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Abstract. At local scales, it has been suggested that high levels of resources lead to
increased tree growth via trait optimization (highly peaked trait distribution). However, this
contrasts with (1) theories that suggest that trait optimization and high growth occur in the
most common resource level and (2) empirical evidence showing that high trait optimization
can be also found at low resource levels. This raises the question of how are traits and growth
optimized in highly diverse plant communities. Here, we propose a series of hypotheses about
how traits and growth are expected to be maximized under different resource levels (low, the
most common, and high) in tree seedling communities from a subtropical forest in Puerto
Rico, USA. We studied the variation in the distribution of biomass allocation and leaf traits
and seedlings growth rate along four resource gradients: light availability (canopy openness)
and soil K, Mg, and N content. Our analyses consisted of comparing trait kurtosis (a measure-
ment of trait optimization), community trait means, and relative growth rates at three resource
levels (low, common, and high). Trait optimization varied across the three resource levels
depending on the type of resource and trait, with leaf traits being optimized under high N and
in the most common K and Mg conditions, but not at any of the light levels. Also, seedling
growth increased at high-light conditions and high N and K but was not related to trait kurto-
sis. Our results indicate that local-scale variability of soil fertility and understory light condi-
tions result in shifts in species ecological strategies that increase growth despite a weak trait
optimization, suggesting the existence of alternative phenotypes that achieve similar high per-
formance. Uncovering the links between abiotic factors, functional trait diversity and perfor-
mance is necessary to better predict tree responses to future changes in abiotic conditions.

Key words:  biomass allocation traits; canopy openness; kurtosis; leaf area; specific leaf area; Puerto
Rico; soil nutrients.

INTRODUCTION

Understanding how abiotic factors drive functional
trait distributions and growth of local communities is
important for determining community responses to
future changes in environmental conditions (Violle et al.
2007, Estrada et al. 2016, Sakschewski et al. 2016). Trait
distributions of plant communities are assumed to be
the outcome, to some degree, of environmental condi-
tions exerting selective forces and favoring species that
make a good fit for given conditions. In other words,
traits are assumed to reflect optimal or, at least, opti-
mized ecological strategies for any given environment
(although this set of optimal traits may change due to
temporal changes in conditions; Southwood 1977,
Grime 1979, Keddy 1992, McGill et al. 2006). As a
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result, local species composition should cover a relatively
narrow range of trait values that fit the requirements of
the environment there. However, this expectation contra-
dicts the often-observed pattern of a wide diversity of
forms and functions in tropical plant communities and
suggests the existence of alternative phenotypes with
equivalent performance (Marks and Lechowicz 2006,
Worthy et al. 2020).

At local scales, the distribution of a given resource is
typically unimodal, with some resource values being
more frequent than values located at the tails of the dis-
tribution (Fig. 1, Appendix S1: Fig. S1; Abrams 1995,
Brigatti et al. 2007). For example, levels of canopy open-
ness (used as a proxy for understory light availability)
are often around 10% in tropical forests. However, light
availability values, even in a closed forest, can range
between <1% and 35%, with these extreme values being
less frequent than mean values (Chazdon and Fetcher
1984). Similarly, soil resources may exhibit a similar
peaked hump-shaped distribution, with soils showing
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low and high levels of fertility toward the tails of the dis-
tribution (Appendix S1: Fig. S1). As traits reflect the
interaction between the organisms and their environ-
ment, local variation in abiotic factors is expected to
have an impact on trait distributions in plant communi-
ties and on growth. There are at least three potential sce-
narios describing trait distributions at the community
level, and plant growth in response to resource gradi-
ents:

Scenario 1: Peaked trait distributions toward common
conditions

In the first scenario, uncommon conditions are too
rare to lead to peaked trait distributions, trait optimiza-
tion, given that resources are not suitable and abundant
enough to maintain stable populations that represent a
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good fit for those conditions, while common conditions
represent suitable areas and allow trait optimization
(Fig. 1A; McGill et al. 2006, Violle et al. 2007). These
two different levels of trait optimization would imply
better performance (e.g., growth) for individuals present
in the most common conditions and lower performance
of those individuals in places with uncommon resource
levels.

