the proof shortly thereafter without a deduc-
tive argument explaining why the image of one figure under the sequence of rigid
motions is exactly the other. As a result, this teacher does not demonstrate evidence
of the Say-WHY principle. Similarly, other teachers included a statement that rigid
motions preserve distance as justification for ending the proof, and anecdotally in
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Figure 6. The above shows a future teacher’s full attempt at the line-point problem.

class, both authors noticed prospective teachers making this statement in place of a
deductive argument during group work.

Readers should note that Figure 6 represents a more extreme example of a teacher
not showing evidence of the Say-WHY principle. We also saw instances of teachers
who attempted to continue the proof after constructing the rigid motion but who
stopped short of fully demonstrating evidence of the Say-WHY principle. In such
cases, teachers may inappropriately imitate older proofs or make a series of state-
ments that do not constitute deductive logic. We hypothesize that such prospective
teachers do not truly grasp the purpose of this portion of the proof.

This issue has been the source of an on-going discussion among the authors
about how best to communicate the need for proof. One tactic used by both authors
is creating sketches where the figures are not superimposed. Of course, to create
these sketches one must distort the figures, and the authors hypothesize that not
all teachers may initially understand the purpose of these warped diagrams, since
they appear to contradict what teachers may view as “obvious.” Activities like those
shown in Figure 2 and proofs involving figures more complex than triangles already
appear to help teachers with the Say-WHY principle in the authors’” experience.
Additionally, it seems clear that the Say-WHY principle needs repeated reinforce-
ment among the teachers over time. As a result, the authors have been working
to prompt teachers frequently and consistently over time about why teachers know
their figures are truly superimposed or why they know the diagrams they drew really
represent the situation in all cases. The activities and proofs described in this paper
are all opportunities for this repeated talking point.

5. CONCLUSION

Our impression based on homework and exam performances, as well as in-
class contributions, is that after incorporating the design principles (including the
Map-the-ENTIRE-figure, Say-WHY, and Say-HOW principles), as well as the activ-
ities and lessons described in this paper into our courses, prospective teachers
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demonstrated more willingness to use rigid motions in their proofs of congruence
and to connect rigid motions to congruence explicitly. We saw more explicit use
during in-class discussions of teachers citing congruence results to provide the exis-
tence of a rigid motion to begin a proof, as well as more teachers concluding their
proofs establishing congruence citing the definition of congruence. We interpret
this as the potential success of these materials in supporting teachers’ develop-
ment of the Congruence-to-Transformation and Transformations-to-Congruence
actions. For the second author, the scaffolding using the equal length segment result
seemed particularly crucial to teachers’ understanding, and well after this proof was
constructed, teachers would refer to it productively and without prompting.

The first author found that the handout (see Figure 2) helped teachers apply
Congruence-to-Transformation and Transformations-to-Congruence in congru-
ence proofs. The handout helped teachers by providing the first and final steps
of congruence proofs. The first author emphasized to teachers throughout the
semester that they should write these items down early in the proof-writing process.
Problem 5b in particular generated a lot of discussion and debate among the groups
in the class. The problem asks if a sequence of rigid motions, f, that carries AABC to
ADEF would also apply to congruent triangles AABO and ADEM. Several teach-
ers initially answered “yes” to this question. However, the class refuted this in
two different ways. Some generated examples where AABC U AABO and ADEF U
ADEM may not be congruent. Others discussed the fact that while there does
exist some sequence of transformations carrying AABO to ADEM, this sequence
may not be the same as the sequence f and would need to be assigned a differ-
ent name. Teachers who grasped these arguments gained additional understanding
of Transformations-to-Congruence and progress towards the Map-the-ENTIRE-
figure principle.

The three problems on the second page of the handout in Figure 2 helped with all
aspects of the congruence proof-writing process through non-standard problems.
On the rectangle proof (#2), many teachers in the room took the approach of begin-
ning the proof by defining a transformation r taking one segment of the rectangle
to another segment and then reflecting over this segment as-needed. This strategy
resulted in a large portion of the proof being dedicated to progressively extending
the transformation to the three other sides of the rectangle. The teachers found this
repetitive process enlightening, with several professing “light-bulb moments” on
understanding the process of showing deductively that a transformation extends to
an entire figure, thus contributing toward the Say-WHY principle.

In the second author’s experience, sequencing figures and sequencing proof
approaches, in combination with explicit discussion of Transformations-to-
Congruence and Congruence-to-Transformations and careful work with the
notation to distinguish the image from preimages, was critical to teachers’
understanding and construction of congruence proofs from a transforma-
tion approach. The first time she taught this course, she did not emphasize
Transformations-to-Congruence and Congruence-to-Transformations, nor did she
pose any questions of whether a statement needed proof. Teachers in this course
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were confused as to how proofs from a transformation perspective differed from
their previous experiences with an Elements approach, and frequently answered
homework questions using an Elements approach. Then, after problematizing the
need for proof (or not, and from which approach), teachers engaged more willingly
with proofs with transformations and often generated multiple and beautiful proof
approaches that the second author had not even anticipated. Class discussions were
lively, but proofs in class, in homework, and on exams sometimes showed a lack of
attention to the Map-the-ENTIRE-figure principle. Finally, bringing in sequencing
figures, sequencing proof approaches, and notational attention, almost all teachers
in the final exam showed understanding of the Map-the-ENTIRE-figure principle
as well as flexibility with different proof approaches.

Both authors found that having prospective teachers work on proofs of the
congruence of non-standard figures offered teachers the opportunity not only to
practice applications of the definition of congruence but also frequently encounter
the design principles. Such proofs with non-standard and non-triangular figures
offer an opportunity for teachers to grasp the definition of congruence more broadly
and offer further opportunities to repeatedly revisit contexts that require all of the
design principles.