Scenario 2: Peaked trait distributions toward rare
conditions

Uncommon conditions that represent extremes of the
resource distribution (characterized by either low or high
resource levels) could lead to trait optimization due to
strong selective forces that operate under these condi-
tions (Fig. 1B). For example, in high-light conditions
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Fic. 1. Conceptual diagram depicting changes in trait distributions (kurtosis) between rare and the most common resource
levels. In the center, the plot depicts the variation in a given resource that describes a unimodal distribution with values at the two
extremes being less frequent than the values in the central section. Based on these three resource levels, we show two scenarios (A
and B) of how trait distribution is expected to vary between rare and common resource levels.
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species that acquire resources fast and efficiently out-
compete other species leading to optimization in leaf
traits. Similarly, in nutrient-poor soils only a handful of
specialized species may persist, representing a (relatively)
narrow range of traits. Empirical evidence has shown
that trait values are more strongly selected at the
extremes of the resource distribution characterized by
either low or high resource levels, with trait optimization
occurring at these extremes rather than at most common
ones (Weiher et al. 1998, Cornwell and Ackerly 2009, de
Bello et al. 2009, Kraft and Ackerly 2010, Swenson et al.
2011, Bernard-Verdier et al. 2012, Bruelheide et al.
2018). For instance, a previous study found that open
sites (i.e., treefall gaps) exert strong selective forces on
tree communities allowing only light-demanding species
to successfully colonize these forest gaps (trait optimiza-
tion), while intermediate and low light level sites exhibit
greater diversity of life forms (lower trait optimization;
Hubbell 2005). Other studies have also shown that
across environmental gradients, low soil nutrient levels
tend to favor stress-tolerant species, resulting in trait
optimization toward lower extremes of the resource dis-
tribution (Pinho et al. 2018). These patterns in trait dis-
tributions have been well documented at the landscape
and regional scales (Cornwell and Ackerly 2009, Enquist
et al. 2015, Simov4 et al. 2015). At local scales, similar
trends are expected if extreme abiotic conditions select
for particular traits that maximize organisms’ perfor-
mance (e.g., high growth; Fig. 1B).

Scenario 3: Low peaked trait distributions occur in both
common and rare resource levels

Alternatively to these two scenarios, traits might not
be strongly optimized toward a single or a narrow range
of values. Instead, plants may display contrasting pheno-
types that constitute alternative solutions for the given
local conditions (Marks and Lechowicz 2006, Mus-
carella and Uriarte 2016, Worthy et al. 2020). For exam-
ple, Hirose and Werger (1995) found that in a tropical
forest different species of trees exhibit contrasting strate-
gies for capturing light that result in similar perfor-
mance. In this case, we should observe a lack of trait
optimization across different resource levels, yet species
may still achieve high performance anywhere along the
local gradient of conditions.

Here, we examine both biomass allocation and non-
biomass allocation traits. Biomass allocation traits rep-
resent a group of traits that have shown great variation
within species and reflect the amount of biomass that
plants allocate to a particular organ depending on the
resources that are the most limiting for plant growth
(Bloom et al. 1985, Poorter et al. 2012, Umana et al.
2018). For example, according to optimal allocation the-
ory, strong limitation in soil nutrient content should
result in increased biomass allocation to roots at the
expense of lower biomass allocation to leaves and stems
(Bloom et al. 1985). Another group includes non-
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biomass allocation traits, such as specific leaf area or
leaf area, which have shown strong responses to shifts in
a variety of abiotic factors (Chapin 1980, Oksanen et al.
1981, Reich et al. 1997, Craine et al. 2001, Wright et al.
2004). For example, environments with low resource
levels tend to be dominated by species with conservative
traits such as low specific leaf area and low leaf area (Le
Bagousse-Pinguet et al. 2017). Combined, biomass allo-
cation and non-biomass allocation traits capture a wide
range of species responses to local-scale resource
variation.

We study trait optimization in response to local-scale
resource variation and how that results in differences in
seedling growth in a subtropical forest. We use growth
and trait information collected from all individuals pre-
sent in 200 seedling plots (~1,800 individuals) in combi-
nation with local-scale abiotic information on soil
nutrient content (K, Mg, and N) and canopy openness
(a proxy for light availability in the forest understory;
Appendix S1: Fig. S1). While most trait-based studies
have used species’ mean traits values, which assumes
that all individuals within a species are identical in their
traits, here, we have trait and seedling growth informa-
tion for all individuals. With this information, we can
accurately study trait and growth distributions across
local-scale resource gradients. Specifically, we ask the
following questions:

1. How does trait optimization differ in extreme vs.
common resource levels? We propose to examine the
three alternative scenarios described above by quanti-
fying trait optimization under different resource
levels.

2. How do community mean trait values change across
resource levels? We expect changes in trait means
across different resource levels depending on the type
of trait. Specifically, we expect biomass allocation
traits to vary according to the optimal allocation the-
ory (i.e., higher allocation toward most limiting
resources), while non-biomass allocation traits will be
more conservative (e.g., low SLA and LA) toward
the most limiting extremes of resource levels.

3. How does seedling growth vary between extreme vs.
common resource levels? Does trait optimization lead
to high seedling growth? We predict variation in seed-
ling growth across common and extreme levels of soil
nutrient and light conditions, with at least two poten-
tial and non-exclusive outcomes: (a) at high resource
levels, seedling growth rates are high; (b) seedling
growth rates are high in resource levels that show
high trait optimization.

METHODS

Field surveys and trait data collection

The study was conducted in El Yunque National For-
est, in Puerto Rico, USA (65°47 W, 18°19’ N). This
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forest, classified as a subtropical wet forest, has a mean
annual rainfall of 3548 mm and an average temperature
of 23°C (Ewel and Whitmore 1973). The vegetation is
dominated by the tree species Dacryodes excelsa (Burser-
aceae) and the palm Prestoea acuminata (Arecaceae). In
2013, 200 1 x 1 m seedling plots were established to
monitor seedling growth for one year. Seedling plots
were arranged in a regular grid separated by 10 m. All
tree seedlings < 50 cm in height (n = 1771) were mea-
sured, tagged, and identified to species (Umafa et al.
2015). Between June and July 2014, all surviving individ-
ual seedlings were collected for trait measurements. We
measured fresh leaf area (LA; cm?) for one to three fully
expanded leaves. The leaves were then dried and weighed
to calculate specific leaf area (SLA = LA/dry mass; cm?/
g). Roots were cleaned and separated from the main
stem. Leaves and roots were dried in an oven for 72 h at
70°C and measured for dry mass (g) to calculate traits
related to biomass allocation. Leaf mass fraction (LMF)
was calculated as LMF = leaf dry mass/total plant dry
mass. Root mass fraction (RMF) as root dry mass/total
plant dry mass. Leaf area ratio (LAR) was calculated as
LAR = leaf area/total plant dry mass (Poorter et al.
2012). Leaf traits included leaf area (LA) and specific
leaf area (SLA). LA reflects the area displayed to cap-
ture light (Rozendaal et al. 2006), while SLA describes a
range of strategies (conservative to acquisitive) for car-
bon assimilation (Reich et al. 1997, Wright et al. 2004).

Relative growth rate

We defined seedling relative growth rate (RGR) as the
change in log-transformed total height (cm) from 2013
to 2014. The total height of each seedling was measured
from the base to the most distant part of the main stem.
We standardized relative growth values by subtracting
the mean of each species and dividing by the standard
deviation per species. This allows comparisons across
species with different inherent growth rates, as those
involved in the survival-growth trade-off (Arellano et al.
2019).