In this paper, we have provided principles and examples, based on our expe-
riences teaching as well as our previous research into teachers’ understanding of
congruence proofs [13], to help provide instructors further insight into the work
and thinking of prospective teachers on transformation congruence proof. Addi-
tionally, we have illustrated how this insight has begun to impact our own teaching
practice. Changes in our practice have included offering prospective teachers more
opportunities to practice transformation congruence proof by leveraging congruent
non-standard shapes, providing rubrics that help offer teachers a more explicit illus-
tration of the structure of transformation congruence proofs, providing an example
of an activity that allows teachers to practice various aspects of the structure of con-
gruence proofs, and using congruence proofs of simpler figures to provide scaffold-
ing for proofs involving more complex congruent figures. It is our hope that these
examples of prospective teachers’ work and of possible changes in teaching practice
will provide immediate suggestions for concrete changes in classrooms. However,
we also hope readers will be inspired to further the work of adapting instruction,
of creating activities, and of re-designing lesson plans to better reflect and reinforce
prospective teachers’ understanding of transformation congruence proof.
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APPENDIX

This appendix includes possible solutions to the handout questions posed in Figure 2. Note that
other solutions may be possible; these are merely included as a convenient reference for the
reader.

Page 1

Applications of congruence:

Use the definition of congruence to answer the following.

1.) Say ris a sequence of rigid motions and that r(AABC) = ADEF. Then we can
conclude AABC = ADEF.

2.) Say quadrilateral ABCD is congruent to quadrilateral EFGH. Then we can
construct a sequence of rigid motions, r, such that r(ABCD) = EFGH.

3.) Iwant to show that triangle AABC U D is congruent to AEFG U H where D is
a point on the interior of AABC and H is a point on the interior of AEFG. In
order to show that these figures are congruent, what do I need to show? i.e. what
is my goal?

Show that there is a sequence of rigid motions, f, such that f(AABCU D) =
AEFGUH.
4.) Suppose triangle AABC is congruent to triangle ADEF.

a.  Why do I know then that AB is congruent to DE?

Because AABC = ADEF, there exists a sequence of rigid motions, g,
such that g(AABC) = ADEF. Then g(AB) = DE. By the definition of
congruence, AB = DE.

b. Why do I know that £LABC is congruent to £ DEF?

Because AABC = ADEEF, there exists a sequence of rigid motions, g,
such that g(AABC) = ADEF. Then, g(A) = D,g(B) = E,andg(C) = F.
This implies that g(E)‘l) —ED and g(BC) = 1171)3 Therefore, g({ABC) =
A DEF. By the definition of congruence, L ABC = £DEF.

5.) Trickier: Suppose I am trying to show that AABCU AABO = ADEF U
ADEM.

a. What do I need to show to finish the proof? What is my goal?

Show that there exists a sequence of rigid motions, r, such that
r(AABCU AABO) = ADEF U ADEM.

b. Suppose I am in the middle of the proof and I have already suc-
ceeded in showing that f(AABC) = ADEF for some sequence of rigid
motions f, and I know that AABO is congruent to ADEM. Is it true that
f(AABO) = ADEM? If yes, why? If no, why and state what I do know
instead.

Two possible types of answers:



Page 2

(1)

(2)
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Because AABO = ADEM by the definition of congruence, there exists a
sequence of rigid motions, t, such that r(AABO) = ADEM. However, the
definition of congruence does NOT necessarily imply that r = f.

It is possible to draw AABC U AABO and ADEF U ADEM are not con-
gruent. One way to do this is to place point O on the interior of AABC,
and draw point M so that it is not on the interior of ADEF because M
and ADEF lie on opposite sides of DE. Then f could not apply to the entire
union.

Applying congruence definition in proofs for non-triangles:
Note: You may assume that any two lines and any two rays are congruent.

ORCID

Julia St. Goar

1.)

2)

3)

Let £, m be lines. Among all the points that are a unit distance from ¢,
choose one point P. Among all the points that are a unit distance from
m, choose one point Q. Prove that no matter what points P and Q you
chose, it is always true that L UP = m U Q.

See Figure 3 for the solution to this problem.

Suppose ABCD and EFGH are rectangles with the same dimensions.
That is suppose assume all angles in each rectangle are 90 degrees,
and assume AB = CD = EF = GH and BC = DA = FG = HE. Show
ABCD = EFGH.

Because AB = EF, by the definition of congruence there exists a
sequence of rigid motions, f, such that f(AB) = EF. Because £ DAB =
£ HEF, £ABC = £EFG, and by ray-on-directed-angle, we can conclude

— = = = — T — =

that f(AD) = EH and f(BC) = FG. Because AD = EH, BC = FG, and
by line-segment-on-ray, we can conclude that f(D) = H and f(C) =
G. Then f(ABCD) = EFGH. Therefore by the definition of congruence,
ABCD = EFGH.

Consider figures ABCD U AABO and EFGH U AEFM, where ABCD
and EFGH are rectangles, O is a point in the interior of ABCD and M is
a point in the interior of EFGH. Suppose further that ABCD and EFGH
have the same dimensions, AB = EF, £ ABO = £ EFM, and BO = FM.
Show ABCD U AABO = EFGH U AEFM.

By #2, ABCD = EFGH. Then by the definition of congruence, there
exists a sequence of rigid motions, g, such that g(ABCD) = EFGH.
Because LABO = L EFM and by ray-on-directed angle, we can conclude
that g(BT‘) — FM. Because BO = FM and by line-segment-on-ray, we can
conclude that g(O) = M. Then g(ABCD U AABO) = EFGH U AEFM,
so by the definition of congruence, ABCD U AABO = EFGH U AEFM.
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