Soil nutrient content and canopy openness

Soil samples were extracted below the organic litter
layer (0-10 cm depth) in July 2014. Each soil sample
consisted of mixed soil from each of the plot corners and
from the center of the seedling plots, and we collected a
total of 200 soil samples. Soil samples were sent to
Brookside Laboratories (New Bremen, Ohio, USA) for
chemical analyses. Magnesium and potassium (Mg, mg/
kg; and K, mg/kg) were extracted using the Mehlich-II1
solution. Magnesium is an essential macronutrient
found in the chlorophyll of green plants and potassium
is essential for photosynthesis and protein synthesis as
well as carbohydrate transport and storage (Maathuis
2009). Potassium has been found to limit seedling
growth in tropical and temperate forests (Tripler et al.
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2006, Wright et al. 2011). Total soil N concentration was
obtained using the total combustion method. Nitrogen
is an essential constituent of proteins found in chloro-
phyll and is needed in substantial amounts (Maathuis
2009). While soil P is an important limiting resource for
tropical forests, most of the P concentrations in our sam-
ples fell below the detection threshold for the method
and we could not use it for the present study.

To assess light conditions, we took hemispherical pho-
tographs using a camera Nikon Coolpix5000 with an
FC-E8 Nikon fisheye lens (Nikon Inc., Tokyo, Japan).
The photographs were taken at 1 m height in the center
of each seedling plot at uniform light conditions at dawn
with homogeneous light conditions (Glatthorn and
Beckschifer 2014). The photographs were analyzed
using the Gap Light Analyzer software (GLA; Frazer
et al. 2000; software available online).> Appendix SI:
Table S1 reports ranges and mean values for all the stud-
ied abiotic variables.

Plot selection at different resource levels

Our approach consisted of classifying plots into three
resource levels (low, common, and high) and then calcu-
lating trait kurtosis per each resource level. This
approach allows us to use seedling communities large
enough at each resource level in order to have robust
measurements of kurtosis, otherwise, our plots are too
small to have a high number of trait values (seedling
abundance range: [1, 39]; mean = 9). Prior to the analy-
ses, we examined correlations between abiotic variables
across the 200 plots (Appendix S1: Table S2) and their
distribution. All abiotic variables showed unimodal dis-
tribution with the most common resource level around
the average resource value (Appendix S1: Fig. S1).

Next, we calculated the relative frequency of each
resource level using a kernel density estimation for each
abiotic variable using the R function density from pack-
age stats (R Development Core Team 2017). Given that
the density estimation is affected by the bandwidth, we
used two methods to select the appropriate bandwidth.
The first method is based on a linear diffusion process
(Botev et al. 2010), a nonparametric density estimator
independent of a normal model and less sensitive to out-
liers (Botev et al. 2010). This method was implemented
by using the function botev from the package prove-
nance in R (Vermeesch 2020). The second method uses
the asymptotic mean integrated squared method error
(AMISE) and consists of evaluating the mean integrated
squared error of a density estimate based on a normal
distribution (see Appendix S2).

We classified subsets of plots into “low-resource”
plots, “high-resource” plots, and “the most common
resource level” plots, for each environmental variable
(hereafter referred to as low, high, and common,

S https://www.caryinstitute.org/science-program/our-scie
ntists/dr-charles-d-canham/gap-light-analyzer-gla
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respectively). The low-resource plots corresponded to
the 10% with the lowest level of the resource. The high-
resource plots corresponded to the 10% with the highest
level of the resource. The most common resource level
plots corresponded to the 10% closest to the most fre-
quent conditions, inferred from the location of the peak
in the unimodal estimation of density. Since we have
some plots with repeated values for the different
resources studied, the number of plots selected per
resource level varied between 10-16% of the total num-
ber of plots; Appendix S1: Table S3 contains the specific
number of plots selected per resource level, and Appen-
dix S1: Fig. S1 indicates the plots that were selected in
each resource level (of the 200 plots established, some
were excluded from the analyses to focus on the most
extreme and common values). To determine whether our
results were sensitive to the number of selected plots for
each resource level, we repeated all the analyses using
the plots with the lowest, highest, or the most common
levels of the resource, p in {5, 6, ..., 14, 15}. The results
(Appendix S3) were not sensitive to the value of p,
except in low ranges (likely due to the low sample size,
the inherent variability in the tails and/or the skewed dis-
tribution of some of the resources studied).

Measurement of trait optimization at each resource level

To examine how trait distribution varied with different
resource levels (question 1), we compared trait kurtosis
values using information from seedlings located in the
low, high, and the most common resource plots. Very
peaked distributions (high kurtosis) indicate strong trait
optimization, while very flat distributions (low kurtosis)
indicate weak trait optimization (Enquist et al. 2015, Le
Bagousse-Pinguet et al. 2017). We calculated kurtosis for
individual traits per resource level. We choose kurtosis
over variance because we are interested in detecting a
pointed peak (or lack of it) in trait distributions beyond
the information about how spread the data is (Fig. S2 in
Appendix S1 shows that the degree to which a given dis-
tribution is peaked is independent of the spread of the
data; (Enquist et al. 2015).

Given that kurtosis values are difficult to compare
with each other, at least in terms of how much they differ
from the expected by chance, we used a more inter-
pretable metric than raw kurtosis, by calculating the
standardized effect sizes (SES) for the kurtosis values
obtained in all resource level classes, for all environmen-
tal variables and traits. To calculate the SES for kurtosis,
we created null models where each trait value per indi-
vidual within a community matrix (including all 200
plots) was randomized 999 times and we recalculated
kurtosis for each resource level for each randomized
dataset. We then obtained a mean null value and stan-
dard deviation from the null distribution that were used
to calculate the kurtosis SES.
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Observed kurtosis — meannull kurtosis

SES Kurtosis = SDnull kurtosis

SES kurtosis values >1.96 indicate higher than
expected kurtosis in a certain trait given the number of
seedlings present in plots at each resource level and SES
kurtosis values <—1.96 values indicate a lower than
expected kurtosis for a certain trait given the number of
seedlings present in plots at each resource level.

Change in mean trait values in each resource level

To determine how community mean trait values
change across resource levels (question 2), we calculated
and compared mean community trait values at each
resource level. When calculating mean trait values, we
used all individual seedlings present at each resource
level. To allow comparisons between traits measured in
different units, we used standardized trait values at the
community level (mean = 0, standard deviation = 1).
Next, to determine whether trait means at each resource
level differ from zero, we performed a bootstrap sam-
pling with replacement. To do this, we randomly selected
seedlings (with different trait values) for each resource
level 999 times and calculated the mean per trait. If 95%
of the values of the bootstrap distribution overlapped
zero, then it was considered not significant. In other
words, this test examines whether the trait mean at a
given resource level differs from the expected for the
species.

Variation in seedling growth rates at each resource level

To address how seedling growth varies across resource
levels (question 3), we performed a similar analysis from
the one used for mean traits, but instead of using func-
tional traits, we used RGR (see raw RGR distributions
at each resource level in Appendix S1: Fig. S3). We also
performed a bootstrap sampling with replacement to
assess the significance of changes in RGR at each
resource level (i.e., deviations in RGR from the expected
for the species). Furthermore, we evaluated if kurtosis
was related to mean RGR at each resource level (ques-
tion 4) using a linear mixed-effects model (function Imer,
package Ime4 in R; Bates et al. 2015, R Development
Core Team 2017). In these models, the response variable
was mean RGR at each resource level. The independent
variable was trait kurtosis per resource level; abiotic fac-
tors (canopy openness, soil N, Mg, and K) and resource
levels (high, low and the most common) were included
as intercept-specific random effects, to account for the
effects of variation of both variables on growth. The
sample size for this model was n = 60. To calculate the
marginal and conditional coefficients of determination
described by Nakagawa and Schielzeth (2013), we used
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the function r2 in the package performance (Liidecke
2020).

REsuLTs

Variation in trait distributions with different resource
levels (question 1)

Observed kurtosis patterns based on different traits
showed a variation across the different studied resource
levels (low, common, and high), but the patterns were
resource and trait specific (Appendix S1: Fig. S2). For
canopy openness, observed kurtosis values for all traits
did not differ from a random expectation, but there was
a generalized trend for higher SES kurtosis in the most
common light conditions, except for RMF (Fig. 2). For
soil K content, SLA had higher than expected kurtosis
at high resource values while LAR had higher than
expected kurtosis at the most common level, the rest of
the traits had kurtosis that was not significantly different
than expected by the null model. For soil Mg content,
LAR had higher than expected kurtosis at the most
common resource level, indicating trait optimization
and RMF had higher than expected kurtosis at the low
resource level. The rest of the traits had kurtosis levels
that were not significantly different from the null expec-
tation for soil Mg. For soil N content, SLA, LAR, and
LMF had a higher than expected kurtosis at the high
resource level indicating trait optimization at high N
levels. The rest of the traits had kurtosis that was not sig-
nificantly different than expected by the null model for
soil N. Results obtained using the AMISE method were
largely consistent with the results described above, espe-
cially for results based on canopy openness and soil N
(Appendix S2). For Mg and K, kurtosis values of LAR,
LMF, and SLA were less consistent (Appendix S2).

Variation in mean trait values with different resource
levels (question 2)

In addition to the kurtosis analyses, we also examined
shifts in mean trait values across the three resource
levels. For canopy openness, LA and LAR were signifi-
cantly higher at high-light levels, and LAR, RMF, and
SLA were significantly lower at the most common
resource level. The means of the rest of the traits were
not significantly different from their community-wide
means at any level of canopy openness (Fig. 3). For soil
K content, LA was significantly higher at low and high
resource levels but it was significantly lower at the most
common resource level. Also, LAR was significantly
higher when soil K was high. The rest of the traits
showed means that were not significantly different from
the mean community value for soil K (Fig. 3). For soil
Mg content, RMF and LA were significantly higher,
while SLA was significantly lower at the most common
resource level. The rest of the traits showed means that
were not significantly different from the mean
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community value for soil Mg (Fig. 3). For soil N con-
tent, LAR and LMF were significantly higher at the low
resource level, while LMF and LAR were significantly
lower and RMF was significantly high at the most com-
mon resource level, and LA, RMF, and LAR were sig-
nificantly higher at the high resource level. The rest of
the traits showed means that were not significantly dif-
ferent from the mean community value for soil N
(Fig. 3).

Community growth rates in three resource levels (question
3)

Mean seedling relative growth rate (RGR) was signifi-
cantly higher at high levels of canopy openness, soil N,
and K content (Fig. 4). For the rest of the resource
levels, standardized RGR showed no significant differ-
ences. In addition, in the linear mixed-effects model
relating trait kurtosis and growth, the kurtosis had virtu-
ally no effect on RGR (coefficient = 0.01, 95% CI
[-0.01, 0.03]); the model had a low fit (marginal
R? = 0.02 and conditional R* = 0.53).

DiscussioN

Understanding how resource variation at local scales
determines trait distributions and plant performance
remains a major question in ecology. To examine this
question, we combined individual trait and growth infor-
mation collected from tropical seedling communities
along local-scale light and soil fertility gradients. We
found that trends in trait optimization are not generaliz-
able across soil and light gradients. Specifically, trait
optimization was observed for the most common levels
of K and Mg as well as in high soil N sites, while traits
were not particularly optimized at any level of canopy
openness. Variation in growth rates was also resource
specific, with seedling growth being the highest when
canopy openness and soil K and N content were high
but was not related to trait optimization. Overall, these
findings suggest that peaked trait distributions do not
necessarily match the most common resource levels nor
lead to an increase in growth as it is commonly assumed
for local-scale studies. Further, we show that seedling
growth can increase despite a lack of trait optimization.
Below, we discuss in more detail our findings.

Traits are optimized under low, high, and common
resource levels

We observed a strong variation of trait optimization
across three resource levels. However, these shifts in trait
optimization were highly dependent on the type of
resource and studied trait. For instance, LA, LMFE, and
LAR showed peaked distributions when soil N content
was high supporting the scenario showed in Fig. 1B. Sim-
ilar results have been reported in studies including
broader environmental gradients than the one included in
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Fic. 2. Standard effect size (SES) kurtosis of trait values for three resource levels (low, common, and high). Positive SES values
above indicate kurtosis values higher than expected by chance. Negative SES values below indicate significantly lower than the
expected kurtosis in a given community. Dashed horizontal lines represent +1.96, indicating significantly higher/lower kurtosis than
expected by chance. Color codes represent individual traits. LA, leaf area; SLA, specific leaf area; LAR, leaf area ratio; LMF, leaf

mass fraction; RMF, root mass fraction.

this study, in which high soil fertility leads to high trait
kurtosis (Enquist et al. 2015, Le Bagousse-Pinguet et al.
2017). However, when considering soil Mg or K content,
peaks in trait distributions (for LAR) were found at sites
with the most common resource level, supporting the sce-
nario showed in Fig. 1A and suggesting strong selecting
forces on trait distributions under the most common con-
ditions. These results are concordant with previous theo-
retical studies predicting a high frequency of trait values
under the most common conditions (Austin 1986, McGill
et al. 2006, Enquist et al. 2015), yet empirical evidence
has remained scarce. Surprisingly, we also found a lack of
trait optimization for any of the studied traits when con-
sidering canopy openness that can be related to high tem-
poral wvariability in light conditions. Overall, the
discrepancies in trait distributions across different
resource levels suggest that selective forces operate with

variable intensity at different resource availabilities and
may even result in a prevalence of low peaked trait distri-
butions. These results are consistent with another study
of tree communities across the entire island of Puerto
Rico that examined the variation in community weighed
mean trait values with shifts in species occurrence to test
for trait optimization (Muscarella and Uriarte 2016).
Their results showed that while some traits support the
optimization hypothesis (LMA, wood density, and maxi-
mum height), there were many other cases where trait
optimization was not found.

Mean trait values are more acquisitive under high resource
levels

We expected a variation in mean trait values in
response to different resource levels (Fig. 3). Specifically,
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Differences in mean trait values for three resource levels (low, common, and high). All traits were standardized at the
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are lower than the whole-community mean. Triangles indicate 95% confidence intervals not overlapping zero when estimating the
distribution of the mean after 999 bootstrap resampling, while circles represent 95% confidence intervals that overlap zero. Color
codes represent individual traits. Acronyms for traits are the same as in Fig. 2.

we predicted acquisitive strategies (i.e., high SLA and
LA) to be predominant at high resource levels and
increased biomass allocation to organs involved in the
acquisition of limited resources (low resource levels).
For leaf allocation traits, our results did not follow the
expected trend and instead, showed that seedlings tend
to allocate a greater area to leaves (LAR) rather than
allocating biomass to roots in habitats experiencing high
light levels. These findings contradict the optimal alloca-
tion theory in which plants are expected to allocate
greater leaf biomass in low light conditions than at
higher light availability (Mooney 1972, Bloom et al.
1985). However, for non-biomass allocation leaf traits,
our results were consistent with our expectations with
LA increasing with high understory light availability and
indicating that seedling communities located in more

open environments are characterized by acquisitive
traits. These findings are concordant with previous stud-
ies conducted at a Neotropical forest where species dis-
played high leaf sizes values at high light levels
contributing to their carbon gain (Lambers and Poorter
1992, Poorter and Rozendaal 2008). It is important to
note that similar trends observed for LAR and LA can
be also explained by the correlation between both traits
(Fig. S4: Appendix S1).

By taking together results of mean and kurtosis trait
values for variable light conditions, we infer that trait
distributions across the three light levels show to some
degree shifts in mean functional strategies, yet under
each light level, there is no evidence of trait optimiza-
tion. This indicates that trait selection operates differ-
ently across low, most common, and highlight levels but
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within each resource level there is a substantial variation
in phenotypes that result in platykurtic trait distribu-
tions. This agrees with results from a previous study
from the El Yunque forest that showed that during the
seed-to seedling transition, functional divergence tends
to be higher than expected by chance (Umana et al.
2016).

Mean trait values also varied in response to soil
resource levels. We expected greater biomass allocation
to roots in poor soil conditions as suggested by the opti-
mal allocation theory (Bloom et al. 1985, Garnier 1991,
Marschner et al. 1996, Wright et al. 2011, Santiago et al.
2012) and an increase in SLA as soils become more fer-
tile (Ordofiez et al. 2009). However, these expectations
were not supported in this study as we found no general
trends for patterns of biomass allocation or distribution
of leaf-related acquisitive strategies. One potential expla-
nation is that patterns of biomass allocation and trait
variation depend on the interaction of multiple abiotic
factors (Blonder et al. 2018). For example, root biomass
responds to both soil fertility and water availability that
does not always covary at the local scales included here
and may result in conflicting trait responses. Another
potential explanation is that trait-trait correlations may
potentially mask plant responses to variation in resource
availability. For example, the significant correlation
between leaf and root mass fractions may limit the abil-
ity to identify and separate the responses of below-
ground and aboveground traits (Fig. S4).
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Seedling growth increases under high light and high soil N
and K content but is not related to trait optimization

We expected that seedling growth would increase in
areas of high resource levels and/or in areas of high trait
optimization (high trait kurtosis). Our results show that
high light availability and soil N and K content resulted
in high seedling growth rates (Fig. 4); however, growth
was not related to trait optimization. Our findings
related to light suggest that understory light conditions
are a key limiting factor in this forest and that at high
understory light availability, plants might enhance their
growth in the absence of a trait optimization. Our results
are concordant with results from other plant community
studies that have shown species exhibiting contrasting
phenotypes that increase plant performance and con-
form alternative phenotypes under particular resource
conditions (Hirose and Werger 1995, Pistén et al. 2019,
Worthy et al. 2020). Our results also agree with previous
studies conducted in the studied forest showing light as
a key factor influencing performance at early ontoge-
netic stages (Comita et al. 2009, Uriarte et al. 2018).

For soil nutrients, the direct effects of soil N and K
should be carefully interpreted as both variables were
significantly correlated making it difficult to determine
the independent contribution of each factor to seedling
growth (r = 0.56, P < 0.001, Table S2 in Appendix S1).
Although it has been suggested that soil N should not be
considered as a limiting factor for tropical forests (Hedin
et al. 2009), previous studies in tropical regions have
found that soil N may have positive significant effects on
plant biomass accumulation and productivity (Vitousek
and Sanford 1986, Mirmanto et al. 1999, LeBauer and
Treseder 2008, Graefe et al. 2010, Santiago et al. 2012).
Similarly, soil K has shown significant effects on seed-
ling growth, as found in our study (Santiago et al. 2012,
Wright 2019).

Conclusion

Our findings suggest that high plant growth does not
necessarily result from trait optimization. Furthermore,
we did not find support for the expectation that the most
common resource level translates into highly peaked
trait distributions and high seedling growth. Instead, we
found that seedling growth at the Luquillo forest is lim-
ited by light, soil K, and N content and that increase in
growth can be the outcome from co-occurring contrast-
ing phenotypes. Overall, our study suggests that the high
functional diversity found in tropical forests partially
results from a variety of phenotypic designs that perform
well under given resource levels. Also, an important por-
tion of the trait variation observed in our study comes
from within species and highlights the need to incorpo-
rate this level of information in future studies to gain a
better understanding of community responses to local-
scale resource gradients.
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